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ABSTRACT

Manifold Learning with Tensorial Network Laplacians

by

Scott Sanders

The interdisciplinary field of machine learning studies algorithms in which functional-

ity is dependent on data sets. This data is often treated as a matrix, and a variety of

mathematical methods have been developed to glean information from this data struc-

ture such as matrix decomposition. The Laplacian matrix, for example, is commonly

used to reconstruct networks, and the eigenpairs of this matrix are used in matrix

decomposition. Moreover, concepts such as SVD matrix factorization are closely con-

nected to manifold learning, a subfield of machine learning that assumes the observed

data lie on a low-dimensional manifold embedded in a higher-dimensional space. Since

many data sets have natural higher dimensions, tensor methods are being developed

to deal with big data more efficiently. This thesis builds on these ideas by exploring

how matrix methods can be extended to data presented as tensors rather than simply

as ordinary vectors.
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1 INTRODUCTION AND FOUNDATIONAL CONCEPTS

We begin by exploring the Laplacian operator, tensors and manifolds in a mathe-

matical context and then relate these topics to current concepts in machine learning.

1.1 Laplacian Operator

The Laplacian operator is a second-order differential operator given by the di-

vergence of the gradient of a function on Euclidean space [27]. Denoted by ∆, the

Laplacian of a twice-differentiable function f is

∆f = ∇2f = ∇ · ∇f

where ∇f is the total derivative of f , which is often called the gradient operator.

Definition 1.1 (Laplace Operator) [27] The Laplace Operator is a differential op-

erator representing the divergence of the gradient of a function, where the divergence

of a vector field is a vector operator that produces a scalar and is the sum of partial

derivatives of f .

For a function f : Rn → R, the Laplacian of f can be written as the sum of partial

second derivatives:

∆f =
n∑

i=1

∂2f

∂x2i
.

The operator is named after Pierre-Simon de Laplace, a mathematician, physicist

and astronomer who developed the concept in order to apply Newtonian gravitation

to the entire solar system [4]. Because his work laid the foundation for the scientific

study of heat, electricity and magnetism in addition to proving the stability of the
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universe, the equation ∆f = 0 is now known as Laplace’s equation and is a partial

differential equation representing a variety of physical systems [4].

1.2 Tensors

The term tensor was originally derived from the Latin word tensus which means

tension or stress [20] as its early use was to represent tensile forces in mechanical

systems. Tensors as “generalizations of matrices to higher dimensions” [15] are pop-

ular in the fields of engineering and physics. More recently, tensors have been used

in machine learning to provide “structured representation of data format and ability

to reduce the complexity of multidimensional arrays” [7]. Despite being intimidating

for many, a solid theoretical foundation will be helpful in demystifying tensors.

Figure 1: Visualizing tensors of different dimensions [15].

The order of a tensor is the number of its dimensions [15]. Scalars can be thought

of as 0-order tensors as a scalar can be referenced without the use of an index. Vectors
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are first-order tensors since coefficients can be identified using one index, and matri-

ces are second-order tensors since a coefficient is referenced by its row and column

position. Tensors may also have three or more dimensions. Such tensors are difficult

to visualize because working in four or more dimensions is not always intuitive, but

tensors and their notation are useful in making sense of higher-dimensional space.

Definition 1.2 (Tensor) [2] RI1×I2×...×In is the vector space of multidimensional

arrays with n indices. An element of this space is called a tensor.

If each Ij = m for all j = 1, . . . , n, then tensor X has n indices and mn coefficients.

Furthermore, we recognize tensors as both the structure of an n-dimensional array

and a mathematical algebra for manipulating such structures. We often write tensors

as

T `
k = ai1,...,i`i1,...,ik

.

For example, T 0
0 is a scalar, T 0

1 is a row vector and T 1
0 is a column vector. The order

of a tensor is ` + k where ` is the number of upper indices and k is the number of

lower indices. The upper indices are referred to as the contravariant indices, and the

lower indices are referred to as the covariant indices. Tensors with both covariant

and contravariant indices are sometimes referred to as mixed type [20]. Furthermore,

the rank R of a tensor is the number of minimum first order tensors necessary to

reproduce the tensor [16].

We define the outer product as a function that takes two vectors as input and

outputs a tensor denoted by a} b for vectors a and b. For example, if a and b are

in the column space Rn then a } b = abT . It is important to note that tensors can
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be thought of as a sum of outer products [15]:

X =
R∑

r=1

a(1)
r } a(2)

r } · · ·} a(N)
r .

We can break up this notation into smaller units.

Definition 1.3 (Dyad) [20] Dyads are order 1 and rank 2 tensors formed by com-

bining two vectors with the outer product.

For instance, bi } cj is a dyad. Hence, linear combinations of dyads can be used to

represent tensors.

Tensors can be reordered to adjust dimensions for a variety of reasons. Vector-

ization, for instance, maps a given matrix X ∈ RI×J into a vector by stacking its

columns vertically. Analogously, matricization reshapes a tensor into a matrix [15].

A variety of methods exist for this process as discussed in section 1.4 of this chapter.

1.3 Basic Topology and Manifolds

Topology is defined in [1] as the the branch of mathematics dealing with qualita-

tive geometric information, including connectivity information. Despite being quite

abstract, topology has fascinating applications across the field of mathematics such

as modeling high dimensional data structures.

Definition 1.4 (Topological Space) [8] A topological space consists of some set

X and open subsets T that that satisfy four conditions:

1. The empty set is in T .

2. X is in T.
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3. The intersection of a finite number of sets in T is also in T.

4. The union of an arbitrary number of sets in T is also in T.

Topological spaces are the most general type of mathematical space, and many

other spaces can be constructed by adding additional properties. Euclidian space,

for instance, is the set of all n-tuples (finite lists of length n) of real numbers

(x1, x2, . . . , xn) and is any nonnegative integer dimension Rn. We can define a space

that is central to this thesis.

Definition 1.5 (Manifold) [8] A manifold is a topological space that locally resem-

bles Euclidean space.

For example, the earth is spherical, but, locally, the surface of the earth is flat and

operations can be done on a simple two-coordinate system.

Manifold’s often have nice properties. Central to some machine learning tech-

niques is the manifold hypothesis which states that real-world high dimensional data

(such as images) lie on low-dimensional manifolds embedded in a high-dimensional

space [8] where embedding is the representation of topological objects in different

spaces while preserving connective and algebraic properties.

Additional topological vocabulary is needed to understand manifolds. A chart on

a smooth manifold is a 1-1 infinitely differentiable mapping from an open set on the

manifold to a local coordinate system in a Euclidian space. If the domains of two

charts overlap, then the charts are compatible if the the composition of one chart with

the inverse of other chart is an infinitely differentiable map from Euclidean space to

itself. Charts with domains that do not overlap are also considered compatible. An
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atlas is a collection of mutually compatible charts that cover a manifold. A smooth

manifold is a topological space with an atlas of smooth, compatible charts.

A smooth manifold with a metric tensor (a function that defines distance between

points in a space) is called a Riemannian manifold. With inner products varying

smoothly between points, Riemannian manifolds have many useful properties [8]. An

example of a Riemannian manifold is a torus, denoted Tn. If it is a surface of genus

one, then it possesses a single hole. Figure 2, illustrates some examples of manifolds

in R3.

Figure 2: Examples of manifolds [8].

Keng emphasizes in [8] that “manifolds are all about mappings. Mapping from

the manifold to a local coordinate system in Euclidean space using a chart; mapping

from one local coordinate system to another coordinate system; and mapping a curve

or function on a manifold to local coordinates.”
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1.4 Graphs and The Laplacian Matrix

In mathematics, a graph is a collection of vertices and connections among some

(possibly empty) subset of those vertices [26]. We denote a graph G as

G = (V,E)

where V is a set of vertices and E is a collection of edges between those vertices.

Two vertices are adjacent if they are connected by an edge, and the degree of a

vertex refers to the number of vertices adjacent to a given vertex. There exists a

“remarkable interplay between graphs and manifolds” [13] that forms a conceptual

basis for manifold learning techniques that allow machine learning algorithms to take

advantage of a data set’s inherent geometric structure. This interplay between graphs

and manifolds appears in the Laplacian operator’s ability to represent structural

information from both types of objects. Indeed, the Laplacian can be used to model

a graph as a discrete form of a manifold [13]. Using this bridge to develop new

learning methods is a growing field of research [13].

