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ABSTRACT

Data Science and the Ice-Cream Vendor Problem

by

Makafui Ama Azasoo

Newsvendor problems in Operations Research predict the optimal inventory levels

necessary to meet uncertain demands. We examine an extended version of a single

period multi-product newsvendor problem known as the ice cream vendor problem.

In this problem, there are two products – ice cream and hot chocolate – which may be

substituted during medium temperatures. This problem is a data-driven extension

of the newsvendor problem with no assumption of a specific demand distribution.

Using Discrete Event Simulation, we simulate a real-world scenario of the problem

via a demand whose expected value is a function of temperature. Sample average

approximation is used to transform the stochastic newsvendor program into a feature-

driven linear program based on some exogenous factors. The resulting problem is a

multi-product newsvendor linear program with L1-regularization. The solution to

this problem yields the expected cost to the ice cream vendor as well as the optimal

order quantities for both products.
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1 INTRODUCTION

Inventory control management is integral for any business. Effective inventory

control creates a balance between the outflow and inflow of inventory in order to

satisfy customer demands. The newsvendor model is an essential model in inventory

control management typically used for products available for a single selling period

[45].

The newsvendor problem is the dilemma of a newspaper vendor who orders news-

papers each morning in order to meet the demand during the day. In this case, it is

not possible to order extra units during the day to fulfill any unanticipated demand.

Papers ordered for a particular day are only useful for that day; leftover papers can-

not be sold at a later date. If the vendor knows the demand at the time he orders, he

would order that quantity. However, demand is random and unknown at the time he

orders. The model assumes that, if demand during the day is less than the ordered

quantity, he will incur a cost for the excess inventory. If the demand exceeds the

ordered quantity, then some unfulfilled demand is lost and he forgoes some profit.

In other scenarios, any unsold inventory is discounted and sold at a salvage value or

disposed of.

The newsvendor problem hence seeks to find the optimal number of copies of

newspapers to buy in order to maximize profits or minimize loss [28]. The newsvendor

model is a well-known problem formulation in Operations Management for making

inventory decisions under uncertain demand. [39].

Demand estimates are speculative and fluctuate based on different factors [64].

These uncertainties may be caused by some factors such as customer preference, sea-
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sonal fluctuations, price of substitute products etc. However, certain industries such

as transportation, pharmaceuticals, etc. are more sensitive to fluctuating demand

than others. In the problem of the vendor making a decision as to the optimum

number of newspapers to purchase, demand is likely to be higher if the headlines are

about a political scandal than if about plan to expand a local library. For business

decision making, analysis and eventual decision is based on knowing the demand char-

acteristics, accounting for more factors. Consideration of several specific extensions

such as price can also help in determining optimal order quantity in a varied range

of problems.

In its adoption to real world scenarios, the newsvendor problem captures the fun-

damentals of diverse business contexts [2, 53, 54] especially in inventory management

[13]. In these industries, the newsvendor problem is a one-time business decision

with no opportunity to replenish [10]. One of the application areas is the inventory

management of seasonal products such as electronics, fashion items, Christmas trees

etc. [17]. Products with a limited shelf-life such as produce, dairy products also face

similar constraints. It is also widely used in the health industry (drugs with short ex-

piration dates), manufacturing and even liquid markets [18]. The newsvendor model

is also used to manage capacity and estimate booking requests in service sectors like

airlines, theaters and hotels. For many of these products, ordering decisions are often

made before any demand is known. There is also a finite selling season beyond which

inventory is essentially obsolete [31]. Additionally, the processing length and trans-

portation lead-times, are often longer than the market lifespan of these products due

to restrictions such as budgeting, minimum output, and capacity [14].

9



Table 1: Notation

Notation Definition

x order quantity
D demand variable (random variable)
c cost per unit
co uderage cost per unit
cu overage cost per unit
C cost function
ED expected demand
f(D) density function of D
F (D) cumulative distribution function of D

1.1 Classical Single Product Newsvendor Problem

In the generic setting of all newsvendor-type problems, stocking decisions are based

on finding an optimal between expected costs due to excess inventory or expected cost

incurred due to stockouts in a single selling period. In [44], “it occurs whenever the

amount needed of a given resource is random, a decision must be made regarding the

amount of the resource to have available prior to finding out how much is needed,

and the economic consequences of having too much and too little are known”. The

cost incurred per unit of unused inventory is known as overage cost. Costs incurred

per unit of unmet demand or lost sales is known as underage cost [20, 39].

Consider a certain product with a retail unit cost of $c sold at a unit price of $p,

and that the product is discounted or dispose of at a unit salvage price $s after the

selling period. Assume also that, the vendor orders quantity (x) to satisfy demand

D, at the start of the selling period. If demand D, is less than x, (D < x), then,

underage cost, cu is incurred. If demand D is greater than x, (D > x), then an
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overage cost co is incurred to the vendor.

In view of the notation in Table 1 and [57], the goal of the newsvendor problem

is to find the optimal order quantity that minimizes the expected value of

C(x,D) =


co(x−D) if D < x

cu(D − x) if D > x

We define (y)+ = max(y, 0). This allows us to write the total cost as

C(x,D) = co(x−D)+ + cu(D − x)+

If D is known before ordering x, then, the optimal order quantity(x∗) which minimizes

the expected value of cost will occur at x∗ = D.

At an optimal order quantity x∗, minimization of the expected cost is equivalent

to the maximization of the expected profit [26, 39]. Throughout this thesis, the cost

minimization is used as the objective function of an inventory newsvendor model.

Demand estimations are inherently difficult. The accuracy of the decision may

rely on alternate assumptions which are appropriate and possible in different set-

tings. However, distribution assumptions are also speculative and often erroneous

[28]. Actual demand distribution and it corresponding parameters are unknown and

may even change over time [27, 46]. With new developed products, it becomes in-

creasingly difficult to define probabilities since there may be no available data for

demand prediction [36]. In certain cases, demand is assumed to be known or regular

(deterministic). Here, trends in historical sale data may be used to predict demand.

If demand is assumed to be unknown, then the demand is assumed to be a random
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variable in each future period drawn independently from some known probability

distribution.

A typical method for resolving demand uncertainty is the use of stochastic models

which assume a specific distribution for the demand. Under stochastic demand, the

goal of the newsvendor problem is to determine the minimum order quantity that

minimizes the expected cost. In this setting, the expected cost is estimated since it is

a variable for which the value is modeled by a distribution. The Stochastic objective

is defined as

min
x
ED(C(x,D)) = ED[(co(x−D)+ + cu(D − x)+)]

If the random demand is stochastic, then it has a cumulative distribution F (x) =

Pr(D < x) and density

f(x) =
dF (x)

d(x)

If demand D is discrete and a probability distribution Pr(D), the expected cost is

given by

E(C(x,D)) =
∞∑
D=0

C(x,D)Pr(D)

which can equivalently be written as

minED(C(x,D)) =
∞∑
D=0

(co(x−D)+ + cu(D − x)+)Pr(D)

Because discrete random demand can be difficult to work with, it is frequently ap-

proximated as a continuous random variable [11].

If D is continuous, then the expected cost becomes

E(C(x,D)) =

∫ ∞
D=−∞

C(x,D)f(D)dD
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If D ≥ 0, then Pr(D) = 0. The expected cost function E(C(x,D)), is then equivalent

to

minED(C(x,D)) =

∫ x

D=0

(x−D)+f(D)dD +

∫ ∞
D=x

(D − x)+f(D)dD

Theorem 1.1 If f
′
(x∗) = 0 for a convex function, then x∗ is a global minimum of

f, where f
′
(x) is the gradient function or total derivative.

If E[∇C(x∗, D)] = 0 and C(x,D) = co(x−D) + cu(D − x), then,

∇C(x,D) =


co if D < x∗

−cu if D > x∗

Note that F
′
(x) = f(x) and by Leibniz’s Rule, T

′
(x) = xf(x). The first derivative of

the expected cost with respect to x, is

E[∇C(x∗, D)] = coPr(D < x∗)− cuPr(D > x∗)

= coPr(D < x∗)− cu(1− Pr(D < x∗))

= (co + cu)Pr(D < x∗)− cu

The argmin x∗ (optimal order quantity) satisfies

Pr(D < x∗) =
cu

co + cu

which is equivalent to

F (x∗) =
cu

co + cu

The ratio cu/(co + cu) is the Critical Fractile (C.F). The Critical Fractile is the

probability that the order quantity satisfies demand in the likelihood of underage or

overage.
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1.2 Extensions of the Newsvendor Problems

Traditionally, the newsvendor only dealt with inventory decision making. Today,

however, newsvendor models have been improved and are effective for controlling in-

ventories by assessing trade-offs among cost components [50]. These new models are

durable, simple and easily adapt to specific industries. In 1963, Hadley and Whitlin

introduced the newsvendor model [21] as applied to solving inventory problems. Their

model in itself was an extension of the traditional newsvendor problem which included

multiple products with an assumed demand distribution and a budget constraint.

There exists a large literature of research particularly in the extension of the model

to find solutions for different products in a single-sale period [23, 29, 30, 43]. Some

of these extensions concentrated on creating a computationally efficient algorithm

to find optimal solutions to multi-product newsvendor problems [16]. More recent

studies have used Lagrangian relaxation approach with constraints [58]. In the grow-

ing interest and application of multi-product newsvendor problems with constraints,

conditions such as the Karush-Kuhn-Tucker have also been proposed and used [1].

