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ABSTRACT 

Implementing of Phase Potentiation Program with College Triathletes 

by 

David John Fish 

The purpose of this study is to determine the effectiveness of an in-season resistance training 

program on improving measures of strength in female collegiate triathletes. Nine females (age = 

19.2 ± 1.1 years, height = 166.5 ± 12.5 cm, body mass = 61.1 ± 9 kg) with limited resistance 

training experience were examined for this study. Formal RT intervention was monitored for 7 

weeks with the athletes being assigned 6 weeks of independent RT prior to the pre-test. Athletes 

completed a standardized athlete monitoring program pre and post resistance training 

intervention. Paired sample t-tests were used to determine differences between conditions with 

Cohen’s d effect sizes describing the magnitude of change between pre and post-intervention. No 

significant changes were found between the two testing sessions (p > 0.05). A longer duration of 

utilizing resistance training adhering to a phase potentiated approach may be necessary for 

significant changes to occur. 
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Chapter 1. Introduction 

Resistance training (RT), when performed concurrently with endurance training, allows 

for athletes to perform at a higher level when implemented appropriately (Aaguaard et al., 2011; 

Bazyler et al., 2015; Hoff et al., 2001; Støren et al., 2008). Too short of a RT program’s duration 

(<8 weeks duration) or intensity (<80% 1RM loadings) often show limited improvements in 

endurance performance (Bastiaans et al., 2001; Bishop et al., 1999; Levin et al., 2009). With 

adequate intensity (≥85% 1RM) (Aaguaard et al., 2011; Hoff et al., 2001; Støren et al., 2008) and 

explosive type training (Mikkola et al., 2007a, b; Paavolainen et al., 2003) better results, such as 

economy of movement and fatigue resistance, can occur in endurance athletes (Beattie et al., 

2014; Paavolainen et al., 2003). Benefits attributed to RT include improved economy of 

movement and the ability to produce higher maximal force (Beattie et al., 2014; Paavolainen et 

al., 2003). These improvements are due to an alteration in myofibril size and contractile 

properties, these adaptations increase muscular force production (Tanaka & Swensen., 1998).  

When applying a phase potentiated approach to RT, athletes may experience varying 

loads, intensities, and selected exercises that prepare them for their championship competitions 

later in the season. Phase potentiation requires the use of summated microcycles, in which the 

volume and intensity variables of training are manipulated in a coordinated manner leading 

towards a specific goal (DeWeese et al., 2015a). Summated microcycles can also be termed 

“blocks”, in which are concentrated loads (CL). A CL emphasizes one aspect of fitness while all 

other aspects are de-emphasized (DeWeese et al., 2015a). These blocks will follow the sequential 

order with the following order of accumulation, transmutation, and realization (Stone et al., 

2007) as their respective emphasizes. Depending on the competitive schedule, the duration and 

selection of blocks can vary. Now the structure and duration of the blocks set up the 
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accumulation of specific characteristics based on the focus of each mesocycle of RT with the 

intention of positively impacting performance. Both maximal strength (1RM) and 

countermovement jump (CMJ) were examined in a study by Taipale et al. (2010). In the study, 

the group exposed to maximal strength and explosive strength training achieved improvements to 

their strength and neuromuscular performance. Rate of force development (RFD), another 

important variable, is attributed to neural adaptations from improvements in strength. This yields 

improvement to aerobic endurance via enhanced work economy (Hoff et al., 2001).  

Variables such as jump height (JH) and rate of force development (RFD) are frequently 

attributed to RT (Aagaard et al., 2002; Andersen et al., 2010; Byrne et al., 2020; Kraemer et al., 

2003; Mangine et al., 2016) and their relationship with aerobic performance has been previously 

examined (Kons et al., 2018; Lum et al., 2020). RT is a stimulus that can improve mechanical 

efficiency (Sunde et al., 2010; Yamamoto et al., 2008), muscle coordination, motor unit 

recruitment patterns (Sale 1988), and lower limb stiffness regulation. These improvements 

correlated with enhancements in running economy (RE) (Mikkola et al., 2011; Millet et al., 

2002) and cycling economy (CE) (Sunde et al., 2010). 

Fatigue resistance is important for triathletes since there can be an additive effect of 

fatigue from the previous discipline (García-Pinilloset et al., 2016; Noakes 2000), this will 

impact the next segment of the race. Early on, having a high economy of movement will benefit 

the endurance component of sports like distance running, distance cycling, and triathlon. Having 

a more economical movement pattern in endurance events means there is less energy being 

utilized inefficiently. This can be attributed to fewer motor units needing to be recruited at the 

same time at a given intensity (in addition to maintaining efficient technique of movement). So 

being more economical in the cycling leg of a triathlon, for example, would set the athlete up for 
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having accumulated less fatigue when progressing on to the running segment. This lengthens the 

onset of muscle fatigue and increases time to exhaustion at that specific intensity (Sunde et al., 

2010). 

Currently, there is a lack of research for RT and the impact it has on triathletes. This 

athletic population must train in 3 distinct disciplines (swim, bike, and run), making the demands 

of the sport different from swimming, cycling, or running. Where characteristics of cycling and 

running benefit most from RT, studies that examined RT’s impact on these disciplines focused 

solely on the specific means for training and not the compounding impact swim, bike, and run 

has on an athlete (Millet et al., 2002; Paavolainen et al., 2003; Støren et al., 2008; Sunde et al., 

2010). For one, by the time a triathlete is entering the run portion of a competition, they are 

already pre-fatigued from the swim and bike, with impairments in RE frequently observed after 

cycling (Bonacci et al., 2009). As well, triathletes need to dedicate time to each discipline often 

performing multiple disciplines in one day. The addition of RT may be challenging to 

incorporate into a triathlete's training due to time constraints over the course of a week or the 

demands that swimming, cycling, and running have. 

Statement of Problem 

Phase potentiation has been previously investigated but there is a need for a full 

description of the effects of this programming tactic with endurance athletes (Harris et al., 2000; 

Minetti et al., 2002; Zamparo et al., 2002). Bazyler et al. (2015) stated that “phase potentiation, 

is essential in the development of endurance-specific performance characteristics." Being able to 

effectively incorporate this training approach is needed alongside sport-specific training for 

triathletes. 
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Utilizing a phase potentiated approach to RT is commonly implemented in many sports. 

To the authors’ knowledge, there are no previous studies that examine this method of 

conditioning with triathletes. The purpose of this study is to determine the effectiveness of an in-

season RT program on improving measures of strength in female collegiate triathletes. This is to 

examine the changes in JH, peak force, and RFD when the volume and intensity variables of a 

RT program have been manipulated throughout multiple blocks/phases. The expected outcome is 

that the variables of JH and RFD will improve from pretesting to post-testing. 
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Chapter 2. Comprehensive Review of Literature 

 

Introduction 

 The purpose of this literature review is to provide context into how phase potentiation 

(otherwise known as block periodization) can enhance athlete performance. Through using block 

periodization, concentrated loads are linked to allow stimuli that are not present in training to be 

experienced by the athletes (DeWeese et al., 2015a). Concentrated loads produce aftereffects that 

persist into the next phase, hence "phase potentiation" (DeWeese et al., 2015a; Suchomel et al., 

2018). Phase potentiation, when providing heavyweight training over many weeks or a few 

blocks should be followed by speed-strength training to produce improvements in RFD, speed, 

and power gains (DeWeese et al., 2015b; Suchomel et al., 2018).  

Phase Potentiation 

 Phase potentiation is a recent enhancement of the concept of periodization. It is important 

to first define periodization as the "logical, sequential, phasic method of manipulating training 

variables to increase the potential for achieving specific performance goals while minimizing the 

potential for overtraining and injury through the incorporation of planned recovery" (DeWeese et 

al., 2015a). The primary goals of periodization include an appropriate balance of training loads 

and competitive readiness during the season, fatigue management and the reduction of 

overtraining potential, and adequately staging and timing of the peak (DeWeese et al., 2015b). 

For periodization to be effective, variation is needed to manipulate variables and manage fatigue. 

