
East Tennessee State University East Tennessee State University

Digital Commons @ East Digital Commons @ East

Tennessee State University Tennessee State University

Electronic Theses and Dissertations Student Works

12-2021

Electronic Evidence Locker: An Ontology for Electronic Evidence Electronic Evidence Locker: An Ontology for Electronic Evidence

Daniel Smith
East Tennessee State University

Follow this and additional works at: https://dc.etsu.edu/etd

 Part of the Computer Sciences Commons

Recommended Citation Recommended Citation
Smith, Daniel, "Electronic Evidence Locker: An Ontology for Electronic Evidence" (2021). Electronic Theses
and Dissertations. Paper 3994. https://dc.etsu.edu/etd/3994

This Thesis - embargo is brought to you for free and open access by the Student Works at Digital Commons @ East
Tennessee State University. It has been accepted for inclusion in Electronic Theses and Dissertations by an
authorized administrator of Digital Commons @ East Tennessee State University. For more information, please
contact digilib@etsu.edu.

https://dc.etsu.edu/
https://dc.etsu.edu/
https://dc.etsu.edu/etd
https://dc.etsu.edu/student-works
https://dc.etsu.edu/etd?utm_source=dc.etsu.edu%2Fetd%2F3994&utm_medium=PDF&utm_campaign=PDFCoverPages
https://network.bepress.com/hgg/discipline/142?utm_source=dc.etsu.edu%2Fetd%2F3994&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:digilib@etsu.edu

Electronic Evidence Locker: An Ontology for Electronic Evidence

A thesis

presented to

the faculty of the Department of Computing

East Tennessee State University

In partial fulfillment

of the requirements for the degree

Master of Science in Computer and Information Sciences, Information Technology

by

Daniel Smith

December 2021

Dr. Ghaith Husari, Chair

Dr. Brian Bennett

Mr. Stephen Hendrix

Keywords: big data, NoSQL, ontology

2

ABSTRACT

Electronic Evidence Locker: An Ontology for Electronic Evidence

by

Daniel Smith

With the growth of technology, cases experience overwhelming amounts of electronic evidence

that need to be stored and shared. Little research in developing methods for sharing electronic

evidence between agencies currently exists. One problem is the number of records that must be

stored. Relational database solutions face size limitations when storing large amounts of data.

Another problem involves storing evidence where each instance has unique attributes. The

Electronic Evidence Locker (EEL) was proposed and developed to address these problems.

The EEL was built using a NoSQL database for storage and a C# website for users to query

stored data. Baseline results collected measure the growth in required machine resources and

time when adding additional search criteria and larger data sets. These results show search time

is impacted more by the search direction and number of layers travelled than by the addition of

search conditions to the query.

3

Copyright 2021 by Daniel Smith

All Rights Reserved

4

DEDICATION

I dedicate this thesis to my amazing wife, Jenn Smith. Without her unwavering support

and encouragement, I do not think I would have finished this. As we say to one another,

“Always”.

 I also want to dedicate this to my family, who always held me accountable and pushed

me to do my best.

Last, but not least, I would like to dedicate this to God. Through God, all things are truly

possible.

5

ACKNOWLEDGEMENTS

 I would like to thank Dr. Ghaith Husari, my committee chair, for going above and beyond

to assist me with this thesis. I am forever grateful for the support he provided through countless

conversations, emails, reviews, and discussions.

 I also want to thank Dr. Brian Bennett and Stephen Hendrix for their contributions as

committee members. Throughout this thesis, there were many times I would ask them questions

and they always helped me find my way.

I also want to thank Dr. Michael Lehrfeld for his help in establishing what this thesis

would accomplish.

6

TABLE OF CONTENTS

ABSTRACT .. 2

DEDICATION .. 4

ACKNOWLEDGEMENTS .. 5

LIST OF FIGURES .. 9

Chapter 1. Introduction ... 10

Chapter 2. Literature Review .. 12

2.1 Storing Big Data ... 12

2.2 SQL vs. NoSQL .. 14

2.3 MongoDB vs. MS-SQL .. 17

2.4 MongoDB vs. MySQL .. 18

2.5 Ontology ... 20

Chapter 3. Design and Implementation .. 22

3.1 Approach Design and Architecture ... 22

3.1.1 Case .. 23

3.1.2 Crime.. 23

3.1.3 Evidence ... 23

3.1.4 Content ... 23

3.2 Implementation ... 24

7

3.2.1 Storage ... 24

3.2.2 Website .. 24

3.2.2.1 Model .. 25

3.2.2.2 Search .. 27

Chapter 4. Evaluation.. 29

4.1 Testing Procedures .. 31

4.1.1 Simple Test (Test 1) ... 32

4.1.2 Intermediate Tests (Tests 2-5) ... 32

4.1.3 Complex Test (Test 6) ... 33

4.2 Seed Data Generation ... 33

4.2.1 General Data Generation .. 33

4.2.2 Seeding Test Data .. 34

4.3 Accuracy Tests and Measures ... 35

4.4 Results ... 36

4.4.1 Baseline Results from Simple Test .. 36

4.4.2 Time Results .. 38

4.4.3 Memory Use and CPU Results .. 39

Chapter 5. Conclusion ... 41

5.1 Discussion of Electronic Evidence Locker Implementation ... 41

5.2 Future Work .. 42

8

References ... 43

VITA ... 45

9

LIST OF FIGURES

Figure 1. The Different Levels of an Ontology .. 21

Figure 2. Electronic Evidence Locker Ontology .. 22

Figure 3. Example of Advanced Search - EEL Front End .. 25

Figure 4. Electronic Evidence Locker Entity Relationship Model ... 26

Figure 5. Data Collection Timeline .. 30

Figure 6. Seeding Results for Extra-Small Data Set ... 35

Figure 7. Retrieval Search Results for Simple Query ... 36

Figure 8. Time spent running Test 1 ... 37

Figure 9. Processor % used during Test 1... 37

Figure 10. Memory used running Test 1 ... 38

Figure 11. Search time for all Tests .. 39

Figure 12. Memory used during Tests .. 40

Figure 13. Processor % used during Tests .. 40

10

Chapter 1. Introduction

The ability to share evidence requires a new storage model for the large quantity of

electronically stored information (ESI) recovered through electronic discovery (e-discovery). E-

discovery is the process of retrieving and storing ESI during criminal and civil cases. E-

discovery can involve devices and networks owned by either an individual or a company. Since

e-discovery can retrieve millions of records, a storage model that aids in digitally sharing ESI

benefits law enforcement agencies and legal personnel. The electronic sharing of ESI saves law

enforcement agencies and legal staff time and money. Furthermore, a new storage model

addresses the rapid growth of retrieved ESI.