Multi-product newsvendor models form a class of models in operation research

used to build stochastic linear programs [7]. The multi-product newsvendor problem

is framed as a vendor who at the start of a sale period must decide the order quantities

for different products xi (i= 1,2,...n) to meet uncertain customer demand [65]. Similar

to the single-product, any unsold product(s) after the selling period is discounted at

a unit salvage price or disposed of. Suppose we have the sale of n items, thus,

x1, x2, ..., xn order quantities to satisfy D1, D2, ..., Dn demands, ci is the cost per unit,

cui is the underage cost per unit of the ith item (xi < Di) and coi is overage cost per
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unit of the ith item (xi > Di) .

Then the expected cost function is

E(C(xi, D)) =
n∑
i=1

(cui(Di − xi)+ + coi(xi −Di)
+)

Suppose that we have a constraint such as capacity (C), that is, the vendor cannot

order so many there will be nowhere to store them, then,

x1 + x2 + ...+ xn ≤ C

We may also have a budget constraint B (only a limited amount of money to spend),

cix1 + ...+ cnxn ≤ B

Hence for a deterministic demand, the cost minimization is

min
x

n∑
i=1

(cui(Di − xi)+ + coi(xi −Di)
+)

subject to : x1 + x2 + ...+ xn ≤ C

cix1 + ...+ cnxn ≤ B

For the stochastic demand (here demand is random); the problem is

min
x
E(

n∑
i=1

(cui(Di − xi)+ + coi(xi −Di)
+)

subject to : x1 + x2 + ...+ xn ≤ C

cix1 + ...+ cnxn ≤ B

For single product newsvendor problems, constraints do not play a major role since

there is only one order quantity. Because the objective function and the constraints

15



are both linear, multi-product newsvendor problems are formulated as linear pro-

grams. If the demand is known beforehand, then the minimum cost happens when

the sum of the order quantities for each specific period equals the demands for those

periods respectively.

In certain cases, unsold items are sometimes kept and resold at a later date or

in subsequent periods. The amount carried forward to the future period is however

random. The vendor’s goal is to find an order quantity sequence that minimizes the

expected total cost while maintaining appropriate inventory for the period. Extra

inventory maybe held to protect against backorder or stockout (safety stock). One of

the most important constraints in supply chains is

xi −Di ≥ Si

where Si is the safety stock [33]. Multi-period newsvendor problems are dynamic

programs and can be broken down into sequences of simpler problems and solved

independently for the entire sale-period [4].

1.3 Stochastic Demand and Connection to Supply Chain

A supply chain is made up of networks that consists of processing raw of materi-

als, manufacturing, transporting of the processed goods, distribution to centres and

retail outlets and eventually, selling to customers [35]. In a supply chain, decisions

concerning quantities to order are made before sale. Inventory decision problems are

often posed as newsvendor problems. The newsvendor model is an integral and foun-

dational concept of supply chain and inventory control management [3]. In a supply a

chain, history of past demands may not necessarily be enough to accurately estimate
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the exact future demand of a given product. This uncertainty along with supply, cost

etc. are some of the challenges encountered in the supply chain management.

1.4 A New Extension - The Ice-Cream Vendor Problem

The ice cream vendor problem is an extension of the conventional single product

newsvendor problem but with a related set of factors that allow a better prediction

of demand. In this problem, an ice cream vendor must order ice cream and hot

chocolate to fulfil demand D (during the day). Ice cream costs $c1 per serving while

hot chocolate costs $c2 per serving. Any ice cream unsold at the end of the day is

salvaged for $s1 per serving and hot chocolate salvaged for $s2 per serving. If the

demand D exceeds the amount of ice cream or hot chocolate, then the vendor issues

a ‘coupon’ which costs additional $b1 and $b2 dollars per item respectively.

Intuitively, the vendor would use the weather to predict what the demand might

be that day. There would be greater demand for ice-cream when the temperature

is high than when it is low. On colder days, demand for hot chocolate will be high,

the vendor is likely to sell more hot chocolate than ice cream. The demand D, a

random variable, is dependent on temperature and if the temperature is not too high,

not too low, then a customer may substitute one product for the other. Because the

demand distribution depends temperature, the ice cream vendor cannot estimate any

order quantity independent of a weather forecast. What would be the vendor’s order

quantities for the number of servings of ice cream and hot chocolate at a minimized

cost?

In this problem, D has an exogenous factor (temperature). Thus, the random

17



variable D is determined by changes or influences outside the model and which is

also unexplained by the model itself. In the ice cream vendor problem, demand

may have no known distribution. Nonetheless, certain assumptions can be made on

the temperature categories to reduce the ice cream vendor’s problem to three (3)

newsvendor problems:

1. Demand has an exogenous factor (temperature) (Simulate via a distribution

whose mean is a function of temperature)

2. Reduces to 3 Newsvendor Problems for temperature categories:

• Hot (High Temperatures)

• Cold (Low Temperatures)

• Medium (High or low Temperatures)

3. Implements substitution of one product for another (here, the substitution is

parameter(temperature) dependent).

• high temperature - ice cream (no substitution)

• medium temperature - substitution (either ice-cream or hot chocolate)

• low temperature - hot chocolate (no substitution)

Determining optimal inventory levels to meet uncertain demand of substitutable

items is a well-known topic in Operations Research. Substitution occurs when at least

two (2) or more products can be easily replaced for another and in most instances, for

the same purposes. In [14], product substitution can be defined as the use of a product

18



to fulfill the demand for another product within a particular product category. The

ice cream vendor problem is a data-driven extension of the conventional newsvendor

problem that do not require the demand to have an assumed distribution.

In this thesis, our objective is to determine the minimum expected cost to the

ice cream vendor given demand with some features. We use simulations to generate

data as a means of insuring sufficient data as well as a means of comparison between

theoretical and empirical solutions. The Simpy package is used to simulate as a

discrete event simulation of a real-world scenario of an ice cream vendor problem

via a demand whose expected value is a function of temperature. Using sample

average approximation, the vendor’s problem is transformed into a feature-driven

linear program dependent on exogenous factors such as temperature and rainfall.
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2 STOCHASTIC LINEAR PROGRAMMING

2.1 Probability and Randomness

We frequently hear and use phrases like “it is very likely that it will snow now

or later”, “he will probably not make it to the meeting next week”. These type of

expressions are based on the idea of randomness, which is studied using probability

theory.A traditional view of probability is based on the idea of equally likely outcomes

[15]. Probability enables us to quantify or measure uncertainties in the likely outcome

of an event [25]. The mathematical theory of probability provides fundamental tools

for developing and assessing mathematical models for random occurrences. In general,

probability models assume a specified distribution. In this section, we introduce some

concepts which serve as foundation for subsequent section to solve the ice-cream

vendor problem.

Definition 2.1 Consider a sample space S. Let A be a set of events. Assuming P is

a real-valued function defined on A, then P is a probability measure if it satisfies the

following axioms.

1. P (A) ≥ 0

2. P (S) = 1

3. If Ai is a sequence of events in A, then for every infinite sequence of disjoint

events, A1, A2, A3,...we have

P

(
∞⋃
i=1

Ai

)
=
∞∑
i=1

P (Ai)
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When a probability measure is specified across a sample space, we can estimate the

probabilities regarding the possible values of a random variable [15]. The distribution

of these probabilities defines the random variable.

Definition 2.2 A random variable X is a discrete random variable if its defined space

is finite or infinitely countable.

Its probability mass function is defined as the function f such that for each real

number x,

p(x) = Pr(X = x)

Definition 2.3 For any value x, the probability mass function of a discrete random

variable X satisfies

1. 0 ≤ Pr(x) ≤ 1

2.
∑
x

Pr(x) = 1

Similarly, random variables are real-valued functions that are defined on a sample

space. Though these concepts, probability and randomness are closely associated,

they however do not coincide.

Definition 2.4 A random variable X has a continuous distribution if its cumulative

distribution function F (x) is a continuous function for all x ∈ R. [15].
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For a random variable X associated with an interval [a,b],

Pr(a ≤ X ≤ b) =

∫ b

a

f(x)dx

for the probability density distribution of function f , it satisfies that

1. f(x) ≥ 0 for all x

2.
∫∞
−∞ f(x)dx = 1

Definition 2.5 The cumulative distribution function F(x) of a random variable X is

defined as

F (x) = Pr(X ≤ x)

F (x) is monotone and non-decreasing [22, 25]. That is if a < b , then F (a) ≤ F (b).

The probability that a random variable X takes on any value from [a, b] is

P (a < x ≤ b) = F (b)− F (a) =

∫ b

a

f(x)dx

F (x) as defined above follows for the respective distribution for each random variable

X.

Suppose that the random variable X, has a discrete distribution with probability

function Pr(x), then F (x) is

F (x) = Pr(X ≤ x) =
∑
x

Pr(x)

For a continuous random variable X with probability density function f(x)

F (x) = Pr(X ≤ x) =

∫ x

−∞
f(x)dx

If F (x) is continuous at all x (Fundamental Theorem of Calculus) [15, 22, 32] then

d

d(x)
F (x) = f(x)
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Definition 2.6 The expected value of a random variable X is the mean or average

of the probability distribution.

Suppose X be a continuous random variable with probability density function f(x).

If the integral
∫∞
−∞ |x|f(x) <∞, then the mean, or expected value of X is said to exist

and is defined to be

E(X) =

∫ ∞
−∞

xf(x)dx

If X is a discrete random variable with probability function Pr(x) and if E(|X|) <

∞, then the expectation,

E(X) =
∑
x

xPr(x)

The expectation of any real-valued function g(x) may be determined using the

above definitions (2.6) of expectation to the distribution of a function g.

Theorem 2.1 Let Y = g(X). Suppose X is a continuous random variable with proba-

bility density function f(x) for any real-valued function g(x). If
∫∞
−∞ |g(x)|f(x)dx <∞,

then,

E(Y ) = E[g(X)] =

∫ ∞
−∞

g(x)f(x)dx

If random variable X discrete with probability distribution Pr(x) for any real valued

function g(x) and if
∑

x |g(x)|xPr(x) <∞, then

E(Y ) = E[g(X)] =
∑
x

g(x) Pr(x)

Many experiments include examining the times at which random events occur.