Variation is needed to meet these goals, which can be achieved through the manipulation of 

volume, intensity, and exercise selection (DeWeese et al., 2015b). It is with this variation that 

factors, such as fatigue management, resulting from greater variation and adequate disruption of 

homeostasis will promote additional adaptation (DeWeese et al., 2015b). To define this process 
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further:  “training is recognized as a process which prepares an athlete, technically, tactically, 

psychologically, physiologically, and physically for the highest possible levels of performance” 

(Stone et al., 2007). “Training is multi-factorial in nature; as such the attempt is to exploit known 

principles of physics, physiology, and psychology in order to maximize the effects of the training 

stimulus. The training process is vitally concerned with the positive enhancement of 

performance—therefore the process must provide: an appropriate stimulus for adaptation, an 

appropriate means for assessing progress, and additional means beyond sets and reps including 

rest–recovery phases, psychological re-enforcement, daily nutrition, supplements, sleep, etc. so 

that recovery–adaptation is optimized” (DeWeese et al., 2015a). 

Traditional Periodization 

Before block periodization, traditional periodization theory was the predominant 

approach to structuring an athlete's training. However, there are limitations to traditional 

periodization theory: 1) the inability to provide multiple peak performances over many 

competitions; 2) drawbacks to long-lasting mixed training programs; 3) negative interactions of 

non-compatible workloads during traditional mixed; 4) insufficient training stimulus for 

progressing certain abilities among highly qualified athletes (Issurin, 2008). Additional issues 

arise from prolonged mixed training which includes: 1) excessive fatigue accumulation (this can 

be indicated by observing the increase in stress hormones and creatine phosphokinase), 2) 

remarkable results initially but stagnation or reduced improvement rate later on, and 3) intensive 

exhaustive training lasting 3-4 weeks causes a pronounced stress response leading to an 

increased risk of overtraining (Issurin, 2008). As well, mixed training elicits conflicting 

responses when loads of certain training modalities suppress or eliminate the effect of work-

loads directed at other targets (Issurin, 2008).  
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Components of Block Periodization 

It is important to break down block periodization into the components that establish its 

structure. This begins with macrocycles which Issurin (2008) states: “are divided into training 

periods that fulfill a key function in traditional theory as they divide the macrocycle into two 

major parts: the first for more generalized and preliminary work (preparatory period); the second 

for more event-specific work and competitions (competition period). In addition, a third and 

shortest period is set aside for active recovery and rehabilitation". Macrocycles can then be 

broken down into mesocycles which focus on achieving morphological, organic, and 

biochemical changes. To achieve morphological, organic, and biochemical changes from 

training, this requires lasting at least 2-6 weeks, which correspond to the duration of mesocycles; 

hence, training blocks are mostly mesocycle-blocks (Issurin, 2008). Three types of mesocycle-

blocks were established: 1) accumulation, which was intended to develop basic abilities such as 

aerobic endurance, muscle strength, and general technical ability; 2) transformation, which was 

devoted to enhancing event-specific motor and technical abilities, e.g. aerobic-anaerobic or 

anaerobic endurance, muscle endurance, and proper technique; and 3) realization, which focused 

on pre-competitive preparation, e.g. race simulation, maximal speed improvement, and recovery 

after preceding exhaustive workloads (Issurin, 2008). These mesocycles typically determine the 

total number of training stages in an annual cycle usually. This will vary depending on the 

features of each sport, the calendar, and the frequency of important events but ranges from four 

to seven mesocycles (Issurin, 2008).  

Mesocylcles can be broken down into a microcycle which is the shortest repeatable cycle 

and is typically specified as 1 week (DeWeese et al., 2015b). Often 4 ±2 microcycles will make 

up a mesocycle, as this timeframe has been observed to be optimal for summating cumulative 
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after-effects from training while being short enough to ensure that stagnation from poor 

variability does not occur (DeWeese et al., 2015b). Typical volume or intensity will increase for 

3 weeks followed by an “unload” week over the course of a block. It should be noted that the 

volume or intensity may increase ranging from 2-6 weeks at times (Plisk & Stone, 2003). The 

purpose of an unload week is to create variation in workload so that the possibility of 

overtraining is reduced or to set the table for supercompensation to take place. 

Supercompensation is an over-shoot in the level of a specific variable past the initial baseline 

(DeWeese et al., 2015b). Planning an overreaching or functional overreaching is one means by 

which supercompensation can be effectively utilized. DeWeese et al. (2015b) states that 

“planned over reaching is an intentional, substantial, sudden increase in volume or intensity that 

places the athlete in a state of functional over-reaching. Functional overreaching occurs provided 

the overreaching (increased volume/intensity) phase is not too extensive or long lasting. Thus, 

for RT, over-reaching can occur as a result of a large increase in volume-load (VL) (or other 

conditioning activities depending upon the event/sport)”. However, there is a possibility that 

overreaching can result in chronic fatigue and other symptoms similar to the initial stages of 

overtraining (i.e. drop in performance, sleeping problems, headaches, decreased immunity, and 

depression to name a few). As long as the overreaching phase is not too extensive, returning to 

normal training volumes can result in a super compensatory effect, promoting an increased 

performance. Performance improvements can be associated with alterations in the anabolic state 

which may be coupled with changes in the testosterone:cortisol (T/C) ratio (DeWeese et al., 

2015b). This requires appropriate planning of the overreaching phase to take place followed by 

the return to normal training. Performance may be enhanced following an overreaching phase 

and be an effective tool to utilize before an exponential taper.  
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Appropriate variation aids in the reduction of non-functional over-reaching as well as the 

potential for overtraining and management for general fatigue. When working with advanced 

level athletes, relatively heavy and intense training loads are needed to promote adaptation but 

"constant or very frequent heavy loading can markedly increase "training strain" which can 

augment the potential for poor or even negative training outcomes, including increased injury" 

(DeWeese et al., 2015b). Multiple "light" days within a microcycle are needed for recovery to 

occur from the implemented stimulus. This allows a given training load to be accomplished with 

a greater potential for positive adaptations and fewer negative outcomes (DeWeese et al., 2015b). 

DeWeese et al., (2015b) states: appropriate variation in volume and intensity can offset fatigue-

induced alterations in 1RM. Variation within the microcycle can efficiently be produced by using 

a heavy/light day system. Appropriate variations in volume and intensity of training are essential 

to promote adequate recovery from intense training sessions and reduce the chance of 

accumulated fatigue and overtraining. Additionally, the heavy and light days ensure that a 

variety of power outputs will be used, potentially resulting in beneficial alterations to the power–

load spectrum. 

Relative Intensity 

Another variable that should be manipulated is relative intensity (RI), which is often 

represented as a percentage range based on an individual's 1 RM. RI should vary for two primary 

reasons: fatigue management and to present the athlete with a broad spectrum power–load curve 

(DeWeese et al., 2015b). Intensity should be made so it fits the needs of the characteristics, the 

type of exercise, the set/repetitions scheme, and the fatigue level. The range of RI can reduce the 

likelihood of potential problems, especially as it concerns accumulative fatigue (DeWeese et al., 

2015b). Maximum efforts should be made to maximize adaptations, that is, there needs to be 
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intent while moving the weights during the concentric phase. This means concisely performing 

the movement with an appropriate velocity of movement. To clarify DeWeese et al. (2015b) 

states: "the calculation of an RI based on a specific set and repetition configurations should be 

used instead of relying on a 1 RM. In this manner, the RI may be conceptualized as more of a 

function of the work to be accomplished (a summation of sets and reps) rather than repetitions as 

a function of the 1 RM. However, in creating successful microcycle variation, the effects of other 

training activities must also be considered". 

Concentrated Loads 

 There are other important considerations to have while implementing RT following a 

block periodization format. First, highly concentrated training workloads cannot be managed at 

the same time for multiple targets and therefore, the number of abilities being developed 

simultaneously should be radically reduced (DeWeese et al., 2015a; Issurin, 2008). This means 

specific characteristics need to be focused on in each block. This can include returning from the 

off-season, improving work capacity, developing max strength, and focusing on the velocity of 

movements specific to the sport. It should be noted that the block training method is more 

efficient for improving maximal strength and RFD development when compared to traditional 

periodization. Støren et al., (2008) reported after an 8-wk maximal strength training intervention, 

significant improvements in 1RM half-squat (33.2%), RFD half-squat (26.0%). Concentrated 

loads are coordinated appropriately at the right time to produce desired results. As well, “planned 

functional overreaching” should be utilized alongside concentrated loads to promote additional 

adaptation while taking advantage of the fitness–fatigue paradigm. This combination may 

positively affect future training through phase potentiation, as a result of the accumulation of 

residual effects (DeWeese et al., 2015a). Block periodization links a sequence of concentrated 
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loads. A concentrated load is unidirectional and this indicates that that one characteristic of 

physiological development (e.g., endurance, strength, or power) is being emphasized at that point 

in training. This does not mean that training is exclusive to that characteristic, but rather that a 

particular fitness characteristic is being emphasized and other aspects of training de-emphasized 

through the implementation of retaining loads (minimal doses to maintain specific fitness 

characteristics). Concentrated loads produce after-effects or residual effects that persist into the 

next phase. In other words, these after-effects potentiate the next concentrated load” (DeWeese 

et al., 2015b). Specifically, the block group demonstrated significantly greater increases in the 

1repitition squat, and isometric values when differences in volume load were considered. 

