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ABSTRACT 

Synthesis of Flagellin 22 As a Probe for Plant Signaling and Molecular Trafficking Towards 

Improved Crops 

by 

Edward Offei 

Plant signaling involves the transport of information within and between plant cells from 

receptors to effectors. It is known that many plant signaling molecules have profound effects on 

plants, through mechanisms that remain largely obscure. A key gap in knowledge is the 

understanding of the mechanisms that govern the movement of signaling molecules. This study 

seeks to synthesize signaling probes based on flagellin 22 (flg22), a 22-amino acid peptide that 

induces defense gene expression to trigger both local and systemic immune responses in plants. 

Solid-phase synthesis of fluorescently-tagged derivatives of flg22 was initiated, and studies on 

the uptake of labeled probes was conducted using a fiber-optic fluorescence microscope that was 

adapted for use in plants. Fluorescence microscopy showed uptake and internalization of 

TAMRA-flg22 in cells of Arabidopsis thaliana Columbia (wild-type strain), which was not 

observed in the fls2 strain in which FLS2, the receptor for flg22, had been knocked out. 
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CHAPTER 1. INTRODUCTION 

 

Plant Signaling 

 

Plants are sessile in nature, so they must have the ability to perceive, anticipate and 

respond to environmental changes to maximize their ability to survive and reproduce. Plants use 

signaling networks to coordinate their growth, development and responses to the environment. If 

fluctuations in conditions (e.g., changes in temperature, water availability, salinity, or nutrients) 

occur during key growth phases, plants sense these fluctuations and integrate the information to 

alter signaling outputs.1 These conditions lead to the production of a number of toxic 

compounds, such as reactive oxygen species (ROS), including hydrogen peroxide, hydroxyl 

radical and superoxide, which have harmful effects on the physiology of plants.  Plant signaling 

defines how plant cells respond to their environment and the transport of information within and 

between plant cells from receptor systems to effectors.2 Plants’ adaptation to abiotic stress (see 

Figure 1) is often dependent on stimulation of series of biochemical steps involving stress 

perception, signal transduction and the expression or repression of particular stress-related genes 

and metabolites.3 Collectively these events constitute signal transduction pathways. They 

amplify and spread the original signal, often throughout the whole plant.4 



11 

 

 

Figure 1. Biotic and abiotic stress conditions 

 

In order to provide a good crop yield and avoid premature senescence, plants must have 

defense mechanisms to combat the effect of these stress conditions. Plants sense external stress 

from their environment and generate an appropriate defensive response when attacked by a 

pathogen. The generation of the appropriate cellular responses operates by relaying stimuli from 

sensory receptors on the surface of the cell. When signal molecules bind, the receptor undergoes 

a conformational change that propagates across the cell membrane (transduction) to the 

cytoplasm. There, a signal cascade results that leads to altered gene expression in the nucleus of 

the cell, creating a multifaceted response which results in tolerance against a stress condition by 

plants.5 

Signaling pathways can involve a wide variety of biochemical events, such as changes in 

intracellular Ca2+ levels,6 rapid phosphorylation and dephosphorylation of proteins,7 and 

activation of G-proteins, that amplify the signal and result in multiple effects. 
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Flagellin 22 

 

This study focuses on the plant signaling molecule flagellin 22 (flg22). Flg22, a 22 amino 

acid peptide with its amino acid sequence derived from the N-terminus of the flagellin protein of 

the flagellum in most Gram-positive bacteria (see Figure 2). Specifically, I sought to study how 

flg22 enters and is trafficked in plants. Flg22 is in a class of molecules known as microbe-

associated molecular patterns (MAMPs). It is known to elicit specific innate immune responses 

in both plant and animals.8,9 Flagellin, or the fragment flg22, is a signal to plants that a bacterium 

is present. It is perceived by the receptor flagellin sensitive 2 (FLS2), which is homologous to the 

mammalian toll-like receptor 5 (TLR5), a leucine-rich repeat-containing receptor-like kinase.10 

 

 

Figure 2. Structure of a flagellated bacterium. Flagella are the long fibers at right. Image source: 

public domain image from Reference 56.  

 

 

Recognition of flg22 by FLS2 leads to several events, notably activation of a MAP kinase 

phosphorylation cascade, resulting in activation of transcription factors and expression of 

defense genes in the nucleus. ROS are produced locally, and a long-range effect also results, 

conveying to plants the ability to protect themselves against fungal and bacterial infections.11 In 

the process, FLS2 is internalized into the cell by endocytosis.12 A study by Jelenska and 
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coworkers showed that flg22 itself can migrate throughout plants, and that that long-distance 

trafficking was via FLS2.13 

Plants belonging to the Solanaceae family such as pepper, tomato and potato recognize 

bacterial flagellin by the FLS3 receptor. The FLS3 receptor recognizes flgII-28, which is a 28-

residue peptide from the internal region of bacterial flagellin, not the N-terminal region like 

flg22. While the region recognized by the FLS3 receptor is different, it similarly protects leaf 

tissues against bacterial infection through the enhancement of immune responses.14 

The study of flagellin and its receptors in plants is aided by plant genetic techniques. For 

example, plants mutated to knock out the fls2 gene exhibit weakened or damaged ability  in 

binding to flg22,15 while plants having their FLS2 receptor tagged with green fluorescent protein 

(GFP) allow observation of molecular trafficking by fluorescence microscopy.13 As these 

examples illustrate, genetics and microscopy are a powerful combination for studying molecular 

trafficking in plants. My research seeks to synthesize flg22 with a fluorescent dye using solid-

phase peptide synthesis, and to use the fluorescent probe in development of a novel fiber-optic 

microscope for studying flg22 and FLS2 in plants. The advantage of the fiber-optic microscope 

is that it can be used on live plants for non-destructive, long-term studies.  

