
East Tennessee State University East Tennessee State University

Digital Commons @ East Digital Commons @ East

Tennessee State University Tennessee State University

Electronic Theses and Dissertations Student Works

8-2021

Applying Deep Learning to the Ice Cream Vendor Problem: An Applying Deep Learning to the Ice Cream Vendor Problem: An

Extension of the Newsvendor Problem Extension of the Newsvendor Problem

Gaffar Solihu
East Tennessee State University

Follow this and additional works at: https://dc.etsu.edu/etd

 Part of the Applied Mathematics Commons, Artificial Intelligence and Robotics Commons, Data

Science Commons, Mathematics Commons, and the Statistics and Probability Commons

Recommended Citation Recommended Citation
Solihu, Gaffar, "Applying Deep Learning to the Ice Cream Vendor Problem: An Extension of the
Newsvendor Problem" (2021). Electronic Theses and Dissertations. Paper 3945. https://dc.etsu.edu/etd/
3945

This Thesis - unrestricted is brought to you for free and open access by the Student Works at Digital Commons @
East Tennessee State University. It has been accepted for inclusion in Electronic Theses and Dissertations by an
authorized administrator of Digital Commons @ East Tennessee State University. For more information, please
contact digilib@etsu.edu.

https://dc.etsu.edu/
https://dc.etsu.edu/
https://dc.etsu.edu/etd
https://dc.etsu.edu/student-works
https://dc.etsu.edu/etd?utm_source=dc.etsu.edu%2Fetd%2F3945&utm_medium=PDF&utm_campaign=PDFCoverPages
https://network.bepress.com/hgg/discipline/115?utm_source=dc.etsu.edu%2Fetd%2F3945&utm_medium=PDF&utm_campaign=PDFCoverPages
https://network.bepress.com/hgg/discipline/143?utm_source=dc.etsu.edu%2Fetd%2F3945&utm_medium=PDF&utm_campaign=PDFCoverPages
https://network.bepress.com/hgg/discipline/1429?utm_source=dc.etsu.edu%2Fetd%2F3945&utm_medium=PDF&utm_campaign=PDFCoverPages
https://network.bepress.com/hgg/discipline/1429?utm_source=dc.etsu.edu%2Fetd%2F3945&utm_medium=PDF&utm_campaign=PDFCoverPages
https://network.bepress.com/hgg/discipline/174?utm_source=dc.etsu.edu%2Fetd%2F3945&utm_medium=PDF&utm_campaign=PDFCoverPages
https://network.bepress.com/hgg/discipline/208?utm_source=dc.etsu.edu%2Fetd%2F3945&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:digilib@etsu.edu

Applying Deep Learning to The Ice Cream Vendor Problem: An Extension of the

Newsvendor Problem

A thesis

presented to

the faculty of the Department of Mathematics & Statistics

East Tennessee State University

In partial fulfillment

of the requirements for the degree

Master of Science in Mathematical Sciences

by

Gaffar Olamide Solihu

August 2021

Jeff Knisley, Ph.D., Chair

Michele Joyner, Ph.D.

JeanMarie Hendrickson, Ph.D.

Keywords: machine learning, deep learning, simulation, supply chain, newsvendor,

inventory optimization, operations research.

ABSTRACT

Applying Deep Learning to The Ice Cream Vendor Problem: An Extension of the

Newsvendor Problem

by

Gaffar Olamide Solihu

The Newsvendor problem is a classical supply chain problem used to develop strategies for

inventory optimization. The goal of the newsvendor problem is to predict the optimal order

quantity of a product to meet an uncertain demand in the future, given that the demand

distribution itself is known. The Ice Cream Vendor Problem extends the classical newsven-

dor problem to an uncertain demand with unknown distribution, albeit a distribution that

is known to depend on exogenous features. The goal is thus to estimate the order quantity

that minimizes the total cost when demand does not follow any known statistical distribu-

tion. The problem is formulated as a mathematical programming problem and solved using

a Deep Neural network approach. The feature-dependent demand data used to train and

test the deep neural network is produced by a discrete event simulation based on actual

daily temperature data, among other features.

2

Copyright 2021 by Gaffar Olamide Solihu

All Rights Reserved

3

ACKNOWLEDGMENTS

First and foremost, I want to express my gratitude to Dr. Jeff Knisley of the Depart-

ment of Mathematics and Statistics at East Tennessee State University, who has constantly

allowed me to grow through my thesis while guiding me in the proper path whenever I

needed it.

I would also like to acknowledge my thesis committee members, Dr. Michele Joyner

and Dr. JeanMarie Hendrickson of the Department of Mathematics and Statistics at East

Tennessee State University. I am deeply indebted to them for their valuable comments on

this thesis and the knowledge they have impacted on me throughout my years of study.

Finally, I want to convey my heartfelt gratitude to my parents and my lovely wife for

their unwavering support and encouragement throughout my years of study, as well as

during the research and writing of this thesis. This accomplishment would not have been

possible without them.