Currently, law enforcement agencies do not have a way to share ESI with legal personnel

digitally. The current method for sharing ESI requires legal personnel to travel to the agency

physically storing the ESI. Once on-site, legal personnel can either review the ESI or transfer it

to an electronic medium, whether a disk or portable hard drive, for review at a different location.

However, the copying of certain content, such as content containing child pornography, is legally

restricted. Since current sharing methods require travel and possibly physical items, there is a

direct cost associated with the current method. The ability to view the electronic evidence

through a web portal reduces expenses for legal staff related to travel and hardware.

The first step to digitally sharing ESI is to study how to store data retrieved through e-

discovery. With individual devices containing large amounts of data, ESI storage methods

impact the ability to search for specific content. The method for storing ESI must account for the

contents of the ESI and meta-data of the device that housed the data. Examples of such meta-data

include the operating system and the operating system’s version number. However, the ability to

handle large amounts of varied data is not a unique problem to law enforcement agencies.

11

Businesses and scientific communities addressed the problem using tools built specifically to

handle large quantities of mixed data received from various sensors, devices, and inputs. This

type of problem is known as a big data problem.

The next step in digitally sharing ESI is to develop a model that stores the information

retrieved through e-discovery using solutions to big data problems. This thesis describes the

development of the Electronic Evidence Locker (EEL) tool using big data techniques. The

remainder of the thesis is organized as follows. Chapter 2 discusses how organizations store big

data, a review of the NoSQL solutions used, and how ontologies assist with modeling data.

Chapter 3 presents how both the ontology and the EEL tool were built. Chapter 4 describes how

the sample data was generated and seeded, how the testing procedures were created, and the

results observed from the test cases. In Chapter 5, the thesis concludes with what performances

were observed and where future work with the EEL could go.

12

Chapter 2. Literature Review

2.1 Storing Big Data

Designing new solutions and frameworks must occur continuously to address the growth

of technology. One example of technology growth is the size and complexity of the data that

users store and analyze. Companies and other organizations use the term big data to describe

large quantities of data. In addition to size, several other properties describe big data: variety,

velocity, variability, complexity, and value.

One property associated with big data is variety. Variety represents that “data being

produced is not of a single category or type” [1]. Big data can consist of emails, documents,

sales patterns, and sensor readings. The variety of data leads to different data structures that

result in query processing difficulties in current analytic engines. Another property of big data is

velocity. Velocity refers to the speed at which data comes and goes to different sources.

Variability refers to how data flows and whether the requested data is consistent or requested

only at specific times. Big data contains a complexity property as well. The complexity

property pertains to managing data that comes from various sources and transforming it to a

common standard. A final property associated with big data is value. The value property

addresses the ability for users to “acquire business trends and change their strategy accordingly”

[1]. Organizations take advantage of these big data properties to aid with organizational

operations.

Different organizational groups benefit from big data in different ways. For example, an

Information Technology (IT) group benefits from big data when storing and maintaining logs for

running services. The structure of the logs generated by services can be different, complicating

large-scale analyses for errors. Since big data allows for varied data types, IT can store the logs

13

in a particular location and analyze the variety of logs using a general format. A second example

where an organizational group benefits from big data is the financial group using big data to

create financial models. Finance can use these data models to “calculate risk so that it falls under

their acceptable thresholds” [1]. A third example is an ability for manufacturing groups to use

big data to take advantage of sensor readings. Manufacturing faces the problem of not having

the infrastructure in place to store and analyze the readings generated by various sensors in the

plants. However, big data allows for the storage of sensor readings, which can allow the

manufacturing group to increase profit and manufacturing efficiency by analyzing the variety of

readings. A final example of an organizational group benefitting from big data is the manner in

which marketing uses big data to evaluate customer feedback through social media. Retrieving

and storing customer feedback from various social media platforms allows marketing to “modify

decisions and get more value out of their business” [1]. The advantages gained by different

organizational groups are not without problems, however.

 All new technology has challenges and issues. The first, and likely most important, issue

with big data involves privacy and security. These concerns include who can access the data and

fears regarding discovery of personal secrets when combining personal information with other

data sets. Another privacy concern is whether individuals are aware that companies collect

personal information in the first place.

Because of the volume of data, an organization’s ability to store and analyze big data

becomes another issue. Since big data could contain petabytes of data, businesses need to plan

their IT infrastructures accordingly. Businesses could either store big data on-site, paying for

hardware, or transfer the data to the cloud, paying for services. When a business moves big data

to the cloud, however, they cannot make real-time decisions because uploading big data takes

14

time. Another challenge involves the analysis of the data. There are questions of “what needs to

be stored, what needs to be analyzed, and what data points are important” [1] that the business

must answer. Staff skillsets and technical challenges, including fault tolerance and scalability,

can become problematic as well. While software cannot address issues about business processes

and how businesses collect data, software can address technical issues associated with big data.

2.2 SQL vs. NoSQL

Organizations traditionally store structured data in relational databases known as SQL

databases. However, the variety of structures within big data becomes challenging when

attempting to use an SQL database. Furthermore, the ability to “process such vast amounts of

data requires speed, flexible schemas, and distributed databases” [2], which SQL databases

struggle to offer. To address the concern of storing big data, organizations have turned to

NoSQL databases.