 

Solid Phase Peptide Synthesis (SPPS) 

 

Peptides play a pivotal role in biological, medical and pharmaceutical research. For over 

a century, the synthesis of polyamide molecules has been a major focus in the field of organic 

chemistry. In 1903, the first successful coupling of two amino acids by Emil Fischer was 

performed via acyl chlorides. There was no suitable amino-protecting group at this time available 

for synthesizing longer peptides.16 The method conceived by R.B. Merrifield, assembling 
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peptides anchored on a solid support, was a breakthrough and great achievement which had 

enormous impact on the further development of peptide synthesis, and for which Merrifield was 

awarded the Nobel Prize in Chemistry in 1984. Solid phase peptide synthesis offers multiple 

advantages over synthesis in solution, in that purification or isolation of intermediates is not 

required, the insolubility of oligopeptides is overcome, and rapid assessment of reaction 

completion by simple color assay (Kaiser test) is available.17 Another advantage of SPSS is that 

it allows use of excess monomer at high concentration to drive coupling reactions to completion 

quickly, with excess reagent and byproducts removed at the end of the reaction by simple 

washing operations.18 The application of SPPS at the very beginning of its implementation 

required use of liquid hydrogen fluoride and had other limitations. Therefore, milder chemistries 

and appropriate SPPS solid supports had to be developed, and advanced methods introduced to 

prevent undesired side-reactions.19  

In recent years, the approach to peptide synthesis has yielded impressive successes in the 

synthesis of biologically active peptides such as systemins and phytosulfokine.20 The 

development and availability of new techniques and reagents puts the synthesis of most small 

peptides in easy reach. However, the synthesis of long chain polypeptides with these synthetic 

methods is not typically feasible due to technical difficulties encountered with solubility and 

purification. These difficulties become very significant as the number of the amino acid residues 

being coupled increases.21 

SPSS is performed in the CN direction, the opposite of protein synthesis in vivo. That 

is, assembly of the peptide chain begins at the carboxy or C-terminal residue, which is attached 

to the solid-phase resin via its carboxyl group. The complete chain is constructed by the 

successive addition of protected amino acids to the N-terminus of the immobilized chain (Figure 
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3).22 As the growing chain is bound to a solid support, excess reagents and byproducts are 

removed by simple filtration after each coupling and deprotection step. Washing with an 

appropriate solvent such as N-methyl-2-pyrrolidinone (NMP) or N,N-dimethylformamide (DMF) 

ensures complete removal and allows for rapid iteration.23 After all amino acid monomers have 

been added, any remaining protecting groups are removed, and the peptide is cleaved from the 

resin. 

 

Figure 3. General process of solid-phase peptide synthesis. Po indicates orthogonal protection on 

the amino acid side chain. Blue ovals represent amino acid units in the completed peptide. 

 

The initial stage of SPPS is the swelling of the resin, which is typically cross-linked 

polystyrene, usually with NMP or DMF.24 Swelling is very important because the reaction 

kinetics are diffusion-controlled. The more the resin swells, the higher the rate of diffusion of the 

reagents into the core of its matrix.25 Full swelling allows shorter reaction times and more 

complete chemical conversion. After swelling, each bead is essentially a microreactor. Size-
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selected beads are used, as significant differences in the sizes of the beads can result in impure 

products due to inconsistent chemistry. 

The next step after swelling is selective deprotection or liberation of the N-terminal 

amino group from its protecting group so it can form a peptide bond without affecting the side 

chain protecting groups. Protecting groups for the backbone and side-chain functional groups are 

of critical importance. The ability to remove one protecting group without affecting the others is 

a very important feature of the synthesis. Protecting groups that can be removed in the presence 

of the other, in any order, without affecting the other, are called orthogonal.26 Thus, if a base-

labile protecting group is used on the backbone α-amino groups, side chains are protected with 

orthogonal acid-labile groups that are stable to base and will survive multiple operations of 

selective deprotection and coupling as the desired chain has been assembled (Figure 4).  

 

 

Figure 4. Structure of the amino acid lysine bearing the orthogonal Fmoc and Boc protecting 

groups  

 

 

The most preferred protecting groups for the α-amino group are urethanes, ROCO–, the 

most popular being benzyloxycarbonyl (Cbz or Z), tert-butoxycarbonyl (Boc), and 

9-fluorenylmethoxycarbonyl (Fmoc). The different alkyl substituents provide orthogonal 

reactivity. Boc is susceptible to acid, Fmoc to base, and Cbz to catalytic hydrogenolysis, Birch 

reduction, and certain nucleophiles. Simple acyl groups like acetyl are as stable as the peptide 
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linkages and cannot be removed without destroying the peptide itself. Urethanes also provide 

superior resistance to racemization during coupling. 

