
East Tennessee State University East Tennessee State University 

Digital Commons @ East Digital Commons @ East 

Tennessee State University Tennessee State University 

Electronic Theses and Dissertations Student Works 

8-2021 

Partially Oriented 6-star Decomposition of Some Complete Mixed Partially Oriented 6-star Decomposition of Some Complete Mixed 

Graphs Graphs 

Kazeem A. Kosebinu 
East Tennessee State University 

Follow this and additional works at: https://dc.etsu.edu/etd 

 Part of the Discrete Mathematics and Combinatorics Commons 

Recommended Citation Recommended Citation 
Kosebinu, Kazeem A., "Partially Oriented 6-star Decomposition of Some Complete Mixed Graphs" (2021). 
Electronic Theses and Dissertations. Paper 3943. https://dc.etsu.edu/etd/3943 

This Thesis - unrestricted is brought to you for free and open access by the Student Works at Digital Commons @ 
East Tennessee State University. It has been accepted for inclusion in Electronic Theses and Dissertations by an 
authorized administrator of Digital Commons @ East Tennessee State University. For more information, please 
contact digilib@etsu.edu. 

https://dc.etsu.edu/
https://dc.etsu.edu/
https://dc.etsu.edu/etd
https://dc.etsu.edu/student-works
https://dc.etsu.edu/etd?utm_source=dc.etsu.edu%2Fetd%2F3943&utm_medium=PDF&utm_campaign=PDFCoverPages
https://network.bepress.com/hgg/discipline/178?utm_source=dc.etsu.edu%2Fetd%2F3943&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:digilib@etsu.edu


Partially Oriented 6-star Decomposition of Some Complete Mixed Graphs

A thesis

presented to

the faculty of the Department of Mathematics

East Tennessee State University

In partial fulfillment

of the requirements for the degree

Master of Science in Mathematical Sciences

by

Kazeem Adeyinka Kosebinu

August 2021

Robert Gardner, Ph.D., Chair

Robert A. Beeler, Ph.D.

Rodney Keaton, Ph.D.

Keywords: graph decomposition, mixed graph, orientation of stars, bipartite mixed

graph, mixed graph with a hole.



ABSTRACT

Partially Oriented 6-star Decomposition of Some Complete Mixed Graphs

by

Kazeem Adeyinka Kosebinu

Let Mv denotes a complete mixed graph on v vertices, and let Si
6 denotes the partial

orientation of the 6-star with twice as many arcs as edges. In this work, we state and

prove the necessary and sufficient conditions for the existence of λ-fold decomposition

of a complete mixed graph into Si
6 for i ∈ {1, 2, 3, 4}. We used the difference method

for our proof in some cases. We also give some general sufficient conditions for

the existence of Si
6-decomposition of the complete bipartite mixed graph for i ∈

{1, 2, 3, 4}. Finally, this work introduces the decomposition of a complete mixed

graph with a hole into mixed stars.
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1 INTRODUCTION AND BASIC DEFINITIONS

Graph decompositions rank among the most prominent areas of graph theory and

combinatorics. Results on graph decompositions can be applied in coding theory, de-

sign of experiments, X-ray crystallography, radioastronomy, radiolocation, computer

and communication networks, serology, and other fields [4].

We give a fairly comprehensive list of definitions for a better understanding of this

thesis and we follow the definitions and notations of [3].

A graph G is an ordered pair (V (G), E(G)) consisting of a set V (G) of vertices

and a set E(G), disjoint from V (G), of edges, together with an incidence function

that associates with each edge of G an unordered pair of vertices of G. The graph

G is directed (undirected) if all its edges are directed (undirected). A digraph D is a

graph with directed edges called arc.

A mixed graph M on v vertices is an ordered triple (V (M), E(M), A(M)) where

|V (M)| = v, E(M) is a set of unordered [x, y] pairs of elements of V (M), and A(M)

is a set of ordered pairs (x, y) of elements of V (M). The ordered pair (x, y) is called

an arc and the unordered pair [x, y] is called an edge.

The complete mixed graph on v vertices denoted by Mv is the mixed graph in

which for every two distinct vertices x and y, the arc set contains (x, y), (y, x) and

the edge sets contains [x, y].

The degree of a vertex u of G, denoted by deg(u) is the number of edges incident

to u in G. In a mixed graph, the outdegree of a vertex u of G, denoted by od(u), is

the number of arcs emanating from u. The indegree, denoted by id(u), is the number

of arcs terminating at u. The total degree of a vertex u in a mixed graph Mv is the

9



summation: od(u) + id(u) + deg(u).

A graph G is bipartite if its vertex set can be partitioned into subsets X and Y

such that every edge in G has one end in X and the other end in Y . That is if

V (G) = X ∪ Y and [x, y] ∈ E(G) then x ∈ X and y ∈ Y , X 6= ∅, Y 6= ∅ and

X ∩ Y = ∅. A bipartite graph G with bipartition (X, Y ) denoted G[X, Y ] is called

a complete bipartite graph if G[X, Y ] is simple and every vertex in X is adjacent to

every vertex in Y .

Figure 1: A complete bipartite graph

The mixed graph with vertex set V such that for every pair of distinct vertices

x ∈ X and y ∈ Y , where V = X ∪ Y , the set of arcs contains (x, y) and (y, x), and

the set of edges contains [x, y] is called a complete bipartite mixed graph, Figure 2.

10



Figure 2: A complete bipartite mixed graph

For each natural number λ, the λ-fold complete mixed graph on V-vertices, denoted

by λMv, is the mixed multigraph where, for each pair of distinct vertices v1 and v2 in

G, we have λ copies of (v1, v2), (v2, v1) and [v1, v2].

The complete mixed graph on v vertices with a hole of size w is the graph with

the vertex set V (Mv,w) = Vv−w ∪ Vw where |Vv−w| = v − w and |Vw| = w, edge

set E(Mv,w) = {[a, b] such that a, b ∈ V (Mv,w), {a, b} * Vw} and arc set A(Mv,w) =

{(a, b), (b, a) such that a, b ∈ V (Mv,w),{a,b}/∈ Vw}. For a graph G, replacing each edge

[v1v2] ∈ E(G) with either (v1, v2), (v2, v1) or [v1, v2] is known as partial orientation of

G.

A decomposition of a graph G is a family F of edge-disjoint subgraphs of G such

that ∪F∈FE(F) = E(G). Given that E(G) is the edge set of G and V (G) is the

vertex set of G, then a decomposition of a simple graph G into isomorphic copies

11



of a graph H is a set {H1, H2, ..., Hn} where Hi
∼= H and V (Hi) ⊂ V (G) for all

i, E(Hi) ∩ E(Hi) = ∅ for i 6= j and ∪ni=1E(Hi) = E(G), where H ′is are the blocks

consisting of the subgraphs. Similarly, a decomposition of a digraph D is a family

F of arc-disjoint subgraph of D such that ∪F∈FA(F) = A(G). Given that A(G) is

the arc set of D and V (D) is the vertex set of D, then a decomposition of a simple

digraph into isomorphic copies of a graph H is a set {H1, H2, . . . , Hn} where Hi
∼= g

and V (Hi) ⊂ V (D) for all i, A(Hi) ∩ A(Hi) = ∅ for i 6= j and ∪ni=1A(Hi) = A(D),

where H ′is are the blocks consisting of the subgraphs. That is, a subgraph in a

decomposition is called block.

A Steiner triple system of order n is an isomorphic decomposition of a complete

graph G = Kn into family F of subgraphs of G such that each F ∈ F is isomorphic

to a 3-cycle [12].

For example, an isomorphic decomposition of K7 into 3-cycles is given in Figure

3.

An m-star is a complete bipartite graph K1,m. So a decomposition of a graph into

stars is a way of expressing the graph as the union of edge-disjoint stars.

Pauline Cain [7] showed that the complete graphs on rm and rm + 1 vertices,

r > 1, can be decomposed into stars with m edges if and only if r is even or m is odd.

An (s, t)-directed star (Figure 4) is a directed graph with s + t + 1 vertices and

(s + t) arcs; s vertices have indegree 0 and outdegree 1, t vertices have indegree 1

and outdegree 0, and one has indegree s and outdegree t. So an (s, t)-directed star

decomposition is a partition of the arcs of a complete directed graph of order n into

(s, t) directed stars.
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Figure 3: A decomposition of K7 into 3-cycles

C.J. Colbourn [9] established the necessary and sufficient conditions on s, t, and

n for an (s, t)-directed decomposition of the complete graph of order n to exist.

Robert Gardner [12] first addressed the decomposition of complete mixed graphs

in the mixed triple systems setting where the necessary and sufficient conditions for

the existence of some new triple systems were given. That is, a Ti-triple system

(Figure 5) of order v exists for i = 1, 2, 3 if and only if v ≡ 1 (mod 2), except for

i = 3 and v = 3, 5.

Robert Beeler and Adam Meadows [2] gave necessary and sufficient conditions for

a decomposition of the λ-fold complete mixed graph into partial orientations of P4

and S3, where P4 is the path on four vertices and S3 is the star on four vertices.

The necessary and sufficient conditions for isomorphic decompositions of the com-

plete mixed graph into mixed stars on 7 vertices was given by Chancé Culver and

Robert Gardner [10]; that is, the decomposition of Mv into copies of partial orienta-

13



Figure 4: A (1,3)-directed star

tions of 6 stars which have two edges and four arcs. See Figure 6.

The following result was given in [10]:

Theorem 1.1 An Si
6-decomposition of Mv exists if and only if v ≥ 9 and

1. if i ∈ {0, 4}, then v ≡ 1 (mod 4), v ≥ 9 and

2. if i ∈ {1, 2, 3}, then v ≡ 0 or 1 (mod 4), v ≥ 9 .

We are inspired by the above results to study the λ-fold decomposition of the

complete mixed graphs into mixed stars. Combined with Theorem 1.1, we give the

necessary and sufficient conditions for such decompositions. We also explore the

decomposition of complete bipartite mixed graphs into mixed stars and also the de-

14



Figure 5: Mixed triples.

composition of Mv,h, complete mixed graph with v vertices and a hole of size h into

mixed stars.

A complete mixed graph (and a λ-fold complete mixed graph) has twice as many

arcs as edges. So any isomorphic decomposition of a complete mixed graph (or a

complete λ-fold mixed graph) must involve a graph with twice as many arcs as edges.

Figure 6 shows the partial orientations of the 6-star which has two edges and four

arcs where the two edges are [a, b] and [a, c] and the arcs are (ad), (ag), (af) and (ae).

Vertex a is the center vertex. We use the same notation Si
6 as used in [10] for each

orientation where i is the indegree and 4 − i is the outdegree. So a S2
6 mixed graph

is a star with the center having edge degree 2, indegree 2, and outdegree 2.

We shall explore the difference method in some cases to show that all the arc and

edge differences are present and we also show that all vertex labels are distinct. We

also give some general sufficient conditions for the existence of Si
6-decomposition of

the complete bipartite mixed graph for i = {1, 2, 3, 4} and then conclude this work

15



Figure 6: Partial orientations of 6-stars with two edges and four arcs

with an introduction of Si
6-decompositions of a complete mixed graph with a hole.

16



2 λ-FOLD DECOMPOSITION OF COMPLETE MIXED GRAPH INTO MIXED

STARS

2.1 Introduction

There are five partial orientations of 6-stars as shown in the Figure 6, which have

two edges and four arcs. These are considered because there are twice as many arcs

as edges in a complete mixed graph. The Si
6 block with vertex set {a, b, c, d, e, f, g}

will be denoted by [a, b, c; d, e, f, g]i6, as illustrated in Figure 6. The center of the star

has indegree i and outdegree 4 − i. So an S1
6 is a star with the center having edge

degree 2, indegree 1, and outdegree 3.

There are many results concerning the necessary and sufficient conditions for the

existence of the decomposition of a graph into isomorphic subgraphs [4, 11]. In the

case of this thesis, the necessary and sufficient conditions for the decomposition of

a complete mixed graph into partial orientations of 6-stars were given for λ = 1 in

[10]. We shall explore the use of the difference method in the construction of the

decomposition of mixed graph into mixed stars in certain cases.

Consider a simple complete graph. Suppose we want to decompose Kn into

Kn = C3, that is, we want a collection of copies of K3 which are edge disjoint

and union to give Kn. For example, a K3-decomposition of K7 with the vertex set

{0, 1, 2, 3, 4, 5, 6} is given by: [0, 1, 3], [1, 2, 4], [2, 3, 5], [3, 4, 6], [4, 5, 0], [5, 6, 1], [6, 0, 2]

(see Figure 3). With the edge (0, 1), we associate the difference 1− 0 = 1, with edge

(1, 3), we associate the difference 3−1 = 2, and with the edge (0, 3), we associate the

difference 3− 0 = 3. In general, the difference associated with the edge (x, y) in Kn

17



with vertex set {0, 1, 2, ..., n− 1} is |x− y|n = min{(x− y) (mod n), (y − x)(mod n)

}. The set of differences for edges of Kn is {1, 2, ..., bn/2c}. Note that in a complete

directed graph on n vertices labeled (0, 1, 2, ..., n− 1), we associate with arc (a, b) the

difference (b − a)(mod n). The set of arc differences is {1, 2, ..., n − 1}. Under the

permutation π : V → V defined as π(i) = i + 1 (mod n), all the edges (arcs) with a

given difference are in the same orbit.

We now give the necessary and sufficient conditions for the existence of a λ-fold

decomposition of the complete mixed graph into mixed stars. In each case, we give a

direct construction to establish sufficiency.

2.2 Necessary Conditions Lemmas

An Si
6-decomposition of Mv does not exist when v ≡ 3 (mod 4), for i ∈ {1, 2, 3}

and also, a Si
6-decomposition of M8 for i ∈ {1, 2, 3} does not exist [10]

In this subsection, we give some necessary conditions for the existence of the

decomposition of a λ-fold complete graph into various mixed stars.

Lemma 2.1 For λ odd, if an Si
6-decomposition of λMv exists then v ≡ 0 or 1 (mod

4).

Proof. We show that if v ≡ 2 or 3 (mod 4) and λ is odd, then an Si
6-decomposition

of λMv does not exist.

Let v ≡ 2 (mod 4), say v = 4k + 2. Then λMv has

λ

(
v

2

)
= λ

v(v − 1)

2
= λ

(4k + 2)(4k + 1)

2
= λ(2k + 1)(4k + 1)

18



edges. But then λMv has an odd number of edges and Si
6 has 2 edges, so no Si

6-

decomposition of λMv exists.