NoSQL databases have several variations: key-value pairs, column-family databases, and

document-oriented databases [2]. Key-value pair databases store data as a pair of related entities,

with primary identifying entity being assigned as the key and the content is the value. This

allows “programs to retrieve data by keys, which are essentially names, or identifiers, that point

to some stored value” [3]. Column-family databases group data into columns and then store

those columns in a super column. The super column “groups a number of related columns and

can be accessed as a single unit” [2]. Examples of column-family databases include Cassandra

and Hypertable. Document-oriented databases allow “for the storage of objects in serialized

forms as well as simple values” [2]. The following applications are examples of document-

oriented databases: MongoDB, CouchDB, RavenDB, and Couchbase. While NoSQL databases

15

offer improvements in data replication and data storage, the question of whether NoSQL

databases can outperform SQL databases in fundamental operations remains.

For Li and Manoharan in [2], the first aspect to decide whether NoSQL databases

performed fundamental operations better than SQL databases was selecting databases to

compare. Microsoft SQL Express was compared to several NoSQL databases because of the

varied nature of NoSQL: Cassandra, Couchbase, CouchDB, Hypertable, and MongoDB. The

next step was selecting operations to evaluate. The chosen operations included instantiating

database buckets, reading data keys, writing data to the database, deleting data, and retrieving all

keys from the database. The first test evaluated the “time taken to instantiate a database bucket,

using the average over five runs” [2]. The operations for evaluating the reading, writing,

deleting, and retrieving the number of keys occurred a specific number of times. These

operations took place the following number of times: 10, 50, 100, 1,000, 10,000, and 100,000.

Like the instantiation test, each of the reading, writing, deleting, and retrieving tests occurred

five times and showed the averages of the runs.

The instantiation test results in [2] showed that all the NoSQL databases initialized faster

than the SQL database. However, while SQL took over 1,600 milliseconds (ms) to instantiate,

the NoSQL databases ranged from RavenDB taking 200ms to Couchbase, which took over

1,500ms to instantiate [2]. This trend of wildly ranging values in the NoSQL databases occurs

throughout all the tests.

The results for the read test in [2] show that only Couchbase and MongoDB perform

better than SQL Express. While Couchbase outperforms MongoDB in total time of reading,

MongoDB outperforms Couchbase up to 100 operations [2]. Once past 100 operations,

Couchbase surpasses MongoDB’s abilities to perform reads [2]. The values range from

16

Couchbase performing 100,000 reads in 7,244ms to RavenDB performing the same number of

read operations in 426,505ms. Then compare the range of NoSQL results to SQL Express,

which performs 100,000 reads in 17,214ms. The writing test results share similar results.

The writing test in [2] showed that four of the six NoSQL databases performed better

than SQL. The four that performed faster than SQL Express were “Couchbase, MongoDB,

Cassandra, and Hypertable” [2]. Like the reading test, MongoDB performed faster than

Couchbase at a lower number of operations. However, Couchbase performed better than

MongoDB at even 100 operations. Note that while Cassandra and Hypertable are faster than

SQL Express, the two NoSQL databases are only faster once there are more than 100 operations.

To see the wide performance range between the NoSQL databases, Couchbase performs 100,000

writes in 8,492ms while CouchDB performs the same number of writes in 932,038ms [2].

The results of the delete test in [2] echo the results of the read test, with the only NoSQL

databases to outperform SQL Express being Couchbase and MongoDB. Like the writing test,

MongoDB only outperformed Couchbase up to 50 operations, with Couchbase performing the

delete operations faster at 100 and more operations. The results for the NoSQL databases ranged

from Couchbase performing 100,000 deletes in 7,634ms to RavenDB performing the same

number of deletes in 799,409ms [2]. In comparison, SQL Express performed the 100,000 deletes

in 32,741ms. The results of the final test are different from any of the other tests.

The final test, the fetching of all keys, results in none of the NoSQL databases

performing better than SQL Express. One difference between this test and the others is that

Couchbase does not have “an API to support fetching all the keys, and thus was excluded from

this test” [2]. The results showed SQL Express fetching 100,000 keys in 76ms. The closest

17

NoSQL database was Hypertable, which retrieved 100,000 keys in 159ms. The furthest NoSQL

database, CouchDB, took 9,512ms.

These experiments found that not all NoSQL databases can perform fundamental

operations faster than an SQL database. Testing demonstrated that Couchbase and MongoDB

were the only two NoSQL databases to outperform the representative SQL database consistently.

It is important to note that the testing performed “did not test the databases for more complex

operations” [2]. Despite the lack of complex testing, the wide range of performance capabilities

prove that NoSQL databases are not all created equally. While not all NoSQL databases proved

to be acceptable, MongoDB consistently outperformed its SQL counterpart.

2.3 MongoDB vs. MS-SQL

 Wu, Huang, and Lee further show the advantage of using MongoDB over a relational

database in [4] where MongoDB reads and writes faster than Microsoft SQL (MS-SQL). The

data source for the tests came from the Taiwan Water Company website. The first part of the

experiment evaluated the reading and writing operations individually in MongoDB and MS-

SQL. The operations ran in the following increments: 10,000, 50,000, 100,000, 500,000, and

1,000,000 operations. The experiment then assessed each operation in a single-threaded instance

and a multi-threaded instance. This series of assessments evaluated the operations over the

course of a million runs. The final aspect of the experiment evaluated how much of a role

indexing played when searching for data in either database management system. Across all tests,

the results show that MongoDB outperforms MS-SQL. The single-threaded reading and writing

tests from [4] show that MongoDB performs close to ten times better than MS-SQL.

In the multi-threaded writing test, MongoDB still outperformed MS-SQL but not to the

same extent. In the multi-threaded writing test, MongoDB performed twice as fast. The multi-

18

threaded reading test echoes the results of the single-threaded reading test, but because the

researchers capped the Y-axis on the MS-SQL chart at 100,000ms the full performance

difference is unknown. The final evaluation showed that searching for indexed data is more

efficient than non-indexed data in MongoDB and MS-SQL. While the “performance of

searching is naturally better” [4] with indexed data, MongoDB’s indexed searching was almost

ten times better and MS-SQL’s indexed searching only improved under three times better than

non-indexed searches.