 

Cleavage of the Backbone Protecting Group 

 

The most widely used strategy in solid phase peptide synthesis for the forty years since 

its inception and implementation is the Fmoc strategy,27 which uses Fmoc for protection of the 

backbone α-amino groups and acid-labile groups such as Boc for the protection of side chains. A 

large pool of different protecting groups is used for the various amino acid side chains. Reagents 

and strategies for different steps used in this route have been constantly developed and improved 

over the years.28  The removal of the Fmoc group in SPPS as illustrated in Figure 5 proceeds via 

an E1CB reaction mechanism, which is a two-step mechanism. The first is removal of the acidic 

proton at the 9-position of the fluorene ring system by a mild base, preferably a secondary amine 

like piperidine, and the second is a β-elimination that yields a reactive dibenzofulvene (DBF) 

byproduct. The unusually high carbon-acidity of the proton at the 9-position is a result of the 

aromaticity of the conjugate base. Reactions of this sort work better in an relatively polar solvent 

(DMF or N-methylpyrrolidinone [NMP]) compared to dichloromethane (DCM), which is a 

relatively non-polar one.29 Disruption of interchain aggregation is less effective with DMF than 

with NMP.  

The use of primary and tertiary amines for the removal of the Fmoc protecting group is 

also possible, but the most convenient and effective method employs the use of cyclic secondary 

amines because of their balance of basicity and nucleophilicity. They effectively and efficiently 

trap the reactive DBF byproduct to generate a stable adduct (Figure 5), thereby driving the 

deprotection of the Fmoc protecting group to completion.30,31,32 
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Figure 5. Fmoc deprotection via the E1CB mechanism  

 

Kaiser Test 

 

After cleavage of the protecting group, SPPS allows a color assay test to determine 

successful deprotection. This color assay is called the Kaiser test.17 Very sensitive to primary 

amines, the Kaiser test is used to verify the completeness of deprotection and coupling reactions. 

Ninhydrin, one of the test reagents, reacts with the free N-terminal amino group of the growing 

peptide chain to produce an intense blue or purple color (Ruhemann’s purple), indicating 

complete deprotection, as shown in Figure 6. For the detection of secondary amines, the Kaiser 

test is not efficient or reliable. For amino acids with secondary N-termini, such as proline or 

pipecolic acid, another test such as the isatin test or the chloranil test is used.17  

 

 

Figure 6. Reaction of ninhydrin with a free N-terminal amino group 
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Peptide Coupling 

 

Once deprotection is complete, the next step is to couple or attach the next amino acid to 

the growing peptide chain. The coupling stage is commonly understood to be the most 

significant and demanding reaction in SPSS. Poor couplings result in low yields, create deletions 

and allow side reactions such as racemization, making purification more difficult and time-

consuming. Before it can react with the amino terminus of the growing chain, the carboxyl group 

of the amino acid to be attached must be activated using coupling reagents or activators for rapid 

and quantitative amide bond formation. One of the most popular and simplest carboxyl activation 

reagents first used by Merrifield was dicyclohexylcarbodiimide (DCC).33 The reaction is 

performed in DCM or DMF. The use of DCC liberates dicyclohexylurea as a byproduct, which is 

poorly soluble in most organic solvents.34 This feature makes DCC very efficient in solution-

phase reactions but less well suited for solid-phase reactions. Moreover, partial racemization 

occurs with the use of DCC to activate the carboxyl group because the O-acylisourea 

intermediate is highly reactive. 

The introduction of 1-hydroxybenzotriazole (HOBt, Figure 7) as an additive greatly 

reduces racemization because it leads to the formation of a more stable benzotriazolyl ester.35 

This active ester is intermediate in reactivity between an ordinary ester and a carboxylic 

anhydride or O-acylisourea. It reacts rapidly with amines but slowly with water and alcohols, and 

it racemizes slowly. HOBt is used in excess to trap the O-acylisourea quickly before appreciable 

loss of configuration. Another advance was the development of phosphonium and uronium 

reagents for coupling, such as benzotriazol-1-yl-N-oxy-tris(pyrrolidino)phosphonium 

hexafluorophosphate (PyBOP)36 and N-[(1H-Benzotriazol-1-yl)(dimethylamino)-methylene]-N-

methylmethanaminium hexafluorophosphate N-oxide (HBTU)37 (Figure 7). Coupling with these 
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salts must be performed with excess HOBt and a base, usually N,N-diisopropylethylamine 

(DIPEA).38 The mechanism of the reaction with PyBOP, used in this study, is shown in Figure 8. 