Let v ≡ 3 (mod 4), say v = 4k + 3. Then λMv has

λ

(
v

2

)
= λ

v(v − 1)

2
= λ

(4k + 3)(4k + 2)

2
= λ(4k + 3)(2k + 1)

edges. But then λMv has an odd number of edges and Si
6 has 2 edges, so no Si

6-

decomposition of λMv exists. �

Lemma 2.2 If an S0
6-decomposition of λMv exists, then λ(v − 1) ≡ 0 (mod 4).

Proof. Each vertex of λMv has out-degree λ(v − 1) and each vertex of S0
6 has out-

degree 0 (mod 4). So if an S0
6 -decomposition of λMv exists, then we must have

λ(v − 1) ≡ 0 (mod 4), as claimed. �

2.3 An S0
6 -Decomposition of λMv

In this subsection, we give the necessary and sufficient conditions for an S0
6 -

decomposition of λMv. We verify the result using the difference method and then

conclude the subsection with an example.

Lemma 2.3 An S0
6-decomposition of λMv, where λ = 4, exists for v ≥ 8.

Proof. Let v = 4k where k ≥ 2. Let (λMv) = {0, 1, 2, . . . v−1}. Consider the blocks:

{2× [0, 2k − 2, 2k − 1; 2k, 4k − 3, 4k − 2, 4k − 1]06, 2× [0, 2k + 1, 4k − 1; 1, 2, 3, 2k]06}

∪{[0, 4k− 1, 2k; 1, 2, 4k− 3, 4k− 2]06, [0, 2k+ 2, 2k; 1, 2, 3, 4k− 1]06, [0, 1, 2k− 2; 3, 4k−

3, 4k−2, 4k−1]06} ∪{4× [0, 2+2i, 3+2i; 4+2i, 5+2i, 2k+1+2i, 2k+2+2i]06 for i =

19



0, 1, . . . , k−3}. These stars along with their images under the permutation π : V → V

defined as π(i) = i+ 1 (mod v), form an S0
6 -decomposition of λMv where λ = 4 and

v ≥ 6, as claimed. �

Lemma 2.4 An S0
6-decomposition of λMv, where λ = 4, exists for v ≡ 2 (mod 4)

and v ≥ 8.

Proof. Let v = 4k + 2 where k ≥ 1. Let (λMv) = {0, 1, 2, . . . v − 1}, consider the

blocks:

{2× [0, 1, 2k − 2; 4k − 2, 4k − 1, 4k, 4k + 1]06, 2× [0, 2k − 1, 2k + 2; 1, 2, 4, 2k + 1]06}

∪{[0, 1, 2k + 3; 2, 3, 4k, 4k + 1]06, [0, 2k − 2, 2k; 3, 2k + 1, 4k − 2, 4k]06,

[0, 2k + 1, 2k + 3; 1, 2, 3, 4k − 2]06, [0, 1, 2k − 2; 3, 4, 2k + 1, 4k − 1]06,

[0, 2k + 1, 2k + 2; 1, 4, 4k − 1, 4k + 1]06}

∪{4× [0, 2 + 2i, 3 + 2i; 5 + 2i, 6 + 2i, 2k + 2 + 2i, 2k + 3 + 2i]06 for i = 0, 1, . . . , k− 3}.

These stars along with their images under the permutation π : V → V defined as

π(i) = i + 1 (mod v), form an S0
6 -decomposition of λMv where λ = 2 and v ≥ 6, as

claimed. �

Lemma 2.5 A S0
6-decomposition of λMv exists for v ≡ 3 (mod 4) for λ = 2.

Proof. Let v = 4k + 3 where k ≥ 1 and λ = 2. Let (λMv) = {0, 1, 2, . . . v − 1},

consider the blocks:

B = [0, 4k + 2, 4k + 1; 1, 2, 3, 4]06,
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[0, 2k + 1, 2k + 2; 1, 2, 4k + 1, 4k + 2]06,

[0, 1 + 2j, 2 + 2j; 3 + 4j, 4 + 4j, 5 + 4j, 6 + 4j]06, j = 0, 1, 2, ..., k − 1,

[0, 3 + 2j, 4 + 2j; 5 + 4j, 6 + 4j, 7 + 4j, 8 + 4j]06, j = 0, 1, 2, ..., k − 2.

These stars along with their images under the permutation π : V → V defined as

π(i) = i + 1 (mod v), form an S0
6 -decomposition of λMv where λ = 2 and v ≥ 6, as

claimed. �

Theorem 2.6 An S0
6-decomposition of λMv exists if and only if v ≥ 7 and

1. v ≡ 0 (mod 2) and λ ≡ 0 (mod 4), or

2. v ≡ 1 (mod 4) and λ ≥ 1, or

3. v ≡ 3 (mod 4) and λ ≡ 0 (mod 2).

Proof. For v ≡ 0 (mod 2), we have v − 1 is odd and by Lemma 2.2 a necessary

condition for an S0
6 -decomposition of λMv is λ(v−1) ≡ 0 (mod 4). So for v ≡ 0 (mod

2), λ = 0 (mod 4) is necessary. For v ≡ 3 (mod 4), we have v − 1 ≡ 2 (mod 4) and

by Lemma 2.2 a necessary condition for an S0
6 -decomposition of λMv is λ(v − 1) ≡ 0

(mod 4). So for v ≡ 3 (mod 4), λ = 0 (mod 2) is necessary.

For sufficiency, when v ≡ 0 (mod 4) and λ = 4, an S0
6 -decomposition of 4Mv

exists by Lemma 2.3. So when λ ≡ 0 (mod 4), by taking λ/4 copies of the blocks

of such a decomposition gives a decomposition of λMv. When v ≡ 1 (mod 4), an

S0
6 -decomposition of Mv exists by [10]. So when λ ≥ 1, taking λ copies of the blocks

of such a decomposition gives a decomposition of λMv. When v ≡ 2 (mod 4) and

λ = 4, an S0
6 -decomposition of 4Mv exists by Lemma 2.4. So when λ ≡ 0 (mod
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4), taking λ/4 copies of the blocks of such a decomposition gives a decomposition

of λMv. When v ≡ 3 (mod 4) and λ = 2, an S0
6 -decomposition of 2Mv exists by

Lemma 2.5. So when λ ≡ 0 (mod 2), taking λ/2 copies of such a decomposition gives

a decomposition of λMv. �

Notice that the converse of S0
6 , obtained by reversing the orientation of all the arcs,

is S4
6 . Since Mv is self converse, Theorem 2.6 also gives the necessary and sufficient

conditions for an S4
6 -decomposition of λMv where λ = 2.

Theorem 2.7 An S4
6-decomposition of λMv exists if and only if v ≥ 7 and

1. v ≡ 0 (mod 2) and λ ≡ 0 (mod 4), or

2. v ≡ 1 (mod 4) and λ ≥ 1, or

3. v ≡ 3 (mod 4) and λ ≡ 0 (mod 2).

2.3.1 Verification and Example

We use the difference method in the previous section in details to show how we

came about Lemma 2.5 and then check that all the edges and arcs are repeated twice.

For v = 4k+ 3 in terms of k, we have 2k+ 1 blocks. Recall that, the set of differences

for edges of Kn is {1, 2, . . . , bn/2c} and the set of arc differences is {1, 2, ..., n−1}. So

for v = 4k + 3 and λ = 2 we have the following multisets of edge and arc differences:

Edge differences: {1, 2, . . . , 2k + 1} (×2)

Arc differences: {1, 2, . . . , 4k + 2 }(×2).

Now we check if all the edges and arcs are repeated twice (Table 1).
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Table 1: The Edge and Arc Differences of Lemma 2.5

Blocks Edge differences Arc Differences

[0, 4k + 2, 4k + 1; 1, 2, 3, 4]06 1, 2 1, 2, 3, 4
[0, 2k + 1, 2k + 2; 1, 2, 4k + 1, 4k + 2]06 2k + 1, 2k + 1 1, 2, 4k + 1, 4k + 2

[0, 1 + 2j, 2 + 2j; 3 + 4j, 4 + 4j, 1 + 2j : 1, 3, 5, 7, . . . , 2k − 1 3 + 4j : 3, 7, 11, 15, . . . , 4k − 1
5 + 4j 6 + 4j]06,j = 0, 1, 2, ..., k − 1 2 + 2j : 2, 4, 6, 8, . . . , 2k 4 + 4j : 4, 8, 12, 16, . . . , 4k

5 + 4j : 5, 9, 13, 17, . . . , 4k + 1
6 + 4j : 6, 10, 14, 18, . . . , 4k + 2

[0, 3 + 2j, 4 + 2j; 5 + 4j, 6 + 4j, 3 + 2j : 3, 5, 7, 9, . . . , 2k − 1 5 + 4j : 5, 9, 13, 17, . . . , 4k − 3
7 + 4j, 8 + 4j]06, j = 0, 1, 2, ..., k − 2 4 + 2j : 4, 6, 8, 10, . . . , 2k 6 + 4j : 6, 10, 14, 18, . . . , 4k − 2

7 + 4j : 7, 11, 15, 19, . . . , 4k − 1
8 + 4j : 8, 12, 16, 20, . . . , 4k

Since the arc and edge differences are repeated twice, then the permutation π(i) = i+1

(mod v) produces all stars in the decomposition.

For verification purposes, consider for example, v = 11 and λ = 2. We have:

Edge differences:{1, 2, 3, 4, 5 }×2

Arc differences: {1, 2, 3, 4, 5, 6, 7, 8, 9, 10} ×2.

We obtain the following blocks: [0, 10, 9; 1, 2, 3, 4]06, [0, 5, 6; 1, 2, 9, 10]06, [0, 1, 2; 3, 4, 5, 6]06,

[0, 3, 4; 7, 8, 9, 10]06, [0, 3, 4; 5, 6, 7, 8]06. The arc and edge differences generated by these

blocks are shown in Table 2.

Table 2: The Edge and Arc Differences for an S0
6 -decomposition of 2M11

Blocks Edge differences Arc Differences

[0, 10, 9; 1, 2, 3, 4]06 1, 2 1, 2, 3, 4
[0, 5, 6; 1, 2, 9, 10]06 5, 5 1, 2, 9, 10
[0, 1, 2; 3, 4, 5, 6]06 1, 2 3, 4, 5, 6
[0, 3, 4; 7, 8, 9, 10]06 3, 4 7, 8, 9, 10
[0, 3, 4; 5, 6, 7, 8]06 3, 4 5, 6, 7, 8

23



When put together, it can be seen that all the edge and arc differences {1, 2, 3, 4, 5}

(×2) and {1, 2, 3, 4, 5, 6, 7, 8, 9, 10} (×2) are repeated twice. Hence, the result.

2.4 An S1
6 -Decomposition of λMv

A S1
6 -decomposition of Mv exists if and only if v ≡ 0 or 1 (mod 4) and v ≥ 9 [10].

In this subsection, we give the necessary and sufficient conditions for the existence of

a S2
6 -decomposition of λMv, where λ = 2.

Lemma 2.8 An S1
6-decomposition of λMv exists for v ≡ 3 (mod 8) and λ = 2.

Proof. Let v = 8k + 3 and k ≥ 1. Let (λMv) = {0, 1, 2, . . . v − 1}, consider the

following set of blocks:

{2× [0, 8k+ 2− 2j, 8k+ 1− 2j; 8k− 1− 4j, 1 + 4j, 2 + 4j, 3 + 4j]16 | j = 0, 1, . . . , k− 1}

∪{[0, 6k + 2− 2j, 2k + 2 + 2j; 4k − 1− 4j, 4k + 1 + 4j, 4k + 2 + 4j, 4k + 3 + 4j]16

| j = 0, 1, . . . , k − 2, and j 6= k/3 if k ≡ 0 (mod 3)}

∪{[0, 8k/3 + 1, 8k/3 + 2; 8k/3− 1, 16k/3 + 1, 16k/3 + 2, 16k/3 + 3]16

if k ≡ 0 (mod 3) and j = k/3}.

∪{[0, 2k + 1 + 2j, 2k + 2 + 2j; 4k − 3− 4j, 4k + 3 + 4j, 4k + 4 + 4j, 4k + 5 + 4j]16

| j = 0, 1, . . . , k − 1, and j 6= (k − 2)/3 if k ≡ 2 (mod 3)}

∪{[0, (16k + 10)/3, (8k + 2)/3; (8k − 1)/3, (16k + 1)/3, (16k + 4)/3, (16k + 7)/3]16

if k ≡ 2 (mod 3) and j = (k − 2)/3}.
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∪{[0, 4k+ 1, 4k+ 2; 3, 8k− 3, 8k− 2, 8k− 1]16, [0, 4k− 1, 4k; 1, 4k+ 1, 4k+ 2, 8k+ 1]16}.

These stars along with their images under the permutation π : V → V defined as

π(i) = i + 1 (mod v), form an S1
6 -decomposition of λMv where λ = 2 and v ≥ 6, as

claimed. �

Lemma 2.9 A S1
6-decomposition of λMv exists for v ≡ 6 (mod 8), v ≥ 14 and λ = 2.

Proof. let v = 8k + 6 and k ≥ 1. Let (λMv) = {0, 1, 2, . . . v − 2,∞}. The required

decomposition is given by the set of blocks:

[0,∞, v− 2; v− 5, 1, 2, 3] ×2, [0, 2, 3;∞, 5, 6, 7] ×2, [0, 4, 5; v− 11, 8, 9,∞], [0, 5, 6; v−

11, 8, 12,∞], [0, 4, 6; v − 12, 9, 11, 12],

and

{[0, 7 + 4j, v− 8− 4j; 8 + 8j, 16 + 8j, 13 + 8j, 17 + 8j], [0, 8 + 4j, v− 9− 4j; 7 + 8j, 19 +

8j, 14 + 8j, 18 + 8j], [0, 9 + 4j, v − 10 − 4j; 6 + 8j, 15 + 8j, 18 + 8j, 19 + 8j], [0, 10 +

4j, v − 11− 4j; 1 + 8j, 16 + 8j, 17 + 8j, 20 + 8j]|j = 0, 1, 2, . . . , k − 2}.