While relational databases work well with structured data, the inability for an RDBMS to

work with large quantities of data limits its uses. Furthermore, for MongoDB to perform simple

operations more efficiently further limits the utility of MS-SQL for big data operations.

However, MS-SQL is not the only RDBMS available.

2.4 MongoDB vs. MySQL

Nyati, Pawar, and Ingle show in [5] that MongoDB performs insert and searching

operations faster than MySQL. The insert test format involves inserting 500,000 records, where

each record instance contained 28 columns, into the database. The searching test consisted of

searching the 500,000 previously inserted records.

The results of the insertion test had “MySQL inserting 500,000 records in 1,606 seconds

while MongoDB took 17.8 seconds” [5] to complete the same task. This test shows that MySQL

took 89 times longer than MongoDB. While MongoDB performed the search test faster than

MySQL, it was not to the same degree of improvement. When searching by columns with an

index, MongoDB performed just under 24 times better than MySQL. The performance

advantage decreased further when searching for columns without an index with MongoDB

performing just 6.5 times better than MySQL. While there is data for searching by primary key

19

for the MySQL database, there is no such data provided for MongoDB to compare against.

While MongoDB performed far better than MySQL, the insert and search tests only ran on a

single thread. To evaluate MongoDB further, tests evaluated how MongoDB performed over a

large data set using multiple threads.

To see how MongoDB handled large data sets, researchers Nyati, Pawar, and Ingle [5]

created tests that used a defined number of calls and a set number of threads to run on a database

containing 50 million records within it. The number of calls is “a repeated call of the same query

with a different value” [5] to the database. For this test, the search query is the call used. The

number of calls chosen for the tests are the following: 2,000, 5,000, 7,000, and 25,000 calls. The

number of threads used for the tests fall in the following list: 1, 3, 5, 6, and 20 threads. To

prevent abnormal results skewing data, these performance tests took place a various number of

times and the average of those results chosen.

The first result of the large dataset testing showed that even with a higher number of

threads, searching a cluster is faster than performing a search on a single machine. The lowest

time to perform 5,000 calls on a single thread on a single machine was 923ms where the same

number of calls performed on a cluster using 20 threads took 687ms [5].

Table 1. Summary of All Searches from [5]

Call Thread Time required (ms)

2000 1 188

2000 3 221

2000 5 260

5000 6 331

5000 20 687

20

7000 20 3287

25000 1 5997

The results, shown in Table 1 sourced from [5], show that introducing more threads into

the search increases the time required to perform the search. However, when the number of calls

is greater than 5,000, there is a rapid growth in time required to complete the search. To mitigate

this performance degradation, the “configuration and sharding in MongoDB must have a higher

importance to get higher throughput” [5]. The results of the MySQL and MongoDB comparison

once again show that MongoDB outperforms relational databases in simple operations.

MongoDB performs 89 times better with insertion operations and at least 6.5 times better with

searching. Finally, the large data set testing finds the point at which performance degradation

begins due to the large number of calls. With this knowledge, the configuration and sharding of

MongoDB can be tweaked to achieve better results.

2.5 Ontology

An ontology is a formal specification and representation of the categories, properties,

concepts, and relations between them [6]. It consists of concepts that are relevant to the domain

of interest. Each of these concepts may have properties (data). The relations between the

concepts provide the cornerstone for modeling high quality, linkable, and coherent data. This

makes the ontologies highly effective frameworks for representing shareable and reusable

knowledge in the domain of interest. Ontology can be broadly categorized into three levels: (1)

top-level, (2) middle- (utility) level, and (3) bottom-level [6].

• Top-level ontology. Higher concepts that provide common knowledge that is not domain

specific.

21

• Utility ontology. Contains concepts are less abstract than the top-level. Such concepts

encompass concepts with more details that are usually found in classes (or categories) of

concrete concepts.

• Bottom-level ontology. This level contains concrete instances that are highly domain

specific. Instances in this level may extend the concepts in the Utility level. Figure 1

illustrates the different levels of an ontology.

Figure 1. The Different Levels of an Ontology

 For this thesis, an ontology helps define how case and evidence will be modeled into

objects to be stored in the NoSQL database. While NoSQL allows for objects to be dynamically

structured, providing a structured object will assist in building features that edit and retrieve data.

22

Chapter 3. Design and Implementation

3.1 Approach Design and Architecture

 The development of the EEL ontology began with deciding what elements were required

to be searchable. With the large domain of evidence available, this project’s scope limited itself

to storing and searching phone calls and text messages retrieved through phone dumps.

However, after reviewing phone dumps generated from the Cellebrite software, the focus shifted

from specialized phone dumps to generalized data dumps, leaving the building of specific data

dump extractions to later. After shifting to generalized data dumps, the ontology shown in

Figure 2 was designed to capture the following elements: case, crime, evidence, and content.

Figure 2. Electronic Evidence Locker Ontology

23

3.1.1 Case

A case is the key class of the ontology. A case has attributes that give general

information about the case. Example attributes include the case number used by law

enforcement organizations and the lead agent of the case. Based on the case’s type, type-specific

attributes could be attached as well.

3.1.2 Crime

 A crime is a type of law violation associated with a case. When a case first begins, there

may not be any defined crimes linked to it. Once a crime is confirmed, it is then linked to the

associated case.

3.1.3 Evidence

Evidence is an item that contains something relevant to the case. Evidence could be

physical items, e.g., cellphones, tablets, hard drives, or weapons. Evidence can also include

digital items, like data dumps of emails and documents. Like the case class, some attributes give

general information about the piece of evidence, e.g., the location of where the evidence was

found or the individual who examined the evidence. Based on the type of evidence, other

attributes can be assigned as well. For example, instancing the evidence as a phone will attach

attributes like manufacturer and MEID to the class. A case can have zero to many pieces of

evidence.

3.1.4 Content

Content is defined as something that resides within a piece of evidence. An example of

content would be a text message or a call stored on a cellphone. Like the case and evidence

classes, attributes are assigned based on the content type. For example, a content instanced as a

24

text message would have an attribute for the body of a message, while a content instanced as a

call would have an attribute for the call’s duration.