 

 

Figure 7. Examples of peptide coupling reagents 

 

 

 

Figure 8. Reaction mechanism of PyBOP coupling 

 

After the desired sequence has been assembled, the synthesized peptide needs to be 

cleaved off the resin and concomitantly freed of all side-chain protecting groups. The standard 

reagent used in performing this final cleavage of the peptide from the resin is TFA. Highly 

reactive carbocations are generated during this reaction that have to be trapped to avoid the 

formation of any undesired product by reaction with amino acids such as cysteine, threonine, 

serine, and tyrosine, all of which are very reactive toward electrophiles. 
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Other reagents called scavengers are added for this reason. The advantages of different 

scavenger cocktails have been analyzed in the several reports.39 Water is a moderately efficient 

scavenger that can be added at ~2.5% (v/v) for the cleavage of peptides that are without cysteine 

and tryptophan in their amino acid sequence. Trialkylsilanes are efficient cation scavengers and 

are typically added at a similar concentrations.40 For peptides containing sensitive amino acids, 

1,2-ethanedithiol (EDT) and dithioerythritol (DTE) are the most efficient and often used 

scavengers. 

After successfully synthesizing flg22, this peptide will be delivered into our model plant, 

Arabidopsis thaliana. 

Arabidopsis thaliana 

 

Arabidopsis thaliana, a flowering plant has over the years become the plant of choice for 

a wide range of studies in plant sciences.41 Arabidopsis can be grown in petri plates or 

maintained in pots located either in a greenhouse or under fluorescent lights in a growth chamber 

in the laboratory, and it produces seeds in abundance.42 

The ability of Arabidopsis to be genetically modified easily is a significant advantage and 

a major reason why it is the most-used model plant and why it was chosen as the model plant for 

this study. For molecular and genetic studies, Colombia and Landsberg are standard ecotypes 

used as wild-type plants for experimental analysis. The entire life or growth cycle of the plant, 

which comprises seed germination to when first seeds are produced, takes 6 weeks.43 

Arabidopsis is small, with rosettes that can grow from 2 to 10 cm in diameter and flowers about 

2 mm long. As buds open, Arabidopsis self-pollinates. It can also be cross pollinated by the 

application of pollen to the surface of the stigma.  
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The small size of the Arabidopsis genome and the small number of chromosomes (5–8) 

makes it very amenable to genetic mapping and sequencing.44 The ability of Arabidopsis to self-

pollinate is an important feature that facilitates genetic experiments. Arabidopsis can be 

transformed using Agrobacteria by dipping the flowers into a culture of the bacteria containing a 

suitable vector.45 There is an extensive set of resources developed through research using 

Arabidopsis. These resources include vast collections of mutants with different phenotypes, 

procedures for performing mutagenesis and genetic crosses, and methods for introducing 

exogenous DNA through transformation.45 Thousands of mutants of Arabidopsis that are 

defective in almost every aspect of plant growth and development have been created.46 These 

mutant plants have led to the elucidation of pathways responsible for development of leaves and 

roots, senescence, flowering, signal transduction, hormonal responses and many other cellular 

physiological processes.47 

Another area where Arabidopsis have been used as a model plant is in the study of flower 

development. Studies in Arabidopsis are generally applicable to other flowering plants. The basic 

organs involved in the development of a flower are the sepals, carpels, petals and stamens. The 

arrangement of these flower-developing organs is in a series of whorls from the outside to the 

inside of the plant. The transformation of one of these organs to another can occur in 

Arabidopsis. A typical example is agamous mutation, where the stamens are transformed into 

petals with the replacement of the carpels by a new flower.48 The result of this pattern is a sepal-

petal-petal pattern.  

Coen and Meyerowitz formulated a model known as the ABC model for flower 

development.49,50 This model was based on the observation of the transformation of one organ to 

another arising from mutations. The floral organ identity genes of flowering plants according to 
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this model are grouped into three classes, namely Class A genes, which affect the petals and 

sepals; Class B genes, which affect the stamens and petals; and Class C genes, which affect 

carpels and stamens. 

Research Aims 

 

Flg22 has been widely used in plant defense studies. Its receptor, FLS2, has also been 

discovered and found to be internalized by endocytosis in epidermal cells after binding flg22.12 

Long-distance trafficking of flg22 has also been observed using a radiolabeled probe.13 The goal 

of this research is to discern the underlying basis of the flg22 signaling network by synthesizing 

flg22-based fluorescent probes that can be delivered into our model plant Arabidopsis and 

tracked in vivo plants using a fiber-optic fluorescence microscope. The advantage of this 

approach over previous ones is that it enables long-term studies in live plants, with repeated 

observations. Use of confocal fluorescence microcopy typically requires excision of plant tissue. 

Radiochemical imaging is highly sensitive but cannot provide subcellular resolution, and 

imaging methods such as autoradiography are also destructive to the plant.  