The Laplacian operator has many forms including a matrix form known as the

Network Laplacian. This discrete operator measures “to what extent a graph differs at

one vertex from its values at nearby vertices [28].” The network laplacian is a matrix

that can be defined using two other matrices: the adjacency matrix and degree matrix

of a graph. We begin by defining the adjacency matrix of a graph.

Definition 1.6 (Adjacency Matrix) [28] For graph G(V,E) with |V | = n and

13



e1, e2, . . . , em ∈ E, the adjacency matrix, A, is an n× n square matrix where

ai,j =


1 if edges ei and ej are adjacent

0 otherwise

(1)

The adjacency matrix is composed of 1’s and 0’s, a 1 indicating whether the vertices

in the graph are connected. Next, we define the degree matrix.

Definition 1.7 (Degree Matrix) [28] For graph G(V,E) with vertex set |V | = n

and edge set E, the degree matrix, D, is an n× n square matrix where

di,j =


deg(vi) if i = j

0 otherwise

(2)

The degree matrix is a diagonal matrix of vertex degrees and represents the connect-

edness of each node. We can now define the Laplacian matrix.

Definition 1.8 (Network Laplacian) [28] Given an unweighted, undirected graph

G = (V,E) with vertices |V | = n and edges E, the n× n Laplacian Matrix is

L = D − A

The Network Laplacian is both a linear transformation and a matrix itself, so it

can be classified as a matrix operator. This matrix includes information about each

vertex, the connectivity of that vertex, and the strength of those connections. This

structure appears in many machine learning applications with a particular example

being image gradient blending as seen in [14]. Images as data sets are grids of discrete

pixel intensities, and discrete matrix operations on image data allow for editing and

efficient storage.

14



1.5 Meshes and The Laplace-Beltrami Operator

A polygon mesh is a set of vertices, edges, and faces that approximates more

complex geometric objects. As seen in Figure 3, meshes are important for creating

and manipulating computer graphics. Meshes with many points are difficult to edit,

Figure 3: Mesh approximations of an element with various levels of complexity [11].

but mesh reconstruction done with Laplacian methods enhances editing ability [19].

Differential coordinates reduce global coordinates to an individual coordinate system

at each point in the mesh. Furthermore, these coordinates are helpful for describ-

ing points relative to their neighbors [10] and are defined using the Laplacian on a

manifold.

The Laplace-Beltrami operator is a generalization of the Laplace operator to func-

tions defined on a Riemannian manifold. When applied to each vertex on a mesh/-

manifold, the resulting vector represents the difference between the vertex and the

vertices in a small neighborhood [19]. Using those vectors, one can reconstruct the

mesh up to a rigid transformation [19]. Note that every smooth manifold has a

Laplace–Beltrami operator that can be used to study the manifold itself.
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1.6 Other Matrix Methods

This section explores matrix operations and their current uses in machine learning.

Spectral Clustering is a widely used technique for exploratory data analysis that

uses eigenvalues and eigenvectors of a network Laplacian [22]. The goal is to group

individuals on the basis of connectivity instead of compactness as illustrated in Figure

4. Such separation is possible if a set of data is sampled from a topological space that

Figure 4: Compactness versus connectivity [22].

can be modeled by an appropriately constructed network, and often this topology is

in the form of a manifold. The fundamental idea for this method comes from the

Spectral Theorem:

Theorem 1.9 (The Spectral Theorem) [22] Any symmetric matrix S has the

form S = QΛQT .

• Q is an orthogonal matrix composed of the eigenvectors of S.

• Λ is the diagonal matrix of corresponding eigenvalues.
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The Spectral Theorem works on square matrices by decomposing them into eigenvec-

tor components and eigenvalues which represent their relative importance or weight.

Since most matrices are not square, the Singular Value Decomposition is often used:

Theorem 1.10 (Singular Value Decomposition) [32] Consider an m × n real

matrix A with rank r. Matrix A can be written in singular value decomposition

form as

A = UΣV ∗ =
r∑

i=1

σiuiv
T
i s.t σ1 ≥ σ2 ≥ . . . ≥ σr.

Additionally,

A∗A = V Σ2V ∗ and AA∗ = UΣ2U∗.

In practice, the decomposition of a Network Laplacian yields insights into the

structure of a network. In particular, spectral clustering can identify areas of low

connectivity in a network and identify the boundaries of different groups [22]. In fact,

these boundaries are found with a minimization problem using the Fiedler eigenvector,

the normalized eigenvector of the second smallest eigenvalue of a Laplacian graph

matrix [9]. This clustering method is relatively simple and more powerful than other

clustering algorithms such a k-means clustering [22].

Diagonal matrices are special matrices where all coefficients other than those on

the main diagonal are zeros. They have useful properties such as easy determinant

calculations and letting one raise matrices to powers. The diagonalization of a matrix

M , if it exists, is a diagonal matrix D for which there is an invertible matrix P such

that D = P−1MP . A diagonalization retains some properties of the original matrix

[29]. This useful tool is equivalent to finding the eigenvalues of a matrix [29]. Matrix

decomposition often involves diagonalization.
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An n× n matrix A is positive definite if

xTAx > 0

for all nonzero vectors x ∈ Rn [6]. Furthermore, a positive definite matrix A is sym-

metric and has positive eigenvalues. Positive definite matrices also have applications

in machine learning. Convexity is an important condition in optimization problems in

which the value of the artithmetic mean of any two points on the function is greater

than every value of the function within the domain of those two points [24]. Positive

definiteness implies convexity [6].

Principle Component Analysis (PCA) is a statistical technique that reduces the

dimensionality of datasets by creating new uncorrelated variables that successively

maximize variance. Finding such new variables, the principal components, reduces to

solving an eigenvalue/eigenvector problem, and the new variables are defined by the

dataset at hand [21]. PCA is useful technique for data exploration that has not yet

been completely generalized to tensors.

The Moore-Penrose Pseudo Inverse is important because the problem of finding

the inverse of a matrix is ill-conditioned, which means that small changes in a coeffi-

cient of a matrix can cause large differences in the inverse of a matrix. Fortunately,

a well-conditioned pseudoinverse can always be constructed, even for non-square ma-

trix.

Definition 1.11 (Moore-Penrose Pseudo Inverse) [30] Let A be an m× n ma-

trix. The pseudo inverse, denoted A+, is an m× n matrix that satisfies

1. AA+A = A

18



2. A+AA+ = A+

3. (AA+)T = AA+

4. (A+A)T = A+A.

It can be shown that the Moore-Penrose pseudoinverse of a matrix always exists. In

particular, the pseudoinverse can be applied to ill-conditioned linear systems. This is

known as multilinear regression and is a common practice in the field of statistics.

The selection of matrix methods mentioned in this chapter is only a small fraction

of what can be done using the algebraic properties of matrices and vectors.

1.7 Poisson Equation

Poisson’s equation is an elliptic partial differential equation and is a generalization

of Laplace’s equation. The equation is

∆φ = f

where ∆ is the Laplace operator and φ and f are functions on a manifold [14]. Fur-

thermore, f can be thought of as the divergence of a gradient of some function.

Applications of Poisson’s equation are most often found in physics, but the equa-

tion appears many times in the realms of mathematics and computing as well. One

method explored in section 1.8 is using Poisson’s equation is gradient mixing for im-

age blending [34]. Poisson’s equation is another example of operations defined on

tensors.

For example, many image-blending problems are based on Poisson equations whose

solutions are estimated using matrix methods. To begin, the continuous version of
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Poisson’s equation above has discrete counterpart of

Lx = f

where L is a positive definite matrix. For example, the objective is to insert the

image of the hot air balloon into the picture of the empty parking lot in such a

way that the alteration cannot be detected. Problems like this are common in the

areas of computer vision and photo editing [34]. For this example, images have shape

(700,700,3) meaning they have a height and width of 700 pixels along with three

separate layers of color values (RGB).

Figure 5: Balloon copy-pasted into new background without any blending.