(Painter et al., 2012). As well, to attain morphological, organic, and biochemical changes, 

periods of at least 2-6 weeks, which correspond to the duration of mesocycles are necessary to 

promote the focus adaptations adequately; hence, training blocks are mostly mesocycle blocks 

(Issurin, 2008). These blocks consist of three specialized types: 1) developmental, where 

workloads attain maximal level; 2) competitive, which focuses on competitive performance; and 

3) restoration, which is intended to provide active recovery and prepare athletes for the next 

developmental program (Issurin, 2008). To implement the block model effectively, several levels 

of variation, including the use of heavy and light days of training in which the amount of work 

performed (volume load) is reduced for the light day as needed. This type of loading paradigm 

has the potential to enhance recovery and adaptation processes, leading to superior performance 

(Painter et al., 2012). 

Taper Implementation 

 Implementation of a taper block is another method that has the potential to lead to 

improved performance when programmed correctly. A taper can be described as “a specialized 
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exercise training technique which has been designed to reverse training-induced fatigue without 

a loss of the training adaptations” (Neary et al., 1992). Tapering involves the manipulation of 

various factors including training volume, intensity, frequency, and duration (Mujika et al., 

2003). Primarily occurring just before the focal or major competition of the season or year, a 

taper seeks to reduce training load with the goal of experiencing enhanced performance 

preceding the planned unloading. Specifically, a taper should be able to (when applied correctly) 

reduce the negative physiological and psychological impact of daily training (i.e., accumulated 

fatigue), rather than achieve further improvements in the positive consequences of training (i.e., 

fitness gains) (Mujika & Padilla, 2003). By utilizing what is known as an "intentional 

overreaching phase" this will, in turn, results in higher performance gains. This is due to utilizing 

the taper duration and percentage decrease in training load as a means to dissipate this extra 

accumulated fatigue. The utilization of a taper can be implemented with athletes such as runners 

(Houmard et al., 1994), swimmers (Mujika et al., 2003), cyclists (Neary et al., 2003), rowers 

(Jurimae et al., 2003), and triathlon (Margaritis et al., 2003), the effects of tapering have resulted 

in significant improvements in these disciplines. 

In Effects of Tapering on Performance: A Meta-Analysis, it was observed, that 

improvements from various sports were more sensitive to the reduction in training volume 

(Bosquet et al., 2007). When inducing a taper to decrease training volume, the goal is to do so by 

reducing the duration of each training session (Neary et al., 2003) rather than eliminating entire 

practices. However, some studies prefer to manipulate the training frequency (i.e., the number of 

training sessions per week) to decrease the weekly training volume (Mujika et al., 1996). When 

attempting to induce a taper via a reduction in training volume, there should be a decrease in the 

duration of each training session and/or a decrease in training frequency. It seems that the first 
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strategy should be preferred because decreasing training frequency does not result in a 

significant performance improvement (Bosquet et al., 2007). It was observed, in highly trained 

middle-distance runners, that maintaining training frequency (i.e., training daily during a 6-d 

taper) brought about significant performance gains in an 800-m race, whereas resting every third 

day of the taper did not (Mujika & Padilla 2003). This method of reducing training load through 

a decrease in training frequency often interacts with other moderator variables. Items such as 

training intensity or the form and duration of the taper, which make it difficult to isolate 

precisely its effect on performance (Bosquet et al., 2007). It should be noted that training load 

should not be reduced at the expense of training intensity (Bosquet et al., 2007). So for an 

effective taper to be implemented in the training, it should approach the reduction of the training 

load by reducing the length of the practices during the week while maintaining a high enough 

intensity. 

Neural Development Attributed to RT 

 Early increases in muscle strength are a result of neural factors (increased activation, 

more efficient recruitment, motor unit synchronization, and excitability of alpha-motor neurons 

or decreases Golgi tendon organ inhibition) in the early phases or hypertrophic adaptations in the 

long term or a combination of the both (Hickson et al., 1988; Hokka et al., 2014; Millet et al., 

2002; Sunde et al., 2010). Paavolainen et al. (2003) concluded that explosive-strength training 

should also be incorporated since it yields increases in the amount of neural input to the muscles 

during rapid dynamic and isometric actions. This would imply that “the increase in net excitation 

of motor neurons could result from increased excitatory input, reduced inhibitory input, or both”. 

Paavolainen et al. (2003) also stated that "neural activation of the trained muscles during 

explosive-type strength training is very high, the time of this activation during each single 



21 
 

muscle action is usually so short that training-induced muscular hypertrophy and maximal 

strength development take place to a drastically smaller degree than during typical heavy-

resistance training". This type of conditioning would be advantageous to sports (endurance 

running and jumping events) were maintaining weight is preferred over increases in lean body 

mass. Changes that occur due to RT are initially a result of neuromuscular adaptation when 

strength is increased (Aagaard et al., 2002). Mikkola et al. (2011) found that 8 weeks of 

concurrent RT and endurance training improved endurance and selective neuromuscular (3-4%) 

performance measures. Following neuromuscular changes, improvement in long-term endurance 

capacity is attributed to an increase in the portion of type IIA muscle fibers (Aagaard et al., 

2010) which are less fatigable and able to produce high contractile power (Bottinelli et al., 1999). 

In addition to heavy-resistance strength training results in neural and muscle hypertrophic 

adaptations that are known to be primarily responsible for improved strength performance 

(Mikkola et al., 2011; Paavolainen et al., 2003). This causes improvements in long-term 

endurance capacity (60-min time trial) in well-trained competitive cyclists as a response to 

concurrent strength endurance or endurance training long respectively (Bastiaans et al., 2001). 

This does, however, require appropriate duration and in studies using a short duration (<8 weeks 

loading) (Bastiaans et al., 2001; Bishop et al., 1999; Levin et al., 2009) was not enough to elicit 

improved long-term endurance performance. It should be noted that concurrent strength and 

endurance training can lead to elevated muscle strength even in the absence of muscle fiber 

hypertrophy (Aagaard et al., 2010; Bishop et al., 1999; Hickson et al., 1988). This method was 

however contradicted by Hickson et al. (1988) and Bishop et al. (1999) who found that 

concurrent strength and endurance training may result in elevated maximal muscle hypertrophy.  
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RFD as it Relates to RT 

 Changes in RFD (or one's ability to generate force) increased 20% following the period 

of concurrent strength-endurance training (Aagaard et al., 2010). The maximal RFD has 

important functional consequences as it determines the force that can be generated in the early 

phase of muscle contraction (0-200ms) (Aagaard et al., 2002). A 12-20% increase in maximal 

muscle strength and RFD in response to 16-week concurrent strength endurance program 

(Aagaard et al., 2010) (add other sources from the article), however, Häkkinen et al., (2003) 

concluded that over 21 weeks of training, the strength-endurance group showed no significant 

increases in RFD. Increases in RFD and impulse were observed after heavy-resistance strength 

training. These findings could be explained by an enhanced neural drive, as evidenced by marked 

increases in electromyography (EMG) signal amplitude and rate of EMG rise in the early phase 

of muscle contraction (Aagaard et al., 2002). The increased RFD, while the muscles are under a 

potentiated condition, is accompanied by a decrease in time to peak force and has been theorized 

to enhance performance in subsequent athletic activities that use the potentiated muscle groups 