These stars along with their images under the permutation π : V → V defined

as π(i) = i + 1 (mod v − 1) if i ∈ {0, 1, . . . v − 2}, and π(i) = ∞ if i = ∞, form an

S0
6 -decomposition of λMv where λ = 2 and v ≥ 14, as claimed. �

Lemma 2.10 A S1
6-decomposition of 2Mv exists for all v ≡ 3 (mod 4), with v ≥ 7

Proof. let v = 4k+3 and k ≥ 1. Let (λMv) = {0, 1, 2, . . . v−1}, consider the blocks:

{[0, 4k + 2, 4k + 1; 4, 1, 2, 3],

[0, 2k + 1, 2k + 2; 4k − 1, 2, 4k + 1, 4k + 2],
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[0, 1, 2; 4k, 4k + 2, 5, 6]}

∪{[0, 3 + 2j, 4 + 2j; 4k − 4− 4j, 8 + 4j, 9 + 4j, 10 + 4j] | j = 0, 1, . . . , k − 2,

j 6= (2k − 4)/3 when j ≡ 2 (mod 3)}, andj 6= (k − 3)/2 when j ≡ 1 (mod 2)}

∪{[0, 4k + 1

3
,
8k + 5

3
;
4k + 4

3
,
8k + 8

3
,
8k + 11

3
,
8k + 14

3
]

if j ≡ 2 (mod 3), and j = (2k − 4)/3}

∪{[0, k, k + 1; 2k, 2k + 2, 2k + 1, 2k + 4] if j ≡ 1 (mod 2), and j = (k − 3)/2}

∪{[0, 3 + 2j, 4 + 2j; 4k − 2− 4j, 6 + 4j, 7 + 4j, 8 + 4j] | j = 0, 1, . . . , k − 2,

and j 6= (2k − 3)/3 when j ≡ 0 (mod 3)}, andj 6= (k − 2)/2 when j ≡ 0 (mod 2)}

∪{[0, 4k + 3

3
,
8k + 3

3
;
4k + 6

3
,
8k + 6

3
,
8k + 9

3
,
8k + 12

3
]

if j ≡ 0 (mod 3), and j = (2k − 3)/3}

∪{[0, k + 1, k + 2; 2k, 2k + 2, 2k + 1, 2k + 4] if j ≡ 0 (mod 2), and j = (k − 2)/2}

This collection of stars along with their images under the permutation π(i) = i + 1

(mod v), form a S1
6 -decomposition of 2Mv where v = 4k + 3. �

Lemma 2.11 An S1
6-decomposition of 2Mv exists for all v ≡ 2 (mod 8), with v ≥ 26.

Proof. let v = 8k + 2 and k ≥ 3. Let (λMv) = {0, 1, 2, . . . v − 1}. The required

decomposition is given by the set of blocks:

{[0,∞, v−2; v−5, 1, 2, 3] ×2, [0, 2, 3;∞, 5, 6, 7] ×2, [0, 4, 5; v−11, 8, 9,∞], [0, 5, 6; v−

11, 8, 12,∞], [0, 4, 6; v − 12, 9, 11, 12], [0, 7, v − 8; v − 14, 13, 17, 21], [0, 8, v − 9; v −
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15, 14, 15, 22], [0, 9, v−10; v−19, 18, 19, 22], [0, 10, v−11; v−21, 17, 20, 24], [0, 11, v−

12, v − 17, 16, 21, 24], [0, 12, v − 13; v − 24, 15, 19, 23]}

and

{[0, 13+4j, v−14−4j; 7+8j, 31+8j, 26+8j, 30+8j], [0, 14+4j, v−15−4j; 8+8j, 28+

8j, 25 + 8j, 29 + 8j], [0, 15 + 4j, v − 16 − 4j; 1 + 8j, 28 + 8j, 29 + 8j, 32 + 8j], [0, 16 +

4j, v − 17− 4j; 6 + 8j, 27 + 8j, 30 + 8j, 31 + 8j]|j = 0, 1, 2, . . . , k − 4}.

These stars along with their images under the permutation π : V → V defined as

π(i) = i+ 1 (mod v), form an S1
6 -decomposition of λMv where λ = 4 and v ≥ 26, as

claimed. �

Theorem 2.12 An S1
6-decomposition of λMv exists if and only if

1. v ≡ 0 or 1 (mod 4) and λ ≥ 1, or

2. v ≡ 2 (mod 4) and λ ≡ 0 (mod 2), or

3. v ≡ 3 (mod 4) and λ ≡ 0 (mod 2).

Proof. For v = 2 or 3 (mod 4), we have v − 1 = 1 or 2 (mod 4). Since λMv has

an odd number of edges and S1
6 has 2 edges. Then by Lemma 2.1, λ = 0 (mod 2) is

necessary.

For sufficiency, when v ≡ 0 or 1 (mod 4), an S1
6 -decomposition of Mv exists by

[10]. So when λ ≥ 1, taking λ copies of the blocks of such a decomposition gives a

decomposition of λMv. When v ≡ 2 (mod 4) and λ = 2, an S1
6 -decomposition of 2Mv

exists by Lemma 2.9 and Lemma 2.11. So when λ ≡ 0 (mod 2), taking λ/2 copies of

the blocks of such a decomposition gives a decomposition of λMv. When v ≡ 3 (mod
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4) and λ = 2, an S1
6 -decomposition of 2Mv exists by Lemma 2.10. So when λ ≡ 0

(mod 2), taking λ/2 copies of such a decomposition gives a decomposition of λMv. �

The converse of S1
6 , obtained by reversing the orientation of all the arcs, is S3

6 .

Since Mv is self converse, Theorem 2.12 also gives the necessary and sufficient condi-

tions for S3
6 -decomposition of λMv where λ = 2.

Theorem 2.13 An S3
6-decomposition of λMv exists if and only if

1. v ≡ 0 or 1 (mod 4) and λ ≥ 1, or

2. v ≡ 2 (mod 4) and λ ≡ 0 (mod 2), or

3. v ≡ 3 (mod 4) and λ ≡ 0 (mod 2).

2.4.1 Verification and Example

We first show that all vertex labels are distinct in the Lemma 2.8. The blocks

{2× [0, 8k+ 2− 2j, 8k+ 1− 2j; 8k− 1− 4j, 1 + 4j, 2 + 4j, 3 + 4j]16 | j = 0, 1, . . . , k− 1}

generate the following vertex labels (vertex labels for a given value of index j are all

in the same column):

8k + 2− 2j : 8k + 2, 8k, . . . , 6k + 6, 6k + 4 even
8k + 1− 2j : 8k + 1, 8k − 1, . . . , 6k + 5, 6k + 3 odd
8k − 1− 4j : 8k − 1, 8k − 5, . . . , 4k + 7, 4k + 3 3 (mod 4)

1 + 4j : 1, 5, . . . , 4k − 7, 4k − 3 1 (mod 4)
2 + 4j : 2, 6, . . . , 4k − 6, 4k − 2 2 (mod 4)
3 + 4j : 3, 7, . . . , 4k − 5, 4k − 1 3 (mod 4)

The blocks

{[0, 6k + 2− 2j, 2k + 2 + 2j; 4k − 1− 4j, 4k + 1 + 4j, 4k + 2 + 4j, 4k + 3 + 4j]16
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| j = 0, 1, . . . , k − 2, and j 6= k/3 if k ≡ 0 (mod 3)}

∪{[0, 8k/3 + 1, 8k/3 + 2; 8k/3− 1, 16k/3 + 1, 16k/3 + 2, 16k/3 + 3]16

if k ≡ 0 (mod 3) and j = k/3}

generate the following vertex labels (vertex labels for a given value of index j are all

in the same column):

6k + 2− 2j : 6k + 2, 6k, . . . , 4k + 8, 4k + 6 even
2k + 2 + 2j : 2k + 2, 2k + 4, . . . , 4k − 4, 4k − 2 even
4k − 1− 4j : 4k − 1, 4k − 5, . . . , 11, 7 3 (mod 4)
4k + 1 + 4j : 4k + 1, 4k + 5, . . . , 8k − 11, 8k − 7 1 (mod 4)
4k + 2 + 4j : 4k + 2, 4k + 6, . . . , 8k − 10, 8k − 6 2 (mod 4)
4k + 3 + 4j : 4k + 3, 4k + 7, . . . , 8k − 9, 8k − 5 3 (mod 4)

Notice that we have a potential repetition of vertex labels in the two rows in blue. If

k ≡ 0 (mod 3) and j = k/3, then we have eliminated the block [0, 16k/3 + 2, 8k/3 +

2; 8k/3−1, 16k/3+1, 16k/3 + 2, 16k/3+3]16 that would arise in the first set (and which

repeats vertex labels), and replaced it with the block [0, 8k/3 + 1, 8k/3 + 2; 8k/3 −

1, 16k/3 + 1, 16k/3 + 2, 16k/3 + 3]16 (which covers the same differences as the omitted

block).

The blocks

{[0, 2k + 1 + 2j, 2k + 2 + 2j; 4k − 3− 4j, 4k + 3 + 4j, 4k + 4 + 4j, 4k + 5 + 4j]16

| j = 0, 1, . . . , k − 1, and j 6= (k − 2)/3 if k ≡ 2 (mod 3)}

∪{[0, (16k + 10)/3, (8k + 2)/3; (8k − 1)/3, (16k + 1)/3, (16k + 4)/3, (16k + 7)/3]16

if k ≡ 2 (mod 3) and j = (k − 2)/3}
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generate the following vertex labels (vertex labels for a given value of index j are all

in the same column):

2k + 1 + 2j : 2k + 1, 2k + 3, . . . , 4k − 3, 4k − 1 odd
2k + 2 + 2j : 2k + 2, 2k + 4, . . . , 4k − 2, 4k even
4k − 3− 4j : 4k − 3, 4k − 7, . . . , 5, 1 1 (mod 4)
4k + 3 + 4j : 4k + 3, 4k + 7, . . . , 8k − 5, 8k − 1 3 (mod 4)
4k + 4 + 4j : 4k + 4, 4k + 8, . . . , 8k − 4, 8k 0 (mod 4)
4k + 5 + 4j : 4k + 5, 4k + 9, . . . , 8k − 3, 8k + 1 1 (mod 4)

Notice that we have a potential repetition of vertex labels in the two rows in red. If k ≡

2 (mod 3) and j = (k− 2)/3, then we have eliminated the block [0, (8k − 1)/3, (8k+

2)/3; (8k − 1)/3, (16k+1)/3, (16k+4)/3, (16k+7)/3]16 that would arise in the first set

(and which repeats vertex labels), and replaced it with the block [0, (16k+10)/3, (8k+

2)/3; (8k− 1)/3, (16k+ 1)/3, (16k+ 4)/3, (16k+ 7)/3]16 (which covers the same differ-

ences as the omitted block).

Of course, the individual blocks [0, 4k + 1, 4k + 2; 3, 8k − 3, 8k − 2, 8k − 1]16 and

[0, 4k − 1, 4k; 1, 4k + 1, 4k + 2, 8k + 1]16 have distinct vertices. Therefore, all vertex

labels are distinct.

We next show that all differences are present. The blocks

{2× [0, 8k + 2− 2j, 8k + 1− 2j; 8k − 1− 4j, 1 + 4j, 2 + 4j, 3 + 4j]16

| j = 0, 1, . . . , k − 1}

generate the following edge differences and arc differences:

2× 1 + 2j : 1, 3, . . . , 2k − 1 odd

2× 2 + 2j : 2, 4, . . . , 2k even

2× 4 + 4j : 4, 8, . . . , 4k 0 (mod 4)

2× 1 + 4j : 1, 5, . . . , 4k − 3 1 (mod 4)
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2× 2 + 4j : 2, 6, . . . , 4k − 2 2 (mod 4)

2× 3 + 4j : 3, 7, . . . , 4k − 1 3 (mod 4).

The blocks

{[0, 6k + 2− 2j, 2k + 2 + 2j; 4k − 1− 4j, 4k + 1 + 4j, 4k + 2 + 4j, 4k + 3 + 4j]16

| j = 0, 1, . . . , k − 2, and j 6= k/3 if k ≡ 0 (mod 3)}

∪{[0, 8k/3 + 1, 8k/3 + 2; 8k/3− 1, 16k/3 + 1, 16k/3 + 2, 16k/3 + 3]16

if k ≡ 0 (mod 3) and j = k/3}

generate the following edge differences and arc differences:

2k + 1 + 2j : 2k + 1, 2k + 3, . . . , 4k − 3 odd

2k + 2 + 2j : 2k + 2, 2k + 4, . . . , 4k − 2 even

4k + 4 + 4j : 4k + 4, 4k + 8, . . . , 8k − 4 0 (mod 4)

4k + 1 + 4j : 4k + 1, 4k + 5, . . . , 8k − 7 1 (mod 4)

4k + 2 + 4j : 4k + 2, 4k + 6, . . . , 8k − 6 2 (mod 4)

4k + 3 + 4j : 4k + 3, 4k + 7, . . . , 8k − 5 3 (mod 4).

The blocks

{[0, 2k + 1 + 2j, 2k + 2 + 2j; 4k − 3− 4j, 4k + 3 + 4j, 4k + 4 + 4j, 4k + 5 + 4j]16

| j = 0, 1, . . . , k − 1, and j 6= (k − 2)/3 if k ≡ 2 (mod 3)}

∪{[0, (16k + 10)/3, (8k + 2)/3; (8k − 1)/3, (16k + 1)/3, (16k + 4)/3, (16k + 7)/3]16

if k ≡ 2 (mod 3) and j = (k − 2)/3}
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generate the following edge differences and arc differences:

2k + 1 + 2j : 2k + 1, 2k + 3, . . . , 4k − 1 odd

2k + 2 + 2j : 2k + 2, 2k + 4, . . . , 4k even

4k + 6 + 4j : 4k + 6, 4k + 10, . . . , 8k + 2 2 (mod 4)

4k + 3 + 4j : 4k + 3, 4k + 7, . . . , 8k − 1 3 (mod 4)

4k + 4 + 4j : 4k + 4, 4k + 8, . . . , 8k 0 (mod 4)

4k + 5 + 4j : 4k + 5, 4k + 9, . . . , 8k + 1 1 (mod 4).

The blocks

{[0, 4k + 1, 4k + 2; 3, 8k − 3, 8k − 2, 8k − 1]16, [0, 4k − 1, 4k; 1, 4k + 1, 4k + 2, 8k + 1]16}.

generate the following edge differences and arc differences:

4k + 1, 4k + 1

8k, 8k − 3k, 8k − 2k, 8k − 1 and

4k − 1, 4k

8k + 2, 4k + 1, 4k + 2, 8k + 1

Therefore all differences are present.

Next, we verify Lemma 2.9 using the difference method with example. Let v =

8k+ 6 and k ≥ 1,and λ = 2. We have ∞ and cycle of length v = 8k+ 5. So, we have

the following multisets of edge and arc differences:

Edge differences: {1, 2, 3, 4, . . . , 4k, 4k + 1, 4k + 2} ×2

Arc differences: {1, 2, 3, 4, . . . , 8k + 2, 8k + 3, 8k + 4} ×2.

All the edge and arc differences are repeated twice in Table 3.