Images are made up of pixels, each with a specific color value. Because of this

inherent structure, matrices and tensors are often used to represent images in com-

puting. Given a pixel (x, y) with intensity value I, the Laplacian, L(x, y), is defined

as

L(x, y) =
∂2I

∂x2
+
∂2I

∂y2
.

Using the Python libraries pytorch and kornia, the source and target images are

20



converted to tensors. Convolution is an integral

(f ∗ g)(t) =

∫ ∞
−∞

f(τ)g(t− τ)dτ

where function f is modified by another function g, blending the two functions in a

sense [23]. A Laplacian filter is the discrete second order derivative of convolution

and is commonly used for edge detection [12] and is shown in Figure 6. A kernel is a

0 -1 0

-1 4 -1

0 -1 0

Figure 6: Laplacian filter.

matrix of weights which are multiplied with the input to extract relevant features [5].

An image can be thought of a discrete grid of color values, and the process shown in

Figure 7 illustrates a kernel operating on an pixel.

0 1 1 1 0 0 0

0 0 1 1 1 0 0

0 0 0 1 1 1 0

0 0 0 1 1 0 0

0 0 1 1 0 0 0

0 1 1 0 0 0 0

1 1 0 0 0 0 0
I

∗
0 -1 0

-1 4 -1

0 -1 0

K

=

1 4 3 2 1

1 2 4 3 3

1 2 3 4 1

1 3 3 1 1

3 3 1 1 0

I ∗K

0 -1 0

-1 4 -1

0 -1 0

×0 ×− 1 ×0

×− 1 ×4 ×− 1

×0 ×− 1 ×0

Figure 7: Kernel matrix operating on an image.

This filter smooths the given tensors with a Laplacian kernel, by convolving it

to each channel [17]. Figure 8 shows the output (gradient) of kornia’s Laplacian
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filter after it is converted back to an image matrix where differences in color value

intensities are clearly visible.

Figure 8: Color-based gradient of balloon image.

The two gradient images are combined using a predefined black and white mask

image. We now have a gray scale representation of the change in color values for the

blended image, but the color matrices have not yet been solved. Hence, we define a

function to create a discrete Laplacian Matrix of a given size with scipy, a Python

library built on another library, numpy, that defines numerical arrays. Note that an

input of m× n where m is the number of rows and n the number of columns, results

in a matrix of size (mn)× (mn).

The Poisson equation is

∆f = div v

where ∆f = ∂2f
∂x2 + ∂2f

∂y2
is the Laplacian and div v = div∇g = div (u, v) = ∂u

∂x
+ ∂v

∂y
is

the divergence of the gradient. Hence,

∂2f

∂x2
+
∂2f

∂y2
=
∂u

∂x
+
∂v

∂y

22



and this leads us to the linear system where the Laplacian Matrix is L and the blended

Laplacian is B. Matrix B is flattened, meaning it is transformed from size m× n to

a vector of size (mn)× 1. We use spsolve, a Python library for solving sparse linear

systems, to get a solution to the sparse linear system

Lx = b.

Red Layer

Blue Layer

Green Layer

Figure 9: Three color layers of an image.

The idea behind this function is to solve the color equation for each of the three

layers of the image, treating each layer as a unique matrix as seen in Figure 9. Once

all three levels are solved, we can recombine them using numpy. Finally, we see the

result in Figure 10: an image transferred from the source to the target in a way that
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the shape (gradient) of the balloon is maintained, but the colors have been adjusted

to its new surroundings.

Figure 10: Balloon inserted into new background with gradient blending.

While not perfect, the image blended using the Poisson equation looks much more

authentic than the first attempt to transfer the image. The code for this project gives

anyone a powerful and relatively simple method to create deceptively convincing,

photo-shopped images and videos that are often referred to as “deep-fakes.” Still,

issues arise when color or texture differences between the source and target images

are very large. This shows how ideas are often developed in a continuous sense but

implemented with discrete methods and linear algebra.

1.8 Problem Statement

The Laplacian is often defined in terms of tensors, but we use matrix methods

to study it. The central focus of this thesis will be extending matrix ideas to tensor

concepts for the Laplacian. We seek to develop methods for dealing with vector-

valued graphs and implement an example with image blending treating the image as

a tensor instead of multiple matrices.
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To address this problem, we explore tensors and their properties in Chapter 2.

We investigate methods of representing and combining tensors in addition to defining

a vector space and building on that definition of a tensor space. Also, we develop the

concept of a vector valued function space and will show that linear transformations

on certain vector spaces can be represented as tensors.

In chapter 3, we continue to motivate the tensor problem by discussing the least

squares problem and how it looks in a tensorial context. We attempt to solve a

tensor decomposition problem with a feature of random walks on a network and seek

a method of calculating eigentensors. We then apply these methods to the image

blending problem from this section.
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2 IN-DEPTH TENSOR DESCRIPTION

2.1 Tensor Operations

Tensors can be combined using the direct tensor product. To illustrate this method,

consider two tensors A = [akij] ∈ V1
2 and B = [bvwk ] ∈ V2

1 . We multiply element-wise

using the outer product [15]:

A⊗ B =
∑
k

akijb
vw
k = C = [cvwij ] ∈ V2

2 .

This is one method of combining two tensors to get a third tensor. The k index can-

cels as the two tensors are combined. This notation using covariant and contravariant

indices and summing over identical entries when combined is called Einstein Summa-

tion notation, but it is not the only way to represent tensors. In particular, we define

a tensorial method of combining two matrices that differs from traditional matrix

multiplication.

Definition 2.1 (Kronecker Product) The Kronecker Product between two arbi-

trarily sized matrices A ∈ RR×J and B ∈ RK×L is defined

A⊗B =


a11B a12B · · · a1JB
a21B a22B · · · a2JB

...
...

. . .
...

aI1B aI2B · · · aIJB

 .
The Kronecker product is a generalization of the outer product of two vectors in

Rn and Rm respectively. Tensor notation and the notation for the Kronecker product

are often both denoted ⊗, but the tensor product is defined on tensors while the

Kronecker product is defined on matrices.
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Some basic properties of the Kronecker product are discussed in [18]. The Kro-

necker product of an p × q matrix and a r × s matrix is dimension (pr) × (qs). A

property known since the 1890’s is that the Kronecker product of identity matrices

In and Im is the identity matrix [18]

In ⊗ Im = Inm.

The homogeneity of the Kronecker product (KRON 1 in [18])

(αA)⊗B = A⊗ (αB) = α(A⊗B)

for scalar α and matrices A and B implies that the placement of multiplication with

a scalar does not matter. The relation (KRON 7 in [18])

(A⊗B)(C ⊗D) = (AC)⊗ (DC)

for matrices A, B, C and D shows that the product of two Kronecker products is

another Kronecker product. These properties are applied in proofs found later in this

chapter.

Norms are functions that take vectors or matrices as input and returns a scalar.

They are used to calculate the length of vectors and evaluate the error of models in

machine learning [3]. Norms are denoted by ‖ · ‖ and a subscript indicating which

norm is being used. There are many different norms, and one relevant to this research

is the Frobenius norm.

Definition 2.2 (Frobenius Norm) [25] The Frobenius norm on an m× n matrix

A is the square root of the absolute squares of all elements in the matrix. It can be
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thought of as a vector norm. Note its two forms

‖A‖F =

√√√√ n∑
i=1

m∑
j=1

|aij|2 =
√

Tr(AAH)

where AH is the conjugate transpose of A.

The concept of a norm can also be extended to tensors where the norm ‖X‖T of

tensor X is the square root of the sum of all entries in X squared.

2.2 Tensor Decompositions

A few methods for tensor decomposition exist and are useful in machine learning

techniques such as dimensionality reduction and latent factor analysis [15]. Canonical

polyadic decomposition, also known as CP-Decomposition or CANDECOMP, is a

common generalization of the matrix SVD in which tensors are expressed as the sum

of rank-one tensors [16]. To achieve CP decomposition, the following generalized

minimization problem must be solved:

min
X̂
||X − X̂ || where X̂ =

R∑
r=1

λra
(1)
r } a(2)

r } . . .} a(n)
r .