(Hancock et al., 2015). When maximal strength training is utilized, with an emphasis on neural 

adaptations, improvements in strength (particularly RFD) and aerobic endurance by improved 

work economy are also experienced (Hoff et al., 2001). This implies that as RFD improves so 

will aspects of movement economy that will benefit the endurance component of sports like 

distance running, distance cycling, and triathlon. Improvements related to economy can be 

attributed to fewer motor units needing to be recruited at the same time at a given intensity (in 

addition to maintaining efficient technique of movement). This delays a longer the onset of 

muscle fatigue and increasing time to exhaustion at that specific intensity (Sunde et al., 2010). 
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RT and its Impact on Endurance Sports 

Traditional endurance training is often the focus for sports such as swimming, cycling, 

and running. The focus of this training is to perform low-resistance, high-repetition exercises 

(with repetitions usually being +10). However, this has little impact on strength and anaerobic 

power since those capacities are not being achieved during training sessions. RT, on the other 

hand, improves an athlete’s ability to perform high-resistance exercises with low repetitions and 

marginally affects endurance performance (Tanaka & Swensen 1998).  Positive muscular 

adaptations attributed to RT which can lead to improved endurance performance may include 

increased anaerobic enzyme activity, increased force production, increased intramuscular 

glycogen, or shifts within major fiber type groups. Neural adaptations may include improved 

motor unit recruitment and synchronization, improved force development rate, and 

improvements in the stretch-shortening cycle (Yamamoto et al., 2008). As a result of these 

distinct muscular adaptations, endurance training facilitates aerobic processes, whereas weight 

training increases strength and anaerobic power.  Some performance data does not fit this 

paradigm, however, strength training or the addition of strength training to an endurance exercise 

(running and cycling included) regimen increases short- or long-term work capacity in sedentary 

or well-trained individuals during treadmill exercise or cycle ergometry.  Additional data show 

that strength training improves the lactate threshold in untrained subjects during cycling. These 

improvements may be linked to strength training’s ability to alter myofiber size and contractile 

properties, adaptations that may increase muscle force production (Tanaka & Swensen 1998). 

“Maximal strength training” has been used to describe strength training using high loads, few 

repetitions, and emphasis on neural adaptations to strength enhancement rather than muscular 

hypertrophy. Strength training has been associated with reduced endurance performance. But 
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when combining endurance training with maximal strength training, several studies have 

reported an improved work economy of approximately 5% in various activities such as cross-

country skiing, soccer, and running (Sunde et al., 2010). 

Concurrent Training 

Concurrent training (CT) is widely described in the literature as an effective training 

method for improving aerobic capacity, muscle strength, and power (Leverittet al., 2003). 

Paavolainen et al. (1999) utilized explosive strength training in a 9-week study and examined 

improvements in RE by testing subjects in a 5k time trial. Changes that were found were 

significant and suggested improvements in neuromuscular characteristics which transferred into 

improved power of the muscle and economy of movement. Millet et al. (2002) also found 

improvements to RE from concurrent RT with endurance running after a study that lasted 14 

weeks in duration. Kelly et al. (2008) examined the effects CT would have on a group of 

recreational female endurance runners. There were greater improvements in 3k time trial results 

following the intervention on CT when compared to the endurance-only group and 

improvements in upper and lower body strength were present in the concurrent group, but these 

results were nonsignificant. It should be noted that there were no negative results with the 

addition of RT to the endurance running program. Taipale et al. (2014) utilized mixed maximal 

and explosive exercises as the RT intervention concurrently with endurance running below 

lactate threshold over a 16-week study. CMJ was assessed and improvements were found 8 

weeks into the study for male subjects and 12 weeks into the study for female athletes. Taipale et 

al. (2010) conducted another study on endurance runners where subjects completed a 6 week 

preparatory RT program before getting divided into maximal strength, explosive strength, and 

circuit training for 8 weeks. Both maximal strength (1RM) and CMJ in all groups, but the groups 
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exposed to maximal strength and explosive strength training were more impacted by 

improvements to their strength and neuromuscular performance. Mikkola et al., (2011) 

conducted a study that followed the same preparatory and specific training duration as Tiapale. 

Only the heavy RT group has significant improvements in CMJ height (from 28.4 ± 3.5 to 30.1 ± 

3.9 cm), all the other groups did have some degree of improvement, however, it was not 

significant. It should be noted that this study was conducted with RT sessions occurring on 

different days than the endurance sessions. Aagaard et al., (2011) examined RT and the effects it 

had on endurance capacity and muscle fiber composition in young top-level cyclists over a 16-

week duration. RFD increased by 12-20% following CT in where the group that only performed 

endurance training had unaffected RFD. Häkkinen et al., (2003) concluded that over 21 weeks of 

training, the strength-endurance group showed significant increases in RFD. Finally, Glowacki et 

al., (2004) utilized a CT program with untrained male athletes over a 12-week study. No 

significant change in JH was present and the CT did not interfere with strength development but 

it was proposed that there could be a hindrance to the development of maximal aerobic capacity. 

RT and its Impact on Swimming 

 RT, as it relates to swimming, has minimal benefits to enhancing performance (to a 

certain degree). In swimming, dryland training (conditioning that takes place outside of the 

water) has shown little evidence of improving performance in this event (Hancock et al., 2015; 

Tanaka et al., 1993; Tanaka & Swensen, 1998). Due to how technical a swimming stroke is, 

traditional RT is not specific enough to improve swim performance (Tanaka & Swensen, 1998), 

however, that doesn't mean there is no improvement to the economy of movement. In shorter 

distances ranging from 23-400m improvements can be observed in swimmer's velocity that can 

be attributed to more economical movement (Tanaka & Swensen, 1998). It should be noted that 
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collegiate triathlon and Ironman events will range from 750 meters to 3.9km (2.4 miles), 

anywhere from double to five times the distance of the maximal side of the range of ideal 

swimming lengths where performance from RT can be observed. 

RT and its Impact on Cycling 

 Cycling can benefit from RT and increase RFD (benefiting movement economy), which 

was observed in top-level cyclists (Aagaard et al., 2007, 2010) that could have contributed to a 

reduced degree of muscle fiber exhaustion for a given cycle power output during long-term 

endurance (time trial) events. Similarly, 8 weeks of maximal strength training improved CE, 

work efficiency, and time to exhaustion at maximal aerobic power among competitive road 

cyclists despite a decrease in total weekly cycle training. There was no concurrent increase in 

body weight or maximal oxygen uptake (Sunde et al., 2010). This can be explained by strength 

endurance training enabling cyclists to rapidly produce more pedal force and allow them to 

maintain a prolonged relaxation phase in each pedal revolution. The improved RFD would allow 

for a shorter propulsion phase for a given power output (Aagaard & Anderson 2010). It should 

be noted, however, a lack of improvements in well-trained cycling/triathletes in a 30-km time 

trial conducted by Levin et al. (2009) after a short-term (9 weeks), low-resistance ("power" type) 

strength training that was used (Bastiaans et al., 2001). 

RT and its Impact on Running 

 RT as it relates to running benefits in a similar manner to that of cycling. Improved RFD, 

as well as the economy of movement, was experienced if the duration and intensity of the 

program were appropriate to cause neural adaptations. Heavy-resistance strength training has 

improved the endurance performance of previously untrained subjects or RE of female distance 

runners without changes in VO2max suggesting that neuromuscular characteristics may also be 
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important for endurance performance (Paavolainen et al., 2003). Since faster, larger, and stronger 

fibers generate more force, weight-trained runners may be able to exercise longer at each 

submaximal workload by reducing the force contribution from each active myofiber or by using 

fewer of them (Tanaka & Swensen, 1998). The improvement in submaximal workload due to the 

force contribution from each active myofiber is how movement economy is enhanced relative to 

runners. CMJ height increased in a study by Hokka et al. (2014) which examined the strength, 

power, and endurance characteristics of mixed maximal strength and explosive exercises vs 

circuit training with bodyweight. Subjects had a background in endurance running. Significant 

improvements we observed over 16 weeks where the bodyweight group only saw improvements 

over 12 weeks. Muscle activation, and 1RM in the experimental groups while also improving 

peak running speed. 

Fatigue and Diminishing Effect of RT Program 

 There are concerns about how fatigue from triathlon training may diminish the effects of 

a RT program, especially when a RT session immediately follows a sport-specific endurance 

session (Leveritt et al., 1999; Sparto et al., 1997). Potential causes for poor performance during 

the RT session can be caused by a poor refueling (hydration and glycogen depletion) after a hard 

workout has been completed, muscle damage that was accumulated (Abernethy et al., 1999), or 

the athlete has become mentally fatigued and can no longer perform the prescribed RT program 

with intent. There should also be appropriate fatigue management during the RT session such as 

appropriate intensity selection and adequate rest between sets. A hypothesis by Leveritt et al. 