Accurately forecasting arrival is critical for achieving optimal operational efficiency

[12].
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Exponential distributions are used to model the length of time until the next event

occurs.

Definition 2.7 A random variable X is said to have an exponential distribution with

parameter λ (the mean arrival rate), λ > 0, if its probability density function

f(x) =


λe−λx, x ≥ 0

0 otherwise

This implies that, λ = 1
x
. where x is the mean inter-arrival time. A counting process

that is related to the exponential distribution, is the Poisson process. The Poisson

arrival process is a suitable model used to model arrivals at a fixed time interval. [63].

2.1.1 Convexity

Definition 2.8 [60] A convex set is a set C ⊆ Rn such that if for any x1, x2 ∈ C

and α ∈ [0, 1] we have

αx1 + (1− α)x2 ∈ C.

Geometrically, convex set has a line segment connecting any two (2) points in the

set. The empty set, Φ and Rn are both convex. The convexity of a set is preserved

by scaling and translation. The intersection of convex sets are also convex sets [49].

Notably, half-spaces, hyperplanes are also convex sets. These form the basis for a lot

of practical optimization problems [9].

Definition 2.9 A convex function is a function f(x)→ R such that for all x1, x2 ∈ X

and α ∈ [0, 1] then

f(αx1 + (1− α)x2) ≤ αf(x1) + (1− α)f(x2)
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If f(x) and g(x) are convex functions, then we have that

1. af(x) + bg(x) is convex for convex f, g and a, b > 0

2. the pointwise maximum, max(f(x), g(x)) is convex for convex f(x) and g(x)

2.1.2 Convex Optimization

In Machine Learning and Operations Research, many problems can be framed as

convex optimization problems [34, 41]. Convex optimization is generally repeatable.

This is important for diverse business or industry decision making. Its application

encompasses fields such as communication and networks, estimation and signal pro-

cessing, and autonomous control systems.

Practically, in formulating a convex optimization problem, we are thinking of

optimization under constraints. An optimization problem is framed as

min
x

f0(x)

subject to: fi(x) ≤ 0 ∀i = 1, . . . ,m

hi(x) = 0, ∀i = 1, . . . , n

1. f0(x) : Rn → R: objective/cost function

2. fi(x) : Rn → R : i ∈ 1, . . . ,m: inequality constraint

3. hi(x) : Rn → R : i ∈ 1, . . . , n: equality constraint

4. optimal solution x∗ has the smallest value of f0(x) among all vectors that satisfy

the constraint.
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5. x = (x1, ..., xn): optimization variables

If the objective function and the constraints are convex functions thus, all fi(x), i ∈

1, . . . ,m are convex and all hi(x), j ∈ 1, . . . , n are affine [9] then the optimization

problem is said to be convex. This together with the objective function ensures that

all local minima are global minima.

2.1.3 Regularization

Models are often tested to see how best they fit a data set. In such instances, the

entire data set is split into a training set (data set on which the model is developed)

and a test set (how best the model works and fits the data). Sometimes these models

are too flexible or complex for the data set. That is, the model follows too closely to

the randomness in the data (over-fitting). This leads to high test errors which reduces

the predictive accuracy of a model [8]. By adding a penalty term to the loss function,

regularization attempts to limit the set of learn-able models. Regularization is useful

in models with high variance (models with parameters that fluctuates with different

training sets). In optimization, adding a regularization term to a cost function help

tuning a preferred level of model complexity to improve prediction accuracy.

In regularization, a variable, w, is added to a loss function to penalize complexity

or flexibility to prevent extreme values. In L1 regularization, the loss function becomes

f(w) = L(w,X, y) + λ‖w‖1

where λ ≥ 0 . L1 regularization forces sparsity [40]. L2 regularization forces small
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rms (root mean square) [37]. The loss function then becomes

f(w) = L(w,X, y) +
λ

2
‖w‖22

An important property of the L1-regularization is that it performs feature selection

which is relevant to this thesis.

In subsequent sections of this thesis, (Section 3), the L1 regularization would be

used to improve the utility of an optimization problem into a linear program which

is solvable.

2.2 Linear Programming

A linear program is a convex optimization in which the objective and constraints

are linear. A linear program may be framed in the form

min
x

cTx

s.t: Ax ≤ b

x ≥ 0

A set of linear constraints can be expressed in different forms. This makes transfor-

mation of linear programs quite easy. Most inventory and daily life activities can be

framed into a linear optimization problem [9]. An example is maximizing the output

of a factory, the x is the quantity of items that may be produced, c is the profit and

the constraints in A and b can be the materials available.

Stochastic linear programming allows us to optimize programs where certain pa-

rameters are random. In a two stage stochastic linear programming model, the de-

cision variables are grouped into two stages. The initial stage is based on whether
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they are applied before or after the random variable’s result is noticed and a second

decision (recourse function) enable us to model a reaction to the output, which serves

as a recourse action. A standard two-stage stochastic linear program can be posed as

min
x

cTx+ Eξ[Q(x, ξ)]

s.t: Ax ≤ b

x ≥ 0

where c ∈ Rn is given. The function Q(x, ξ) in itself can be defined by an opti-

mization problem. In the second stage, Q(x, ξ) is the optimal value of

min
x

cTx+ qTy

s.t: T (ξ)x+W (ξ)y = h(ξ)

y ≥ 0

where (q(ξ), h(ξ), T (ξ),W (ξ)) is the random data of the problem.

Assuming that there are K outcomes and a random variable ξ = (h, q, T,W ) with

probabilities pk, 1 ≤ k ≤ K, the expectation Eξ[Q(x, ξ)] in the first stage becomes

Eξ[Q(x, ξ)] =
K∑
k=1

Q(x, ξ)pk

The second stochastic program then

min cTx+
K∑
k=1

(qk)
Tykpk
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s.t: Ax = b

Tkx+Wkyk = hk

x ≥ 0, yk ≥ 0 k = 1, . . . , K

When the variables are continuous, these formulations result in infinite-dimensional

problems which are complex and difficult to solve [51].

2.3 Stochastic Linear Programs - Sampling Methods

From a statistical standpoint, it makes sense to minimize the objective function

on average. However, objective functions are often complicated and difficult to solve.

The principle of Sample Average Approximation (SAA) provides solutions to these

problems through the use of sampling and optimization methods. The sample average

approximation method uses Monte Carlo simulation to solve stochastic optimization

problems [55]. The principles of Monte Carlo methods are based on the strong law of

large numbers. Suppose that we do not know what distribution our real-valued func-

tion f(x) is, instead, we have a fixed set ξ whose distribution does not depend on x.

The principle of SAA, is to select a random sample ξ1, ξ2, ...ξn which is independently

and identically distributed (i.i.d) as vector ξ and set

f(x) =
1

n

n∑
i=1

f(x, ξi)

Given h1, h2, .., hn which is independently and identically distributed random sam-

ple of N realization of random vector ξ, the sample average of the expectation function

Eξ[Q(x, ξ)] become

Eξ[Q(x, ξ)] =
1

N

N∑
k=1

Q(x, hk)
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Since fn(x) is deterministic, an optimization approach can be used to solve the two-

stage stochastic program in the form of:

min cTx+
1

N

N∑
k=1

Q(x, hk) (1)

s.t: Ax = b (2)

Tnx+Wnyk = hk (3)

x ≥ 0, yk ≥ 0 k = 1, . . . , K (4)

Equation (2) represents the SAA objective function, which corresponds to the

original two-stage stochastic program’s objective function. Because sampling and

optimization are independent, the sampling technique and optimization method can

be split into modules. This makes the programming simpler.

2.4 The Data Driven Newsvendor

With accessible and large data, machine learning and data science inputs can be

employed to gain greater insights on company issues or business scenarios to make

informed decisions. In some instances, trends in data set can be indicative in the

prediction of demand [5, 6]. Instead of making assumptions about the distribution

of the demand, data-driven models which do not depend on a parametric demand

distribution are used. This approach is the utilization of the principle of Sample

Average Approximation [56].
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2.4.1 Nonparametric Newsvendor Models

In this, assuming the sample demand D1, D2, ...Dn are identically and indepen-

dently distributed and drawn from a distribution with a cumulative distribution func-

tion F (k). A formulation of the newsvendor problem would be to compute an x∗ that

minimizes expected cost of the vendor.

min
x

1

n

∑
( co(x−Di)

+ + cu(Di − x)+ )

Since the objective function of the model is the expectation of the loss under empirical

distribution,

F (k) =
1

n

n∑
i=1

1(Di ≤ k)

An inventory level x∗ is chosen so that

F (x∗) =
cu

co + cu

If the demand Di is ordered, that is, D1, D2, ..., Dn, the solution to the newsvendor

problem corresponds to the dn( cu
co+cu

)e − th value. That is, Xdn( cu
co+cu

)e.