3.2 Implementation

 Testing the effectiveness of the EEL ontology required building a tool that used a NoSQL

database and a website for users to interface with. Previous research shows the higher

performance of NoSQL databases compared to alternative solutions. Considerations for the

website included ability to access the service and ease of hosting.

3.2.1 Storage

The NoSQL database selected was MongoDB v.4.4.6. One advantage that MongoDB

provides is that MongoDB can store an unlimited number of documents [7] within a collection,

which avoids space limitations presented by RDBMS solutions. Another advantage of NoSQL

databases involves the faster read and write speeds shown in papers [2] [4] [5].

 The database’s configuration is that a single collection stores all the documents. By

using a single collection, users can perform predictive analysis to draw connections between

stored content, evidence, and cases. This collection stores each ontology level in its own

document. Each document consists of the following fields at a minimum: id, parent id, and

document type. The id is a unique identifier for the document. The parent id field is any object

that the current document is associated with. The document type field is evaluated to determine

what the document’s level is within the ontology.

3.2.2 Website

 The website was built using the C# language and the .NET Core 3.1 framework. Two

factors led to the use of this framework. The first is the number of established libraries

developed for .NET Core reduced the amount of code created. The second is because the .NET

25

Core framework is operating system agnostic. Therefore, .NET Core allows for housing the

system on almost any server available, whether an on-premises Windows 2019 server or a

Linux-based server hosted by Amazon Web Services. The website created consists of the

following two features: a way to build the documents stored in the MongoDB server and a way

for users to search the stored documents with a graphical interface. Figure 3 shows the advanced

search feature built into the website.

Figure 3. Example of Advanced Search - EEL Front End

3.2.2.1 Model

While the ontology only has three levels in the hierarchy, each level is only required to

hold an id, parent id, and document type field. The conversion of the ontology into an entity

relationship model is shown in Figure 4. To allow for different versions of each level, a base

class exists for each document level that contains the mandatory fields. Specialized document

types inherit from these base classes. When new documents are created, they are created as a

specialized document instance and then converted to a binary JSON (BSON) document and

saved into the MongoDB collection. BSON, based on the JavaScript Object Notation (JSON)

data format, extends upon JSON functionality and “encodes type and length information, which

allows it to be parsed much more quickly” [8]. There are two reasons why each level is created

26

as a unique document. First, there is no guarantee that the size of the documents will stay small.

Second, the manner in which data is searched is uncertain. MongoDB states “if you often only

need to retrieve a subset of documents within the group, then ‘rolling-up’ the documents may not

provide better performance” [9].

Figure 4. Electronic Evidence Locker Entity Relationship Model

One advantage of using C# with this type of construction is that, since it is strongly-typed

and a compiled language, errors associated with known data issues will be made aware before

deploying a class. A disadvantage, however, is that when new document types are added to the

MongoDB collection, the models and views associated with the new document type must be

defined. This disadvantage requires an upfront resource cost to create as many classes at the

beginning as possible.

27

3.2.2.2 Search

The search feature begins by creating a MongoDB aggregation pipeline. A pipeline is a

series of steps that are performed in sequential order and can be used to transform and filter

collections of data. The first step in the pipeline locates all documents that meet the first criteria.

An assumption is that the documents returned by the search will match the document type of the

first criteria.

The search method then determines what the current document type level is. It then

evaluates the document type levels for the second and third criteria, if they are present. If the

difference between the primary criteria level and the secondary criteria level or the primary

criteria level and the third criteria level are greater than one, the search assumes a deep search is

needed.

The search will then insert graph lookup methods provided by MongoDB to link all

needed parent and child objects to the current object into the pipeline. If both parent and child

objects are included in the search, a step to merge the two arrays created from the graph lookups

into a single array will be added to the pipeline. The final step of the pipeline is to perform a

match based on the criteria and return the results to the user.

The following example describes how the search is performed. This search would look

for all evidence with an evidence type of phone linked to a case where the case type is assault.

This sample search consists of the following two search criteria: the first scenario is looking for

all evidence that the evidence type is a phone and the second scenario is looking for cases where

the case type is assault.

The search starts by finding all documents that contain a field of evidence type, and that

field has a value of phone. Since the search has a second criterion, the search method compares

28

the document type of the first and second criteria. It determines that the second criterion is not of

the same level as the first criterion. Because the case document level is higher than the

document level for evidence, the search includes parent objects for the second criterion. After

joining the parent objects, the search then looks at the documents within the parent objects for a

field of case type and where the value is assault.

29

Chapter 4. Evaluation

To evaluate the effectiveness of the EEL ontology, six scenarios were devised to assess

the accuracy and required time and space resources needed during the search process. The

resources considered included the amount of Random-Access Memory (RAM) used and the

percentage of the CPU used during the search processes. The machine used for this evaluation

had the following specifications:

• CPU: Intel i7-4790k, base speed 4.00GHz

• Memory: 32GB DDR3, speed 2400MHz

• Storage: 1TB SATA SSD

• Operating System: Microsoft Windows 10

• MongoDB Server: 4.4.6

• .NET Core Framework: 3.1

• Visual Studio: Microsoft Visual Studio Community 2019

• Background processes: MongoDB Server, standard Windows 10 services

The tool Performance Monitor, included with Windows 10, captured the amount of RAM

used and the CPU usage. The value used to calculate memory use was the Memory – Available

Bytes counter. When determining the amount of RAM used, the minimum value of the range is

used. To determine the CPU usage, the Processor Information (Total) - % Processor Utility

counter was used. When calculating the amount of CPU usage, the maximum value of the range

was used. These values use the respective minimum and maximum values to show a worst-case

scenario for the resource usage.

30

Figure 5. Data Collection Timeline

To calculate the starting resources used by the web application, the values used the range

from when the data collector job ran up to one second before the job was reported to have run, as

shown in Figure 5. The reason for gathering one second less than the reported start time was to

account for when the test actually started, since the original time for gathering the results did not

account for fractions of a second.