(1999) proposes that residual fatigue from an endurance session compromises the ability to 

develop tension during RT. It is proposed that the repeated acute reductions in the quality of 

strength training sessions then lead to a reduction in strength development over time. This is 
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thought to be attributed to peripheral fatigue factors specific to endurance exercises such as 

muscle damage and glycogen depletion. Triscott et al. (2008) found that following the exhaustive 

exercise of a non-exercised bicep of the other arm for resistance athletes and control participants 

there was a diminished performance, whereas there was no change in the endurance athletes. 

There is the consideration of placing the RT session before the sport-specific training 

session, however, the same problem may arise where the proceeding training session is done in a 

fatigued state (Doma et al., 2017). So preferably the sport-specific session occurs first so 

appropriate practices and intents during workouts may take place for desired adaptation and 

performance outcomes. This is so athletes are "fresh" for a sport-specific workout and they are 

not entering practice in a pre-fatigued physical or mental state. The primary concern is that the 

fatigue state induced by a swim/bike/run workout would cause diminished performance or intent 

while attending a RT session later on that same day. 
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Abstract 

 

The purpose of this study is to determine the effectiveness of an in-season resistance training 

program on improving measures of strength in female collegiate triathletes. Nine females (age = 

19.2 ± 1.1 years, height = 166.5 ± 12.5 cm, body mass = 61.1 ± 9 kg) with limited resistance 

training experience were examined for this study. Formal RT intervention was monitored for 7 

weeks with the athletes being assigned 6 weeks of independent RT prior to the pre-test. Athletes 

completed a standardized athlete monitoring program pre and post resistance training 

intervention. Paired sample t-tests were used to determine differences between conditions with 

Cohen’s d effect sizes describing the magnitude of change between pre and post-intervention. No 

significant changes were found between the two testing sessions (p > 0.05). A longer duration of 

utilizing resistance training adhering to a phase potentiated approach may be necessary for 

significant changes to occur. 
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Introduction 

Resistance training (RT), when performed concurrently with endurance training, allows 

for athletes to perform at a higher level when implemented appropriately (Aaguaard et al., 2011; 

Bazyler et al., 2015; Hoff et al., 2001; Støren et al., 2008). Too short of a RT program’s duration 

(<8 weeks duration) or intensity (<80% 1RM loadings) often show limited improvements in 

endurance performance (Bastiaans et al., 2001; Bishop et al., 1999; Levin et al., 2009). With 

adequate intensity (≥85% 1RM) (Aaguaard et al., 2011; Hoff et al., 2001; Støren et al., 2008) and 

explosive type training (Mikkola et al., 2007a, b; Paavolainen et al., 2003) better results, such as 

economy of movement and fatigue resistance, can occur in endurance athletes (Beattie et al., 

2014; Paavolainen et al., 2003). Benefits attributed to RT include improved economy of 

movement and the ability to produce higher maximal force (Beattie et al., 2014; Paavolainen et 

al., 2003). These improvements are due to an alteration in myofibril size and contractile 

properties, these adaptations increase muscular force production (Tanaka & Swensen., 1998).  

When applying a phase potentiated approach to RT, athletes may experience varying 

loads, intensities, and selected exercises that prepare them for their championship competitions 

later in the season. Phase potentiation requires the use of summated microcycles, in which the 

volume and intensity variables of training are manipulated in a coordinated manner leading 

towards a specific goal (DeWeese et al., 2015a). Summated microcycles can also be termed 

“blocks”, in which are concentrated loads (CL). A CL emphasizes one aspect of fitness while all 

other aspects are de-emphasized (DeWeese et al., 2015a). These blocks will follow the sequential 

order with the following order of accumulation, transmutation, and realization (Stone et al., 

2007) as their respective emphasizes. Depending on the competitive schedule, the duration and 

selection of blocks can vary. Now the structure and duration of the blocks set up the 
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accumulation of specific characteristics based on the focus of each mesocycle of RT with the 

intention of positively impacting performance. Both maximal strength (1RM) and 

countermovement jump (CMJ) were examined in a study by Taipale et al., (2010). In the study, 

the group exposed to maximal strength and explosive strength training achieved improvements to 

their strength and neuromuscular performance. Rate of force development (RFD), another 

important variable, is attributed to neural adaptations from improvements in strength. This yields 

improvement to aerobic endurance via enhanced work economy (Hoff et al., 2001).  

Variables such as jump height (JH) and rate of force development (RFD) are frequently 

attributed to RT (Aagaard et al., 2002; Andersen et al.,2010; Byrne et al., 2020; Kraemer et 

al.,2003; Mangine et al., 2016) and their relationship with aerobic performance has been 

previously examined (Kons et al., 2018; Lum et al., 2020). RT is a stimulus that can improve 

mechanical efficiency (Sunde et al., 2010; Yamamoto et al., 2008), muscle coordination, motor 

unit recruitment patterns (Sale 1988), and lower limb stiffness regulation. These improvements 

correlated with enhancements in running economy (RE) (Mikkola et al., 2011; Millet., et al 

2002) and cycling economy (CE) (Sunde et al., 2010). 

Fatigue resistance is important for triathletes since there can be an additive effect of 

fatigue from the previous discipline (García-Pinilloset et al., 2016; Noakes 2000), this will 

impact the next segment of the race. Early on, having a high economy of movement will benefit 

the endurance component of sports like distance running, distance cycling, and triathlon. Having 

a more economical movement pattern in endurance events means there is less energy being 

utilized inefficiently. This can be attributed to fewer motor units needing to be recruited at the 

same time at a given intensity (in addition to maintaining efficient technique of movement). So 

being more economical in the cycling leg of a triathlon, for example, would set the athlete up for 
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having accumulated less fatigue when progressing on to the running segment. This lengthens the 

onset of muscle fatigue and increases time to exhaustion at that specific intensity (Sunde et al., 

2010). 

Currently, there is a lack of research for RT and the impact it has on triathletes. This 

athletic population must train in 3 distinct disciplines (swim, bike, and run), making the demands 

of the sport different from swimming, cycling, or running. Where characteristics of cycling and 

running benefit most from RT, studies that examined RT’s impact on these disciplines focused 

solely on the specific means for training and not the compounding impact swim, bike, and run 

has on an athlete (Millet et al., 2002; Paavolainen et al., 2003; Støren et al., 2008; Sunde et al., 

2010). For one, by the time a triathlete is entering the run portion of a competition, they are 

already pre-fatigued from the swim and bike, with impairments in RE frequently observed after 

cycling (Bonacci, et al., 2009). As well, triathletes need to dedicate time to each discipline often 

performing multiple disciplines in one day. The addition of RT may be challenging to 

incorporate into a triathlete's training due to time constraints over the course of a week or the 

demands that swimming, cycling, and running have. 

Phase potentiation has been previously investigated but there is a need for a full 

description of the effects of this programming tactic with endurance athletes (Harris et al., 2000; 

Minetti et al., 2002; Zamparo et al., 2002). Bazyler et al., (2015) stated that “phase potentiation, 

is essential in the development of endurance-specific performance characteristics." Being able to 

effectively incorporate this training approach is needed alongside sport-specific training for 

triathletes. 

Utilizing a phase potentiated approach to RT is commonly implemented in many sports. 

To the authors’ knowledge, there are no previous studies that examine this method of 
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conditioning with triathletes. The purpose of this study is to determine the effectiveness of an in-

season RT program on improving measures of strength in female collegiate triathletes. This is to 

examine the changes in JH, peak force, and RFD when the volume and intensity variables of a 

RT program have been manipulated throughout multiple blocks/phases. The expected outcome is 

that the variables of JH and RFD will improve from pretesting to post-testing. 

Methods 

Experiential Approach to the Problem 

 The data were collected as part of an ongoing athlete monitoring program that has been 

established between the researcher’s academic department and the university’s athletic program. 

This process of data collection is standardized and the same procedures were followed during all 

testing sessions. All athletes participated in a pre-testing and post-testing session. Each 

experimental testing session was conducted at the same time of day. 