2.4.2 Linear Parametric Models

If we have sample demands, D1, D2, ..., Dn, with features Z1, Z1, ..., Zn ∈ Rp re-

spectively, then our goal is to predict x∗ using these features. In these type of prob-

lems, the optimal decision depends on recent data. In the ice cream vendor problem,

suppose we want to predict demand for either ice cream or hot chocolate. Then the

feature Zi may be a vector of features such as temperature, probability of rainfall,

time of day etc. With this, we could use a parametric model that takes the features
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and predict the corresponding demand. A set of corresponding parameters β of the

model is chosen to make good predictions of the corresponding demand that mini-

mizes the expected cost to the vendor. In a linear parametric newsvendor, the xi’s

are assumed to be linearly related to the features. That is,

xi = ZT
i β

ZT
i denotes the transpose of Zi. The objective function is

min
β

1

n

∑
( (co(Z

T
i β −Di)

+ + cu(Di − ZT
i β)+ )

This problem can then be formulated as a linear program to solve the newsvendor

problem. Thus, given feature Znew, the optimal order quantity becomes

x∗ = ZT
newβ

∗
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3 THE ICE CREAM VENDOR PROBLEM

Distribution assumptions about demand to estimate order quantities of products

are problematic and may lead to misspecified ordering decisions [59]. This can result

in an increase in expected costs to a vendor. The ice cream vendor problem is a

data-driven extension of the conventional newsvendor problem that does not require

the demand to have an assumed distribution. In this thesis, our goal is to find the

minimum expected cost to the vendor given demand with some features.

3.1 Derivation, Motivation and Explanation of Problem

Similar to the newsvendor, the ice cream vendor has to make an initial one time

order decision before the beginning of the day. The demand for both ice cream and

hot chocolate assumed to be random. The vendor incurs a cost for overstocking,

and he also incurs a cost if he orders too few and has to turn customers away. To

maintain goodwill to customers, he issues coupons which incurs additional costs. We

present the ice cream problem as a linear parametric newsvendor problem in which

we consider two products ice cream and hot chocolate. In order to achieve our goal:

1. We simulate a real-world scenario of an ice cream vendor problem via a demand

whose mean is a function of temperature.

2. We reduce the problem to a Newsvendor problem for temperature categories

(hot, medium, cold). Using sample average approximation, the vendor’s prob-

lem is transformed into a feature-driven linear program dependent on exogenous

factors such as temperature and rainfall (develop an approach that utilizes data-
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driven inputs to predict demand). With enough data, the expectation of the

newsvendor loss can be estimated from the features independent of the demand

distribution.

3. We use data science methods to produce an interpretable model that improves

the utility of the newsvendor solution of the ice cream vendor problem.

It’s worth noting that, in the ice cream vendor problem, there are two products

– ice cream and hot chocolate – which may be substituted for one another if the

outside temperature is not too hot or too cold. We present a novel approach by

further extending our model to account for substitution. We assume that customers

may decide to either substitute ice cream or chocolate for the other as a result of

changed weather conditions. Our method is based on data science methods that

leverage large available datasets independent of a demand distribution.

3.2 Simulation of the Ice Cream Problem

Since no assumption is been made about the demand distribution, the Simpy

package (in Python) is used to simulate a discrete event simulation of an ice cream

vendor problem via a demand whose expected value is a function of temperature. We

considered probability of rainfall and temperature as features for the demand for a

given day. In the simulation, we instantiate a time to next arrival process generated

by the features. We defined a function that triggers a sold event if a product sells

out. We also assume that a vendor sells his products for 5 hours each day, and the

vendor expected 600 arrivals per 300 minutes (0.5 minutes on average) independent

of temperature or the probability of rain. For this simulation, we assume:
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• c = 1

• co = 2

• cu = 7

• maximum temperature for a given day = 74

• minimum temperature for a given day = 36

• average temperature for a given day = 55

The simulation is run for 5 different probability categories (0.0, 0.2, 0.4.0.6, 0.8) over

temperature ranges between 36 and 74 (degrees Fahrenheit). Using the features, we

generated a sample size of three thousand (3000) demands as a function of tempera-

ture. With a sample size of 100, SAA was used to calculate the average expected cost

and the order quantity x∗. To generate a temperature dependent demand, the sim-

ulation is run separately for ice cream and hot chocolate with fixed cost parameters

(but for probability of rainfall and temperature).

Table 2: Simulated Average Cost for Ice-Cream

Pr(rain) Theoretical x∗ Simulation x∗ Average Cost

0.0 788 812 4913.97
0.2 642 635 3834.99
0.4 490 468 2728.92
0.6 322 311 1608.29
0.8 156 140 560

From Table 2, the theoretical optimal order quantity and the simulated generated

order quantity are close for the given features. At a 0.2 probability of rainfall, which
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could also mean high temperatures, the minimum expected cost to the vendor is

highest. This could be attributed to the high order quantity (x∗ = 812) for the

day. Because naturally, a customer will want an ice cream or something cold if it

hot. Though the lowest average cost to the vendor is lowest at 0.8, it may incur the

highest back order cost given the order quantity. Like the newspaper vendor, a back

order cost may be high or expensive to the ice cream vendor since unsold products

are often discarded or salvaged.

Table 3: Simulated Average Cost for Hot Chocolate

Pr(rain) Theoretical x∗ Simulation x∗ Average Cost

0.0 760 797 5110.12
0.2 626 631 4014.62
0.4 456 446 2886.22
0.6 284 290 1809.13
0.8 152 135 712

From Table 3, high average cost could be attributed to overstocking of the prod-

ucts. Over stocking in this instance may not be expensive to the vendor (chocolate is

in a powdered form before it is prepared) since such products can be carried over and

resold in the next sale-period. In comparison of the average costs for the products,

medium temperatures yield just about the same minimum costs. This could be due

to a substitution effect. The vendor’s average cost for ice cream is 9.96% less than

hot chocolate.

Due to the similarities between the simulation results and the theoretical results,

we assert that the ice cream vendor problem is reduced to a newsvendor problem for

a fixed temperature category.
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3.3 Model Formulation - The Data-Driven Newsvendor

As established in Section 2.4, the SAA can be used to make predictions of the

vendors minimum cost if there is sample demand and corresponding features. With

this approach, the optimal order quantity is estimated directly from the feature

rather than calculating the mean demand and error distribution and then solving

the newsvendor problem. Thus, optimal order quantity x∗ of the newsvendor model

is a function of the feature data. This implies that x∗ is a linear function of the

features (Theorem 2.3).

Mathematically, the ice cream vendor problem can be framed as

min
β

1

n

n∑
i=1

( co(Z
T
i β −Di)

+ + cu(Di − ZT
i β)+ )

If we define nonnegative variables si ≥ ZT
i β−Di and ti ≥ Di−ZT

i β, then the program

can be reformulated as a linear program of the form

min
β

1

n

n∑
i=1

(cosi + cuti) (5)

s.t: si ≥ −(ZT
i β −Di) (6)

ti ≥ (ZT
i β −Di) (7)

si, ti ≥ 0 (8)

The objective function in (6) minimizes the sum of underage and overage costs. The

constraints in (7-9) ensure that any variation from the estimated demand are assigned

to the appropriate underage and overage costs. The argin β∗, is the value of β that

minimizes the expected costs with respect to the feature data.
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3.3.1 Implementation of the Model

We evaluate our proposed approach using the data generated from the discrete

event simulation for each of the products. We use the GLPK (GNU Linear Program-

ming Kit) package executed in Python to solve for the minimum expected cost of

the ice cream vendor. GLPK is for solving large-scale linear programming (LP). In

implementation of the model, we assumed the same varying underage and overage

costs for both ice cream and hot chocolate.

Table 4: Expected Minimum Cost for Ice Cream and Hot Chocolate

co cu E(Ice Cream) E(Hot Chocolate)

2 1 158999.690 158999.669
0.5 0.5 58946.246 58766.205
0.75 3 145181.537 145181.537

4 1 192739.835 192736.835
2 2.5 265256.199 265256.199

0.11 0.45 214426.582 21428.412
2 3 290703.915 2990307.063

1.5 0.8 125922.56 124362.919
1.62 1.40 181454.737 180707.615
0.25 0.33 30053.828 34040.921

From Table 4, in most parts, the expected minimum costs are comparable. How-

ever, it can also be observed that underage costs are higher for hot chocolate. Overage

costs are comparatively higher for ice cream.

3.4 Improving the Utility of the Model - Data-Driven Regularization

Just as in regression models, we can regularize this problem by either using L1-

regularization or L2-regularization. This is motivated by the interpretation of a regu-
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larizing parameter as a term that penalizes complexity or flexibility to prevent extreme

values (highest predictive accuracy or lowest bias) in a model to one that has desirable

or appropriate properties [8]. In both approaches, the statistical advantages still hold.

L1-regularization penalizes non-zero values and forces sparsity [66]. L2-regularization

forces small rms (root mean square) due to significant amount of correlation between

data features [19]. In our model, we interpret ‘appropriateness’ or ‘desirability’ as

having the minimum expected cost to the newsvendor problem. The L1 regularized

version of the problem then becomes

min
β

1

n

n∑
i=1

( co(Z
T
i β −Di)

+ + cu(Di − ZT
i β)+ ) + λ‖β‖1 (9)

where λ > 0 is a tuning parameter, and ‖β‖1 =
p∑

k=1

|βk| is the `1 norm of a p-

dimensional vector. It is important to note that varying λ has an effect on the

expected cost function.

Theorem 3.1 A norm ‖.‖ is a convex function.

In order to describe our reformulation of the problem as an LP, suppose x ∈ R2,

consider the constraint

‖x‖1 = |x1|+ |x2| ≤ 0 (10)

The constraint |x1| + |x2| − 1 ≤ 0 can also be written as intersection of four (4)
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half-spaces:

x1 + x2 − 1 ≤ 0

x1 − x2 − 1 ≤ 0

− x1 + x2 − 1 ≤ 0

− x1 − x2 − 1 ≤ 0

The constraint in equation (10) above, can be represented as a projection of a set.