For verification purposes, consider for example, k = 2, v = 22, and λ = 2 (Table
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Table 3: The Edge and Arc Differences of Lemma 2.9

Blocks Edge differences Arc Differences

[0,∞, v − 2; v − 5, 1, 2, 3] ×2 ∞, 1 ×2 4, 1, 2, 3 ×2
[0, 2, 3;∞, 5, 6, 7] ×2 2, 3 ×2 ∞, 5, 6, 7 ×2

[0, 4, 5; v − 11, 8, 9,∞] 4, 5 10, 8, 9,∞
[0, 5, 6; v − 11, 8, 12,∞] 5, 6 10, 8, 12,∞
[0, 4, 6; v − 12, 9, 11, 12] 4, 6 11, 9, 11, 12

[0, 7 + 4j, v − 8− 4j; 8 + 8j, 16 + 8j, 7 + 4j : 7, 11, 15, . . . , 4k − 1 8k − 3− 8j : 8k − 3, 8k − 11,
13 + 8j, 17 + 8j], j = 0, 1, 2, ..., k − 2 8k − 2− 4j : 8k − 2, 8k − 6, . . . , 4k + 6 8k − 19, . . . , 29, 21, 13

=⇒ 7, 11, 15, . . . , 4k − 1 16 + 8j : 16, 24, 32, . . . , 8k
13 + 8j : 13, 21, 29, . . . , 8k − 3
17 + 8j : 17, 25, 33, . . . , 8k + 1

[0, 8 + 4j, v − 9− 4j; 7 + 8j, 19 + 8j, 8 + 4j : 8, 12, 16, . . . , 4k 8k − 2− 8j : 8k − 2, 8k − 10,
14 + 8j, 18 + 8j], j = 0, 1, 2, ..., k − 2 8k − 3− 4j : 8k − 3, 8k − 7, . . . , 4k + 5 8k − 18, . . . , 30, 22, 14

=⇒ 8, 12, 16, . . . , 4k 19 + 8j : 19, 27, . . . , 8k − 5, 8k + 3
14 + 8j : 14, 22, . . . , 8k − 10, 8k − 2
18 + 8j : 18, 26, . . . , 8k − 6, 8k + 2

[0, 9 + 4j, v − 10− 4j; 6 + 8j, 15 + 8j, 9 + 4j : 9, 13, 17, . . . , 4k + 1 8k − 1− 8j : 8k − 1, 8k − 9,
18 + 8j, 19 + 8j],j = 0, 1, 2, ..., k − 2 8k − 4− 4j : 8k − 4, 8k − 8, . . . , 4k + 4 8k − 17, . . . , 31, 23, 15

=⇒ 9, 13, 17, . . . , 4k + 1 15 + 8j : 15, 23, . . . , 8k − 9, 8k − 1
18 + 8j : 18, 26, . . . , 8k − 6, 8k + 2
19 + 8j : 19, 27, . . . , 8k − 5, 8k + 3

[0, 10 + 4j, v − 11− 4j; 1 + 8j, 16 + 8j, 10 + 4j : 10, 14, 18, 22, . . . , 4k + 2 8k + 4− 8j : 8k + 4, 8k − 4,
17 + 8j, 20 + 8j], j = 0, 1, 2, ..., k − 2 8k − 5− 4j : 8k − 5, 8k − 9, . . . , 4k + 3 8k − 12, . . . , 28, 20

=⇒ 10, 14, 18, . . . , 4k + 2 16 + 8j : 16, 24, . . . , 8k
17 + 8j : 17, 25, . . . , 8k + 1

20 + 8j : 20, 28, . . . , 8k − 4, 8k + 4

4). In this case, we have ∞ and cycle of length 21 with the multisets of edge and arc

differences {1, 2, 3, . . . , 10 (×2)} and {1, 2, 3, . . . , 20 (×2)} respectively.

Table 4: The Edge and Arc Differences for an S1
6 -decomposition of 2M22

Blocks Edge differences Arc Differences

[0,∞, v − 2; v − 5, 1, 2, 3] ×2 ∞, 1 (×2) 4, 1, 2, 3 (×2)
[0, 2, 3;∞, 5, 6, 7] ×2 2, 3 (×2) ∞, 5, 6, 7 (×2)

[0, 4, 5; v − 11, 8, 9,∞] 4, 5 10, 8, 9,∞
[0, 5, 6; v − 11, 8, 12,∞] 5, 6 10, 8, 12,∞
[0, 4, 6; v − 12, 9, 11, 12] 4, 6 11, 9, 11, 12

[0, 7 + 4j, v − 8− 4j; 8 + 8j, 16 + 8j, 7, 7 13, 16, 13, 17
13 + 8j, 17 + 8j] for j = 0

[0, 8 + 4j, v − 9− 4j; 7 + 8j, 19 + 8j, 8, 8 14, 19, 14, 18
14 + 8j, 18 + 8j] for j = 0

[0, 9 + 4j, v − 10− 4j; 6 + 8j, 15 + 8j, 9, 9 15, 15, 18, 19
18 + 8j, 19 + 8j] for j = 0

[0, 10 + 4j, v − 11− 4j; 1 + 8j, 16 + 8j, 10, 10 20, 16, 17, 20
17 + 8j, 20 + 8j] for j = 0
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Combining all the edge and arc differences give the required result in Table 4.

Now, we verify Lemma 2.10 by showing that all the vertex labels are distinct. The

individual blocks [0, 4k+ 2, 4k+ 1; 4, 1, 2, 3], [0, 2k+ 1, 2k+ 2; 4k− 1, 2, 4k+ 1, 4k+ 2]

and [0, 1, 2; 4k, 4k + 2, 5, 6] have distinct vertices.

The blocks

∪{[0, 3 + 2j, 4 + 2j; 4k − 4− 4j, 8 + 4j, 9 + 4j, 10 + 4j] | j = 0, 1, . . . , k − 2,

j 6= (2k − 4)/3 when j ≡ 2 (mod 3)}, and j 6= (k − 3)/2 when j ≡ 1 (mod 2)}

∪{[0, (4k + 1)/3, (8k + 5)/3; (4k + 4)/3, (8k + 8)/3, (8k + 11)/3, (8k + 14)/3]

if j ≡ 2 (mod 3), and j = (2k − 4)/3}

∪{[0, k, k + 1; 2k, 2k + 2, 2k + 1, 2k + 4] if j ≡ 1 (mod 2), and j = (k − 3)/2}

generate the following vertex labels (vertex labels for a given value of index j are all

in the same column):

3 + 2j : 3, 5, 7, . . . , 2k − 1 odd
4 + 2j : 4, 6, 8, . . . , 2k even

4k − 4− 4j : 4k − 4, 4k − 8, 4k − 12 . . . , 4 0 (mod 4)
8 + 4j : 8, 12, 16 . . . , 4k 0 (mod 4)
9 + 4j : 9, 13, 17, . . . , 4k + 1 1 (mod 4)
10 + 4j : 10, 14, 18, . . . , 4k + 2 2 (mod 4).

Notice that we have a potential repetition of vertex labels in the rows 4 + 2j and

4k−4−4j, and also in the row 4k−4−4j and 8+4j. For the rows 4+2j and 4k−4−4j,

if j = 2k−4
3

, then we have eliminated the block [0, 4k+1
3
, 4k+4

3
; 4k+4

3
, 8k+8

3
, 8k+11

3
, 8k+14

3
]

that would arise in the first set (and which repeats vertex labels), and replaced it with

the block [0, 4k+1
3
, 4k+4

3
; 8k+5

3
, 8k+8

3
, 8k+11

3
, 8k+14

3
] (which covers the same differences as

the omitted block).

34



Similarly for 4k− 4− 4j and 8 + 4j. If j = k−3
2

, then we replaced the block [0, k, k+

1; 2k + 2, 2k + 2, 2k + 3, 2k + 4] with the block [0, k, k + 1; 2k, 2k + 2, 2k + 3, 2k + 4].

The blocks

∪{[0, 3 + 2j, 4 + 2j; 4k − 2− 4j, 6 + 4j, 7 + 4j, 8 + 4j] | j = 0, 1, . . . , k − 2,

and j 6= (2k − 3)/3 when j ≡ 0 (mod 3)}, andj 6= (k − 2)/2 when j ≡ 0 (mod 2)}

∪[0, (4k + 3)/3, (8k + 3)/3; (4k + 6)/3, (8k + 6)/3, (8k + 9)/3, (8k + 12)/3]

if j ≡ 0 (mod 3), and j = (2k − 3)/3}

∪{[0, k + 1, k + 2; 2k, 2k + 2, 2k + 1, 2k + 4] if j ≡ 0 (mod 2), and j = (k − 2)/2}

generate the following vertex labels (vertex labels for a given value of index j are all

in the same column):

3 + 2j : 3, 5, 7, . . . , 2k − 1 odd
4 + 2j : 4, 6, 8, . . . , 2k even

4k − 2− 4j : 4k − 2, 4k − 6, 4k − 10 . . . , 2 2 (mod 4)
6 + 4j : 6, 10, 14 . . . , 4k − 2 2 (mod 4)
7 + 4j : 7, 11, 15, . . . , 4k − 1 3 (mod 4)
8 + 4j : 8, 12, 16, . . . , 4k 0 (mod 4).

Notice that we have a potential repetition of vertex labels in the rows 4 + 2j and

4k−2−4j, and also in the row 4k−2−4j and 6+4j. For the rows 4+2j and 4k−2−4j,

if j = 2k−3
3

, then we have eliminated the block [0, 4k+3
3
, 4k+6

3
; 4k+6

3
, 8k+6

3
, 8k+9

3
, 8k+12

3
]

that would arise in the first set (and which repeats vertex labels), and replaced it with

the block [0, 4k+3
3
, 8k+3

3
; 4k+6

3
, 8k+6

3
, 8k+9

3
, 8k+12

3
] (which covers the same differences as

the omitted block). Similarly for 4k− 2− 4j and 6 + 4j. If j = k−2
2

, then we replaced

the block [0, k, k+ 1; 2k + 2, 2k + 2, 2k+ 3, 2k+ 4] with the block [0, k, k+ 1; 2k, 2k+
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2, 2k + 1, 2k + 4].

Therefore, all vertex labels are distinct.

Next, we verify Lemma 2.11 using the difference method. Let v = 8k + 2 and

k ≥ 3, and λ = 2. We have ∞ and cycle of length v = 8k + 1. So, we have the

following multisets of edge and arc differences:

Edge differences: {1, 2, 3, 4, . . . , 4k} ×2

Arc differences: {1, 2, 3, 4, . . . , 8k − 1, 8k} ×2.

Now, we check if all the edges and arcs are repeated twice.

Table 5: The Edge and Arc Differences of Lemma 2.11

Blocks Edge differences Arc Differences

[0,∞, v − 2; v − 5, 1, 2, 3] ×2 ∞, 1 ×2 4, 1, 2, 3 ×2
[0, 2, 3;∞, 5, 6, 7] ×2 2, 3 ×2 ∞, 5, 6, 7 ×2

[0, 4, 5; v − 11, 8, 9,∞] 4, 5 10, 8, 9,∞
[0, 5, 6; v − 11, 8, 12,∞] 5, 6 10, 8, 12,∞
[0, 4, 6; v − 12, 9, 11, 12] 4, 6 11, 9, 11, 12

[0, 7, v − 8; v − 14, 13, 17, 21] 7, 7 13, 13, 17, 21
[0, 8, v − 9; v − 15, 14, 15, 22] 8, 8 14, 14, 15, 22
[0, 9, v − 10; v − 19, 18, 19, 22] 9, 9 18, 18, 19, 22
[0, 10, v − 11; v − 21, 17, 20, 24] 10, 10 20, 17, 20, 24
[0, 11, v − 12, v − 17, 16, 21, 24] 11, 11 16, 16, 21, 24
[0, 12, v − 13; v − 24, 15, 19, 23] 12, 12 23, 15, 19, 23

[0, 13 + 4j, v − 14− 4j; 7 + 8j, 31 + 8j, 13 + 4j : 13, 17, 21, 25, . . . , 4k − 3 7 + 8j =⇒ 8k − 8j − 6 : 8k − 6, 8k − 14,
26 + 8j, 30 + 8j],j = 0, 1, 2, ..., k − 4 v − 14− 4j = 8k − 12− 4j : 8k − 12, 8k − 22, . . . , 26

8k − 16, . . . , 4k + 4 =⇒ 13, 17, . . . , 4k − 3 31 + 8j : 31, 39, 47, . . . , 8k − 1
26 + 8j : 26, 34, 42, . . . , 8k − 6
30 + 8j : 30, 38, 46, . . . , 8k − 2

[0, 14 + 4j, v − 15− 4j; 8 + 8j, 28 + 8j,, 14 + 4j : 14, 18, 22, 26, . . . , 4k − 2 8 + 8j =⇒ 8k − 8j − 7 : 8k − 7, 8k − 15,
25 + 8j, 29 + 8j],j = 0, 1, 2, ..., k − 4 v − 15− 4j = 8k − 13− 4j : 8k − 13, 8k − 23, . . . , 25

8k − 17, . . . , 4k + 3 =⇒ 14, 18, . . . , 4k − 2 28 + 8j : 28, 36, 44, . . . , 8k − 4
25 + 8j : 25, 33, 41, . . . , 8k − 7
29 + 8j : 29, 37, 45, . . . , 8k − 3

[0, 15 + 4j, v − 16− 4j; 1 + 8j, 28 + 8j, 15 + 4j : 15, 19, 23, 27, . . . , 4k − 1 1 + 8j =⇒ 8k − 8j : 8k, 8k − 8,
29 + 8j, 32 + 8j],j = 0, 1, 2, ..., k − 4 v − 16− 4j = 8k − 14− 4j : 8k − 14, 8k − 16, . . . , 32

8k − 18, . . . , 4k + 2 =⇒ 15, 19, . . . , 4k − 1 28 + 8j : 28, 36, 44, . . . , 8k − 4
29 + 8j : 29, 37, 45, . . . , 8k − 3

32 + 8j : 32, 40, 48, . . . , 8k
[0, 16 + 4j, v − 17− 4j; 6 + 8j, 27 + 8j, 16 + 4j : 16, 20, 24, 28, . . . , 4k 6 + 8j =⇒ 8k − 8j − 5 : 8k − 5, 8k − 13,
30 + 8j, 31 + 8j],j = 0, 1, 2, ..., k − 4 v − 17− 4j = 8k − 15− 4j : 8k − 15, 8k − 21, . . . , 27

8k − 19, . . . , 4k + 1 =⇒ 16, 20, . . . , 4k 27 + 8j : 27, 35, 43, . . . , 8k − 5
30 + 8j : 30, 38, 46, . . . , 8k − 2
31 + 8j : 31, 39, 47, . . . , 8k − 1

Combining all the arc and edge differences in Table 5, we have the required result.
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2.5 An S2
6 -Decomposition of λMv

An S2
6 -decomposition of Mv exists if and only if v ≡ 0 or 1 (mod 4) ansd v ≥ 9 [10].