Athletes 

 Nine female athletes (age = 19.2 ± 1.1 years, height = 166.5 ± 12.5 cm, body mass = 61.1 

± 9 kg) were reviewed in this study. All athletes performed in the same lifting program. Table 

3.1 illustrates the training age of the athletes in various aspects related to as well as triathlon. It 

should be noted that triathlon-specific training overlapped with that of the three competitive 

sports. After explaining the risks and benefits of the study, all athletes signed informed consent 

documents before participation in accordance with the Institutional Review Board of the 

university. 
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Table 3.1  

Athlete Training Age 

 

Procedures 

Before the pre-testing session, athletes were familiarized with the protocol and how to 

properly how to perform static jumps (SJ), countermovement jump (CMJ), and isometric mid-

thigh pull (IMTP). 

The athletes completed two RT sessions per week (Wednesday and Friday) along with a 

midsection day between the RT sessions (Thursday). Both weekly RT and triathlon training 

sessions are included in Table 3.2. The training program consisted of two sequential summated 

microcycles (or blocks) with exercise selection for each day illustrated in Table 3.3.  

 

Table 3.2  

Weekly Triathlon Training Schedule 

 
 

 

Triathlon Swim Bike Run

4.5±3.5 6±6 4±4 4±4

Athlete Training Age (in years)

Training Age within Competitive Sports
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Table 3.3 

Block Exercise Selection 

 Basic Strength Block (weeks 7-9) Taper (weeks 10-12) 

Wednesday Chest Pass Hop (Static), Depth Lands, 

Back Squat, Clean Grip Shoulder Press, 

Barbell RDL, and Dumbbell Bench Press 

Chest Pass Hop static (3x3), Depth 

Jumps (3x3), Back Squat, Push Press, 

Drop Step Lunge to Box (2x4), and 

Incline Dumbbell Bench Press 

Thursday Plate Overhead A Walks, Seated Side 

Toss, Med Ball V Ups, and Supine Glute 

Bridges 

Prone Bridge Med Ball Figure 8, Side 

Plank Clams, Med Ball Wood 

Chopper, and Supine Glute Bridges 

Friday Med Ball Toss for Height (3x3), Clean 

Pull, RDL to Bent-Over Row Complex, 

Clean Grip Mid-Thigh Pull, and 

Dumbbell Pitcher Pour (3x8) 

Med Ball toss for height (3x3), Clean 

Pull, Clean Grip Countermovement 

Shrug, Plate Overhead Lateral Lunge, 

and Reverse Row 

 

All testing sessions were completed at the same time of day and in the same order of 

tests. Testing sessions occurred on Friday during both week 6 and week 13. 

Experimental Conditions 

 Before testing, all athletes were required to have a urine specific gravity (USG) < 1.20 to 

begin warm-up for testing. Once the USG test was passed, the athletes would perform the same 

standardized dynamic warm-up of 25 jumping jacks followed by 1x5 practice mid-thigh pulls 

(MTP) with 20kg, then 3x5 MPT with 40kg. Athletes would continue to jump testing which 

began with measuring SJ trials at 0, 11, and 20kg which progressed to CMJ using the same 
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weights. All jump trials included at least 2 jumps at each weight and for each type of jump. This 

was followed by the IMTP with at least 2 pulls.  

Figure 3.1  

Triathlon Weekly Training Volume 

 

Leading into the basic strength block of training and following a taper after their first 

competition, athletes all followed the same triathlon and RT program. Training loads were 

consistently tracked for triathlon-specific training on Training Peaks (Figure 3.1), which 

included distance traveled in swimming, cycling, and running over the week. Athletes also 

recorded their training loads lifted in the weight room on lifting sheets (see Table 3.2 & Table 

3.4 for prescribed set x rep schemes and intensities). Intensity is calculated based on athlete 

subjectivity with suggested receptions in reserve being provided. The relative volume load 

depicted in Table 3.4 is a product of average weekly intensity (1RM%) and total weekly 

repetitions. All groups completed the same RT program and testing routine.  
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Table 3.4  

Weekly Resistance Training Volume Load 

 
 

Figure 3.2  

Weekly Resistance Training Volume and Intensity 

 
 

Athletes were instructed to follow the first 6 weeks of RT independently due to winter 

break taking place. Athletes were familiarized with the lifts and approach to RT before the 

beginning of the 6 weeks of independent RT. It should be noted that RT during this period was 

voluntary. Testing was then conducted before the start of the second block of training (basic 

strength) at the end of week 6. Testing included: hydration, anthropomorphic measurements, JH, 

isometric mid-thigh pull, and Athletics Shoulder (ASH) tests (which has no data that will be 

utilized in this study and was the final test performed during athlete monitoring).  
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Jump Testing 

 Jump testing was performed following a standard warm-up of 25 jumping jacks, 1x5 mid-

thigh pulls with 20kg and 3x5 with 40kg. Athletes were assessed with 0 kg (polyvinyl chloride 

pipe), 10 kg (barbell), and 20 kg (barbell) weights The PVC pipe and barbell were used to 

eliminate arm swing and to standardize testing conditions between athletes. Athletes performed 

SJ from an internal knee angle of approximately 90° which was measured with the use of a 

goniometer.  SJ followed a standardized warm-up and athletes performed two warm-up jumps 

for the unweighted SJ at 50% and 75% effort. Athletes then performed at least two SJ at 100% 

effort. Once completed, athletes began testing weighted jumps using the same procedure as the 

unweighted jumps. Unweighted and weighted CMJs were performed using the same procedures 

as SJ. If JH differences were greater than 2 cm, then additional trials were performed until two 

jumps were within 2 cm of each other. 

Data were collected using dual force plates (2 x 91 cm x 45.5 116 cm force plates, 

RoughDeck HP, Rice Lake, WI) sampling at 1000 Hz. All data were simultaneously integrated 

into LabVIEW (version 7.1, National Instruments). 

Isometric Mid-Thigh Pull 

 Participants were instructed to assume a posture body position identical to the start of the 

second pull of the clean with their torso upright, a knee angle of 125-135 degrees. A handheld 

goniometer was used to ensure that athletes assumed the required knee angle. Participants were 

required to fully extend the elbows, hold on to the bar with provided wrist straps, and then 

strapped to the bar with athletic tape to prevent grip from being a limiting factor. Practice pulls 

performed at 50% and 75% of maximum effort were done as a warm-up, these were separated by 

about 1 minute. Before participants were instructed to do the 100% pull, it was explained that 
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they are to pull as “fast and as hard as you can”. The highest force generated during IMTP was 

reported as the absolute PF (mPF). As well, force at 120 ms, (Force120) and RFD at 0-120 (RFD 

0-120) from the onset of pull were determined for each trial as values correspond with ground 

contact time during running. Lum et al., (2020) found that IMTP can be used as a means to 

assess muscular fitness in endurance runners and that the runner should focus on increasing 

maximum strength and RFD when performing RT to enhance their performance. 

Data were collected using dual force plates (2 x 91 cm x 45.5 116 cm force plates, 

RoughDeck HP, Rice Lake, WI) sampling at 1000 Hz. All data were simultaneously integrated 

into LabVIEW (version 7.1, National Instruments). 

Statistical Analysis 

 Data were analyzed using the statistical software JASP (JASP Version 0.14). A paired 

sample t-test was used to compare the variables: CMJ 0kg JH – FT, CMJ 20kg JH – FT, SJ 0kg 

JH – FT, SJ 20kg JH – FT, mRFD at 120ms, and mPeak Force. To correct for multiple 

comparisons, the Bonferroni correction was applied, with the alpha level of p was at 0.05. 

Results 

There was no significant difference in the variables that were measured. Two results that 

had diminished performances post-RT included CMJ 0kg JH - FT (m) and mRFD120 (N/s). Pre 

and post-p-value and Cohen's d are shown in Table 3.5. Descriptive data of mean and standard 

deviation (SD) are shown in Table 3.6. 
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Table 3.5  

Pre vs Post Testing Statistical Significance 

95% CI for Cohen's d  

Measure 1     t  df  p  Cohen's d  Lower  Upper  

CMJ 0kg JH - FT (m)  

Pre to Post Avg.  
- 

 
0.082 8 0.937 0.027 -0.627 0.680 

CMJ 20kg JH - FT (m)  

Pre to Post Avg.  
- 

 
-0.872 8 0.409 -0.291 -0.950 0.386 

SJ 0kg JH - FT (m)  

Pre to Post Avg.  
- 

 
-0.188 8 0.856 -0.063 -0.715 0.593 

SJ 20kg JH - FT (m)  

Pre to Post Avg.  
- 

 
-1.391 8 0.202 -0.464 -1.141 0.239 

mRFD120 (N/s)  

Pre to Post Avg.  
- 

 
0.672 8 0.521 0.224 -0.445 0.879 

mPF (N)  

Pre to Post Avg.  
- 

 
-2.691 8 0.027 -0.897 -1.661 -0.095 

Note.  Student's t-test.  