The rank-one tensors are normalized at unit length, and the scalings are stored

in the λr value. One drawback to this method is that the rank is necessary for

approximation. There is no trivial algorithm in computing the rank of a tensor as it

the problem in NP-hard (a computational problem where the solution is easy to verify

but difficult to compute) [15]. In practice, most algorithms fit for multiple ranks and

then choose the best approximation [16].
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The Tucker decomposition is similar to CANDECOMP, but a core tensor is derived

with scalings along each axis. The minimization problem for Tucker decomposition

is

min
X̂
||X − X̂ || where X̂ =

R1∑
r1=1

R2∑
r2=1

· · ·
Rn∑

rn=1

gr1,r2,...,rna
(1)
i1r1
} a

(2)
i1r1
} . . .} a

(n)
inrn

where the sum of the gr1,r2,...,rn terms is some tensor G that is the same dimension as

the tensor being decomposed. Note that the Tucker decomposition is generally not

unique as the core structure is arbitrary [16]. Furthermore, if gr1,r2,...,rn = 0 for all

r1 6= r2 6= . . . 6= rn then the problem reduces to the CP-Decomposition [16]. These

methods are useful despite their flaws, and we can use these ideas to develop our

solution.

2.3 Vector Spaces and Function Spaces

A fundamental concept in linear algebra is that of a vector space which is a set

of vectors that is closed under vector addition and vector multiplication and satisfies

certain conditions [33]:

• Commutativity

• Associativity of vector addition

• Additive and scalar multiplication identity

• Existence of additive inverse

• Associativity of scalar multiplication

29



• Distributivity of scalar sums

• Distributivity of vector sums.

A list of vectors [v1,v2, . . . ,vn] is a basis for a vector space if and only if every v ∈ V

can be written uniquely as

v = a1v1 + a2v2 + . . .+ anvn.

If V is an n-dimensional vector space, then V ∼= Rn. Moreover, vector spaces are

often categorized by their number of independent components. Two vectors v1 and

v2 are linearly independent if a1v1 + a2v2 = 0 only when a1, a2 = 0. The basis of a

vector space V is a subset of linearly independent vectors that spans V . Hence, the

number of linearly independent components in a vector space is equal to the number

of vectors in its basis. A frequently-used type of basis is the orthonormal basis where

all vectors in the basis satisfy the conditions of normality and orthogonality. For some

vector space V where [v1,v2, . . . ,vn] ∈ V form an orthonormal basis, the length of

each vi is 1, so all vectors are normal. Also, all vectors on V are orthogonal such that

〈vi,vj〉V = 0 if i 6= j and 〈vi,vj〉V = 1 if i = j.

Vector spaces are useful in decompositions, and properties can be added to build

other spaces with use in tensor decomposition [16]. We define the inner product.

Definition 2.3 (Inner Product) [16] The inner product on a real vector space V

is the mapping 〈·, ·〉 : V × V → R such that for all x,y, z ∈ V and α, β ∈ R.

1. 〈x,y + z〉 = 〈x,y〉+ 〈x, z〉 (Linearity)

2. 〈αx,y〉 = α〈x,y〉 (Homogeneity)
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3. 〈x,y〉 = 〈y,x〉 (Symmetry)

4. 〈x,x〉 ≥ 0, 〈x,x〉 = 0 if and only if x = 0 (Nonnegativity and Positive Definite-

ness)

The inner product maps two vectors to a scalar is also called the dot product.

Furthermore, a vector space with an inner product is called an inner product space.

Every inner product space has a norm defined by

||x||p = (〈x,x〉)1/p =

(
n∑

i=1

|xi|p
)1/p

[16].

A complete space is one in which all Cauchey sequences converge. With this

condition, we define a Banach space.

Definition 2.4 (Banach Space) [16] A Banach space is a normed vector space that

is a complete metric space with respect to the metric derived from its norm.

A special case occurs with the Banach space on the p = 2 norm.

Definition 2.5 (Hilbert Space) [16] A Hilbert space is a normed vector space that

is a complete inner product space with respect to the norm

||x||2 = (〈x,x〉)1/2 =

(
n∑

i=1

|xi|2
)1/2

Note that every finite dimensional Hilbert space has an orthonormal basis [16]. T i
j (R)

is a vector space with dimension i + j, and `(V ) is a vector space of functions that

map some set of vertices V to R. This is also known as a function space.
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Definition 2.6 (Function Space) [16] A Function space is the set of all real-valued

functions on a set X, denoted

`(X) = {f : X → R}.

Function spaces are also vector spaces and have many of the same properties. For

instance, if X is a finite set, then `(X) ∼= Rn where n = |X|, and fg ∈ `(X) for all

f, g ∈ `(X). Moreover, there exists an orthonormal basis for every `(X).

2.4 Linear Transformations between Vector Spaces

In considering bringing matrix methods into the realm of tensors, we consider

transformations of these vector and function spaces. We first define a common trans-

formation.

Definition 2.7 (Linear Transformation) [16] Let V and W be vector spaces. The

mapping

T : V → W

is a linear transformation if

T (αv + βw) = αT (v) + βT (w) for all v,w ∈ V and α, β ∈ R.

Consider T : `(G,R)→ `(G,R) which is a linear transformation. Note that

(Tf)(i) = (Af)(i) =
n∑

i=1

aijf(j)

where A is a matrix. We can denote the standard basis as δi where for each gj ∈ Gim,

we get δi(gj) = 1 when i = j and δi(gj) = 0 when i 6= j. Hence,
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(Tf)(i) =

a1,1 · · · a1,m
...

...
an,1 · · · an,m


f1...
fm

 [δ1(i) · · · δ1(m)
]
.

We see here that linear transformations on vector spaces can be represented as ma-

trices.

A vector valued function space is defined as

`(G,Rn) = {f : G→ Rn} = V ⊗ Rn

where V is a vector space. Our goal is to learn more about V , and we return to

the image example for context. Note that a function space mapping a graph to R2

infers we are working with a black and white image with only one matrix layer. R3

is a color image with three layers, and R4 can represent video data as there are three

color dimensions and a fourth time dimension. We remain within the realm of color

images but note that these concepts should extend to higher dimensions. Suppose

Gim is a network graph organized in a grid representing pixels in an n×m image as

shown in Figure 7. Also, let each node on the graph contains the red, green and blue

color values for the image.

We have

`(Gim,R3) = {f : Gim → R3}

and know that for each row i = 1, . . . , n and column j = 1, . . . ,m we get f(i, j) ∈

`(Gim,R3) =

x1x2
x3

 or a vector with three color values. In other words, we have a
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(1,1) (1,m)

(n,1) (n,m)

Figure 11: Network grid graph representation.

vector valued mapping. In tensor notation with a third index k = 0, 1, 2 we have that

f(i, j, 0) = X0

f(i, j, 1) = X1

f(i, j, 2) = X2

where each X is one of three color layers.

Now consider L : `(Gim, U) → `(Gim, U) where U ∈ R3 is composed of vector

valued functions. Each f(gj) is a vector that takes R3 → R3, and so f can be thought

of as a vector of vectors. Furthermore, the linear transformation L can be written as

(Lf) =

A1,1 · · · A1,m
...

...
An,1 · · · An,m


 f1

...
fm

 =

A1,1f1+ · · · +A1,mfm
...

...
An,1f1+ · · · +An,mfm

 .
where the individual entries in L are all matrices and the transformation itself is a

matrix of matrices which is a type of tensor. We are able to define a tensor space.
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Definition 2.8 (Tensor Space) `(V,Rn) is a vector space of Rn valued functions

on V .

Hence, linear transformations on `(V,Rn) are tensors.

2.5 Determining Tensor Order

We want to investigate the structure of mappings between tensors. Consider a

simple case with x ∈ Zm and y ∈ Rn and A a tensor. Then

f(x) = y =⇒ x
A−→ y

and in tensor notation we have

xmA = yn =⇒ A ∈ T mn
0

which is a two tensor. If we change Rn to Rn then

xmA = yn =⇒ A ∈ T m
n

which is another two tensor.

Consider

`(G;V ) = {f : G→ V }

where V is an n-dimensional vector space and G is a group of nodes on a network.