In this subsection, we give the necessary and sufficient conditions for the existence of

a S2
6 -decomposition of λMv, where λ = 2. As usual, we give a direct construction to

establish sufficiency.

Lemma 2.14 An S2
6-decomposition of λMv exists for v ≡ 3 (mod 4), λ = 2.

Proof. Let v = 4k + 3 and k ≥ 1. Let (λMv) = {0, 1, 2, . . . v − 1}, consider the

blocks:

B = {[0, 4k+2, 4k+1; 4, 4k, 1, 2], [0, 2k+1, 2k+2; 4k−1, 1, 2, 4k+1], [0, 1, 2; 4k, 4k−

3, 4k + 2, 5]}

∪{[0, 3 + 2j, 4 + 2j; 4k − 4− 4j, 4k − 5− 4j, 9 + 4j, 10 + 4j] | j = 0, 1, . . . , k − 2,

j 6= (2k − 4)/3, and j 6= (k − 3)/2

∪{[0, (4k + 1)/3, (8k + 5)/3; (4k + 4)/3, (4k − 5)/3, (8k + 8)/3, (8k + 11)/3]

if j = (2k − 4)/3}

∪{[0, k, k + 1; 2k, 2k − 1, 2k + 2, 2k + 1] if j = (k − 3)/2}

∪{[0, 3 + 2j, 4 + 2j; 4k − 2− 4j, 4k − 3− 4j, 7 + 4j, 8 + 4j] | j = 0, 1, . . . , k − 2,

j 6= (2k − 3)/3, and j 6= (k − 2)/2

∪{[0, (4k+3)/3, (8k+3)/3; (4k+6)/3, (4k−9)/3, (8k+6)/3, (8k+9)/3], j = (2k−3)/3

∪{[0, k + 1, k + 2; 2k, 2k − 1, 2k + 2, 2k + 1], j = (k − 2)/2}
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The elements of B, along with their images under the permutation π(i) = i+ 1 (mod

v), form a S2
6 -decomposition of 2Mv where v = 4k + 3. �

Lemma 2.15 A S2
6-decomposition of λMv exists for v ≡ 6 (mod 8), v ≥ 14 and

λ = 2.

Proof. Let v = 8k + 6 and k ≥ 1. Let (λMv) = {0, 1, 2, . . . v − 2,∞}, consider the

following blocks:

B = {[0,∞, 8k + 4; 8k + 1, 8k + 2, 1, 2]× 2,

[0, 2, 3;∞, 8k, 6, 7]× 2,

[0, 4, 5; 8k − 5, 8k − 3, 9,∞],

[0, 4, 6; 8k − 6, 8k − 4, 11, 12] }

∪{[0, 7 + 4j, 8k− 2− 4j; 8 + 8j, 8k− 11− 8j, 13 + 8j, 17 + 8j] | j = 0, 1, . . . , k− 2 and

j 6= (k − 3)/2} ∪ {[0, 2k + 1, 6k + 4; 4k − 4, 4k, 4k + 1, 4k + 4] if j = (k − 3)/2}

∪{[0, 8 + 4j, 8k− 3− 4j; 7 + 8j, 8k− 14− 8j, 14 + 8j, 18 + 8j] | j = 0, 1, . . . , k− 2 and

j 6= (k − 4)/2} ∪ {[0, 2k, 6k + 5; 4k − 9, 4k + 7, 4k + 3, 4k + 2] if j = (k − 4)/2}

∪{[0, 9 + 4j, 8k− 4− 4j; 6 + 8j, 8k− 10− 8j, 18 + 8j, 19 + 8j] | j = 0, 1, . . . , k− 2 and

j 6= (k − 2)/2} ∪ {[0, 2k + 5, 6k; 4k − 5, 4k − 2, 4k + 7, 4k + 11] if j = (k − 2)/2}

∪{[0, 10 + 4j, 8k − 5− 4j; 1 + 8j, 8k − 11− 8j, 17 + 8j, 20 + 8j] | j = 0, 1, . . . , k − 2}

These stars along with their images under the permutation π : V → V defined as

π(i) = i+ 1 (mod v), form an S2
6 -decomposition of λMv where λ = 2 and v ≥ 14, as

claimed. �
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Lemma 2.16 An S2
6-decomposition of 2Mv exists for all v ≡ 2 (mod 8), with v ≥ 26.

Proof. let v = 8k + 2 and k ≥ 3. Let (2Mv) = {0, 1, 2, . . . v − 2,∞} The required

decomposition is given by the blocks:

{[0,∞, 8k; 8k − 3, 8k − 2, 1, 2] ×2, [0, 2, 3;∞, 8k − 4, 6, 7] ×2, [0, 4, 5; 8k − 9, 8k −

7, 9,∞], [0, 5, 6; 8k− 9, 8k− 7, 12,∞], [0, 4, 6; 8k− 10, 8k− 8, 11, 12], [0, 7, 8k− 6; 8k−

12, 8k − 16, 13, 21], [0, 8, 8k − 7; 8k − 13, 8k − 14, 14, 22], [0, 9, 8k − 8; 8k − 17, 8k −

18, 18, 22], [0, 10, 8k−9; 8k−19, 8k−16, 20, 24], [0, 11, 8k−10, 8k−15, 8k−20, 16, 24],

[0, 12, 8k − 11; 8k − 22, 8k − 14, 19, 23]}

and

∪{[0, 13 + 4j, 8k − 12− 4j; 7 + 8j, 8k − 29− 8j, 31 + 8j, 26 + 8j | j = 0, 1, . . . , k − 4]}

∪{[0, 14 + 4j, 8k − 13 − 4j; 8 + 8j, 8k − 27 − 8j, 25 + 8j, 29 + 8j]26| j = 0, 1, . . . , k −

4, and j 6= k−7
2

if k ≡ 7 (mod 2)}

∪{[0, 2k, 6k + 1; 4k − 20, 4k + 4, 4k, 4k + 1]26 if k ≡ 7 (mod 2) and j = k−7
2
}

∪{[0, 15 + 4j, 8k − 14 − 4j; 1 + 8j, 8k − 27 − 8j, 29 + 8j, 32 + 8j]26 | j = 0, 1, . . . , k −

4, and j 6= k−7
2

if k ≡ 7 (mod 2)}

∪{[0, 2k + 1, 6k; 4k − 27, 4k − 3, 4k + 1, 4k]26 if k ≡ 7 (mod 2) and j = k−7
2
}

∪{[0, 16 + 4j, 8k − 15 − 4j; 6 + 8j, 8k − 29 − 8j, 27 + 8j, 31 + 8j]26 | j = 0, 1, . . . , k −

4, and j 6= k−7
2

if k ≡ 7 (mod 2)}

∪{[0, 2k + 2, 6k − 1; 4k − 22, 4k − 2, 4k − 1, 4k + 2]26 if k ≡ 7 (mod 2) and j = k−7
2
}

These stars along with their images under the permutation π : V → V defined as

π(i) = i+ 1 (mod v), form an S2
6 -decomposition of λMv where λ = 2 and v ≥ 26, as

claimed. �

We now combine the results of this subsection to give necessary and sufficient
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conditions for an S2
6 -decomposition of λMv.

Theorem 2.17 An S2
6-decomposition of λMv exists if and only if

1. v ≡ 0 or 1 (mod 4) and λ ≥ 1, or

2. v ≡ 2 (mod 4) and λ ≡ 0 (mod 2), or

3. v ≡ 3 (mod 4) and λ ≡ 0 (mod 2).

Proof. By Lemma 2.1, λ = 0 (mod 2) is necessary.

For sufficiency, when v ≡ 0 or 1 (mod 4), an S1
6 -decomposition of Mv exists by

[10]. So when λ ≥ 1, taking λ copies of the blocks of such a decomposition gives a

decomposition of λMv. When v ≡ 2 (mod 4) and λ = 2, an S2
6 -decomposition of 2Mv

exists by Lemma 2.15 and Lemma 2.16. So when λ ≡ 0 (mod 2), taking λ/2 copies of

the blocks of such a decomposition gives a decomposition of λMv. When v ≡ 3 (mod

4) and λ = 2, an S2
6 -decomposition of 2Mv exists by Lemma 2.14. So when λ ≡ 0

(mod 2), taking λ/2 copies of such a decomposition gives a decomposition of λMv. �

2.5.1 Verification and Example

Now, we verify Lemma 2.12 by showing that all the vertex labels are distinct. The

individual blocks [0, 4k+ 2, 4k+ 1; 4, 4k, 1, 2], [0, 2k+ 1, 2k+ 2; 4k−1, 1, 2, 4k+ 1] and

[0, 1, 2; 4k, 4k − 3, 4k + 2, 5] have distinct vertices.

The blocks

∪{[0, 3 + 2j, 4 + 2j; 4k − 4− 4j, 4k − 5− 4j, 9 + 4j, 10 + 4j] | j = 0, 1, . . . , k − 2,

j 6= (2k − 4)/3, andj 6= (k − 3)/2
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generate the following vertex labels (vertex labels for a given value of index j are

all in the same column):

3 + 2j : 3, 5, 7, . . . , 2k − 1 odd
4 + 2j : 4, 6, 8, . . . , 2k even

4k − 4− 4j : 4k − 4, 4k − 8, 4k − 12, . . . , 4 0 (mod 4)
4k − 5− 4j : 4k − 5, 4k − 9, 4k − 13, . . . , 4k 3 (mod 4)

9 + 4j : 9, 13, 17, . . . , 4k + 1 1 (mod 4)
10 + 4j : 10, 14, 18, . . . , 4k + 2 2 (mod 4)

Notice that we have a potential repetition of vertex labels in the rows 4 + 2j and

4k − 4 − 4j, and also in the row 3 + 2j and 4k − 5 − 4j. Since we reverse the

orientation of one of the outdegree of S1
6 to obtain S2

6 , we have that j 6= 2k−4
3

.

The blocks

∪{[0, (4k+1)/3, (8k+5)/3; (4k+4)/3, (4k−5)/3, (8k+8)/3, (8k+11)/3], if j = (2k−4)/3}

and

∪{[0, k, k + 1; 2k, 2k − 1, 2k + 2, 2k + 1] if j = (k − 3)/2}

have distinct vertex labels.

Similarly, the blocks

∪{[0, 3 + 2j, 4 + 2j; 4k − 2− 4j, 6 + 4j, 7 + 4j, 8 + 4j] | j = 0, 1, . . . , k − 2,

and j 6= (2k − 3)/3 when j ≡ 0 (mod 3)}, and j 6= (k − 2)/2 when j ≡ 0 (mod 2)}

∪{[0, (4k + 3)/3, (8k + 3)/3; (4k + 6)/3, (8k + 6)/3, (8k + 9)/3, (8k + 12)/3]

if j ≡ 0 (mod 3), and j = (2k − 3)/3}

∪{[0, k + 1, k + 2; 2k, 2k + 2, 2k + 1, 2k + 4] if j ≡ 0 (mod 2), and j = (k − 2)/2}
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generate the following vertex labels (vertex labels for a given value of index j are all

in the same column):

3 + 2j : 3, 5, 7, . . . , 2k − 1 odd
4 + 2j : 4, 6, 8, . . . , 2k even

4k − 2− 4j : 4k − 2, 4k − 6, 4k − 10 . . . , 2 2 (mod 4)
4k − 3− 4j : 4k − 3 4k − 7 4k − 11 . . . , 5 1 (mod 4)

7 + 4j : 7, 11, 15, . . . , 4k − 1 3 (mod 4)
8 + 4j : 8, 12, 16, . . . , 4k 0 (mod 4)

Which are all distinct for the first block, since j 6= 2k−3
3

and j 6= k−2
2

Therefore, all

vertex labels are distinct.

Next, we show that Theorem 2.13 has distinct vertex labels. The blocks

∪{[0, 7 + 4j, 8k− 2− 4j; 8 + 8j, 8k− 11− 8j, 13 + 8j, 17 + 8j] | j = 0, 1, . . . , k− 2 and

j 6= (k − 3)/2} ∪ {[0, 2k + 1, 6k + 4; 4k − 4, 4k, 4k + 1, 4k + 4] if j = (k − 3)/2}

generate the following vertex labels (vertex labels for a given value of index j are all

in the same column):

7 + 4j : 7, 11, 15, . . . , 4k − 5, 4k − 1
8k − 2− 4j : 8k − 2, 8k − 6, 8k − 10 . . . , 4k + 10, 4k + 6

8 + 8j : 8, 16, 24, . . . , 8k − 16, 8k − 8
8k − 11− 8j : 8k − 11, 8k − 19, 8k − 27, . . . , 13, 5

13 + 8j : 13, 21, 29, . . . , 8k − 1, 8k − 3
17 + 8j : 7, 25, 33, . . . , 8k − 7, 8k + 1.

Notice that we have a potential repetition of vertex labels in the two rows in blue. If

j = k−3
2

, then we have eliminated the block [0, 2k+1, 6k+4; 4k−4, 4k + 1, 4k + 1, 4k+

5] that would arise in the first set (and which repeats vertex labels), and replaced it

with the block [0, 2k + 1, 6k + 4; 4k − 4, 4k, 4k + 1, 4k + 4] (which covers the same

differences as the omitted block).

42



The blocks

∪{[0, 8 + 4j, 8k− 3− 4j; 7 + 8j, 8k− 14− 8j, 14 + 8j, 18 + 8j] | j = 0, 1, . . . , k− 2 and

j 6= (k − 4)/(2)} ∪ {[0, 2k, 6k + 5; 4k − 9, 4k + 7, 4k + 3, 4k + 2] if j = (k − 4)/(2)}

generate the following vertex labels (vertex labels for a given value of index j are all

in the same column):

8 + 4j : 8, 12, . . . , 4k − 4, 4k 0 (mod 4)
8k − 3− 4j : 8k − 3, 8k − 7, . . . , 4k + 9, 4k + 5 1 (mod 4)

7 + 8j : 7, 15, . . . , 8k − 17, 8k − 9 7 (mod 8)
8k − 14− 8j : 8k − 14, 8k − 22, . . . , 10, 2 2 (mod 8)

14 + 8j : 14, 22, . . . , 8k − 10, 8k − 2 6 (mod 8)
18 + 8j : 18, 26, . . . , 8k − 6, 8k + 2 2 (mod 8).

Notice that we have a potential repetition of vertex labels in the two rows in blue. If

j = k−3
2

, then we have eliminated the block [0, 2k, 6k+5; 4k−9, 4k + 2, 4k−2, 4k + 2]

that would arise in the first set (and which repeats vertex labels), and replaced it with

the block [0, 2k, 6k+5; 4k−9, 4k+7, 4k+3, 4k+2] (which covers the same differences

as the omitted block).