Significance set at p < 0.0083 via Bonferroni Correction 

 

Table 3.6  

Descriptives 

 
   N Mean SD SE 

CMJ 0kg JH - FT (m) Pre  
 
9 

 
0.187 

 
0.025 

 
0.008 

 
CMJ 0kg JH - FT (m) Post  

 
9 

 
0.186 

 
0.019 

 
0.006 

 
CMJ 20kg JH - FT (m) Pre 

 
9 

 
0.116 

 
0.024 

 
0.008 

 
CMJ 20kg JH - FT (m) Post 

 
9 

 
0.122 

 
0.011 

 
0.004 

 
SJ 0kg JH - FT (m) Pre 

 
9 

 
0.170 

 
0.033 

 
0.011 

 
SJ 0kg JH - FT (m) Post  

 
9 

 
0.172 

 
0.020 

 
0.007 

 
SJ 20kg JH - FT (m) Pre  

 
9 

 
0.102 

 
0.016 

 
0.005 

 
SJ 20kg JH - FT (m) Post 

 
9 

 
0.112 

 
0.012 

 
0.004 

 
mRFD120 (N/s) Pre  

 
9 

 
2857.810 

 
1858.382 

 
619.461 

 
mRFD120 (N/s) Post  

 
9 

 
2657.166 

 
1559.954 

 
519.985 

 
mPF (N) Pre  

 
9 

 
2218.138 

 
372.827 

 
123.576 

 
mPF (N) Post  

 
9 

 
2378.159 

 
290.413 

 
96.804 
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Discussion 

With the data collection occurring for only 9 athletes, there was a very small pool of 

athletes, diminishing the effect size for this study. This means that if there were drastic 

differences with some participants on specific tests, it would have a significant impact on mean 

results. This reemphasizes the importance of examining individual results and especially doing 

so on smaller teams. 

This study is the first to the authors’ knowledge that has investigated the outcomes of an 

in-season RT program on measures of strength in female collegiate triathletes. The lifts selected 

for RT were incorporated to emphasize the movement specificity of each aspect of a triathlon 

(Zupan & Petosa 1995). The results from this study illustrated that despite improvements 

occurring in four of the tested areas, the improvements were not statistically significant. Beattie 

et al., (2014) had findings that illustrated how strength training is an effective means for 

improving movement economy, velocity at V̇O2max, power output at V̇O2max, maximal 

anaerobic running test velocity, and time trial performance. Previous training of the athletes 

included RT the semester before data collection as well as a RT program to be completed 

between semesters that consisted of a return to fitness block (2 weeks 3x5 between 70-75% 

effort) and strength endurance block (4 weeks 3x10 between 75-90% effort). The pre-test date 

occurred after athletes returned to campus and before the formal intervention of the RT program 

in the weight room. Post-testing took place after the athlete’s first competition where a taper 

block was implemented leading up to the athletes’ performance.  

Where the mPF was the variable that saw the greatest improvement, it still did not meet 

the criteria to be considered statically significant. It is important to note that as peak force 

improves, the athletes will be able to perform submaximal movements either for longer or 

sustain a higher intensity for an equivalent duration that was previously performed at a lower 
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force output. The reason for RFD becoming an important component alongside peak force is 

because this is the neuromuscular mechanism being activated quickly and efficiently enough to 

hit the required percentage of strength. The sooner this occurs, the sooner the needed force can 

be applied for the athlete’s required task. 

One limitation to the study was that the phase of training for sport-specific work was 

more intense during preparation for the competition which overlapped with the second data 

collection. Another limitation was the timeframe during which data collection took place. Due to 

the COVID-19 Pandemic, the duration of data collection was about half as long as what was 

originally planned. Studies that observed changes attributed to RT over a similar duration 

experienced mostly positive results related to improvements in variable measurement. Paton and 

Hopkins (2005) examined RT alongside improvements in cycling performance over 4-5 weeks of 

training. They concluded that CT was an effective means of improving endurance and sprint 

performance in their well-trained competitive athletes. These enhancements are attributed to 

improved exercise efficiency. Støren et al., (2008) examined well-trained distance runners over 

an 8-week intervention concluding that RE and increased time to exhaustion were improved with 

the inclusion of RT concurrently with their run training. RFD in the half squat improved from 

466.7 ± 163.2 to 588.0 ± 147.9 (33.2%). This change in RFD is attributed to changes in 

recruitment patterns because of neural adaptation. 1RM in the squat also improved from 73.4 

±20.5 to 97.8 ±21.3 (26.0%). Squat strength has been strongly correlated to athletic movements 

that require relatively high-velocity, high-power outputs and RFD (Baker & Nance 1999). 

Weightlifting exercises utilized in the training session and their derivatives have shown a strong 

transfer of training to such movements as well (Arabatzi et al., 2010; Channell & Barfield 2008). 

An improved 1RM, in this context, may be attributed to increased muscle stiffness, a variable 
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which for RE can become more efficient. Strength training is reported to positively impact 

musculotendinous unit stiffness by increasing their capabilities (Craib et al., 1996; Kubo et al., 

2002; Millet et al., 2002). Elastic energy is stored more effectively in the series and parallel 

elastic component during eccentric muscle actions. This will then increase the concentric muscle 

force. As well, an increase in musculotendinous stiffness has a greater application to running 

than cycling because of the greater contribution of the stretch-shortening cycle (Rønnestad & 

Mujika 2013). Sunde et al., (2010) conducted a study on well-trained competitive cyclists which 

found improvements in work efficiency in both the control and intervention group, with the 

intervention group experiencing larger changes attributed to maximal strength training. The 

intervention group saw 1RM half-squat improve by 22.5 ±19.7 kg (13.5 % increase) and RFD in 

the half-squat improved by 134.0 ±171.6 W (16.7% increase). These changes led to improved 

CE, work efficiency in cycling, and time to exhaustion at maximal aerobic power. The authors 

stated that "the present study shows highly-significant correlation between pretest RDF in half 

squat and pretest CE", this again can be attributed to an optimal activation of motor neurons and 

muscle fibers post-intervention. Finally, Hoff et al., (2001) examined changes over 8 weeks in 

male cross country skiers and found reduced time to peak force and improved time to exhaustion. 

Again improvements to work economy changed significantly after the intervention of RT and 

maximal RT with an emphasis on neural adaptations improved strength (primarily RFD), leading 

to improved aerobic endurance performance via improved economy of movement. Many of these 

studies had subjects whose average age distribution was at least 10 years older than the 

participants in this study. As well, participants in other studies were often described as well 

trained, where some of the participants in this study range in their level of training from well 

trained to relatively untrained. 
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Longer studies, which ranged from 9-21 weeks in duration, examined the same variables 

or focused on the economy of movement in running and cycling. Paavolainen et al., (1999) 

utilized explosive strength training and examined improvements in RE by testing subjects in a 5k 

time trial. Over the 9 weeks of the study, significant changes were found in 5k running 

performance. These were suggested to be attributed to improvements in neuromuscular 

characteristics which transferred into improved power of the muscle and economy of movement. 

Millet et al., (2002) also found improvements to RE from concurrent RT with endurance running 

after a study that lasted 14 weeks in duration. Kelly et al., (2008) examined the effects 

concurrent strength and endurance training (RT that is performed along with sport-specific 

training, in this case running) would have on a group of recreational female endurance runners. 