Equation 1. Starting Usage Formula

(𝑆𝑆𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡 𝑜𝑜𝑜𝑜 𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷 𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶): (𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆 𝑜𝑜𝑜𝑜 𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇 𝑅𝑅𝑅𝑅𝑅𝑅 − 1 𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆) (1)

To calculate the resources used during the search, the range from when the job started

minus one second to when the job ended plus one second were used. As stated with the starting

resource values, the start begins one second before the reported start and the end value ends one

second after the reported test run. This configuration is important to accommodate any

Start of
Data

Collector

Beginning
of Starting
Resources
Collection

End of
Starting

Resources
Collection

Beginning
of

Resources
Used

Collection

+1 Second

Search
Begins

Search
Ends

+1 Second

End of
Resources

Used
Collection

End of
Data

Collector

31

instabilities (or spiking) in the machine resources caused by executing search queries. In

addition, this time range helps to guarantee capturing the range of values during the test run.

Equation 2. Resource Used Formula

(𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆 𝑜𝑜𝑜𝑜 𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇 𝑅𝑅𝑅𝑅𝑅𝑅 − 1 𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆): (𝐸𝐸𝐸𝐸𝐸𝐸 𝑜𝑜𝑜𝑜 𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇 𝑅𝑅𝑅𝑅𝑅𝑅 + 1 𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆) (2)

To calculate the amount of memory used during the search, the amount of memory available

from the resources used was subtracted from the starting amount of memory used. To calculate

the amount of CPU used during the search, the amount of CPU used at the start of data collection

was subtracted from the CPU used during the search.

One thing to note is that the values collected show the worst-case scenario for how the

ontology performs while being searched. The purpose of this thesis was to create a baseline

value for how the data built with ontology handles search performance.

4.1 Testing Procedures

To run a test, the first step was to start the debugging process within Visual Studio 2019.

The debugging process ran for at least ten seconds before the Data Collector job defined in

Performance Monitor started. This lead time allowed for resource usage due to Visual Studio

startup to be omitted from the report. Once the initial time passed, the Data Collector job was

started and ran for a minimum of five seconds to obtain the starting values for the amount of

RAM and CPU used. After the starting values were collected, the test case was then performed.

Once the test finished, the data collector ran for at least five more seconds. Each test instance

was run five times, and the results averaged. The conditions for each test are defined in Table 2.

32

Table 2. Test Scenarios

Search Complexity Conditions
1 - Simple Evidence.Operating System = KaliOS
2 – Intermediate – Top Down Case.Case Agent = Khaleesi

AND
Evidence.Operating System = KaliOS

3 – Intermediate – Bottom Up Evidence.Operating System = KaliOS
AND
Case.Case Agent = Khaleesi

4 – Intermediate – Top Down
Full

Case.Case Agent = Tyrion
AND
Content.Body = Drunk

5 – Intermediate – Bottom Up
Full

Content.Body = Drunk
AND
Case.Case Agent = Tyrion

6 - Complex (Evidence.Operating System = KaliOS
AND
Case.Case Agent = Khaleesi)
OR
(Evidence.Operating System = KaliOS
AND
Content.Body = Ragnarok)

4.1.1 Simple Test (Test 1)

 The simple test searched all fields within the stored documents for “Operating System”

and looked for a value of “KaliOS”. This search was an exhaustive search that looked at all

documents to see if a field of “Operating System” exists. This query was deemed simple

because it only had a single condition evaluated, and there was no need to search through linked

objects. This test establishes a baseline value for searching through a large collection of

documents for a single field and value.

4.1.2 Intermediate Tests (Tests 2-5)

 The intermediate tests retrieved results that met the combination of two search queries.

Since multiple conditions could be evaluated, tests were devised to accommodate different

situations. Tests 2 and 3 evaluated searches where the second search query was one level below

33

or above, while tests 4 and 5 evaluated searches where the second search query was two levels

away from the first.

 Furthermore, a different condition evaluated is the direction in which the search took

place. Tests 2 and 4 evaluated a search that began with parent-level documents and searched

down to the attached children documents. Tests 3 and 5 began with child-level documents and

searched up to any attached parent documents.

4.1.3 Complex Test (Test 6)

 The complex test consisted of several statements that must be true to produce results.

The complex query retrieved results that met either the first search query and the second query or

results that met the first search query and the third search query. To add to the complexity of the

search, neither the second nor the third search queries existed on the same level as the first search

query. This test’s purpose showed the results of a compound search and how adding additional

queries could increase the resources required to run. Since the intermediate test cases addressed

a variety of scenarios, the complex test combined a single-level, top-down scenario and a single-

level, bottom-up scenario and recorded the results of the search.

4.2 Seed Data Generation

4.2.1 General Data Generation

 The test Mongo collections were built automatically with a method that took inputs for

the number of cases and whether the data linked to them would be generated statically or

dynamically. For these tests, the data was generated with the static option. For each case

created, ten pieces of evidence were attached to the case. For each piece of evidence created, ten

pieces of content were attached. Therefore, for each case that was generated, 111 documents

were created. To give the data in the collection a semblance of realism, lists of values were

34

created for each field type, and each field was populated with a random option from the

respective list.

Table 3. Testing Data Sets

 For scalability testing, five data sets were created. The data sets shown in Table 3 show

that the number of cases range from extra-small with 100 cases to extra-large with 10,000 cases,

indicating a range of 11,100 to 1,110,000 total documents. Since this thesis was intended for

handling instances of evidence in a big data manner, the testing results from the medium data

sets and larger receive the most focus.

4.2.2 Seeding Test Data

 To seed the test data, a method was created that selected ten percent of the data set’s

cases became the number of test cases. If a data set had a hundred cases, then ten records of the

designed test type would be seeded in the data set. The documents that were changed into

seeded test data were randomly selected by the seeding method and updated to have the

respective testing values.