The blocks

∪{[0, 9 + 4j, 8k− 4− 4j; 6 + 8j, 8k− 10− 8j, 18 + 8j, 19 + 8j] | j = 0, 1, . . . , k− 2 and

j 6= (k − 2)/2} ∪ {[0, 2k + 5, 6k; 4k − 5, 4k − 2, 4k + 7, 4k + 11] if j = (k − 2)/2}

generate the following vertex labels (vertex labels for a given value of index j are all

in the same column):

9 + 4j : 9, 13, . . . , 4k − 3, 4k + 1 1 (mod 4)
8k − 4− 4j : 8k − 4, 8k − 8, . . . , 4k + 8, 4k + 4 0 (mod 4)

6 + 8j : 6, 14, . . . , 8k − 18, 8k − 10 6 (mod 8)
8k − 10− 8j : 8k − 10, 8k − 18, . . . , 14, 6 6 (mod 8)

18 + 8j : 18, 26, . . . , 8k − 6, 8k + 2 2 (mod 8)
19 + 8j : 19, 27, . . . , 8k − 5, 8k + 3, 3 (mod 8).
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Notice that we have a potential repetition of vertex labels in the two rows in red. If

j = k−2
2

, then we have eliminated the block [0, 2k+5, 6k; 4k − 2,4k − 2, 4k+10, 4k+11]

that would arise in the first set (and which repeats vertex labels), and replaced it with

the block [0, 2k+5, 6k; 4k−5, 4k−2, 4k+7, 4k+11] (which covers the same differences

as the omitted block).

The block

∪{[0, 10 + 4j, 8k − 5− 4j; 1 + 8j, 8k − 11− 8j, 17 + 8j, 20 + 8j] | j = 0, 1, . . . , k − 2}

generates the following distinct vertex labels (vertex labels for a given value of index

j are all in the same column):

10 + 4j : 10, 14, . . . , 4k − 2, 4k + 2 2 (mod 4)
8k − 5− 4j : 8k − 5, 8k − 9, . . . , 4k + 7, 4k + 3 3 (mod 4)

1 + 8j : 1, 9, . . . , 8k − 23, 8k − 15 1 (mod 8)
8k − 11− 8j : 8k − 11, 8k − 19, . . . , 13, 5 5 (mod 8)

17 + 8j : 17, 25, . . . , 8k − 7, 8k + 1 1 (mod 8)
20 + 8j : 20, 28, . . . , 8k − 4, 8k + 4 4 (mod 8).

Next, we show that all vertex labels are distinct in the Lemma 2.16. Of course,

the individual blocks: [0,∞, 8k; 8k − 3, 8k − 2, 1, 2] ×2, [0, 2, 3;∞, 8k − 4, 6, 7] ×2,

[0, 4, 5; 8k−9, 8k−7, 9,∞], [0, 5, 6; 8k−9, 8k−7, 12,∞], [0, 4, 6; 8k−10, 8k−8, 11, 12],

[0, 7, 8k − 6; 8k − 12, 8k − 16, 13, 21], [0, 8, 8k − 7; 8k − 13, 8k − 14, 14, 22], [0, 9, 8k −

8; 8k − 17, 8k − 18, 18, 22], [0, 10, 8k − 9; 8k − 19, 8k − 16, 20, 24], [0, 11, 8k − 10, 8k −

15, 8k − 20, 16, 24], and [0, 12, 8k − 11; 8k − 22, 8k − 14, 19, 23] have distinct vertices.

The blocks

{2× [0, 13+4j, 8k−12−4j; 7+8j, 8k−29−8j, 31+8j, 26+8j]26 | j = 0, 1, . . . , k−4}

generate the following vertex labels (vertex labels for a given value of index j are all
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in the same column):

13 + 4j : 13, 17, . . . , 4k − 7, 4k − 3 5 (mod 4)
8k − 12− 4j : 8k − 12, 8k − 16, . . . , 4k + 8, 4k + 4 0 (mod 4)

7 + 8j : 7, 15, . . . , 8k − 33, 8k − 25 7 (mod 8)
8k − 29− 8j : 8k − 29, 8k − 37, . . . , 11, 3 3 (mod 8)

31 + 8j : 31, 39, . . . , 8k − 9, 8k − 1 7 (mod 8)
26 + 8j : 26, 34, . . . , 8k − 14, 8k − 2 6 (mod 8).

The blocks

{[0, 14 + 4j, 8k − 13− 4j; 8 + 8j, 8k − 27− 8j, 25 + 8j, 29 + 8j]26 | j = 0, 1, . . . , k − 4,

and j 6= (k − 7)/2 if k ≡ 7 (mod 2)}

∪{[0, 2k, 6k + 1; 4k − 20, 4k + 4, 4k, 4k + 1]26 if k ≡ 7 (mod 2) and j = (k − 7)/2}

generate the following vertex labels (vertex labels for a given value of index j are all

in the same column):

14 + 4j : 14, 18, . . . , 4k − 6, 4k − 2 2 (mod 4)
8k − 13− 4j : 8k − 13, 8k − 17, . . . , 4k + 7, 4k + 3 3 (mod 4)

8 + 8j : 8, 16, . . . , 8k − 32, 8k − 24 0 (mod 8)
8k − 27− 8j : 8k − 27, 8k − 35, . . . , 13, 5 5 (mod 8)

25 + 8j : 25, 33, . . . , 8k − 15, 8k − 7 1 (mod 8)
29 + 8j : 29, 37, . . . , 8k − 11, 8k − 3 5 (mod 8).

Notice that we have a potential repetition of vertex labels in the two rows in blue.

If k ≡ 7 (mod 2) and j = (k − 7)/2, then we have eliminated the block [0, 2k, 6k +

1; 4k− 20, 4k + 1, 4k− 3, 4k + 1]26 that would arise in the first set (and which repeats

vertex labels), and replaced it with the block [0, 2k, 6k+1; 4k−20, 4k+4, 4k, 4k+1]26

(which covers the same differences as the omitted block).

The blocks

{[0, 15 + 4j, 8k − 14− 4j; 1 + 8j, 8k − 27− 8j, 29 + 8j, 32 + 8j]26 | j = 0, 1, . . . , k − 4,
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and j 6= (k − 7)/2 if k ≡ 7 (mod 2)}

∪{[0, 2k + 1, 6k; 4k − 27, 4k − 3, 4k + 1, 4k]26 if k ≡ 7 (mod 2) and j = (k − 7)/2}

generate the following vertex labels (vertex labels for a given value of index j are all

in the same column):

15 + 4j : 15, 19, . . . , 4k − 5, 4k − 1 3 (mod 4)
8k − 14− 4j : 8k − 14, 8k − 18, . . . , 4k + 6, 4k + 2 2 (mod 4)

1 + 8j : 1, 9, . . . , 8k − 39, 8k − 31 1 (mod 8)
8k − 27− 8j : 8k − 27, 8k − 35, . . . , 13, 5 5 (mod 8)

29 + 8j : 29, 37, . . . , 8k − 11, 8k − 3 5 (mod 8)
32 + 8j : 32, 40, . . . , 8k − 8, 8k 0 (mod 8).

Notice that we have a potential repetition of vertex labels in the two rows in red. If

k ≡ 7 (mod 2) and j = (k−7)/2, then we have eliminated the block [0, 2k+1, 6k; 4k−

27, 4k + 1, 4k + 1, 4k + 4]26 that would arise in the first set (and which repeats vertex

labels), and replaced it with the block [0, 2k+1, 6k; 4k−27, 4k−3, 4k+1, 4k]26 (which

covers the same differences as the omitted block).

The blocks

{[0, 16 + 4j, 8k − 15− 4j; 6 + 8j, 8k − 29− 8j, 27 + 8j, 31 + 8j]26 | j = 0, 1, . . . , k − 4,

and j 6= (k − 7)/2 if k ≡ 7 (mod 2)}

∪{[0, 2k+2, 6k−1; 4k−22, 4k−2, 4k−1, 4k+2]26 if k ≡ 7 (mod 2) and j = (k−7)/2}

generate the following vertex labels (vertex labels for a given value of index j are all

in the same column):

16 + 4j : 16, 20, . . . , 4k − 4, 4k 0 (mod 4)
8k − 15− 4j : 8k − 15, 8k − 19, . . . , 4k + 5, 4k + 1 1 (mod 4)

6 + 8j : 6, 14, . . . , 8k − 34, 8k − 26 6 (mod 8)
8k − 29− 8j : 8k − 29, 8k − 37, . . . , 11, 3 3 (mod 8)

27 + 8j : 27, 35, . . . , 8k − 13, 8k − 5 3 (mod 8)
31 + 8j : 31, 39, . . . , 8k − 9, 8k − 1 7 (mod 8).
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Notice that we have a potential repetition of vertex labels in the two rows in blue. If

k ≡ 7 (mod 2) and j = (k − 7)/2, then we have eliminated the block [0, 2k + 2, 6k −

1; 4k− 22, 4k − 1, 4k − 1, 4k+ 3]26 that would arise in the first set (and which repeats

vertex labels), and replaced it with the block [0, 2k + 2, 6k − 1; 4k − 22, 4k − 2, 4k −

1, 4k + 2]26 (which covers the same differences as the omitted block). Therefore, all

vertex labels are distinct.

In this chapter, we have given the necessary and sufficient conditions for the

existence of of an Si
6-decomposition of λMv for i ∈ {0, 1, 2, 3, 4}. These results are

given in Theorems 2.7, 2.7, 2.12, 2.13 and 2.17.
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3 DECOMPOSITION OF COMPLETE BIPARTITE MIXED GRAPHS INTO

MIXED STARS

3.1 Introduction

A graph G is bipartite if its vertex set can be partitioned into subsets X and Y ,

and such that every edge in G has one end in X and the other end in Y . That is

if V (G) = X ∪ Y and [x, y] ∈ E(G) then x ∈ X and y ∈ Y such that X 6= ∅, and

Y 6= ∅, and X ∩ Y = ∅. If every vertex of X is adjacent to every vertex of Y , the

the graph is called a complete bipartite graph, denoted by Kn,m where |X| = n and

|Y | = n.

The mixed graph with vertex set V such that for every pair of distinct vertices

x ∈ X and y ∈ Y , where V = X ∪ Y , the set of edges and arcs contains (x, y), (y, x)

and [x, y] is called a complete bipartite mixed graph. For positive integers n1, n2,

Mn1,n2 denotes the complete bipartite mixed graph with partite sets of sizes n1 and

n2.

The following are the few results on the decomposition of a complete bipartite

graphs into stars. The complete bipartite graph Kn,m has Sk-decomposition if and

only if (k − 1)|n2 and n ≥ k − 1 [15]. The necessary and sufficient condition for

the decomposition of the λ-fold complete bipartite graph into stars and cycles was

given in [13]. See [8] and [16] for some decomposition of complete bipartite graphs.

However, nothing has been done on the decomposition of a complete bipartite mixed

graphs into mixed stars.

In this chapter, we consider the existence of the decomposition of complete bipar-
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tite mixed graphs into mixed stars by giving necessary and sufficient conditions.

3.2 An S0
6 -decomposition of Mn1,n2

We give the necessary and sufficient conditions of an S0
6 -decomposition of a com-

plete bipartite mixed graph. Let Mn1,n2 denote the complete bipartite mixed graph

with partite sets of sizes n1 and n2. For an illustration of S2
6 , see Figure 6. Recall

also that a decomposition of a mixed graph G is a family F of edge and arc-disjoint

subgraph of G such that ∪F∈FE(F) = E(G) and ∪F∈FA(F) = A(G) . The necessary

condition for an S0
6 -decomposition of Mn1,n2 is given in Lemma 3.1 below.

Lemma 3.1 If an S0
6-decomposition of Mn1,n2 exists, then n1 = n2 = 0 (mod 4).

Proof. Each vertex of S0
6 is of out-degree 4, so in Mn1,n2 each vertex must be out-

degree 0 (mod 4) and hence n1 ≡ n2 ≡ 0 (mod 4) is necessary.

Lemma 3.2 An S0
6-decomposition of M8,8 exists.

Proof. Consider the partite sets X = [11, 21, 31, . . . , 81] and Y = [12, 22, 32, . . . , 82].

The required decomposition is given by the set of blocks: { [i1, 12, 22; 32, 42, 52, 62],

[i1, 52, 62; 12, 22, 72, 82] for i = 1, 2, 5, 6 }, {[i1, 32, 42; 52, 62, 72, 82], [i1, 72, 82; 12, 22, 32,

42] for i = 3, 4, 7, 8 }, {[j2, 31, 41; 51, 61, 71, 81], [j2, 71, 81; 11, 21, 31, 41] for j =

1, 2, 5, 6}, and { [j2, 11, 21; 31, 41, 51, 61], [j2, 51, 61; 11, 21, 71, 81] for j = 3, 4, 7, 8}.

�

Lemma 3.3 An S0
6-decomposition of M8,12 exists.
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Proof. Consider the partite sets X = [11, 21, 31, . . . , 81] and Y = [12, 22, 32, . . . , 122].

We need 48 stars in this decomposition and the required decomposition is given by the

set of blocks: {[i1, 12, 22; 32, 42, 52, 62], [i1, 52, 62; 72, 82, 92, 102], [i1, 92, 102; 12, 22, 112,

122] for i = 1, 2, 5, 6 } ∪ {[i1, 32, 42; 52, 62, 72, 82], [i1, 72, 82; 92, 102, 112, 122], [i1, 112,

122; 12, 22, 32, 42] for i = 3, 4, 7, 8} ∪ {[j2, 31, 41; 51, 51, 71, 81], [j2, 71, 81; 11, 21, 31, 41]

for j = 1, 2, 5, 6, 9, 10} ∪ {[j2, 11, 21; 31, 41, 51, 61], [j2, 51, 61; 11, 21, 71, 81] for j = 3,

4, 7, 8, 11, 12}. �

Lemma 3.4 An S0
6-decomposition of M12,12 exists.

Proof. Consider the partite sets X = [11, 21, 31, . . . , 121] and Y = [12, 22, 32, . . . , 122].