The aims of this research were: 

1. To synthesize fluorescently tagged flg22 probes; and  

2. To track flg22 in live plants using fluorescence microscopy after developing the fiber 

optic microscopy platform to obtain high quality plant images.  
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CHAPTER 2. EXPERIMENTAL METHODS 

Chemicals and Instruments 

 

Alanine Wang resin (Fmoc-Ala-Wang resin, 0.64mmole/g), isoleucine (Fmoc-Ile-OH), 

glutamine (Fmoc-Gln(Trt)-OH), leucine (Fmoc-Leu-OH), glycine (Fmoc-Gly-OH), alanine 

(Fmoc-Ala-OH·H2O), aspartic acid (Fmoc-Asp(But)-OH, lysine (Fmoc-Lys(Boc)-OH, serine 

(Fmoc-Ser(But)-OH), asparagine (Fmoc-Asn(Trt)-OH), arginine (Fmoc-Arg(Pbf)-OH), 

threonine (Fmoc-Thr(But)-OH), benzotriazol-1-yl-N-oxy-tris(pyrrolidino)phosphonium 

hexafluorophosphate (PyBOP) and N-methyl-2-pyrrolidinone (NMP) were purchased from 

Creosalus. N,N-Diisopropylethylamine (DIPEA, 99.5+%) and pyridine (99+%) were obtained 

from Acros Organics. Piperidine (99%) and phenol (99%) were purchased from Alfa Aesar. 

Trifluoroacetic acid (TFA), hydrochloric acid (HCl), dichloromethane (DCM) and potassium 

cyanide were all purchased from Fisher Scientific. Ninhydrin was obtained from Sigma. 1-

Hydroxybenzotriazole (HOBt hydrate) was purchased from Oakwood Chemical, and 

triisopropylsilane was obtained from TCI America. The sample of TAMRA-flg22 used in plant 

imaging experiments was the generous gift of Ms. Jessica Morgan (University of Chicago). 

 

Plants 

 

Seeds of Arabidopsis thaliana Colombia and the transgenic line fls2 were obtained from 

the greenhouse at the University of Chicago. Seeds were vernalized by keeping in 0.1% agar at 

4℃ for 4 d, after which they were planted in potting soil (Miracle-Gro® Potting Mix with 

Fertilizer, part number 74278300, mixed with 2 qt of perlite per 1 cf of potting mix) and kept in a 

Percival growth chamber at 22–24 ℃ with relative humidity of 60–70%, and illumination at 

100–150 µmol M−2sec−1 illumination with a 16 hour light/8 hour dark cycle for 4 weeks. 
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Synthesis of Flg22 via Solid Phase Peptide Synthesis 

 

A representative procedure is provided for flg22. Fmoc-Ala Wang resin (30 µmol, 50 

mg) was swelled in 2 ml of NMP in a 2-mL plastic syringe with a pressed-in filter frit (Torviq). 

All steps (swelling, washing, coupling and deprotection) were performed with gentle rotation of 

the reaction vessel on a mini-rotator. After removal of the solvent, the N-terminal Fmoc group 

was deprotected with 20% piperidine in NMP for 30 minutes. The deprotected resin was washed 

six times with 2 mL of NMP for 2 min/wash to remove piperidine completely. A Kaiser test was 

performed to verify complete deprotection. For this purpose, about 10–15 beads of the resin, and 

2 to 3 drops of the Kaiser test reagents,17 were placed in a test tube and heated with a heat gun. A 

positive result was indicated by development of a dark blue or purple color on the beads. 

In the first coupling, Fmoc-Ile-OH (32 mg, 90 µmol, 3.0 equiv) was dissolved in 200 µL 

of NMP, to which was added 56 µL of PyBOP (0.9 M in NMP, 50 µmol, 1.67 equiv), 50 µL of 

HOBt (1.0 M in NMP, 50 µmol, 1.67 equiv) and 18 µL (100 µmol, 3.3 equiv) of DIPEA. The 

resulting solution was added to the resin in the reaction vessel and rotated for 90 min to allow 

coupling to take place. After expulsion of the reaction mixture through the frit, the resin again 

was washed 6× with 2-mL portions of NMP to remove all unwanted products and reagents. 

Success of the coupling was verified by a negative Kaiser test. Subsequent cleavage of the Fmoc 

protecting group and washing were performed as described above, and success verified with a 

positive Kaiser test. 

The above cycle was repeated for each subsequent amino acid to complete the flg22 

sequence (H-Gln-Arg-Leu-Ser-Thr-Gly-Ser-Arg-Ile-Asn-Ser-Ala-Lys-Asp-Asp-Ala-Ala-Gly-

Leu-Gln-Ile-Ala-OH) using the same stoichiometry and the following Fmoc-amino acid 

derivatives: Fmoc-Gln(Trt)-OH (55 mg), Fmoc-Leu-OH (32 mg), Fmoc-Gly-OH (27 mg), Fmoc-
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Ala-OH·H2O (30 mg), Fmoc-Ala-OH·H2O (30 mg), Fmoc-Asp(But)-OH (37 mg), Fmoc-

Asp(But)-OH (37 mg), Fmoc-Lys(Boc)-OH (42 mg), Fmoc-Ala-OH·H2O (30 mg), Fmoc-

Ser(But)-OH (35 mg), Fmoc-Gly-OH (27 mg),  Fmoc-Thr(But)-OH (36 mg), Fmoc-Ser(But)-OH 

(35 mg), Fmoc-Leu-OH (32 mg), Fmoc-Arg(Pbf)-OH (58 mg) and Fmoc-Gln(Trt)-OH (55 mg).  