Another consideration for seeding test data was to only seed data in documents that could

have the appropriate field, such as making sure that a body field was not added to a phone call

Data Set # Of Cases # Of Documents # Of Searchable Fields

XS – Extra-Small 100 11100 116000

S - Small 500 55500 580730

M - Medium 1000 111000 1161016

L - Large 5000 555000 5804742

XL – Extra-Large 10000 1110000 11610158

35

document. To simplify reporting, the linked case for any document used in a test scenario was

removed from the test seeding process. Doing so also prevented any document linked to the case

from being used for two separate test scenarios, which could have skewed the reported results.

While generating the test cases, the modified records were noted in the seed generation

documents, as shown in Figure 6.

Figure 6. Seeding Results for Extra-Small Data Set

4.3 Accuracy Tests and Measures

 To test the accuracy of the search, the number of records found by the search were

compared against the number of noted test cases built. The number of noted test cases were

combined to create an expected results number that was noted before the tests began. The

expected results number was then compared against the number retrieved by the search, as

shown in Figure 7. For every test run, the search found 100% of the records that were seeded.

36

Figure 7. Retrieval Search Results for Simple Query

4.4 Results

 For thorough testing, the data sets range from 100 total cases to 10,000 total cases.

However, after reviewing the testing results, the extra-small (100 cases) and small (500 cases)

data sets exhibited unstable behaviors. For the following results, the patterns established come

from working with the medium (1000 cases) to extra-large (10,000 cases) data sets.

4.4.1 Baseline Results from Simple Test

 The charts in Figure 8, Figure 9, and Figure 10 establish baseline results for the time

taken, memory used, and processor utilization percentage used for running a simple search (Test

1) across the five data sets. These figures indicate that an increase in the size of the data set

results in a near-constant or weak-linear increase in the amount of the resources used.

37

Figure 8. Time spent running Test 1

Figure 9. Processor % used during Test 1

00
:0

0.
34

0

00
:0

0.
36

8

00
:0

0.
39

2

00
:0

0.
61

3

00
:0

0.
85

9

00:00.000

00:00.173

00:00.346

00:00.518

00:00.691

00:00.864

00:01.037

X S S M L X L

EL
AP

SE
D

TI
M

E
(S

EC
O

N
DS

)

DATA SET

TIME ELAPSED RUNNING TEST 1

8.
48

8.
43

9.
90

12
.7

9 14
.6

8

0.00

2.00

4.00

6.00

8.00

10.00

12.00

14.00

16.00

X S S M L X L

CP
U

 U
SA

GE
 (%

)

DATA SET

PROCESSOR % USED DURING TEST
1

38

Figure 10. Memory used running Test 1

4.4.2 Time Results

The results from Figure 11 show the amount of time taken for the search to run for all six

test scenarios. The results show that the amount of time it will take to perform a search depends

on the type of search. If the search is a top-down search, the search time grows exponentially

with the size of the data set. In contrast, if a bottom-up search is performed, the search time

grows in a near-constant or weak-linear fashion. Since the exponential growth only occurs with

a search that experience a top-down query (Tests 2, 4, and 6), these results indicate that

MongoDB experiences a slow down when having to perform a graphlookup against a larger

number of attached objects. While a bottom-up search will attach two related objects at most per

content found, a top-down search could attach up to 110 objects per case found.

25
.2

4

24
.1

9

29
.9

8

62
.2

3

10
5.

80

0.00

20.00

40.00

60.00

80.00

100.00

120.00

X S S M L X L

M
EM

O
RY

 U
SE

D
(M

B)

DATA SET

MEMORY USED DURING TEST 1

39

Figure 11. Search time for all Tests

4.4.3 Memory Use and CPU Results

The results in Figure 12 and Figure 13 show how much memory and CPU usage was

used during the search. Unlike with the search time results, the amount of resources consumed

show a near-constant to weak-linear growth with the growth of the data sets, regardless of

direction. With all of the data sets for these test instances experiencing the same growth pattern,

this indicates that the hardware used did not contribute to the exponential growth seen in the top-

down searches.

00
:0

0.
34

0

00
:0

0.
36

8

00
:0

0.
39

2

00
:0

0.
61

3

00
:0

0.
85

9

00
:0

0.
38

8

00
:0

1.
49

0

00
:0

4.
75

6

01
:5

1.
26

6 07
:1

2.
17

4

00
:0

0.
34

5

00
:0

0.
36

5

00
:0

0.
39

5

00
:0

0.
71

2

00
:0

1.
10

3

00
:0

0.
50

7

00
:0

4.
05

5

00
:1

4.
82

3 06
:0

7.
23

8

24
:0

0.
93

2

00
:0

0.
34

8

00
:0

0.
38

0

00
:0

0.
42

3

00
:0

0.
74

5

00
:0

1.
11

8

00
:0

0.
49

2

00
:0

3.
72

2

00
:1

3.
60

2 05
:3

6.
09

6

21
:5

2.
58

8

00:00.000

02:52.800

05:45.600

08:38.400

11:31.200

14:24.000

17:16.800

20:09.600

23:02.400

25:55.200

X S S M L X L

EL
AP

SE
D

TI
M

E
(S

EC
O

N
DS

)

DATA COLLECTION

SEARCH TIME
Test 1 Test 2 Test 3 Test 4 Test 5 Test 6

40

Figure 12. Memory used during Tests

Figure 13. Processor % used during Tests

25
.2

4

24
.1

9

29
.9

8

62
.2

3 10
5.

80

21
.7

7

23
.5

6

22
.9

0

28
.6

9

42
.0

8

19
.8

2

21
.5

7

22
.3

6

34
.7

0

50
.3

2

18
.7

9

35
.6

2

52
.5

3

14
2.

44

35
2.

23

18
.4

5

18
.2

8

23
.0

3

33
.1

7

48
.8

3

15
.9

1

23
.3

1

37
.0

5 11
5.

53 16
5.

38

0.00

100.00

200.00

300.00

400.00

X S S M L X L

M
EM

O
RY

 U
SE

D
(M

B)

DATA COLLECTIONS

MEMORY USED
Test 1 Test 2 Test 3 Test 4 Test 5 Test 6

8.
48

8.
43 9.