The required decomposition is given by the set of blocks: {[i1, 12, 22; 32, 42, 52, 62],

[i1, 52, 62; 72, 82, 92, 102], [i1, 92, 102; 12, 22, 112, 122] for i = 1, 2, 5, 6, 9, 10 } ∪ {[i1, 32,

42; 52, 62, 72, 82], [i1, 72, 82; 92, 102, 112, 122], [i1, 112, 122; 12, 22, 32, 42] for i = 3, 4, 7, 8,

11, 12} ∪ {[j2, 31, 41; 51, 61, 71, 81], [j2, 71, 81; 91, 101, 111, 121], [j2, 111, 121; 11, 21, 31, 41]

for j = 1, 2, 5, 6, 9, 10 } ∪ {[j2, 11, 21; 31, 41, 51, 61], [j2, 51, 61; 71, 81, 91, 101], [j2, 91, 101;

11, 21, 111, 121] for j = 3, 4, 7, 8, 11, 12 }. �

Theorem 3.5 An S0
6-decomposition of Mn1,n2 exists if and only if n1 ≡ n2 ≡ 0 (mod

4), n1 ≥ 8 and n2 ≥ 8.

Proof. Each vertex in Mn1,n2 must be of out-degree 0 (mod 4) and hence n1 ≡ n2 ≡ 0

(mod 4) by Lemma 3.1. For sufficiency, suppose n1 ≡ n2 ≡ 0 (mod 4) where n1 ≥ 8

and n2 ≥ 8. This is established in 3 cases as follows:

Case 1. Suppose n1 ≡ n2 ≡ 0 (mod 8). Let M = n1/8 and N = n2/8. With

Xi = {11,i, 21,i, . . . , 81,i} for i = 1, 2, . . . ,M and
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Yj = {12,j, 22,j, . . . , 82,j} for j = 1, 2, . . . , N,

for all i ∈ {1, 2, . . . ,M} and j ∈ {1, 2, . . . , N} there is an S0
6 -decomposition of the

complete bipartite mixed graph with partite sets Xi and Yj by Lemma 3.2 (since

|Xi| = |Yj| = 8). This collection of MN decompositions forms an S1
6 -decomposition

of Mn1,n2 . See Figure 7.

Figure 7: A schematic diagram of the copies of M8,8 as used in case 1 of Theorem 3.5

Case 2. Suppose n1 ≡ n2 ≡ 4 (mod 8), say M = (n1−12)/8 and N = (n2−12)/8.

Let

Xi = {11,i, 21,i, . . . , 81,i} for i = 1, 2, . . . ,M,

Yj = {12,j, 22,j, . . . , 82,j} for j = 1, 2, . . . , N,

XM+1 = {11,M+1, 21,M+1, . . . , 121,M+1} and Yj = {12,N+1, 22,N+1, . . . , 122,N+1}.

An S0
6 -decomposition of the complete bipartite mixed graph with partite sets ∪Mi=1Xi
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and ∪Nj=1Yj exists by Case 1 (since
∣∣∪Mi=1Xi

∣∣ ≡ ∣∣∪Nj=1Yj
∣∣ ≡ 0 (mod 8)). An S0

6 -

decomposition of the complete bipartite mixed graph with partite sets Xi and YN+1

exists for each i = 1, 2, . . . ,M by Lemma 3.3 (since |Xi| = 8 and |YN+1| = 12).

An S0
6 -decomposition of the complete bipartite mixed graph with partite sets Yj and

XM+1 exists for each j = 1, 2, . . . , N by Lemma 3.3 (since |Yj| = 8 and |XM+1| = 12).

An S0
6 -decomposition of the complete bipartite mixed graph with partite sets XM+1

and YN+1 exists by Lemma 3.4 (since |XM+1| = 12 and |YN+1| = 12). This collection

of decompositions form an S0
6 -decomposition of Mn1,n2 . See Figure 9.

Figure 8: A schematic diagram of the copies of M8,8, and M12,8, M8,12 as used in case

2 of Theorem 3.5

Case 3. Suppose n1 ≡ 0 (mod 8) and n2 ≡ 4 (mod 8), say M = n1/8 and

N = (n2 − 12)/8. Let Xi for i = 1, 2, . . . ,M be as defined in Case 1, and let

Yj for j = 1, 2, . . . , N + 1 be as defined in Case 2. An S0
6 -decomposition of the
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complete bipartite mixed graph with partite sets ∪Mi=1Xi and ∪Nj=1Yj exists by Case

1 (since
∣∣∪Mi=1Xi

∣∣ ≡ 0 (mod 8) and | ∪Nj=1 Yj| ≡ 0 (mod 8)). An S0
6 -decomposition

of the complete bipartite mixed graph with partite sets Xi and YN+1 exists for each

i = 1, 2, . . . ,M by Lemma 3.3 (since |Xi| = 8 and |YN+1| = 12). This collection of

decompositions form an S0
6 -decomposition of Mn1,n2 . See Figure 8. �

Figure 9: A schematic diagram of the copies of M8,8, and M12,8, M8,12 and M12,12 as

used in case 3 of Theorem 3.5

Notice that the converse of S0
6 is obtained by reversing the orientation of all the

arcs which gives S4
6 . Since Mn1,n2 is self converse, Theorem 3.5 also gives the necessary

and sufficient conditions for S4
6 -decomposition of Mn1,n2 .
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3.3 An S1
6 -decomposition of Mn1,n2

Here we give some conditions for the existence of an S1
6 -decomposition of Mn1,n2 .

Lemma 3.6 If an S1
6-decomposition of Mn1,n2 exists, then n1n2 ≡ 0 (mod 4).

Proof. Let the partite sets of Mn1,n2 be X = {11, 21, . . . (n1)1} and Y = {12, 22, . . .

(n2)2}. Define L-type and R-type stars as follows (Figure 10): The L-star is a star

with partite sets {c1} and {u2, v2, w2, x2, y2, z2} with the center c1 ”on the left” and the

other partite sets with subscript 2 ”on the right”. Denoted [c1, u2, v2;w2, x2, y2, z2]

with our usual notation. Similarly, the R-star is a star with partite sets {c2} and

{u1, v1, w1, x1, y1, z1} with the center c2 ”on the right” and other partite sets with

subscript 2 ”on the left”. Denoted [c2, u1, v1;w1, x1, y1, z1].

Suppose an S1
6 -decomposition of Mn1,n2 exists. Let L and R as the number of L-

type and R-type stars in a decomposition, respectively. Now Mn1,n2 has n1n2 edges,

n1n2 left-to-right arcs (that is of the form [v1, v2]), and n1n2 right-to-left arcs (that

is [v2, v1]). Since each star contains two edges then 2L+ 2R = n1n2. An L-type star

has one right-to-left arc (←) and an R-type star has three left-to-right arcs (←). So

L + 3R = n1n2. An L-type star has three right-to-left arcs (←) and an R-type star

has one right-to-left arc (←). So 3L+R = n1n2. Hence n1n2 = L+ 3R = 3L+R or

2R = 2L or R = L. Also n1n2 = 2L+ 2R = 4L and n1n2 ≡ 0 (mod 4), as claimed. �

Lemma 3.7 An S1
6-decomposition of M8,7 does not exist.

Proof. M8,7 has 56 edges and S1
6 has 2 edges, so an S1

6 -decomposition of M8,7 requires

28 stars. This implies that L = R = 14 by Lemma 3.5. Then there is a vertex v on
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Figure 10: L-type and R-type star

the left which is the center of at most one star. This vertex v has a total degree of

21 and so must be in the corona of 21− 5 = 15 R-stars. But there is only 14 R-stars.

Therefore an S1
6 -decomposition of M8,7 does not exist. �

Lemma 3.8 If an S1
6-decomposition of Mn,6 exists, then n ≡ 0 (mod 4).

Proof. We know that the number of L-stars equals the number of R-stars in the

decomposition by Lemma 3.6. The total number of edges in Mn,6 is 6n. Since each

star contains 2 edges then there must be a total of 3n stars in the decomposition;
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3n/2 of them are L-stars and 3n/2 of them are R-stars.

Define the total degree of a vertex in a mixed graph as the edge degree plus in-

degree plus out-degree of the vertex. In the subgraph of Mn,6 induced by the R-stars,

each of the R-vertices must be of total degree a multiple of 6. Now each L-star

contributes exactly one edge or one arc to each of the R-vertices. So the number

of L-stars in a decomposition must be a multiple of 6. Hence it is necessary that

3n/2 ≡ 0 (mod 6). That is, n ≡ 0 (mod 4) is necessary, as claimed. �

Lemma 3.9 An S1
6-decomposition of M8,8 exists.

Proof. Let the complete bipartite mixed graph have partite sets { 01, 11, . . . , 71} and

{02, 12, . . . , 72}. Consider the blocks:

{[i1, i2, (i+ 1)2; (i+ 2)2, (i+ 3)2, (i+ 4)2, (i+ 5)2]
1
6, [i1, (i+ 2)2, (i+ 3)2; (i+ 1)2, i2, (i+

6)2, (i+7)2]
1
6, [i2, (i+3)1, (i+4)1; (i+7)1, i1, (i+1)1, (i+2)1]

1
6, [i2, (i+1)1, (i+2)1; (i+

6)1, (i+ 3)1, (i+ 4)1, (i+ 5)1]
1
6 |i = 0, 1, 2, . . . , 7}

where vertex labels are reduced modulo 8. These form an S1
6 -decomposition of M8,8.

�

Lemma 3.10 An S1
6-decomposition of M12,12.

Proof. Let the complete bipartite mixed graph have partite sets { 01, 11, . . . , 111}

and {02, 12, . . . , 112}. Consider the blocks:

{[i1, i2, (i + 1)2; (i + 2)2, (i + 3)2, (i + 4)2, (i + 5)2]
1
6, [i1, (i + 2)2, (i + 3)2; (i + 1)2, (i +

6)2, (i + 7)2, (i + 8)2]
1
6], [i1, (i + 4)2, (i + 5)2; i2, (i + 9)2, (i + 10)2, (i + 11)2]

1
6], [i2, (i +

5)1, (i+ 6)1; i1, (i+ 1)1, (i+ 2)1, (i+ 3)1]
1
6, [i2, (i+ 1)1, (i+ 2)1; (i+ 11)1, (i+ 4)1, (i+
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5)1, (i+6)1]
1
6, [i2, (i+3)1, (i+4)1; (i+10)1, (i+7)1, (i+8)1, (i+9)1]

1
6 |i = 0, 1, 2, . . . , 11}

where vertex labels are reduced modulo 12. These form an S1
6 -decomposition ofM12,12.

�

Lemma 3.11 An S1
6-decomposition of M8,6 exists.

Proof. Let the partite sets of M8,6 be {01, 11, . . . , 71} and {02, 12, 22, 32, 42, 52}. Con-

sider the collection of mixed stars S1
6 :

[01, 02, 12; 42, 22, 32, 52]
1
6, [01, 22, 32; 52, 02, 12, 42]

1
6, [11, 02, 12; 42, 22, 32, 52]

1
6,

[11, 22, 32; 52, 02, 12, 42]
1
6, [21, 02, 12; 22, 32, 42, 52]

1
6, [21, 42, 52; 32, 02, 12, 22]

1
6,

[31, 02, 12; 22, 32, 42, 52]
1
6, [31, 42, 52; 32, 02, 12, 22]

1
6, [41, 22, 32; 02, 12, 42, 52]

1
6,

[51, 22, 32; 02, 12, 42, 52]
1
6, [61, 42, 52; 12, 02, 22, 32]

1
6, [71, 42, 52; 12, 02, 22, 32]

1
6,

[02, 51, 61; 41, 21, 31, 71]
1
6, [02, 41, 71; 51, 01, 11, 61]

1
6, [12, 51, 71; 61, 21, 31, 41]

1
6,

[12, 41, 61; 71, 01, 11, 51]
1
6, [22, 21, 31; 41, 51, 61, 71]

1
6, [22, 61, 71; 51, 01, 11, 41]

1
6,

[32, 21, 31; 41, 51, 61, 71]
1
6, [32, 61, 71; 51, 01, 11, 41]

1
6, [42, 01, 11; 61, 41, 51, 71]

1
6,

[42, 41, 51; 71, 21, 31, 61]
1
6, [52, 01, 11; 61, 41, 51, 71]

1
6, [52, 41, 51; 71, 21, 31, 61]

1
6.

These stars form the desired decomposition. �

Lemma 3.12 An S1
6-decomposition ofMn1,n2 exists for all n1 ≡ 0 (mod 8) and n2 ≡ 0

(mod 6).

Proof. Suppose n1 ≡ 0 (mod 8) and n2 ≡ 0 (mod 6). Let M = n1/8 and N = n2/6.

With

Xi = {11,i, 21,i, . . . , 81,i} for i = 1, 2, . . . ,M and

Yj = {12,j, 22,j, . . . , 62,j} for j = 1, 2, . . . , N,
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for all i ∈ {1, 2, . . . ,M} and j ∈ {1, 2, . . . , N} there is an S1
6 -decomposition of

the complete bipartite mixed graph with partite sets Xi and Yj by Lemma 3.11

(since |Xi| = 8 and |Yj| = 6). This collection of MN decompositions forms an S1
6 -

decomposition of Mn1,n2 for all n1 ≡ 0 (mod 8) and n2 ≡ 0 (mod 6). �

Lemma 3.13 An S1
6-decomposition of M8,12 exists.