For example, |x| ≤ 1 can be the projection of a polytope when a variable t1 is added:

− t1 ≤ x1 ≤ 0

t1 = 0

The constraint |x1|+ |x2| − 1 ≤ 0 can now be written as the projection of a polytope

by the introduction of two new variables t1, t2 which then becomes:

− t1 ≤ x1 ≤ t1

− t2 ≤ x2 ≤ t2

t1 + t2 = 1

p∑
k=1

|xk| − 1 ≤ 0 (11)

The constraint in equation (11) can be written as the intersection of half-spaces, that

is
p∑

k=1

±xk − 1 ≤ 0
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Here, there are p number of variables and 2p constraints. ± shows all the possible

permutation of signs in the set of constraints. As a polytope (which requires less

constraints), the constraints becomes

− tk ≤ xk ≤ tk ∀k = 1, . . . , p

p∑
k=1

tk = 1

In this, there are 2p variables x1, ..., xp, t1, ..tp and 2p + 1 constraints. The constraints

in equation (11) requires less inequalities when represented as the projection of a poly-

tope. With this intuition, we reformulate the ice cream vendor problem in equation

(9) as an LP in the form

min
β

1

n

n∑
i=1

( co,isi + cu,iti ) + λU

s.t: si ≥ −(ZT
i β −Di)

ti ≥ (ZT
i β −Di)

si, ti ≥ 0

βk ≥ −vk, ∀k = 1, . . . , p

βk ≤ vk, ∀k = 1, . . . , p

p∑
k=1

vk = U
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3.4.1 Implementation of the Regularized Model

We implement the model using the same cost parameters in Subsection 3.3.1.

Through cross-validation a tuning parameter λ = 0.001 was chosen for both ice cream

and hot chocolate respectively.

Table 5: Expected Minimum Costs with L1-Regularization

co cu E(Ice Cream) E(Hot Chocolate)

2 1 161008.737 158999.669
0.5 0.5 59738.246 59846.205
0.75 3 145629.986 145181.537

4 1 195098.304 192736.835
2 2.5 265474.960 265256.199

0.11 0.45 214426.582 21426.582
2 3 290703.915 290703.915

1.5 0.8 124362.941 125922.560
1.62 1.40 180707.633 181454.737
0.25 0.33 34040.937 34071.612

From Table 5, in comparison of the expected minimum costs for ice cream and hot

chocolate, it is about 0.2% cheaper for the vendor to stock up on ice cream hot than

chocolate (this amount could translate into huge cost savings for companies with a

big budget).

To put these results into perspective, we compare the utility of the models from

Table 4 and from Table 5. Using the same co and cu, it is about 1.57% more expensive

to use the L1 regularized model. This could be due to the influence of the regulariza-

tion parameter which penalized the model and hence. This however does not imply

the accuracy of the model has been jeopardized, but instead, may have improved.
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3.5 Incorporating Substitution

In today’s marketplace, several products may have the same or similar utility. If a

customer’s product of choice is not in stock, they might opt for another product in the

same category [62]. Substitution provides customers with alternatives. Particularly,

in substitution, when the substitutable product has excess, customers choose this

product which is in the same category as their first-choice product. For instance, when

at a restaurant, a customer might turn to a Pepsi-Cola if Coca-Cola was currently

unavailable.

In most instances, substitution may be beneficial to customer [47]. Although this

is good, due to the stochastic nature of demand it becomes inherently difficult to

forecast demand and substitution rates accurately. A disadvantage of substitution is

that substitute products can cut into a business’ profitability, as consumers may end

up choosing one product over the other [42].

Stochastic programming models with an assumed distribution have been proposed

to solve these substitution demands [48, 52]. In most cases, these estimates are spec-

ulative. In particular, technology companies like Samsung and Apple releases new

products (phones, computers, earphones etc.) each year. It becomes almost im-

possible to accurately predict demand and substitution rates of these new products

because there is not enough data. This can cause misspecified decisions which ulti-

mately results in huge costs to the company. Product substitution is an extensive

area of study in inventory management. Monte Carlo simulation approach has been

used to find optimal solutions for a two substitute product newsvendor problems [29].

In [24] partial product substitution on a multi-product competitive newsvendor prob-
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lem was studied. They came to the conclusion that competition always resulted in a

greater overall inventory level.

Most often, vendors that sell perishable product also sell a variety of other prod-

ucts in the same product category (produce, fashion industry etc.). Having optimal

inventory levels is challenging especially due to stock-outs and the high demand for

a product due to a substitution effect. Substitution in multi-product newsvendor

problem poses new challenges [52]. A major challenge of this substitution behavior

is how to distribute demand across the different products. Other challenges may be

determining the order quantity and how to deal with salvage [42]. This results in

challenging models that are difficult to work with and require sophisticated programs

to solve.

In this section, we further extend the model of the ice cream vendor problem to

include substitution. We extend the concept of a data-driven newsvendor problem to

a two-product newsvendor problem with feature-driven demand which is a function of

temperature. Our method builds on the regularized version of the linear parametric

model ice cream vendor. We assess our approach based on medium temperatures

where a customer may either substitute ice cream or hot chocolate. In this, the

substitution may not be necessarily be due to product stock out [38]. It is therefore

important to note that, due to the exogenous factors such as temperature related

demand, safety stocking of these kind of products may not always be ideal. Here we

consider substitution between two products - ice cream and hot chocolate - but the

approach immediately generalizes to any number of products.
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3.5.1 Substitution - Model Formulation

To formulate this effect, we supposed that the ice cream vendor’s products are

similar and can be proportionally substituted by the other. Similar to the parametric

model, we also assumed that we have samples of demand D1, D2, ...Dn ∈ R for each

product along with corresponding features Zi, Z2, ...Zn ∈ Rp (such as probability of

rain, temperature, etc). Due to substitution effects, when one product i runs out, a

portion of the demand that cannot be met shifts to the other, j. This results in an

increased demand of the substitute and subsequently increase in sales.

Consider αij as the rate of unmet demand of one product (percentage of unmet

demand for product j replaced by product i [61]). Substitution means replacing the

demand Di by its effective demand. The effective demand is expressed as

D̃i = Di +
∑
i∼j

αij(Dj −Xj)
+ (12)

where i ∼ j if product j can be substituted for product i. If αij = 0 , then the model

reduces to n newsvendor problems. The L1 regularized version of the substitution

problem then becomes

min
β

1

n

n∑
i=n

( co,1si + cu,1ti + co,2si + cu,2ti ) + λ1U1 + λ1U2 (13)

Suppose that si ≥ ZT
i β−Di +αi,j(Di−ZT

i β)+ and ti ≥ (Di +αi,j(Di−ZT
i β)+−

ZT
i β).

si, ti bounded below by 0 or a linear expression whichever is larger. Let non-negative

wi = (Di − ZT
i β)+, Ice cream = 1 and Hot chocolate =2

We reformulate the problem in equation (13) as an L1-regularized LP with corre-

sponding constraints in the form
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minβ
1
n

n∑
i=n

( co,1si + cu,1ti + co,2si + cu,2ti ) + λ1U1 + λ1U2

s.t: s1,i ≥ D1,i − αijwi − ZT
1,iβ

s2,i ≥ D2,i − αijwi − ZT
2,iβ

t1,i ≥ ZT
1,iβ −D1,i + αijwi

t2,i ≥ ZT
2,iβ −D2,i + αijwi

s1,i, t1,i ≥ 0

s2,i, t2,i ≥ 0

βk ≥ −v1,k ∀k = 1, . . . , p

βk ≤ v1,k ∀k = 1, . . . , p

βk ≥ −v2,k, ∀k = 1, . . . , p

βk ≤ v2,k ∀k = 1, . . . , p

p∑
k=1

v1,k = U1

p∑
k=1

v2,k = U2

3.5.2 Implementation of the Substitution Model

We evaluate our proposed model by setting the overage and underage parameters

to be the same as the regularized models for ice cream and hot chocolate for com-

parison. Through cross-validation a tuning parameter λ = 0.001 was chosen for both

ice cream and hot chocolate respectively. We assumed equal rate of unmet demand
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Table 6: Comparison between L1Regularized Models and the Substitution Model

co cu E(L1Regularized Models) E(Substitution Model) Amount Saved

2 1 320008.4 317308.646 2699.754
0.5 0.5 117712.451 116907.568 804.883
0.75 3 290811.5 277329.255 13482.27

4 1 387835.1 406893.564 -19058.43
2 2.5 530731.2 517337.001 13394.16

0.11 0.45 235853.2 40816.986 195036.2
2 3 581407.8 557844.398 523563.4

1.5 0.8 251845.1 247662.632 4182.488
1.62 1.40 362909.5 353142.256 9767.218
0.25 0.33 60107.66 57831.759 2275.897

α1=0.05 for both products. We report the resulting expected minimum costs from

Table 6 in Figure 1. We observed that the substitution model is able to minimize

costs even with higher overage costs. It however under performs with very high over-

age costs (example, co = 4, cu = 1). This translates into real world situations where

a vendor sells perishable products and incurs a cost for overstocking. We also see

a smaller difference in the performance of the substitution model when the overage

costs are similar ((example, co = 0.5, cu = 0.5).
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Figure 1: Comparison between Models

3.5.3 Interpretation and Conclusion of Results

In comparison of the average costs from Table 6, the L1 substitution model out-

performs with the least expected costs for all the cost parameters except except for

very high overage costs. We estimate that, substitution model minimizes the vendor’s

cost by 17.77% less than if he were to use the L1 regularization models for ice cream

and hot chocolate. This could be attributed to the substitution effect. Overall, we

find that accounting for substitution is essential in the decision making process of

the ice cream vendor. However, a limitation of the substitution model is that lost

demands may be unobserved leading to severe underage costs.

In conclusion, with the substitution model, there will no need reduce the problem

to solve an optimization problem for each temperature category (hot, cold or medium

temperatures). With β∗, and new features (recent data), a decision rule of the optimal
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order quantity can be made. Since there is no distribution assumption, ultimately,

the risk of making misspecified ordering decisions are reduced.
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4 FUTURE DIRECTION

In future analysis, the ice cream vendor problem could be extended to multi-

periods where products are reordered during a selling-period. This extension can be

made to include more features and product.
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APPENDICES

Appendix A: Code Implementation of Ice-Cream

The codes shows the simulation of a temperature dependent demand for ice-cream

of the ice cream vendor problem. It also shows both the codes for the linear parametric

model model and the regularized model.