We want to determine if f is a two-tensor and what type it is. For instance, it could

be T 2
0 (a list of rows), T 0

2 (a list of columns) or T 1
1 (a 2D array). We now focus on

proving the order of a tensor. If we let f ∈ `(Zm,Rn) then f is a linear transformation
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that maps elements of Zm to Rn. Furthermore,

f =


f(0)
f(1)

...
f(m− 1)

 =



x1,0...
xn,0

x1,1...
xn,1


...x1,m−1...

xn,m−1




and the output from the function f appears to be a tensor. Every tensor space is also

a vector space, and this can be easily shown. We let the function f = A and assume

A is a tensor. Hence,

f(x) = y =⇒ x
A−→ y

and in tensor notation we have

xmA = yn =⇒ A ∈ T mn
0

which is a two tensor.

If we change Rn to Rn then we get

f =


f(0)
f(1)

...
f(m− 1)

 =


[
x1,0, . . . , xn,0

][
x1,1, . . . , xn,1

]
...[

x1,m−1, . . . , xn,m−1
]


which is also seems to be a tensor but of a different shape. Hence,

xmA = yn =⇒ A ∈ T m
n
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which is another two tensor. From these examples we are able to deduce that the

dimensions of a higher order linear transformation is dependent on the specified input

and output tensors.

2.6 Conceptualization of Eigentensors

Graphs are related to manifolds, and machine learning techniques such as spec-

tral embedding uses graphs and the global structure of manifolds. Furthermore, the

Laplacian is used to compare graphs using eigenvectors. Hence, manifold learning is

equivalent to finding eigenvector representations of Laplacian matrices. The eigen-

problem, determining the eigentensors and eigenvalues of a given tensor, for tensor

Laplacians is of great importance to this thesis.

The tensor product can be thought of as a generalization of the outer product and

linear combinations of such. Consider V = `(G1) = {f : G1 → R} and U = `(G2) =

{g : G2 → R}. We define the tensor product between these two vector spaces as

V ⊗ U = `(G1 ×G2) = {f : (g1, g2)→ R}.

Furthermore, we can use the tensor product to construct a basis for V ⊗ U using b

and c. We formalize this statement with a theorem.

Theorem 2.9 If W = V ⊗ U where b = [b1, b2, . . . , bm] is a basis for vector space

V = Rm and c = [c1, c2, . . . , cn] is a basis for vector space U = Rn then f ∈ W if and

only if there exists αij such that

f =
m∑
i=1

n∑
j=1

αij(bi } cj).
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The key takeaway is that we obtain bases from tensor products, and a tensor

space can be thought of as a linear combination of the tensor product of the basis

vectors. We denote the inner product on V as 〈·, ·〉V and on U as 〈·, ·〉U and show

how operations on vector spaces extend nicely to this new space.

Theorem 2.10 With W = V ⊗ U , suppose e1, . . . , em is an orthonormal basis for

V ∈ Rm and f1, . . . , fn is an orthonormal basis for U ∈ Rn. If we define the inner

product on W as

〈ei } fj, ek } f`〉W = 〈ei, ek〉V 〈fj, f`〉U

then

1. the definition of 〈·, ·〉W on dyads of the orthonormal bases extend via linearity

to an inner product on W , and

2. ei } fj where i = 1, . . . ,m and j = 1, . . . , n is an orthonormal basis for W .

Proof: By Theorem 2.9, we know that the dyad ei } fj forms a basis on W .

Thus, there exists some x, y ∈ W where

x =
m∑
i=1

n∑
j=1

αij(ei } fj) and y =
m∑
i=1

n∑
j=1

βij(ei } fj)

38



for α, β ∈ R. Furthermore,

〈x, y〉W =

〈 m∑
i=1

n∑
j=1

αij(ei } fj),
m∑
i=1

n∑
j=1

βij(ei } fj)

〉
W

=
m∑
i=1

n∑
j=1

αijβij〈ei } fj, ei } fj〉W

=
m∑
i=1

n∑
j=1

αijβij〈ei, ei〉V 〈fj, fj〉U

=
m∑
i=1

n∑
j=1

αijβij

as a result of linearity and the fact that e and f are bases. We show this is an inner

product:

1. Additivity: Let z =
∑m

i=1

∑n
j=1 ιij(ei } fj) ∈ W . Note that

x+ y =
m∑
i=1

n∑
j=1

(αij + βij)(ei } fj)

and

〈x+ y, z〉W =

〈 m∑
i=1

n∑
j=1

(αij + βij)(ei } fj),
m∑
i=1

n∑
j=1

ιij(ei } fj)

〉
W

=
m∑
i=1

n∑
j=1

(αij + βij)ιij〈ei } fj, ei } fj〉W

=
m∑
i=1

n∑
j=1

(αij + βij)ιij

=
m∑
i=1

n∑
j=1

(αijιij + βijιij)

=
m∑
i=1

n∑
j=1

(αijιij) +
m∑
i=1

n∑
j=1

(βijιij)

= 〈x, z〉W + 〈y, z〉W .

39



2. Homogeneity: For some a ∈ R note that

〈ax, y〉W =
m∑
i=1

n∑
j=1

a(αijβij)

= a

m∑
i=1

n∑
j=1

αijβij

= a〈x, y〉W .

3. Symmetry: We see that

〈x, y〉W =
m∑
i=1

n∑
j=1

αijβij =
n∑

j=1

αijβij

m∑
i=1

= 〈y, x〉W

since multiplication of scalars is commutative.

4. Positive Definiteness: We have already shown that with

y =
m∑
i=1

n∑
j=1

βij(ei } fj) and z =
m∑
i=1

n∑
j=1

ιij(ei } fj)

then 〈y, z〉W =
∑m

i=1

∑n
j=1(βijιij) ≥ 0, so let z =

∑m
i=1

∑n
j=1 ιk`(ek } f`) and

there be some 〈y, z〉W = 0. Hence,

0 = 〈y, z〉W

=
m∑
i=1

n∑
j=1

αijβij〈ei } fj, ek } f`〉W

=
m∑
i=1

n∑
j=1

αijβij〈ei, ek〉V 〈fj, f`〉U

This result shows that 〈ei, ek〉V = 0 or 〈fj, f`〉U = 0. Indeed, both 〈ei, ej〉V = 0

and 〈fj, f`〉U = 0 since e and f are orthonormal bases. The converse statement
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holds as well where

〈y, z〉W =
m∑
i=1

n∑
j=1

αijβij〈ei } fj, ek } f`〉W

=
m∑
i=1

n∑
j=1

αijβij〈ei, ek〉V 〈fj, f`〉U

=
m∑
i=1

n∑
j=1

αijβij(0)(0) = 0

so 〈v,v〉W = 0 if and only if v = 0. Thus, 〈·, ·〉W meets the criteria of an inner

product.

Finally, we show that the basis ei } fj is orthonormal. By the definition of the

inner product on W ,

〈ei } fj, ei } fj〉W = 〈ei, ei〉V 〈fj, fj〉U = (1)(1) = 1

and

〈ei } fj, ek } f`〉W = 〈ei, ek〉V 〈fj, f`〉U = (0)(0) = 0.

Hence, ei } fj is an orthonormal basis on W and 〈·, ·〉W is an inner product. �

We now have the tools to investigate eigentensors. Note that we can represent

linear transformations as linear combinations of Kronecker products which are equiva-

lent to linear combinations of dyads. Hence, we are able to construct a representation

of linear transformations on a tensor space using the Kronecker product. Using prop-

erties of the Kronecker product, we are able to define the eigenproblem in terms of

tensors.

Theorem 2.11 Suppose A ∈Mn(R) and B ∈Mm(R). Note that this implies

A⊗ B ∈ Mnm(R). Consider Av = λv where v ∈ Rn and Bw = γw where w ∈ Rm.
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Again note that v ⊗w ∈ Rmn. Show that

(A⊗B)(v ⊗w) = λγ(v ⊗w)

Proof: Using the relationship (KRON 7) from section 2.1, note

(A⊗B)(v ⊗w) = (Av)⊗ (Bw)

= (λv)⊗ (γw)

= λγ(v ⊗w).

Thus, λγ is an eigenvalue of A⊗ B and v ⊗w is the corresponding eigenvector.