Proof. Let the partite sets of M8,12 be {01, 11, . . . , 71} and {02, 12, . . . , 112}. Consider

the collection of mixed stars S1
6 :

[01, 02, 12; 42, 22, 32, 52]
1
6, [01, 22, 32; 52, 02, 12, 42]

1
6, [01, 62, 72; 102, 82, 92, 112]

1
6,

[01, 82, 92; 112, 62, 72, 102]
1
6, [11, 02, 12; 42, 22, 32, 52]

1
6, [11, 22, 32; 52, 02, 12, 42]

1
6,

[11, 62, 72; 102, 82, 92, 112]
1
6, [11, 82, 92; 112, 62, 72, 102]

1
6, [21, 02, 12; 22, 32, 42, 52]

1
6,

[21, 42, 52; 32, 02, 12, 22]
1
6, [21, 62, 72; 82, 92, 102, 112]

1
6, [21, 102, 112; 92, 62, 72, 82]

1
6,

[31, 02, 12; 22, 32, 42, 52]
1
6, [31, 42, 52; 32, 02, 12, 22]

1
6, [31, 62, 72; 82, 92, 102, 112]

1
6,

[31, 102, 112; 92, 62, 72, 82]
1
6, [41, 22, 32; 02, 12, 42, 52]

1
6, [41, 82, 92; 62, 72, 102, 112]

1
6,

[51, 22, 32; 02, 12, 42, 52]
1
6, [51, 82, 92; 62, 72, 102, 112]

1
6, [61, 42, 52; 12, 02, 22, 32]

1
6,

[61, 102, 112; 72, 62, 82, 92]
1
6, [71, 42, 52; 12, 02, 22, 32]

1
6, [71, 102, 112; 72, 62, 82, 92]

1
6,

[02, 51, 61; 41, 21, 31, 71]
1
6, [02, 41, 71; 51, 01, 11, 61]

1
6, [62, 51, 61; 41, 21, 31, 71]

1
6,

[62, 41, 71; 51, 01, 11, 61]
1
6, [12, 51, 71; 61, 21, 31, 41]

1
6, [12, 41, 61; 71, 01, 11, 51]

1
6,

[72, 51, 71; 61, 21, 31, 41]
1
6, [72, 41, 61; 71, 01, 11, 51]

1
6, [22, 21, 31; 41, 51, 61, 71]

1
6,

[22, 61, 71; 51, 01, 11, 41]
1
6, [82, 21, 31; 41, 51, 61, 71]

1
6, [82, 61, 71; 51, 01, 11, 41]

1
6,

[32, 21, 31; 41, 51, 61, 71]
1
6, [32, 61, 71; 51, 01, 11, 41]

1
6, [92, 21, 31; 41, 51, 61, 71]

1
6,

[92, 61, 71; 51, 01, 11, 41]
1
6, [42, 01, 11; 61, 41, 51, 71]

1
6, [42, 41, 51; 71, 21, 31, 61]

1
6,

[102, 01, 11; 61, 41, 51, 71]
1
6, [102, 41, 51; 71, 21, 31, 61]

1
6, [52, 01, 11; 61, 41, 51, 71]

1
6,
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[52, 41, 51; 71, 21, 31, 61]
1
6, [112, 01, 11; 61, 41, 51, 71]

1
6, [112, 41, 51; 71, 21, 31, 61]

1
6,

These stars form the desired decomposition. �

We now give some general conditions for the existence of an S1
6 -decomposition of

Mn1,n2 .

Theorem 3.14 An S1
6-Decomposition ofMn1,n2 exists for n1 ≡ n2 ≡ 0 (mod 4) where

n1 ≥ 8, and n2 ≥ 8.

Proof. We consider three cases.

Case 1. Suppose n1 ≡ n2 ≡ 0 (mod 8). Let M = n1/8 and N = n2/8. With

Xi = {11,i, 21,i, . . . , 81,i} for i = 1, 2, . . . ,M and

Yj = {12,j, 22,j, . . . , 82,j} for j = 1, 2, . . . , N,

for all i ∈ {1, 2, . . . ,M} and j ∈ {1, 2, . . . , N} there is an S1
6 -decomposition of the

complete bipartite mixed graph with partite sets Xi and Yj by Lemma 3.9 (since

|Xi| = |Yj| = 8). This collection of MN decompositions forms an S1
6 -decomposition

of Mn1,n2 . See Figure 7 again.

Case 2. Suppose n1 ≡ n2 ≡ 4 (mod 8), say M = (n1 − 12)/8 and N = (n2 − 12)/8.

Let

Xi = {11,i, 21,i, . . . , 81,i} for i = 1, 2, . . . ,M,

Yj = {12,j, 22,j, . . . , 82,j} for j = 1, 2, . . . , N,

XM+1 = {11,M+1, 21,M+1, . . . , 121,M+1} and Yj = {12,N+1, 22,N+1, . . . , 122,N+1}.
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An S1
6 -decomposition of the complete bipartite mixed graph with partite sets ∪M

i=1Xi

and ∪Nj=1Yj exists by Case 1 (since
∣∣∪Mi=1Xi

∣∣ ≡ ∣∣∪Nj=1Yj
∣∣ ≡ 0 (mod 8)). An S1

6 -

decomposition of the complete bipartite mixed graph with partite sets Xi and YN+1

exists for each i = 1, 2, . . . ,M by Lemma 3.13 (since |Xi| = 8 and |YN+1| = 12).

An S1
6 -decomposition of the complete bipartite mixed graph with partite sets Yj and

XM+1 exists for each j = 1, 2, . . . , N by Lemma 3.13 (since |Yj| = 8 and |XM+1| = 12).

An S1
6 -decomposition of the complete bipartite mixed graph with partite sets XM+1

and YN+1 exists by Lemma 3.10 (since |XM+1| = 12 and |YN+1| = 12). This collection

of decompositions form an S1
6 -decomposition of Mn1,n2 . See Figure 9 again.

Case 3. Suppose n1 ≡ 0 (mod 8) and n2 ≡ 4 (mod 8), say M = n1/8 and N =

(n2 − 12)/8. Let Xi for i = 1, 2, . . . ,M be as defined in Case 1, and let Yj for j =

1, 2, . . . , N+1 be as defined in Case 2. An S1
6 -decomposition of the complete bipartite

mixed graph with partite sets ∪Mi=1Xi and ∪Nj=1Yj exists by Case 1 (since
∣∣∪Mi=1Xi

∣∣ ≡ 0

(mod 8) and | ∪Nj=1 Yj| ≡ 0 (mod 8)). An S1
6 -decomposition of the complete bipartite

mixed graph with partite sets Xi and YN+1 exists for each i = 1, 2, . . . ,M by Lemma

3.13 (since |Xi| = 8 and |YN+1| = 12). This collection of decompositions form an

S1
6 -decomposition of Mn1,n2 . See Figure 8 again. �

This result gives only the existence of S1
6 -decomposition of Mn1,n2 where n1 ≡

n2 ≡ 0 (mod 4), and where n1 ≡ 0 (mod 8) and n2 ≡ 0 (mod 6). The case for

n1 ≡ n2 ≡ 2 (mod 4) should also be considered for future research. We leave the case

where either n1 or n2 is odd unaddressed, with the exception of an S1
6 -decomposition

of M8,7 which does not exist by Lemma 3.7.
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3.4 An S2
6 -decomposition of Mn1,n2

Recall that a S2
6 -block with vertex set {b, c, g, d, f, e} will be denoted by [a, b, d; d,

e, f, g] as illustrated in Figure 6. Let Mn1,n2 be defined as in the previous section. A

necessary condition for the existence of an S2
6 -decomposition of the complete mixed

graph Mn1,n2 is that one of n1 and n2 must be even. This is because in Mn1,n2 , there

are n1n2 edges and S2
6 has 2 edges. So if a decomposition exists then we need 2|n1n2.

That is, at least one of n1, n2 must be even. As an example, Figure 11 shows an

S2
6 -decomposition of M1,6.

Lemma 3.15 An S2
6-decomposition of M1,8 exists.

Proof. Consider the partite sets X = [11] and Y = [12, 22, 32, . . . , 82]. Consider the

blocks:

[11, 12, 22; 32, 42, 52, 62], [11, 32, 42; 52, 62, 72, 82], [11, 52, 62; 72, 82, 12, 22]

[11, 72, 82; 12, 22, 32, 42]. �

Therefore we can decompose Mk,6 by taking k copies of the M1,6 case. Similarly,

we can decompose Mk,2l by taking copies of the Mk,2l case for all k ∈ N, l ∈ N and

l ≥ 3.

Lemma 3.16 An S2
6-decomposition of M2,7 does not exist.

Proof. First M2,7 has 14 edges. This implies that an S2
6 -decomposition of M2,7

requires 7 copies of S2
6 . Now, consider the partite sets X = [11, 21] and Y =

[12, 22, . . . , 72]. Each vertex in X has degree 7. Since we only have two vertices
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Figure 11: S2
6 -decomposition of M1,6

in X, then each must be the centre of a star in the decomposition, and so is even

degree in each star. So no decomposition exists. �

The same result holds for M4,7. In fact, the same argument holds for any M2,n2

and M4,n2 , where n2 is odd.

Theorem 3.17 An S2
6-decomposition of Mn1,n2 exists if and only if n1 ∈ N, n2 ≡ 0

(mod 2), and n2 ≥ 6 (where n1 and n2 can be interchanged).

Proof. Mn1,n2 has n1n2 edges and S2
6 has two edges. So if a decomposition exists,

then one of n1 or n2 must be even (say n2). Since S2
6 is a bipartite mixed graph with

one partite set of size 6, then either n1 or n2 ≥ 6. Suppose n2 ∈ {2, 4} and n1 ≥ 6.

Then in an S2
6 -decomposition of Mn1,n2 , we must have the centre of each S2

6 as an

element of Y (since |Y | ≤ 4). Now each vertex of Y has edge degree n1; the edge
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degree of the centre of S2
6 is 2. So in an S2

6 -decomposition, n1 must be even when

n2 ∈ {2, 4} (Lemma 3.1).

For sufficiency, we consider the following cases where

1. n2 = {2, 4} and n1 ≥ 6 is even

2. n2 ≥ 6 is even and n1 ∈ N.

Since the decomposition exist for Mk,2l for any k ∈ N and l ≥ 3, then the result holds

for n2 = 2 and n1 ≥ 6 is even, if we take k = n2 = 2 and 2l = n1. Similarly for

k = n2 = 4 and 2l = n1. Also since we can decompose Mk,2l for any k ∈ N and l ≥ 3,

then S2
6 -decomposition of Mn1,n2 exist if we take k = n1 ∈ N and 2l = n2 for l ≥ 3. �

In conclusion, we have given necessary and sufficient conditions for an Si
6 −

decomposition of Mn1,n2 for i ∈ {0, 2, 4} in Theorems 3.5 and 3.17. We have also

given some S1
6 -decomposition of Mn1,n2 (and hence some S3

6 -decomposition of Mn1,n2)

in Theorem 3.14.

63



4 SOME MIXED STAR DECOMPOSITIONS OF COMPLETE MIXED

GRAPHS WITH A HOLE AND CONCLUSIONS

4.1 Introduction

We recall that a mixed graph on v vertices is a graph consisting of a set of ordered

and unordered pairs, denoted by (x, y) and [x, y] respectively. The ordered pair (x, y)

is called an arc and the unordered pair [x, y] is called an edge. We also recall that

the complete mixed graph on v vertices, denoted by Mv, is the mixed graph in which

for every two distinct vertices x and y, we have the following (x, y), (y, x) and [x, y].

The complete mixed graph on v vertices with a hole of size w is the mixed graph with

with vertex V = Vv−w ∪ Vw, where |Vv−w| = v − w, |Vw| = w, and Vv−w ∩ Vw = ∅,

with edge set

E = {ab | a 6= b, {a, b} ⊂ V and {a, b} 6⊂ Vw}

and arc set

A = {(a, b), (b, a) | a 6= b, {a, b} ⊂ V and {a, b} 6⊂ Vw}.

This mixed graph is denoted M(v, w). This is obtained by taking a complete mixed

graph on v vertices and removing the edges and arc of a complete mixed graph on w

vertices.

An example of a recently presented decomposition of complete graph with a hole

can be found in [1]. A C4 decomposition of K(v, w) exists if and only if v − w ≡ 0

(mod 8) and w ≡ 1 (mod 2) [6]. See [5, 6, 14] for the decomposition of K(v, w)

into m-cycles for m ∈ {3, 4, 5, 6, 7, 8, 10, 12, 14}. Notice that when m = 3, this is

equivalent to a Steiner triple system with a hole.

64



4.2 Some Si
6-decompositions of M(v, w).

Notice that we can decompose M(v, w) into a complete mixed graph Mv−w and a

complete bipartite mixed graph Mv−w,w. This observation allows us to use the results

of Chapters 2 and 3 to get some Si
6-decompositions of M(v, w). Thus, the following

results show some of the Si
6-decompositions of complete mixed graphs with a hole.

Lemma 4.1 An S1
6-decomposition ofM(v, w) exists for v−w ≡ 0 (mod 8) and w ≡ 0

(mod 6).

Proof. We can decompose M(v, w) into Mv−w and Mv−w,w. Since v − w ≡ 0 (mod

8) then by [10] there exists an S1
6 -decomposition of Mv−w. Since v − w ≡ 0 (mod 8)

and w ≡ 0 (mod 6) then by Lemma 3.12 there exists an S1
6 -decomposition of Mv−w,w.

These two decompositions together give an S1
6 -decomposition of Mv,w, as claimed. �

Lemma 4.2 An S1
6-Decomposition of M(v, w) exists for v − w ≡ 0 (mod 4), w ≡ 0

(mod 4), v − w ≥ 12, and w ≥ 8.

Proof. We can decompose M(v, w) into Mv−w and Mv−w,w. Since v − w ≡ 0 (mod

4) and v − w ≥ 12 then by [10] there exists an S1
6 -decomposition of Mv−w. Since

v − w ≡ 0 (mod 4), w ≡ 0 (mod 4), and v − w ≥ 8, then by Theorem 3.14 there

exists and S1
6 -decomposition of Mv−w,w. These two decompositions together give an

S1
6 -decomposition of M(v, w), as claimed. �

Recall that the converse of S1
6 is obtained by reversing the orientation of all the

arcs which gives S3
6 . Since Mv,w is self converse, therefore Lemma 4.1 and Lemma 4.2

imply S3
6 decomposition of M(v, w).
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Lemma 4.3 An S2
6-Decomposition of M(v, w) exists for v − w ≡ 0 or 1 (mod 4),

w ≡ 0 (mod 2), v − w ≥ 8, and w ≥ 6.

Proof. We can decompose Mv,w into Mv−w and Mv−w,w. Since v −w ≡ 0 or 1 (mod

4) and v − w ≥ 8 then by [10] there exists an S1
6 -decomposition of Mv−w. Since

v − w ≡ 0 or 1 (mod 4), w ≡ 0 (mod 2), and w ≥ 6, then by Theorem 3.17 there

exists an S2
6 -decomposition of Mv−w,w. These two decompositions together give an

S2
6 -decomposition of Mv,w, as claimed. �

Since Mv,w is self converse, therefore Lemma 4.3 also implies S4
6 decomposition of

Mv,w.

4.3 Future Research

In future research, one could explore necessary and sufficient conditions for the

existence of an S1
6 -decomposition of the complete bipartite mixed graphs. This would

complete the results for S1
6 -decomposition we give in Chapter 3. Necessary and suf-

ficient conditions for Si
6-decomposition of λMn1,n2 and λM(v, w) are a largely unex-

plored topic.

4.4 Conclusion

We have given decompositions of various complete mixed graphs into isomorphic

copies of partial orientations of 6-stars which have twice as many arcs as edges.

In Chapter 1 we gave necessary and sufficient conditions for an Si
6-decompositions

of λMv for all λ and each i ∈ {1, 2, 3, 4}, in Chapter 2, we gave necessary and sufficient
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conditions for an Si
6-decompositions of Mn1,n2 for i ∈ {0, 2, 4} and gave some results

concerning such decompositions for i ∈ {1, 3}. In Chapter 4 we used the results

from Chapter 2 and Chapter 3 to get some easy Si
6-decompositions of M(v, w) for

i ∈ {1, 2, 3}.
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