A.1 Embedded Code Example – Python

#!/usr/bin/env python
# coding: utf -8

get_ipython ().run_line_magic(’matplotlib ’, ’inline ’)
from matplotlib import pyplot as plt

import simpy
import collections
import random
import numpy as np
import statistics
import math

import pandas as pd

from random import choice
import csv
import pandas as pd
pd.set_option(’display.max_rows ’,None)

ls *.exe

"""An ice cream vendor must order ice cream and hot
chocolate to fulfil

demand D (during the day). Ice cream cost c1 dollars per
serving while

hot chocolate costs c2 dollars per serving. Any ice cream
remaining at the

end of the day can be salvaged for s1 per serving and hot
chocolate

salvaged for s2 per serving.
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If the demand D exceeds the amount of ice cream or hot
chocolate , then

the vendor issues a coupon which costs additional b1
and b2 dollars per

item respectively.
.
"""

Vendor = collections.namedtuple(’Vendor ’, ’counter , 
product , available , ’

’sold_out , 
when_sold_out
, ’

’num_renegers ’
)

c = 1
h = 3
b = 7

# monitor for capture data for simulation
Data = []

def customer(env , product , num_tickets , vendor):

with vendor.counter.request () as my_turn:
# Wait until its our turn or until the product is

sold out
result = yield my_turn | vendor.sold_out[product]

# Check if it’s our turn or if product is sold out
if my_turn not in result:

vendor.num_renegers[product] += num_tickets
return

# Check if enough tickets left.
if vendor.available[product] < num_tickets:

# Customer leaves after some discussion
vendor.num_renegers[product] += num_tickets

yield env.timeout (0)
return

# Buy tickets
vendor.available[product] -= num_tickets
if vendor.available[product] < 2:

# Trigger the "sold out" event for the product
vendor.sold_out[product ]. succeed ()
vendor.when_sold_out[product] = env.now
vendor.available[product] = 0

yield env.timeout (0)
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Demand = {"Ice Cream" : 0, "Hot Chocolate": 0}
def customer_arrivals(env , vendor ,pr_rain):

""" Create new *customer* until the sim time reaches
3600. """

while True:
### FEATURES INCORPORATED HERE
### Generate Temperature Dependent Demand

### FEATURES GENERATE "TIME TO NEXT ARRIVAL"
##Default: 0.5 minutes on average ==> 600

arrivals per 300 minutes
## Assume a demand of 600 per day , where a day is

5 hours
## D =600/5 ## demand per day
DailyDemand = 600 ## per 5hrs (per day)
# t = 0, Demand is 120 per hour
# t = 5 hrs , Demand is 130 per hour

t= env.now
Tmax = 74 #maximum temp. for a given day
Tmin = 36 #minimum temp. for a given day
M = 55 # average temp. for a given day
A = -19 # Amplitude (M+A =Tmax , M-A =Tmin)

= math.pi/12 ##
= 11 ## time at which max temp occurs

Temp = M+ A*np.cos( *(t- )) ##Temp(t)
m = 2 ##(130 -120) /(5 -0)
pr_rain = 0.0
D = 600/5 +m*(Temp - Tmin)
D =(1- pr_rain)*D

# data capture
Data.append ([Temp ,pr_rain ,D])

TimeToNextArrival = np.random.exponential (60/D) #
# E(TimeToNextArrival) = 0.5 minutes

yield env.timeout(TimeToNextArrival)

product = "Ice Cream" #random.choice(vendor.
product)

num_tickets = 1 #random.randint(1, 2)
Demand[product] += num_tickets
if vendor.available[product ]:

env.process(customer(env , product , num_tickets
, vendor))

else:
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vendor.num_renegers[product] += num_tickets

def runSim(TICKETS):
env = simpy.Environment ()
SIM_TIME = 300
pr_rain = 0.0

global Demand
Demand = {"Ice Cream" : 0, "Hot Chocolate": 0}

counter = simpy.Resource(env , capacity =2)
products = [’Ice Cream’, ’Hot Chocolate ’]
available = {product: TICKETS for product in products}
sold_out = {product: env.event() for product in

products}
when_sold_out = {product: None for product in products

}
num_renegers = {product: 0 for product in products}

vendor = Vendor(counter , products , available , sold_out
, when_sold_out ,

num_renegers)

env.process( customer_arrivals(env , vendor , pr_rain) )
env.run(until = env.now + SIM_TIME)

Cost = 0
Underage = {"Ice Cream" : 0, "Hot Chocolate": 0}
Overage = {"Ice Cream" : 0, "Hot Chocolate": 0}
for product in products:

Underage[product] = Demand[product] - TICKETS
Overage[product] = 0
if (Underage[product] < 0):

Overage[product] = -Underage[product]
Underage[product] = 0

Cost += h*Overage[product] + b*Underage[product]

return Cost

Demand

#%% timeit
#Order Quantity of 100
AveCost = np.array( [ runSim (100) for _ in range (100) ]).

mean()
AveCost
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from tqdm.notebook import tqdm , trange

AveCost = []
for order_quantity in trange (200 ,800 ,2):

AveCost.append( np.array( [ runSim(order_quantity) for
_ in range (10) ]).mean() )

#AveCost

np.array(AveCost).mean()

plt.plot(range (200 ,800 ,2), AveCost);

CF = (b-c)/(b+h)
CF

xstar_emp = 2*np.argmin(AveCost)+200
xstar_emp

I0 = pd.DataFrame(Data , columns= [’Temp’, ’pr_rain ’,’D’])
I0 = I0 [:600]
I0
I0.to_csv(’I0.csv’,index=False ,header = True)

I2 = pd.DataFrame(Data , columns= [’Temp’, ’pr_rain ’,’D’])
I2 = I2 [:600]
I2
I2.to_csv(’I2.csv’,index=False ,header = True)

I4 = pd.DataFrame(Data , columns= [’Temp’, ’pr_rain ’,’D’])
I4 = I4 [:600]
I4
I4.to_csv(’I4.csv’,index=False ,header = True)

I6 = pd.DataFrame(Data , columns= [’Temp’, ’pr_rain ’,’D’])
I6 = I6 [:600]
I6
I6.to_csv(’I6.csv’,index=False ,header = True)

I8 = pd.DataFrame(Data , columns= [’Temp’, ’pr_rain ’,’D’])
I8 = I8 [:600]
I8
I8.to_csv(’8.csv’,index=False ,header = True)
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I8 = pd.DataFrame(Data , columns= [’Temp’, ’pr_rain ’,’D’])
I8 = I8 [:600]
I8
I8.to_csv(’I8.csv’,index=False ,header = True)

# In [137]:

IC = pd.concat ([I0,I2,I4 ,I6,I8],ignore_index=True)
IC
IC.to_csv(’IC.csv’,index=False ,header = True)

IC=pd.read_csv(’IC_all.csv’)
IC_demand =IC[’D’]
IC_demand

def ToGLPKdat(Df):

"""Df should be a DataFrame

Quick and Dirty dat writer for Matrix Game

GLPK model. Df is Payoff Matrix."""

Lines = ’set DEMAND := ’
for row in Df.index:

Lines += ’%s ’ % row
Lines += ’;\nset FEATURES := ’
for col in Df.columns [0: -1]:

Lines += ’%s ’ % col
Lines +=’;\n\nparam F: ’
for row in Df.index:

Lines += ’%s ’ % row
Lines += ’:=’
for col in Df.columns [0: -1]:

Lines += ’\n%s ’ % col
for row in Df.index:

Lines += ’%s ’ % Df.loc[row ,col]
Lines += ’; \n \nparam D1: ’
for col in Df.columns [-1]:

Lines += ’%s’ % col
Lines += ’:= ’
Lines += ’\n%s ’ % Df[’D’]
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Lines += ’; \n \nend;’
with open(’cream.dat’,’w’) as FileObject:

print(’Writing to cream.dat’)
FileObject.write(Lines)

return Lines

print(ToGLPKdat(IC))

### LINEAR PARAMETRIC MODEL FOR ICE -CREAM --- ESTIMATING
THE MINIMUM EXPECTED COST

%% script glpsol -m /dev/stdin -d cream.dat

set FEATURES;
set DEMAND;

##parameters

param co :=0.25;
param cu := 0.33 ;
param D{DEMAND} >= 0;
param F{FEATURES , DEMAND} >= 0;

## variables

var Beta{FEATURES} >= 0;
var S{DEMAND} >= 0;
var T{DEMAND} >= 0;
var v{FEATURES} >=0;

##Objective
minimize totalCost : sum{d in DEMAND} (co*S[d] + cu*T[d])

;
s.t. Underage{d in DEMAND }:

S[d] >= D[d] - sum{f in FEATURES} F[f,d]*Beta[f];

s.t. Overage{d in DEMAND }:
T[d] >= sum{f in FEATURES}F[f,d]*Beta[f] -D[d];

s.t. lowerbound{f in FEATURES }:
Beta[f] >=-v[f];

s.t. upperbound{f in FEATURES }:
Beta[f] <=v[f];

solve;
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##display
display Beta;

for {f in FEATURES }:

printf "\ntotalCost = %.3f\n\n", totalCost;

end;

### USING CROSS -VALIDATION TO FIND THE APPROPRIATE TUNING
PARAMETER FOR THE L1 -REGULARIZATION

from sklearn.linear_model import Lasso
from sklearn.model_selection import GridSearchCV
from sklearn.model_selection import train_test_split
import pandas as pd
import csv

x_trainIC ,x_testIC ,y_trainIC ,y_testIC = train_test_split(
IC ,IC_demand , test_size = 0.3)