�

Similar to Theorem 2.11, the linear combination of eigenvectors produces some-

thing that functions as an eigentensor. Finally, we show that this eigentensor satisfies

the definition of a basis.

Theorem 2.12 Suppose A = AT and B = BT (A and B are symmetric). Show that

the eigenvector vi ⊗wj forms a basis for a tensor space.

Proof:

Consider two Hilbert spaces H1 and H2 and their inner products 〈·, ·〉1 and 〈·, ·〉2.

We construct a new space q : H1 ×H2 → H1 ⊗H2 and define an inner product

〈φ1 ⊗ φ2, ψ1 ⊗ ψ2〉q = 〈φ1, ψ1〉1〈φ2, ψ2〉2 for φ1, φ2 ∈ H1 and ψ1, ψ2 ∈ H2

such that we have an inner product space. Since both A and B are square matrices,

they can be decomposed as QΛQ−1 where the columns of Q are orthogonal vectors and

Λ is a diagonal matrix with the corresponding eigenvalues. Furthermore, A ∈Mn(R)
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and B ∈Mm(R) implies vi ∈ Rn and wj ∈ Rm. Also, vi and wj are bases for A and

B respectively. If we let A ∈ H1 and B ∈ H2 then H1 ⊗ H2 is the same dimension

as A⊗B. Then vi ⊗wj is of the same dimension as well, and by Theorem 2.10, we

know it forms a basis for the tensor space as well.

Because vi⊗wj is a set of independent vectors of the same dimension as H1⊗H2

then we conclude that it forms a basis for the tensor space. �

Eigentensors can be defined for specific problems, but higher order complexity

makes a generalized eigentensor difficult to define. However, eigentensors, especially

those of the Laplacian tensor, are crucial to bridging the gap between matrix methods

and tensor methods.
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3 RESEARCH AND APPLICATION

3.1 Limitations of Tensor Methods

While tensor decomposition algorithms exist, they are not as powerful as analogous

matrix operations. For instance, both CPD and Tucker Decomposition deconstruct

tensors into important parts similar to Singular Value Decomposition. SVD requires

a diagonal matrix with entries xij = 0 if i 6= j, and extending this idea to tensors may

look like a tensor where tijk = 0 if i 6= j or j 6= k or i 6= k. These three conditions

cannot be met simultaneously, so there are always different ways to create a diagonal

tensor based on its shape. The lack of a unique, generalized SVD method for tensors

has spawned various tensor methods with specific use cases.

For another example of limitations in tensor methods, recall from the Poisson

image blending example the least squares minimization problem

x∗ = argmin
x∈Rn

‖Ax− b‖22 where A ∈ Rm×n and b ∈ Rm.

Solving this problem is useful in evaluating error in statistical models and regression

analysis. The solution is of the form x∗ = A+b with x∗ ∈ Rn where A+ is the Moore-

Penrose pseudoinverse. If we change b into a matrix B and use the Frobenius norm

then the problem becomes more complex.

X∗ = argmin
X∈Rn×`

‖AX −B‖2F where A ∈ Rm×n and B ∈ Rm×`.

We are able to solve this new minimization problem and show that the result will be

a matrix instead of a vector. Lemma 3.1 provides a useful relationship between the

Frobenius norm and the vector norm.
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Lemma 3.1 For any matrix M = [m1,m2, . . . ,m`] we have

‖M‖2F = ‖m1‖22 + . . .+ ‖m`‖22.

Proof: Let M = [m1,m2, . . . ,m`] be a matrix in Rn×`. Note that the Frobenius

norm of M is

‖M‖F =

√√√√ n∑
i=1

∑̀
j=1

|mij|2

=

√√√√∑̀
j=1

n∑
i=1

|mij|2

=

√√√√∑̀
j=1

[m2
1,m

2
2, . . . ,m

2
` ]

=
√

[m2
1 + m2

2 + . . .+ m2
` ]

Hence, we square the Frobenius norm in this form to reach the desired result.

‖M‖2F = [m2
1 + m2

2 + . . .+ m2
` ] = ‖m1‖22 + ‖m2‖22 + . . .+ ‖m`‖22.

�

We see the Forbenius norm acting as a vector norm for every column vector in a given

matrix. Thus, we determine how the output of the least squares problem changes

when B is a matrix.

Proposition 3.2 The solution X∗ = argmin
X∈Rn×`

‖AX − B‖2F = A+B where A ∈ Rm×n

and B ∈ Rm×` is a matrix.
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Proof: Let X = [x1,x2, . . . ,x`] and B = [b1,b2, . . . ,b`]. Note

AX −B = [Ax1 − b1, Ax2 − b2, . . . , Ax` − b`]

and we see the problem can be viewed as solving the simple iteration least squares

minimization problem ` times. Hence,

argmin
X∈Rn×`

‖AX −B‖2F = argmin
X∈Rn×`

(∑̀
k=1

‖Axk − bk‖2
)

by Lemma 3.1

=
∑̀
k=1

(
argmin
X∈Rn×`

‖Axk − bk‖2
)
.

Since argmin
x∈Rn

‖Axi − bi‖22 = A+bi we can deduce that

X∗ =
∑̀
k=1

(
A+bk

)
= [A+b1, A

+b2, . . . , A
+b`] = A+B.

With A+ ∈ Rn×m and B ∈ Rm×` we conclude that X∗ is a matrix of size n× `. �

Finding a matrix solution to the least squares problem is straightforward, but

solving the least squares problem when A and B are tensors is not straightforward.

For example, consider

X∗ = argmin
X
‖AX − B‖2T where A and B are tensors.

As shown in chapter 2, the product of two tensors is another tensor, so we assume

the solution X∗ is a tensor as well. In determining what space X is in, we encounter

issues with the problem being ill-defined. For instance, if you have some rank three

tensor A = [aijk] and a rank one tensor B = [b`] then a system A⊗X = B implies X

is a two-tensor, but there are multiple ways to combine a rank two tensor and a rank
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three tensor. Possibilities in this scenario include

∑
i,j

aijkxij,
∑
j,k

aijkxjk or
∑
i,k

aijkxik

all of which output a rank one tensor. This non-uniqueness adds difficulty to general-

izing the Moore-Penrose pseudoinverse for tensors. Furthermore, the Moore-Penrose

pseudoinverse is the matrix of a linear transformation, so we must develop a concept

of linear transformations on tensor spaces before properly defining the pseudoinverse

of a tensor.

The tensorized least squares problem can be solved with an algorithm, and we

consider min
D,F
‖A − DF‖2F given the constraints rank(D) = rank(F ) = r to see an

example of one.

1. Fix F and solve the minimization problem for D such that D∗1 = AF+.

2. Fix D∗1 and solve the minimization problem for F such that F∗1 = D+
∗1A.

3. Fix F∗1 and solve the minimization problem for D such that D∗2 = AF+
∗1.

4. Fix D∗2 and solve the minimization problem for F such that F∗2 = D+
∗2A.

5. Repeat this process until the optimal D∗ and F∗ are found.

This is known as the alternating least squares algorithm and plays a central role in

CP-decomposition. While very useful, the tensor rank is required as input which

creates problems [15].

Tensor decomposition algorithms have proved useful in deep learning, but there is

room for improvement. For example, CANDECOMP and Tucker decomposition do
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not utilize the covariant and contravariant structure of tensors and can be clunky in

implementation. Hence, we seek an alternative method.

3.2 Random Walk on a Network

A random walk is a discrete series of steps [31]. If someone flips a coin with equal

probability of heads and tails and moves a step to the left if they get heads and to the

right if they get tails, then the path and ending location after n coinflips is a simple

random walk. Random walks can also be iterated over network structures and yield

interesting mathematical insights. Suppose we have the graph shown in Figure 12.

1 2

34

Figure 12: Example of a directed graph.

A probability transition matrix can model flows through a network. Every node

is represented as a row and a column, and entries in this matrix correspond to the

likelihood of moving between the nodes. The probability matrix for the graph in

Figure 12 is

P =


0 P12 P13 P14

P21 0 P23 0
0 0 0 P34

P41 0 0 0
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Note that P is row stochastic meaning all row entries sum to 1. A natural random

walk occurs when all edges from a given node have the same weight. Moreover, each

row has the same probability entries. Hence,

Pnatural =


0 1/3 1/3 1/3

1/2 0 1/2 0
0 1/2 0 1/2

1/2 0 1/2 0


is the natural random walk for the network shown in Figure 12. We utilize a feature

of these random walks illustrate their connection to tensors.