90 12
.7

9

14
.6

8

7.
23

17
.1

7

14
.1

0

15
.2

2

15
.2

3

9.
11

6.
52 9.

23

15
.2

7

14
.3

9

12
.7

1 16
.7

5

16
.7

3 20
.0

9

25
.6

8

10
.8

3

8.
02 10

.2
4 15

.1
8

14
.2

1

11
.5

9 15
.7

1

15
.6

7

21
.1

3

26
.4

1

0.00

5.00

10.00

15.00

20.00

25.00

30.00

X S S M L X L

PR
O

CE
SS

O
R

%

DATA COLLECTIONS

PROCESSOR % USED
Test 1 Test 2 Test 3 Test 4 Test 5 Test 6

41

Chapter 5. Conclusion

This thesis proposed and developed the Electronic Evidence Locker (EEL), an ontology-

based NoSQL storage, search, and sharing system for electronic evidence in a cyber and physical

crime. First, the proposed ontology provides a formal specification and representation of the

categories, properties, concepts, and relations for this domain. Then, the EEL was developed

using a NoSQL database for storage and C# .NET Core for the website.

Baseline performance results were produced to measure the growth in the amount of

required machine resources caused by increasing the complexity of the search (query) criteria

and with increasing the size of the data. Finally, the provided performance evaluations help to

show the relationship between the increasing complexity of the search query with various sizes

of the data set (e.g., medium, large, extra-large) in terms of computer resources such as memory,

CPU utilization, and the required time to perform an exhaustive search.

5.1 Discussion of Electronic Evidence Locker Implementation

 While the ontology has been implemented into the project and tested, an interesting

observation showed that what made queries either use more resources or run longer ended up not

being how many conditional statements were added to a query, but in what direction the search

would flow and how many levels the search would have to traverse. One difficulty in evaluating

resource usage with the created search method is that how MongoDB performs optimizations for

query searches extends beyond the scope of this project. If MongoDB changes how the

optimizations are performed in future versions, future results may differ from the presented

results.

42

5.2 Future Work

 With the baseline performance recorded, future research can look at improving EEL’s

performance in several areas. A promising direction is to investigate the trade-off between the

benefits and the overhead (memory consumption) of using indices on unstructured data. Another

direction would be building the search tool in a dynamically typed language, i.e. Python or Ruby.

This area would allow for the creation of new fields dynamically without having to update the

web application for every new field added.

43

References

[1] A. Katal, M. Wazid and R. Goudar, "Big data: issues, challenges, tools and good practices,"

in 2013 Sixth International Conference on Contemporary Computing (IC3), 2013.

[2] Y. Li and S. Manoharan, "A performance comparison of SQL and NoSQL databases," in

2013 IEEE Pacific Rim Conference on Communications, Computers and Signal Processing

(PACRIM), 2013.

[3] "Key-Value Databases," MongoDB, [Online]. Available:

https://www.mongodb.com/databases/key-value-database. [Accessed 21 October 2021].

[4] C. M. Wu, Y. F. Huang and J. Lee, "Comparisons between mongodb and ms-sql databases

on the twc website," American Journal of Software Engineering and Applications, vol. IV,

no. 2, pp. 35-41, 2015.

[5] S. S. Nyati, S. Pawar and R. Ingle, "Performance evaluation of unstructured NoSQL data

over distributed framework," in 2013 International Conference on Advances in Computing,

Communications and Informatics (ICACCI), 2013.

[6] L. Obrst, "Ontological Architectures," Theory and Applications of Ontology: Computer

Applications, pp. 27-66, 2010.

[7] "MongoDB Limits and Thresholds," [Online]. Available:

https://docs.mongodb.com/manual/reference/limits/. [Accessed 13 September 2021].

[8] "JSON and BSON," MongoDB, [Online]. Available: https://www.mongodb.com/json-and-

bson. [Accessed 21 October 2021].

44

[9] "Operational Factors and Data Models," [Online]. Available:

https://docs.mongodb.com/manual/core/data-model-operations/#collection-contains-large-

number-of-small-documents. [Accessed 13 September 2021].

45

VITA

DANIEL SMITH

Education: M.S. Computer & Information Sciences, East Tennessee State

University, Johnson City, Tennessee, 2021

B.S. Computing Major with Information Systems concentration,

East Tennessee State University, Johnson City, Tennessee,

2009

Professional Experience: Senior Software Engineer, East Tennessee State University,

 Johnson City, Tennessee, 2020-Present

Programmer/Analyst II, East Tennessee State University,

Johnson City, Tennessee, 2015-2020

 Application Support Team, Tele-Optics,

 Kingsport, Tennessee, 2013-2015

Web Developer, Send the Light Distribution, LLC.,

 Elizabethton, Tennessee, 2012-2013

 IT Manager, Restaurant Management Group,

 Kingsport, Tennessee, 2009-2012

	Electronic Evidence Locker: An Ontology for Electronic Evidence
	Recommended Citation

	ABSTRACT
	DEDICATION
	ACKNOWLEDGEMENTS
	TABLE OF CONTENTS
	LIST OF FIGURES
	Chapter 1. Introduction
	Chapter 2. Literature Review
	2.1 Storing Big Data
	2.2 SQL vs. NoSQL
	2.3 MongoDB vs. MS-SQL
	2.4 MongoDB vs. MySQL
	2.5 Ontology

	Chapter 3. Design and Implementation
	3.1 Approach Design and Architecture
	3.1.1 Case
	3.1.2 Crime
	3.1.3 Evidence
	3.1.4 Content

	Chapter 4. Evaluation

	DEDICATION
	4.1.1 Simple Test (Test 1)
	4.1.2 Intermediate Tests (Tests 2-5)
	4.1.3 Complex Test (Test 6)
	4.2 Seed Data Generation
	4.2.1 General Data Generation
	4.2.2 Seeding Test Data

	4.3 Accuracy Tests and Measures
	4.4 Results
	4.4.1 Baseline Results from Simple Test
	4.4.2 Time Results

	DEDICATION
	DEDICATION
	DEDICATION
	5.2 Future Work

	References
	DEDICATION