## Using Grid Search to find a suitable tuning parameter

LS = Lasso(random_state =0, max_iter =10000) ## model
alphas= [ 1e-5,1e-4, 1e-3,1e-2, 1, 5, 10 ,50 ,100 ,1000] ##

Define the alpha values to test

tuned_parameters = [{’alpha’: alphas }]
clf = GridSearchCV(LS, tuned_parameters , cv=5,

return_train_score = False)
clf.fit(IC,IC_demand)
clf.cv_results_

scores = clf.cv_results_[’mean_test_score ’]
scores

IC=pd.DataFrame(clf.cv_results_)
IC

IC[[’param_alpha ’,’mean_test_score ’]]
## appropriate tuning parameter for the data can be= [1e

-5,1e-4, 1e-3,1e-2]
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### THE L-1 REGULARIZATION MODEL - ICE -CREAM
%% script glpsol -m /dev/stdin -d cream.dat

set FEATURES;
set DEMAND;

##parameters

param D{DEMAND} >= 0;
param F{FEATURES , DEMAND} >= 0;
###
param co := 1.62 ;
param cu := 1.40;
param L := 0.01;

## variables

var Beta{FEATURES} >= 0;
var S{DEMAND} >= 0;
var T{DEMAND} >= 0;
var v{FEATURES} >=0;
var U;

##Objective
minimize totalCost : sum{d in DEMAND} (co*S[d] + cu*T[d])

+L*U ;
s.t. Underage{d in DEMAND }:

S[d] >= D[d] - sum{f in FEATURES} F[f,d]*Beta[f];

s.t. Overage{d in DEMAND }:
T[d] >= sum{f in FEATURES}F[f,d]*Beta[f] -D[d];

s.t. lowerbound{f in FEATURES }:
Beta[f] >=-v[f];

s.t. upperbound{f in FEATURES }:
Beta[f] <=v[f];

s.t. sumofV:
sum{f in FEATURES} v[f] = U;

solve;

##display
display Beta;

for {f in FEATURES }:

printf "\ntotalCost = %.3f\n\n", totalCost;
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end;
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Appendix B: Code Implementation of Hot Chocolate

The codes shows the simulation of a temperature dependent demand for hot choco-

late of the ice cream vendor problem. It also shows both the codes for the linear

parametric model model and the regularized model.

#!/usr/bin/env python
# coding: utf -8

get_ipython ().run_line_magic(’matplotlib ’, ’inline ’)
from matplotlib import pyplot as plt

import simpy
import collections
import random
import numpy as np
import statistics
import math

import pandas as pd

from random import choice
import csv
import pandas as pd
pd.set_option(’display.max_rows ’,None)

ls *.exe

"""An ice cream vendor must order ice cream and hot
chocolate to fulfil

demand D (during the day). Ice cream cost c1 dollars per
serving while

hot chocolate costs c2 dollars per serving. Any ice cream
remaining at the

end of the day can be salvaged for s1 per serving and hot
chocolate

salvaged for s2 per serving.

If the demand D exceeds the amount of ice cream or hot
chocolate , then

the vendor issues a coupon which costs additional b1
and b2 dollars per

item respectively.
.
"""
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Vendor = collections.namedtuple(’Vendor ’, ’counter , 
product , available , ’

’sold_out , 
when_sold_out
, ’

’num_renegers ’
)

c = 1
h = 3
b = 7

# monitor for capture data for simulation
Data = []

def customer(env , product , num_tickets , vendor):

with vendor.counter.request () as my_turn:
# Wait until its our turn or until the product is

sold out
result = yield my_turn | vendor.sold_out[product]

# Check if it’s our turn or if product is sold out
if my_turn not in result:

vendor.num_renegers[product] += num_tickets
return

# Check if enough tickets left.
if vendor.available[product] < num_tickets:

# Customer leaves after some discussion
vendor.num_renegers[product] += num_tickets

yield env.timeout (0)
return

# Buy tickets
vendor.available[product] -= num_tickets
if vendor.available[product] < 2:

# Trigger the "sold out" event for the product
vendor.sold_out[product ]. succeed ()
vendor.when_sold_out[product] = env.now
vendor.available[product] = 0

yield env.timeout (0)

Demand = {"Ice Cream" : 0, "Hot Chocolate": 0}
def customer_arrivals(env , vendor ,pr_rain):

""" Create new *customer* until the sim time reaches
3600. """

while True:
### FEATURES INCORPORATED HERE

71



### Generate Temperature Dependent Demand

### FEATURES GENERATE "TIME TO NEXT ARRIVAL"
##Default: 0.5 minutes on average ==> 600

arrivals per 300 minutes
## Assume a demand of 600 per day , where a day is

5 hours
## D =600/5 ## demand per day
DailyDemand = 600 ## per 5hrs (per day)
# t = 0, Demand is 120 per hour
# t = 5 hrs , Demand is 130 per hour

t= env.now
Tmax = 74 #maximum temp. for a given day
Tmin = 36 #minimum temp. for a given day
M = 55 # average temp. for a given day
A = 19 # Amplitude (M+A =Tmax , M-A =Tmin)

= math.pi/12 ##
= 11 ## time at which max temp occurs

Temp = M+ A*np.cos( *(t- )) ##Temp(t)
m = 2 ##(130 -120) /(5 -0)
pr_rain = 0.0
D = 600/5 +m*(Temp - Tmin)
D =(1- pr_rain)*D

# data capture
Data.append ([Temp ,pr_rain ,D])

TimeToNextArrival = np.random.exponential (60/D) #
# E(TimeToNextArrival) = 0.5 minutes

yield env.timeout(TimeToNextArrival)

product = "Hot Chocolate" #random.choice(vendor.
product)

num_tickets = 1 #random.randint(1, 2)
Demand[product] += num_tickets
if vendor.available[product ]:

env.process(customer(env , product , num_tickets
, vendor))

else:
vendor.num_renegers[product] += num_tickets

def runSim(TICKETS):
env = simpy.Environment ()
SIM_TIME = 300
pr_rain = 0.0
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global Demand
Demand = {"Ice Cream" : 0, "Hot Chocolate": 0}

counter = simpy.Resource(env , capacity =2)
products = [’Ice Cream’, ’Hot Chocolate ’]
available = {product: TICKETS for product in products}
sold_out = {product: env.event() for product in

products}
when_sold_out = {product: None for product in products

}
num_renegers = {product: 0 for product in products}

vendor = Vendor(counter , products , available , sold_out
, when_sold_out ,

num_renegers)

env.process( customer_arrivals(env , vendor , pr_rain) )
env.run(until = env.now + SIM_TIME)

Cost = 0
Underage = {"Ice Cream" : 0, "Hot Chocolate": 0}
Overage = {"Ice Cream" : 0, "Hot Chocolate": 0}
for product in products:

Underage[product] = Demand[product] - TICKETS
Overage[product] = 0
if (Underage[product] < 0):

Overage[product] = -Underage[product]
Underage[product] = 0

Cost += h*Overage[product] + b*Underage[product]

return Cost

Demand

#%% timeit
#Order Quantity of 100
AveCost = np.array( [ runSim (100) for _ in range (100) ]).

mean()
AveCost

from tqdm.notebook import tqdm , trange

AveCost = []
for order_quantity in trange (200 ,800 ,2):

AveCost.append( np.array( [ runSim(order_quantity) for
_ in range (10) ]).mean() )
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#AveCost

np.array(AveCost).mean()

plt.plot(range (200 ,800 ,2), AveCost);

CF = (b-c)/(b+h)
CF

xstar_emp = 2*np.argmin(AveCost)+200
xstar_emp

H0 = pd.DataFrame(Data , columns= [’Temp’, ’pr_rain ’,’D’])
H0 = H0 [:600]
H0
H0.to_csv(’H0.csv’,index=False ,header = True)

H2 = pd.DataFrame(Data , columns= [’Temp’, ’pr_rain ’,’D’])
H2 = H2 [:600]
H2
H2.to_csv(’H2.csv’,index=False ,header = True)

H4 = pd.DataFrame(Data , columns= [’Temp’, ’pr_rain ’,’D’])
H4 = H4 [:600]
H4
H4.to_csv(’H4.csv’,index=False ,header = True)

H6 = pd.DataFrame(Data , columns= [’Temp’, ’pr_rain ’,’D’])
H6 = H6 [:600]
H6
H6.to_csv(’H6.csv’,index=False ,header = True)

H8 = pd.DataFrame(Data , columns= [’Temp’, ’pr_rain ’,’D’])
H8 = H8 [:600]
H8
H8.to_csv(’H8.csv’,index=False ,header = True)

HC = pd.concat ([H0,I2,I4 ,I6,I8],ignore_index=True)
HC
HC.to_csv(’HC.csv’,index=False ,header = True)

H8 = pd.DataFrame(Data , columns= [’Temp’, ’pr_rain ’,’D’])
H8 = H8 [:600]
H8
H8.to_csv(’H8.csv’,index=False ,header = True)

74



HC = pd.concat ([H0,H2,H4 ,H6,H8],ignore_index=True)
HC
HC.to_csv(’HC.csv’,index=False ,header = True)

## GENERATING A GLPK DATAFILE FOR HOT CHOCOLATE

def ToGLPKdat(Df):

"""Df should be a DataFrame """

Lines = ’set DEMAND := ’
for row in Df.index:

Lines += ’%s ’ % row
Lines += ’;\nset FEATURES := ’
for col in Df.columns [0: -1]:

Lines += ’%s ’ % col
Lines +=’;\n\nparam F: ’
for row in Df.index:

Lines += ’%s ’ % row
Lines += ’:=’
for col in Df.columns [0: -1]:

Lines += ’\n%s ’ % col
for row in Df.index:

Lines += ’%s ’ % Df.loc[row ,col]
Lines += ’; \n \nparam D1: ’
for col in Df.columns [-1]:

Lines += ’%s’ % col
Lines += ’:= ’
Lines += ’\n%s ’ % Df[’D’]

Lines += ’; \n \nend;’
with open(’coco.dat’,’w’) as FileObject:

print(’Writing to coco.dat’)
FileObject.write(Lines)

return Lines

print(ToGLPKdat(HC))

### LINEAR PARAMETRIC MODEL FOR HOT CHOLATE --- ESTIMATING
THE MINIMUM EXPECTED COST

%% script glpsol -m /dev/stdin -d coco.dat

set FEATURES;
set DEMAND;
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##parameters

param co :=0.25;
param cu := 0.33 ;
param D{DEMAND} >= 0;
param F{FEATURES , DEMAND} >= 0;

## variables

var Beta{FEATURES} >= 0;
var S{DEMAND} >= 0;
var T{DEMAND} >= 0;
var v{FEATURES} >=0;

##Objective
minimize totalCost : sum{d in DEMAND} (co*S[d] + cu*T[d])

;
s.t. Underage{d in DEMAND }:

S[d] >= D[d] - sum{f in FEATURES} F[f,d]*Beta[f];

s.t. Overage{d in DEMAND }:
T[d] >= sum{f in FEATURES}F[f,d]*Beta[f] -D[d];

s.t. lowerbound{f in FEATURES }:
Beta[f] >=-v[f];

s.t. upperbound{f in FEATURES }:
Beta[f] <=v[f];

solve;

##display
display Beta;

for {f in FEATURES }:

printf "\ntotalCost = %.3f\n\n", totalCost;

end;

### USING CROSS -VALIDATION TO FIND THE APPROPRIATE TUNING
PARAMETER FOR THE L1 -REGULARIZATION

from sklearn.linear_model import Lasso
from sklearn.model_selection import GridSearchCV
from sklearn.model_selection import train_test_split
import pandas as pd
import csv
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### USING CROSS -VALIDATION TO FIND THE APPROPRIATE TUNING
PARAMETER FOR HOT CHOCOLATE

HC=pd.read_csv(’HC_all.csv’)
HC_demand =HC[’D’]
HC_demand

x_trainHC ,x_testHC ,y_trainHC ,y_testHC = train_test_split(
HC ,HC_demand , test_size = 0.3)

## Using Grid Search to find a suitable tuning parameter

LS = Lasso(random_state =0, max_iter =10000) ## model
alphas= [ 1e-5,1e-4, 1e-3,1e-2, 1, 5, 10 ,50 ,100 ,1000] ##

Define the alpha values to test

tuned_parameters = [{’alpha’: alphas }]
clf = GridSearchCV(LS, tuned_parameters , cv=5,

return_train_score = False)
clf.fit(HC,HC_demand)
clf.cv_results_

hC=pd.DataFrame(clf.cv_results_)
h
hC[[’param_alpha ’,’mean_test_score ’]]
## appropriate tuning parameter for the data can be= [1e

-5,1e-4, 1e-3,1e-2]

### PARAMETRIC NEWSVENDOR MODEL FOR HOT CHOCOLATE WITH L1-
REGULARIZATION

%% script glpsol -m /dev/stdin -d cream.dat

set FEATURES;
set DEMAND;

##parameters
param D{DEMAND} >= 0;
param F{FEATURES , DEMAND} >= 0;

param co := 1.62 ;
param cu := 1.40;
param L := 0.01;

## variables
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var Beta{FEATURES} >= 0;
var S{DEMAND} >= 0;
var T{DEMAND} >= 0;
var v{FEATURES} >=0;
var U;

##Objective
minimize totalCost : sum{d in DEMAND} (co*S[d] + cu*T[d])

+L*U ;
s.t. Underage{d in DEMAND }:

S[d] >= D[d] - sum{f in FEATURES} F[f,d]*Beta[f];

s.t. Overage{d in DEMAND }:
T[d] >= sum{f in FEATURES}F[f,d]*Beta[f] -D[d];

s.t. lowerbound{f in FEATURES }:
Beta[f] >=-v[f];

s.t. upperbound{f in FEATURES }:
Beta[f] <=v[f];

s.t. sumofV:
sum{f in FEATURES} v[f] = U;

solve;

##display
display Beta;

for {f in FEATURES }:

printf "\ntotalCost = %.3f\n\n", totalCost;

end;
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Appendix C: Code Implementation of the Substitution Model

The codes shows the implementation of the substitution model.

#!/usr/bin/env python
# coding: utf -8

# In[1]:

get_ipython ().run_line_magic(’matplotlib ’, ’inline ’)
import matplotlib.pyplot as plt
import numpy as np

import pandas as pd
pd.set_option(’display.max_rows ’,None)
import csv

ls *.exe

##Rearranging columns for the temperature related demand
for Ice -Cream and Hot Chocolate

ICE = pd.read_csv(’IC_all.csv’)
ICE.rename(columns = {’D’:’HOT_Demand ’}, inplace = True)
print(ICE)

HOT = pd.read_csv(’HC_all.csv’)
HOT.rename(columns = {’D’:’HOT_Demand ’}, inplace = True)
print(HOT)

### COMBINING THE DATA FOR ICECREAM AND HOT CHOCOLATE
DATA= pd.concat ([ICE ,HOT],axis =1)
np.unique(A,return_index=True)

def ToGLPKdat(Df):

"""Df should be a DataFrame """

Lines = ’set DEMAND := ’
for row in Df.index:

Lines += ’%s ’ % row
Lines += ’;\nset FEATURES := ’
for col in Df.columns [0: -2]:

Lines += ’%s ’ % col
Lines +=’;\n\nparam F: ’
for row in Df.index:

Lines += ’%s ’ % row
Lines += ’:=’
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for col in Df.columns [0: -2]:
Lines += ’\n%s ’ % col
for row in Df.index:

Lines += ’%s ’ % Df.loc[row ,col]
Lines += ’; \n \nparam D1: ’
for col in Df.columns [-2]:

Lines += ’%s’ % col
Lines += ’:= ’
Lines += ’\n%s ’ % Df[’ICE_Demand ’]
Lines += ’; \n \nparam D2: ’
for col in Df.columns [-1]:

Lines += ’%s’ % col
Lines += ’:= ’
Lines += ’; \n \nend;’
Lines += ’\n%s ’ % Df[’HOT_Demand ’]
Lines += ’; \n \nend;’
with open(’alldata.dat’,’w’) as FileObject:

print(’Writing to alldata.dat’)
FileObject.write(Lines)

return Lines

print(ToGLPKdat(alldata))

%% script glpsol -m /dev/stdin -d alldata.dat

set FEATURES;
set DEMAND;

##parameters
## IC =icecream , HC = Hot Chocolate
### D1 = Demand for Icecream , D2 = Demand for Hot

Chocolate
# coIC = Overage cost (Icecream)
#cuIC = underage cost (Icecream)
#c1 = some small % of the demand for icecream
#c2 = some small % of the demand for hot chocolate

param coIC := 0.2;
param cuIC := 0.33;
param coHC := 0.2;
param cuHC := 0.33;
param L1 := 0.001;
param L2 := 0.001;
param c1:= 0.05;
param c2:= 0.05;
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param D1{DEMAND} >= 0;
param D2{DEMAND} >= 0;
param F{FEATURES , DEMAND} >= 0;

## variables
var Beta{FEATURES} >= 0;
var S1{DEMAND} >= 0;
var T1{DEMAND} >= 0;
var S2{DEMAND} >= 0;
var T2{DEMAND} >= 0;
var v1{FEATURES} >=0;
var v2{FEATURES} >=0;
var U1;
var U2;
var x >= 0;
##Objective
minimize totalCost : sum{d in DEMAND} (coIC*S1[d] + cuIC*

T1[d])+L1*U1 + sum{d in DEMAND }(coHC*S2[d] + cuHC*T2[d
]) +L2*U2 ;
s.t. Underage1{d in DEMAND }:

S1[d] >= D1[d] - c1*(D2[d]- sum{f in FEATURES} F[f
,d]*Beta[f]) -sum{f in FEATURES} F[f,d]*Beta[f
];

s.t. Overage1{d in DEMAND }:
T1[d] >= sum{f in FEATURES}F[f,d]*Beta[f] -D1[d] +

c1*(D2[d]- sum{f in FEATURES} F[f,d]*Beta[f]);

s.t. Underage2{d in DEMAND }:
S2[d] >= D2[d] - c2*(D1[d]- sum{f in FEATURES} F[f

,d]*Beta[f]) -sum{f in FEATURES} F[f,d]*Beta[f
];

s.t. Overage2{d in DEMAND }:
T2[d] >= sum{f in FEATURES}F[f,d]*Beta[f] -D2[d] +

c2*(D1[d]- sum{f in FEATURES} F[f,d]*Beta[f]);

s.t. lowerboundIC{f in FEATURES }:
Beta[f] >=-v1[f];

s.t. upperboundIC{f in FEATURES }:
Beta[f] <=v1[f];

s.t. sumofvIC:
sum{f in FEATURES} v1[f] = U1;

s.t. LowerboundHC{f in FEATURES }:
Beta[f] >=-v2[f];

s.t. UpperboundHC{f in FEATURES }:
Beta[f] <=v2[f];

s.t. sumofvHC:
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sum{f in FEATURES} v2[f] = U2;

solve;

display Beta;

for {f in FEATURES }:
printf "\ntotalCost = %.3f\n\n", totalCost;

end;
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