Importantly, there exists a connection between a natural random walk and the

edge-weighted Laplacian, denoted Lw = STWS where W is a diagonal matrix of

edge weights and S is an incidence matrix. Note that the ST matrix will map ver-

texes to edges, W from edged to edges, and S maps edged back to vertexes. An

incidence matrix is a logical matrix that shows the relationship between two classes

of objects and includes information about the weights and adjacency structure of a

graph. The incidence matrix for the graph in Figure 12 is

S =



−1 1 0 0
0 −1 1 0
0 0 −1 1
1 0 0 −1
1 −1 0 0
0 1 −1 0
0 0 1 −1
−1 0 0 1
−1 0 1 0


where the columns represent vertices and the rows represent edges. A weight matrix
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can be represented for this graph as

w1 0 0 0 0 0 0 0 0
0 w2 0 0 0 0 0 0 0
0 0 w3 0 0 0 0 0 0
0 0 0 w4 0 0 0 0 0
0 0 0 0 w5 0 0 0 0
0 0 0 0 0 w6 0 0 0
0 0 0 0 0 0 w7 0 0
0 0 0 0 0 0 0 w8 0
0 0 0 0 0 0 0 0 w9


.

The Laplacian in this case is represented as L = STWS. If W is an identity matrix

then STS = L = V Σ2V T and S = UΣV T . If each vertex is represented by a vector,

the weight matrix is

[W1] 0 0 0 0 0 0 0 0
0 [W2] 0 0 0 0 0 0 0
0 0 [W3] 0 0 0 0 0 0
0 0 0 [W4] 0 0 0 0 0
0 0 0 0 [W5] 0 0 0 0
0 0 0 0 0 [W6] 0 0 0
0 0 0 0 0 0 [W7] 0 0
0 0 0 0 0 0 0 [W8] 0
0 0 0 0 0 0 0 0 [W9]


where each Wn is a square n× n matrix in which n is the size of the vertex vectors.

A Network Laplacian matrix in this context would look like

Lw =


D11 −W12 · · · −W1n

−W21 D22 · · · −W2n
...

...
. . .

...
−Wm1 −Wm2 · · · Dmn


such that Dii =

∑n
i Wij. The connecting idea is the equation

P = D−1A = D−1(D − L) = I −D−1L

where A is the adjacency matrix and D is the degree matrix. We can also define the
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Laplacian matrix with only the degree matrix and probability matrix where

L = D(I − P ).

The matrix P is assumed to be invertible and diagonal, but these conditions are not

always present. We see that with just the probability matrix we are able to calculate

the Laplacian on a graph and vice versa.

A unique property of the natural random walk matrix is that the columns (rows?)

of Pnatural will converge when high powers of the matrix are taken. This means that

the matrix P n
natural for a sufficiently large n reaches equilibrium. Since each column

of P n
natural converges to a single value, all rows are identical, and we notice that one

of these rows acts as an eigenvector for Pnatural. This concept of raising a transition

matrix to some power holds if Pnatural is a tensor, and we calculate some examples in

Python in Appendix A.2. We use this fact to derive the concept of an eigentensor of

a Laplacian in section 3.3.

3.3 Eigentensors of a Network Laplacian

We now reach the fundamental question of this thesis. Consider an edge-weighted

Laplacian Lu on the function space `(G,U) = {f : G → U} for a graph G and a

vector space U ∈ Rn. Indeed, a linear transformation on this function space is a

tensor, and we attempt to derive the eigenequation for this tensor.

As shown in chapter 2, we can represent the transformation on a tensor space using

the Kronecker product. The structure of this function space may be `(G,U) = Lu⊗I

for an unweighted network. A linear transformation L in this unweighted context
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looks like

(Lf)(i) =
∑
i∼j

(f(i)− f(j))

where
∑

i∼j f(i) = f(i)
∑

i∼j 1 = di and di is the degree of the ith vertex. For the

case where every node on a network has the same weights, `(G,U) = Lu ⊗W where

W is some matrix of weights on U . The Laplacian matrix in which every term is

multiplied by the same matrix W using the Kronecker product is

Lu ⊗W =


d1W −1W · · · 0W
−1W d2W · · · −1W

...
...

. . .
...

0W −1W · · · dnW

 .
With weighted nodes then di becomes the sum of the weights of a row and the

transformation is

(Lf)(i) =
∑
i∼j

wij(f(i)− f(j)).

It is reasonable to assume that each node might have weights Wij where each Wij is

different:

Lu ⊗Wij =


d1W11 −1W12 · · · 0W1n

−1W21 d2W22 · · · −1W2n
...

...
. . .

...
0Wm1 −1Wm2 · · · dnWmn

 .
Hence, a linear transformation on our weighted, vector valued example Lu on `(G,U)

where f(i) =

f1
...
fn

 ∈ U is of the form

(Luf)(i) =
∑
i∼j

Wij(f(i)− f(j))

and we note that the Wij terms are now matrices where W : U → U is a linear

transformation.
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The eigenproblem in this context looks like

(Luv)(i) = λv(i) =
∑
i∼j

Wij(v(i)− v(j))

for every i ∈ V and G = (V,E). To solve the eigentensor problem we assume

Wij = Wji and solve for the v(i) term in the eigenequation. We let Wij = wijIm

where Im : V → V then the eigenvectors reduce to that of a regular Laplacian. Also

note that if vj ∈ ker(Wij) for every j = 1, . . . , n then we get

λvi =

(∑
j∼i

Wij

)
vi

and we are left with a simpler eigenvalue problem. We then let Wij = ej } ei where

ei is an orthonormal basis for V . Then Wijej = 0 and

λvi =

(∑
j∼i

ej } ei

)
vi

such that our representation is a tensor defined as a linear combination of dyads.

However, more than likely, it is incorrect to assume Wij = Wji. The correct

statement is that Wij = W T
ji meaning we may not have a self-adjoint matrix. Notice

that if we let Wij = eie
T
j + eje

T
i then

Wijej = eie
T
j ej + eje

T
i ej = ei(1) + ej(0) = ei

and we see that Wij = W T
ij . If we assume Wijvj = αvi then

λvi =
∑
j∼i

(Wijvi −Wijvj)

=
∑
j∼i

(Wijvi − αvi)

=
∑
j∼i

(Wij − αI) vi.
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This is also a linear combination of dyads and a more generalized eigentensor. Hence,

we can solve eigenvalue problem for the Laplacian for i = 1, . . . , n or for each vertex.

Moreover, the random walk over the probability transition matrix provides a method

of computing this solution.

3.4 Poisson Blending Application

When running the image blending algorithm, we are really solving

x∗ = argmin‖Ax− b‖22

for each matrix layer where A is a sparse Laplacian matrix. The output is three

vectors, say x∗red,x∗green and x∗blue that must me reshaped and recombined into an

image. In theory, we can say x∗ = A+b, but the pseudoinverse might not be sparse.

Our goal has been to theorize what happens when we have some tensor B and a

vertex weighted Laplacian A. Thus, we set up the problem

X∗ = argmin‖AX − B‖2T .

Finding the eigentensors of A lets us find a basis for the tensor space and decompose

A = V ΣV T using the tensor product. If we let X = V Y and B = V C for some

matrices Y and C, then our problem reduces to

argmin‖AX − B‖2 = argmin‖(V ΣV T )(V Y )− (V C)‖2

= argmin‖(V ΣY )− (V C)‖2

= argmin‖V (ΣY − C)‖2

= argmin‖(ΣY − C)‖2 since V is unitary
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as a result of V being unitary. This is a much easier system to solve. Thus, the

eigenvectors of a tensor allow us to solve higher order linear equations.

First, let’s investigate the dimensionality of the problem. A color photo has m×n

pixels in three colors layers, so the picture can be represented as a m× n× 3 tensor.