There were greater improvements in 3k time trial results following the intervention on CT when 

compared to the endurance-only group and improvements in upper and lower body strength were 

present in the concurrent group, but these results were nonsignificant. However, between the two 

groups, there was no significant difference found in RE. It should be noted that there were no 

issues with the addition of RT and the outcomes of the endurance running program. Taipale et 

al., 2014) utilized mixed maximal and explosive exercises as the RT intervention concurrently 

with endurance running below lactate threshold over a 16-week study. CMJ was assessed and 

improvements were found 8 weeks into the study for male athletes and 12 weeks into the study 

for female subjects. Taipale et al., (2010) conducted another study on endurance runners where 

athletes completed a 6 week preparatory RT program before getting divided into maximal 

strength, explosive strength, and circuit training for 8 weeks. Both maximal strength (1RM) and 

CMJ in all groups, but the groups exposed to maximal strength and explosive strength training 

were more impacted by improvements to their strength and neuromuscular performance. 
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Mikkola et al., (2011) conducted a study that also consisted of a 6-week preparatory period 

followed by 8 weeks of specific programs for athletes: heavy resistance, explosive resistance, or 

muscle endurance training. Only the heavy RT group has significant improvements in CMJ 

height (from 28.4 ± 3.5 to 30.1 ± 3.9 cm), all the other groups did have some degree of 

improvement, however, it was not significant. It should be noted that this study was conducted 

with RT sessions occurring on different days than the endurance sessions. Aagaard et al., (2011) 

examined RT and the effects it had on endurance capacity and muscle fiber composition in 

young top-level cyclists over a 16-week duration. RFD was a measured variable that increased 

by 12-20% following CT, where the group that only performed endurance training experience no 

change in RFD. Häkkinen et al., (2003) concluded that over 21 weeks of training, the strength-

endurance group showed significant increases in RFD. Finally, Glowacki et al., (2004) utilized a 

concurrent RT program with untrained male athletes over a 12-week study. Where there was no 

significant change in JH, the CT did not interfere with strength development but it was proposed 

that there could be a hindrance to the development of maximal aerobic capacity. Many of these 

studies had subjects whose average age distribution was within 10 years of participants in this 

study. As well, participants in other studies ranged from recreational to elite. 

Endurance athletes who strength train with loads ≥70% 1RM will often achieve larger 

changes in movement economy and endurance performance than endurance athletes who 

strength train with lighter loads (Mikkola et al., 2007a; Sedano et al., 2013). Sedano et al. (2013) 

reported greater magnitudes of change in RE, CMJ height, vV̇O2max, and 3-km time trial 

performance after 12 weeks of heavy strength training (70% 1RM) (Bazyler et al., 2015). A 

sequenced approach may be more appropriate than trying to improve strength, power, and 

endurance simultaneously (Bazyler et al., 2015). Changes that occur due to RT are initially a 
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result of neuromuscular adaptation when strength is increased (Aagaard et al, 2002) and it often 

takes at minimum found that 8 weeks of concurrent RT and endurance training improved 

endurance and selective neuromuscular performance measures (Mikkola et al., 2011). 

Manipulating volume and intensity over an appropriate duration (≥8 weeks loading) (Bishop et 

al., 1999; Bastiaans et al., 2001; Levin et al., 2009) is needed for long-term endurance 

performance to improve.  

JH from other studies Guglielmo (et al. 2008) found that after only 4 weeks of concurrent 

running and heavy strength training (3–5 sets at 6RM loads), there were larger magnitudes of 

change in RE, 1RM strength, and CMJ height compared with concurrent running and lighter 

strength training (3–5 sets at 12RM loads) in middle- and long-distance runners who competed at 

the regional and national level (Bazyler et al., 2015). Piacentini et al., (2013) examined master 

endurance runners after a 7 week RT intervention in which SJ and CMJ were collected pre and 

post-intervention. CMJ was 21.8 ± 3.9 pre and 22.5 ± 4.0 post interventions (a 3% 

improvement). SJ was 20.0 ± 3.4 pre and 22.2 ± 3.3 post interventions (a 11% improvement). 

Mikkola et al., (2011) heavy RT group of male recreation runners had their CMJ height improve 

from 28.4 ± 3.5 to 30.1 ± 3.9 cm post-intervention. Taipale et al., (2014) examined both male 

and female athletes and over a 16-week intervention, there were significant improvements in 

male CMJ performance from weeks 0- 8 and 8-12. Glowacki et al., (2004) examined untrained 

male volunteers over 12 weeks and despite there being no significant changes to athlete vertical 

JH, this may be attributed to an increase in the lean body mass athletes in both the CT group 

experienced throughout the study.  

Again, RFD is an important variable since it is the neuromuscular activation that limits 

how quickly force may be produced (Aagaard et al, 2002; Mikkola et al., 2011). When maximal 
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strength training is utilized, with emphasis on neural adaptations, improves in strength, 

particularly RFD, and improves aerobic endurance by improved work economy are also 

experienced (Hoff et al., 2001). This implies that as RFD improves so will aspects of movement 

economy that will benefit the endurance component of sports like distance running, distance 

cycling, and triathlon. Aagaard et al., (2010) found a 12-20% increase in max muscle strength 

and RFD in response to a 16-week concurrent strength endurance program in top-level cyclists. 

Støren et al., (2008) examined well-trained distance runners over an 8-week intervention 

concluding that RE and increased time to exhaustion were improved with the inclusion of RT 

concurrently with their run training. RFD in the half squat improved from 466.7 ± 163.2 to 588.0 

± 147.9 (33.2%). 

Practical Application 

This study might provide insight into the structuring and implementation of phase 

potentiation. When developing a RT program alongside an endurance program, it is essential to 

focus on specific aspects during different points in time but allowing what was previously 

conditioned to build the foundation for future adaptations. This study examines the potential 

changes in performance indicators that are attributed to RT. Therefore, a phase potentiated 

approach to RT can provide enhanced RFD and JH when appropriate intensities are utilized and 

progressions are implemented. Athletes who have a young training age relative to RT will take 

time to effectively apply intent tot their lifting sessions and use 100% efforts during testing 

sessions. Sport specific sessions need to also be coordinated in an effective manner to allow for 

adequate rest leading up to the RT session. There will often be time constrains between the 

athlete’s academic, social, and sport specific training so appropriately scheduling a RT session 

amongst other obligations can be a challenge depending on the level you are competing at. 
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Coaches may consider applying this approach to their RT to maximize their athletes’ 

performances leading into championship events or competitions of great importance. 
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Chapter 4. Summary and Future Investigations 

The purpose of this study is to determine the effectiveness of an in-season RT program 

on improving measures of strength in female collegiate triathletes. To the author’s knowledge, 

this is the only study that has investigated a phase potentiated approach to RT for triathletes. The 

results from this study yielded no statistical significance (p<0.0083) despite minor improvements 

to many of the tested variables. Testing occurred seven weeks apart, which is often around the 

time for neuromuscular changes to take place but not necessarily any physiological adaptations. 

The results of this study expand upon the findings of previous studies by providing a complete 

description of the training of sport-specific and RT volume as well as RT intensity and exercise 

leading up to data collection and through the conclusion of collection. 

Where there were no significant improvements across the average of the athletes, it is still 

worthwhile to examine individual results. Since triathlon is an individual sport, athletes will have 

specific foci to improve in a particular discipline or overall in the execution of a race. So 

examining changes in variables for each individual is an important step towards making specific 

decisions to improve the performance of each athlete. Factors such as JH, RFD, and PF are 

important to examine when relating them to the economy of movement for cycling and running 

and will be attributed more to RT instead of any of the discipline-specific conditioning they are 

participating in. 

When examining results from a phase potentiated program, it is beneficial to obtain 

measurements of that program's effectiveness before the intervention, during the intervention, 

and after the intervention. Due to restraints of an academic schedule and COVID-19 pandemic, 

no monitoring occurred before the athlete's first block of RT, and follow-up monitoring sessions 

were unable to be conducted past mid-March. This study began collecting data 6 weeks into the 
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athletes' RT program. Collecting monitoring data before the intervention of any program is a 

recommended means of establishing a baseline. 

While the duration of data collection was shortened, it reemphasized the window of time 

it takes for adaptations to take place. Future studies dealing with the effects of phase potentiation 

should examine variables at the end of each block when the down week occurs. This allows for 

consistent monitoring of changes attributed to RT as well as sport-specific adaptations if 

additional monitoring tests are selected. It is always important to keep in mind the window of 

adaptations since neural, tendon, cardiovascular, and muscular adaptations all occur at varying 

rates (especially at different stages of human development), with neural adaptations occurring 

first which influence movement patterns. 

Additionally, this study was conducted with a group of athletes who had just begun their 

athlete monitoring program. Familiarizing participants in an athlete monitoring program with the 

tests that are being conducted is an effective way for acquiring reliable results and comparing 

future results. 
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