After removal of the final Fmoc group, the resin was washed with NMP (6×), methanol 

(3×) and DCM (3×), then allowed to dry in the air. The peptide was deprotected and cleaved 

from the resin using 1 mL of a cleavage cocktail containing 950 µL of TFA, 25 µL of H2O and 

25 µL of triisopropylsilane. After a 30-min reaction time with agitation, the cocktail was 

withdrawn and the resin washed with an additional 1 mL of TFA. The combined TFA solutions 

were evaporated under nitrogen, and the crude peptide was obtained by washing the residue with 

ether. 

In the same fashion, a scrambled version of flg22 was synthesized for use as a negative 

control. The scrambled peptide has identical amino acid composition but an arbitrary sequence: 

GITASKALGADLRRINQSASQD. 

 

Fiber-Optic Epifluorescence Microscope 

 

The basic fiber-optic fluorescence microscope was constructed by Dr. Robert F. 

Standaert using an adaptation of literature designs (Figure 9).51,52 Images were obtained at 2.3× 

native magnification using a GRIN endoscopic objective lens (Grintech, GT-MO-080-032-ACR-

VISNIR-08-00, 0.75 NA, 80-µm working distance in water) cemented to a 1-m coherent imaging 

fiber (Fujikura FIGH-30-850N, 30,000 fibers, 1 m length); use of the magnifying objective 

provides a field of view (FOV) 340 µm in diameter. Fluorescence excitation was provided by 

independent LED light sources centered at ~470 nm and ~565 nm for excitation of 
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fluorescein/GFP and tetramethylrhodamine chromophores, respectively. A dual-band 

filter/beamsplitter set (Chroma Technologies, set 59004) and a color camera (FLIR Technologies 

Grasshopper 3.0 equipped with a Sony IMX252 sensor) were used to allow independent or 

simultaneous observation of both channels without changing filters. The optics were configured 

as illustrated in Figure 9, and images were captured on a laptop computer using the camera 

manufacturer’s SpinView or Spinnaker software. Except as indicated above, optical components 

were obtained from Thorlabs. Modifications to the sample stage were performed in collaboration 

with Mr. Thomas Ntim and Mr. Christopher Erb. 

 

 

 

Figure 9. Custom built fiber optic fluorescence microscope. Image copyright Robert F. Standaert, 

used with permission. 
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Treatment of Plants with TAMRA-flg22 and Imaging 

 

Leaves of Arabidopsis Colombia and the fls2 transgenic line were floated (abaxial side 

down) on solutions of 1 µM and 0.5 µM TAMRA-labelled flg22 solution (in water) overnight at 

room temperature (Figure 10). Leaves were washed after treatment by gently shaking them in 

water for several minutes, and the abaxial side was imaged at a distance of 80 µm using the 

custom-built fiber optic fluorescence microscope under green light (565 nm) excitation (Figure 

9). The absorption and emission maxima of TAMRA are 552 nm and 578 nm, respectively. For 

the experiments discussed below, leaves were placed on standard 25.4 mm × 76.2 mm glass 

microscope slides, and images were obtained using the 3rd-generation microscope configuration 

with the fiber mounted to a conventional microscope body (Figure 14) providing X–Y translation 

and Z fine focus. Image acquisition was performed in the dark to minimize stray light.  

 

 

 

Figure 10. Delivery of TAMRA-flg22 to Arabidopsis leaves 

 



29 

 

CHAPTER 3. RESULTS AND DISCUSSION 

 

Synthesis of Flg22 

 

SPPS was preferred to solution-phase synthesis because the need to optimize reaction 

conditions and the purification procedures at every intermediate step render solution-phase 

synthesis labor intensive and time consuming. SPPS presented us with ability to synthesize 

peptides chains of up to 20 to 50 amino acids. The basic concept of the synthetic method used is 

to construct a polypeptide chain that has been anchored on an insoluble polymeric support 

(resin). SPPS allowed rapid assessment of reaction completion by the Kaiser test. This test was 

performed after every deprotection and coupling reaction. We observed the resin turn dark blue 

or purple (positive test) after every deprotection and remain colorless (negative test) after every 

coupling reaction. Beads turning dark blue or purple (Figure 11) indicated complete deprotection 

as a result of the formation of Ruhemann’s purple from the reaction between ninhydrin and the 

free amino group of the growing peptide chain. The formation of colorless beads after coupling 

showed the absence of a free amino group, indicating complete reaction because the amino acid 

added to the growing peptide chain has its N-terminus protected and does not react with 

ninhydrin.  
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Figure 11. Kaiser test. a) Dark blue or purple beads on the wall of the test tube indicate complete 

deprotection (positive test). b) Colorless beads on the wall of the test tube indicate complete 

coupling (negative test). 

 

All the amino acid derivatives used in the synthesis of flg22 had their N-terminal amino 

groups protected by Fmoc. The Fmoc group is base-labile and was removed with piperidine. 

Fmoc chemistry is more amenable to the laboratory setting than Boc chemistry, as it avoids the 

use of TFA for deprotection at each step, and liquid hydrogen fluoride for the final step. 

Hydrogen fluoride is extremely hazardous and requires the use of specialized apparatus.53 The 

chemistry of Fmoc has now been well-enough developed that it is the primary method employed 

in the automated synthesis of polypeptides commercially. 