The blended gradient image, previously represented by b is also of size m×n× 3. In

the matrix algorithm, m×n slices are flattened to create (nm)×1 vectors, so consider

X ,B ∈ T 2
1 . Hence, the transformation between these two tensors can be represented

as a tensor as well. Note

X A−→ B =⇒ A ∈ T 2
2

and we see that A can be a tensor of dimension 3× (mn)× 3× (mn). Indeed, tensor

A can be imagined as a 3× (mn) matrix of 3× (mn) matrices.

Now we have a Laplacian tensor, and we know the eigentensors of A are useful.

With this and the methods derived in section 3.2, we are able to rewrite our tensorized

problem statement in terms of matrices:

X∗ = argmin‖AX − B‖2

= argmin‖(ΣY − C)‖2

= argmin

∥∥∥∥∥
((∑

j∼i

Wij − αI

)
Y − C

)∥∥∥∥∥
2

and solve for each vertex. This greatly reduces the complexity of the problem.

From a computational standpoint, we can relate the concept of eigenvectors on

a natural random walk to the weighted Laplacian. Suppose we derive some Lcolor

Laplacian for an image and calculate a natural random walk Pcolor. We calculate an
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eigenvector p by raising Pcolor to a sufficiently high number of powers such that

Pcolorp = Λp.

Using the facts that

Pcolor = (I −D−1Lcolor) and Lcolor = D(I − Pcolor)

we see that

Pcolorp = Λp

= (I −D−1Lcolor)p

= p− (D−1Lcolor)p

and we are able to solve for Lcolorp. Hence,

Lcolorp = D(p− Pcolorp)

= D(I − Pcolor)p

= D(I − Λ)p

and we get the eigentensor of the weighted Laplacian built on p. With this tensorized

least squares problem, we are able to calculate our blended image in one step instead

of three and maintain the relationships between the color channels.

3.5 Conclusion and Future Work

Many data sets have a naturally occurring higher dimensions that cannot be well-

captured by matrices. For instance, scientific experiments often measure two variables
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over a series of trials, and matrix methods are iterated over the samples. Instead,

tensor methods allow one to preserve the timing of the trials in the data and may

lead to more efficient learning methods. Moreover, we are able to build on existing

matrix methods such as diagonalization, spectral decomposition, singular value de-

composition, and finding pseudoinverses by building on the concept of eigenvectors

on a tensor. Despite the obstacle of non-uniqueness, we derive a basis found when

considering equilibrium reached in a natural random walk.
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compression of manifold polygon meshes. Computers Graphics, 36(5):349–359,

2012. Shape Modeling International (SMI) Conference 2012.

[12] Kusuma Wardhani Mega, Xiangru Yu, and Jinping Li. Comparative analysis of

color edge detection for image segmentation. In Proceedings of the 2018 Inter-

national Conference on Computing and Pattern Recognition, ICCPR ’18, pages

93–101, New York, NY, USA, 2018. Association for Computing Machinery.

[13] Luke Melas-Kyriazi. The mathematical foundations of manifold learning, 2020.
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APPENDICES

Appendix A: Code Implementation

A.1 Poisson Blending with Matrix Methods

#Import Packages

%matplotlib inline
from matplotlib import pyplot as plt

import numpy as np
import pandas as pd
import torch
import kornia
import scipy.sparse
import os

from kornia.filters import Laplacian
from torchvision import datasets , transforms
from scipy.sparse.linalg import spsolve , cg

# specify kernel size
ker_size = 3

# empty lot in Johnson City
emptyLot = plt.imread(’colocafe2.jpg’)
emptyLot = emptyLot / emptyLot.max()
plane = plt.imread(’utahball.jpg’)
plane = plane / plane.max()
mask2 = plt.imread(’utahmask.jpg’)
mask2 = mask2 / mask2.max()

# blend pictures based on mask
blendpic = mask2*emptyLot + (1-mask2)*plane

# create a transform to transform the images to tensors
to_tensor = transforms.ToTensor ()

# ’Unsqueeze ’ the image tensor to fit to the kornia filter
’s dimension requirements BxCxHxW

source2 = torch.unsqueeze(to_tensor(plane), dim=0)

# ’Unsqueeze ’ the image tensor to fit to the kornia filter
’s dimension requirements BxCxHxW

target2 = torch.unsqueeze(to_tensor(emptyLot), dim=0)
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# Check shape of tensor
source2.shape , target2.shape

# take the Laplacian of the tensor using a 3x3 kernel size
lapball = Laplacian(source2 , ker_size)
# convert the tensor back to image
imagelapball = kornia.tensor_to_image(lapball)
# take the Laplacian of the tensor using a 3x3 kernel size
laplot = Laplacian(target2 , ker_size)
# convert the tensor back to image
imagelaplot = kornia.tensor_to_image(laplot)

# example output
fig ,ax = plt.subplots (1,2,figsize = (10 ,20))
ax[0]. imshow(plane)
ax[0]. set_title(’Source ’)
ax[1]. imshow (( imagelapball - imagelapball.min())/(

imagelapball.max() - imagelapball.min()))
ax[1]. set_title(’Gradient ’);

# mixes the balloon of the source with everything but the
balloon area of the target

blend_lap380 = mask2*imagelaplot + (1-mask2)*imagelapball

# We define a function to create a Laplacian Matrix of a
given size with "scipy ."

import scipy.sparse

def Laplacian_matrix(n, m):
mat_D = scipy.sparse.lil_matrix ((m, m), dtype = int)
mat_D.setdiag(-1, -1)
mat_D.setdiag (8)
mat_D.setdiag(-1, 1)

mat_A = scipy.sparse.block_diag ([mat_D] * n, dtype =
int).tolil()

mat_A.setdiag(-1, 1*m)
mat_A.setdiag(-1, -1*m)
mat_A.setdiag(-1, 1*m+1)
mat_A.setdiag(-1, -1*m+1)
mat_A.setdiag(-1, 1*m-1)
mat_A.setdiag(-1, -1*m-1)

return mat_A

from scipy.sparse.linalg import spsolve , cg
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mat_A380 = Laplacian_matrix( *blend_lap380.shape [:-1] ).
tocsc()

# tocsc() converts matrix to Compressed Sparse Column
format

# solve for each level of the three color values (RGB)
ImgChans380 = []
for i in range (1):

mat_b380 = blend_lap380 [:,:,i]. flatten ()
ImgChans380.append( spsolve(mat_A380 , mat_b380) )
print(i)

# blends three images into one
Blended380 = np.stack( [ img.reshape(blend_lap380.shape

[: -1]) for img in ImgChans380], axis = 2)
Blended380

# plot output
Blended380 = 1 - (Blended380 - Blended380.min())/(

Blended380.max() - Blended380.min())

fig ,ax = plt.subplots (1,3,figsize = (20 ,20))
ax[0]. imshow(plane)
ax[0]. set_title(’Source ’)
ax[1]. imshow(emptyLot)
ax[1]. set_title(’Target ’);
ax[2]. imshow(Blended380)
ax[2]. set_title(’Poisson Blended ’);

A.2 Calculating the Eigenvector of a Natural Random Walk

#Import Packages

%matplotlib inline
from matplotlib import pyplot as plt

import numpy as np
import pandas as pd
import networkx as nx
import torch
import kornia
import scipy.sparse
import os
from scipy.sparse.linalg import spsolve , cg
np.set_printoptions(threshold=np.inf)

import tensorly as tl
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from numpy.linalg import matrix_power

# simple case of a natural walk
Pnat = np.array ([[1/4 , 1/4, 1/4, 1/4],

[1/3, 1/3, 1/3, 0],
[0, 1/3, 1/3, 1/3],
[1/3, 0, 1/3, 1/3]])

Pnat , Pnat.sum(axis = 1)

# results from the simple case
res = np.linalg.matrix_power(Pnat , 100)
res , Pnat.T @ res[0,:]

# vector valued case
P2 = np.kron(Pnat , np.eye(2))
# change values to add mixing terms
P2[0,1] = 0.05
P2[0,0] = 0.2
P2

# high powers result
res2 = np.linalg.matrix_power(P2, 500)
res2 , res2[0,:], res2 [1,:]

# showing the results are eigenvectors
P2.T @ res2[0,:], P2.T @ res2 [1,:]
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