 

Evaluation of Flg22 Uptake by Fiber-Optic Fluorescence Microscopy 

 

To study the fate and movement of flg22 at the plant level, a fluorescently labelled 

version of flg22 was used. Specifically, the peptide was modified with an N-terminal 

5-carboxytetramethylrhodamine (TAMRA) group so that it could be observed by fluorescence 

microscopy in plant tissues.  

Positioning of the fiber optic probe and leaf sample proved to be a crucial in obtaining 

quality images. Development of the imaging platform proceeded through three stages and was 



31 

 

performed in collaboration with Mr. Thomas Ntim and Mr. Christopher Erb. At the outset of the 

project, only the optical part of the microscope had been completed. In this Gen 0 microscope, 

the probe had to be maneuvered by hand. Given that the working distance is 80 µm, and even a 

few µm of motion will unfocus the image, it was all but impossible to obtain plant images. The 

first attempt to mount the microscope’s fiber optic probe utilized a ring stand, a plastic syringe 

barrel, and masking tape (Figure 12a). These component parts served to suspend the probe in 

such a way that specimens of Arabidopsis could be brought within focus of the probe and imaged 

‘by hand’. This primitive mounting adaptation proved difficult to operate, as it did not provide a 

means to securely fasten a plant specimen for controlled imaging and relied on the steadiness of 

one’s hands alone to ensure image quality. Images obtained at this first mounting were usually 

very poor and out of focus (Figure 15b,c) making it impossible to discern any cellular uptake of 

flg22 in samples. Good images were occasionally obtained by chance. 

 

 

 

Figure 12. First-generation fiber-optic probe setup and imaging results. a) The fiber-optic probe 

clamped to a ring stand; b) and c) poor, out-of-focus images of Columbia and fls2 leaves, 

respectively, after overnight incubation in 0.5 µM and 1µM TAMRA-flg22 
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The second-generation mounting implementation for the microscope’s fiber optic probe 

utilized the same ring stand, plastic syringe, and masking tape but added a laboratory jack as a 

stage (Figure 13). Leaves were mounted on the stage in a petri dish. Steadiness of the hand in 

trying to image other areas of the leaf surface was again required, and images obtained were not 

much better than ones obtained from the first-generation mount. 

 

 

Figure 13. Second-generation fiber-optic probe setup and imaging results. a) The fiber optic 

probe clamped to a ring stand with a laboratory jack as a stage; b) and c) poor, out-of-focus 

images of Colombia and fls2 leaves, respectively after overnight incubation in 0.5 µM and 1µM 

TAMRA-flg22. 

 

The third fiber optic mounting generation (Figure 14) made use of cannibalized and 

repurposed parts from a conventional light microscope. By rearranging optics and assemblies 

from multiple, identical microscopes, a fixture was designed capable of safely immobilizing the 

fiber optic probe while maintaining the use of the stock light microscope stage (Figure 14). The 

stock stage allowed for ‘X’ and ‘Y’ translation of specimens on standard glass slides in vitro, and 

most importantly, for clear focus. 

In this iteration, the fiber optic probe was secured inside a plastic pen barrel attached to 

the former optical lens portal of the light microscope. By carefully press-fitting the delicate fiber 

optic probe through the narrow orifice of the pen barrel, the risk of damaging the probe’s 
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objective lens was significantly decreased. The risk of damaging the objective during imaging 

was a particular concern if the stage was raised to come in contact with the probe’s lens (a likely 

scenario given the tolerance required of the imaging process). Press-fitting of the probe into the 

cylinder ensured that the probe could recede back into its plastic sheath if the stage applied too 

much pressure on the lens. This version of the imaging platform proved sufficient for evaluating 

cellular uptake of flg22. Images shown in Figures 15 and 16 were obtained with the third-

generation fiber optic mounting. 

 

 

 

Figure 14. Third-generation fiber-optic probe setup. 

 

Using the third-generation microscope-based positioning system (Figure 14), the 

movement of TAMRA labelled flg22 was assessed after overnight treatment of the abaxial side 

of detached leaves of Columbia and fls2 Arabidopsis plants with 0.5 µM and 1 µM aqueous 

solutions of TAMRA-flg22. A water control was used, and little background fluorescence was 

noted in either plant strain (Figures 15a and 16a). The fls2 line has the FLS2 receptor knocked 

out, so we did not expect localization of the labeled flg22 at the membrane or internalization. In 
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the experiment, treatment of an fls2 leaf with 0.5 µM TAMRA-flg22 produced a result similar to 

water, with no clear probe fluorescence (Figure 15b). When 1 µM TAMRA-flg22 was used, 

there was pronounced uptake by stomata through an unknown but likely non-specific mechanism 

(Figure 15c). In addition, there was some diffuse fluorescence which might represent peptide on 

the surface of the leaf which had not been completely washed away. There was no clear 

intracellular fluorescence, but there was an unexpected observation of slight accumulation at the 

cell perimeters with the high concentration of TAMRA-flg22 (meandering lines circled in 

orange, Figure15c) of the fls2 line. The binding could be non-specific, or might represent the 

presence of an unknown partner for flg22 in the membrane or cell wall that binds to peptide but 

does not lead to internalization. Further experiments are needed to follow up on this finding. An 

important negative control we were unable to perform is the use of scrambled flg22. 

 

 

Figure 15. Transport of flg22 in fls2. (a) Control (b) Leaf treated with 0.5µM TAMRA-flg22 

overnight, showing no uptake of probe by membranes or cells (c) Leaf treated with 1 µM 

TAMRA-flg22 overnight, showing uptake by the stomata (bright green spots circled in white) 

but not by epidermal cells (faint green meandering lines inside orange oval). Uptake of flg22 in 

the stomata is believed to be independent of the flg22 receptor, FLS2. Field of view (diameter of 

the image circle) is 340 µm. 
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Results with the Columbia plant provided a stark contrast. Even at the lower 

concentration of 0.5 µM TAMRA-flg22, there was pronounced localization of the probe at the 

cell perimeters (green meandering lines within the orange oval, Figure 16b), consistent with 

binding to the FLS2 receptor, as well as in stomata (bright green spots circled in white, Figure 

16b). At 1 µM concentration, it appeared that some TAMRA-flg22 was taken up in the 

epidermal cells of Columbia (large area within the orange oval, Figure16c). Uptake in stomata 

was also observed, but it was receptor-independent, as it was observed in both Colombia and fls2 

lines. Uptake in epidermal cells of the plant should be specific, as we expect the peptide to be 

impermeant in the absence of the receptor. 

 

 

Figure 16. Transport of flg22 in Colombia. (a) Control (b) Leaf treated with 0.5µM TAMRA-

flg22 overnight, showing uptake into guard cells of the stomata (bright green spots circled in 

white) and cell membranes (green meandering lines inside the orange oval) but not inside the 

cells (c) Leaf treated with 1 µM TAMRA-flg22 overnight, showing apparent uptake in cells after 

overnight incubation (inside the orange oval). Field of view (diameter of the image circle) is 340 

µm. 

 

Jelenska et al. conducted a similar experiment by delivering TAMRA labeled flg22 into 

Colombia and fls2 plants. They observed transport of flg22 into the cells of Columbia, but none 

in the fls2 line. Receptor-dependent uptake occurs in Columbia, thus there is strong signal in 
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Colombia but not in fls2 plants. My study provided results consistent with the requirement of 

FLS2 for flg22 to show movement into cells via endocytosis.  

The binding of flg22 to its receptor induces receptor endocytosis and initiates a cascade 

of signals to trigger local and systemic defense in plants.54 We showed that flg22 accumulates at 

cell boundaries in Columbia plants containing the FLS2 receptor, but much less so in the fls2 

strain lacking the receptor. Further, we showed some apparent internalization of TAMRA-flg22, 

which presumably results from endocytosis. Assessment of long-range movement is a goal we 

were unable to realize within the time available. These findings are based on images obtained 

from the fls2, line where uptake was observed only in the guard cells of the stomata, which we 

hypothesize to be receptor independent. We hypothesize that the apparent internalization of flg22 

is as a result of its receptor-mediated endocytosis.  
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CHAPTER 4. CONCLUSION AND FUTURE WORK 

Flg22 and the innate immune response in plants are an important area of study, with 

implications for agriculture, bioenergy and human health. In this work, we sought to apply 

fluorescent probes of flg22 in conjunction with a fiber-optic fluorescence microscope for a better 

understanding of flg22 signaling. After proceeding through three generations of microscopy 

platforms to develop a workable setup for obtaining quality images at sub-cellular resolution, we 

were able to reproduce and verify key literature findings, as reported by Jelenska et al.13 

Specifically, we observed receptor-dependent localization of TAMRA-flg22 at cell periphery 

and apparent partial internalization of the peptide into pavement cells. Internalization is believed 

to occur through endocytosis of the flg22 receptor, FLS2. Consistent with this hypothesis, 

TAMRA-flg22 did not localize strongly to the membrane of fls2 plants lacking the FLS2 

receptor and did not enter the cells. An advance of the new microscopy platform is its suitability 

for non-destructive, repetitive, live-plant imaging, which has been a significant barrier in the 

field. 

Labeled peptide used in this research was commercially synthesized. The flg22 core was 

re-synthesized to provide more material for future studies, as well as a starting point for the 

construction of additional probes. Limitations of time, equipment and materials prevented the 

final purification of the targeted probes by high-performance liquid chromatography, 

identification by mass spectrometry, and validation by in-vivo testing in Arabidopsis for 

biological effects and molecular trafficking. An unrealized goal is to use a different technique for 

delivery of peptides into the plant through the use of vertically aligned carbon nanofiber arrays.55 

This approach promises injury-free delivery of sub-microliter volumes of peptide solution into 

targeted tissues of model plants and will help fulfill the goal of performing peptide-trafficking 

studies in live plants. 
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We will also employ a fourth-generation fiber optic probe mount, which uses an 

AmScope 4-axis articulating arm, a precision X–Y–Z translation stage assembly with 3 mm 

travel in each dimension, a stainless steel pin vise, and ± 3° pitch and yaw control on the pin vise 

mount to enable in vivo imaging of specimens. 
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