4

TABLE OF CONTENTS

ABSTRACT . 2

ACKNOWLEDGMENTS . 4

LIST OF TABLES . 7

LIST OF FIGURES . 8

1 INTRODUCTION AND BACKGROUND 9

1.1 Supply Chain Management (SCM) and Inventory Optimization . . . 9

1.2 The Newsvendor Problem . 10

1.3 Multi-Product Newsvendor Problem and It’s Challenges 12

1.4 Application of Deep Learning to the Newsvendor (NV) Problem . . 15

1.5 Discrete Event Simulation with Simpy 19

2 STOCHASTIC LINEAR PROGRAMMING, MACHINE LEARNING AND

DEEP LEARNING . 21

2.1 Probability and Randomness . 21

2.2 Stochastic Linear Programming . 24

2.2.1 Linear Programming . 24

2.2.2 Stochastic Linear Programming 25

2.3 Solutions to Stochastic Linear Programs 26

2.3.1 Approximation and Sampling Method 26

2.3.2 Data Science Machine Learning Approach 27

2.4 Machine Learning (ML) . 28

2.4.1 Supervised Learning . 28

2.4.2 Unsupervised Learning . 33

5

2.4.3 Reinforcement Learning . 34

2.5 Deep Learning . 34

2.5.1 Hyperband Algorithm . 39

3 THE ICE CREAM VENDOR PROBLEM 42

3.1 Derivation of the Ice Cream Vendor Problem 42

3.2 Simulation of Ice Cream Vendor . 43

3.3 Linear Programming Approach . 45

3.4 Deep Learning Approach . 46

3.5 Implementation . 47

3.6 Results and Conclusions . 52

4 FUTURE DIRECTIONS . 54

BIBLIOGRAPHY . 55

APPENDICES . 62

Appendix A : Ice Cream Vendor Data Simulation 62

Appendix B : Solutions to Ice Cream Vendor Problem 69

B.1 Linear Programming Approach . 69

B.2 Deep Learning approach . 71

VITA . 81

6

LIST OF TABLES

1 Brief Description of Notations . 11

2 Simulated Demand Data . 44

3 LP Predicted Order Quantity . 46

4 DNN Training Log Table 1 . 51

5 DNN Training Log Table 2 . 51

6 DNN Test Data . 53

7 DNN Predicted Order Quantity . 53

7

LIST OF FIGURES

1 An illustration of a deep learning neural network [9]. 16

2 A supervise ML process [3]. 29

3 A linear regression model . 31

4 An example of a decision tree . 32

5 Examples of SVM . 33

6 Structure of a DNN [29] . 37

7 Leaky rectified linear activation function . 49

8

1 INTRODUCTION AND BACKGROUND

The emergence of “Big data” has paved the way for sophisticated approaches for solving

complicated problems which can best be likened to learning from documented history (data)

to improve the future. The combination of big data and mathematical models is used to

solve problems across industries like healthcare, education, banking and securities, commu-

nication, manufacturing, government, insurance, retail and wholesale trade, and many more

[37, 55]. A particular example of such problems is that of inventory optimization.

In this thesis, we propose an approach based on deep learning to solve an inventory

optimization problem called the Ice Cream Vendor Problem. This approach predicts the

order quantities based on features of the demand data in order to satisfy uncertain demand

and maximize expected profit.

1.1 Supply Chain Management (SCM) and Inventory Optimization

A supply chain can be defined as a network between a company and its suppliers to

produce and distribute a specific product to the final buyer. It involves a series of steps

to get a product or service to the final consumer [26]. Furthermore, the supply chain lays

out all aspects of the production process, including the activities performed at each stage,

information exchanged, natural resources converted into useful materials, human resources,

and other components that go into the final product or service [11]. Supply chains can vary

in complexity, with some having only a few stages while others have several. For example,

a simple supply chain consists of a supplier, a manufacturer, and a retailer who sells to

final consumers. However, the supply chains of large corporations often involve hundreds

of facilities (retailers, distributors, plants, and suppliers) that are globally distributed and

9

involve thousands of parts and products.

In order to overcome the difficulties associated with complexities in a supply chain, the

chain of supplies needs to be well managed [43]. With effective supply chain management

in place, companies can cut excess costs and deliver products to the consumers faster [17].

For a highly effective supply chain management, it is essential that an inventory is kept and

thoroughly optimized.

Inventory optimization is a collection of strategies designed to deliver the right amount

of product at the right time for the lowest possible cost. That is, delivering the optimal

balance between supply and demand. It includes the practice of having the right levels of

inventory to meet target service levels while keeping a minimum amount of capital locked

for inventory. The goal of an inventory optimization strategy is to maintain a steady flow of

inventory, eliminate out-of-stock situations, mitigate loss and risk, all while boosting profits

through improved efficiency and lower inventory costs[22].

In this thesis, we explore an extension of the newsvendor problem and its application to

solving the inventory optimization problem.

1.2 The Newsvendor Problem

The newsvendor problem is a mathematical model in operations research used to deter-

mine optimal inventory decisions under uncertainties [34]. The classic newsvendor problem

is a problem that is characterized by fixed prices and uncertain demand for a perishable

good. As its name entails, a newspaper vendor buys x copies of a newspaper in the morning

at a cost of $c per paper, he sells each for $p and expects a demand of D copies that day.

The newsvendor’s objective is to maximize his profit, or equivalently, to minimize his cost.

10

He must decide how many ordered x copies he will require to meet his objective, keeping in

mind that surplus copies cannot be returned to his supplier, and that if he purchases fewer

than the demand, he would disappoint his customers and lose money.

Table 1: Brief Description of Notations

Symbols Description

c cost price

p sales price

D uncertain demand

x Order quantity

co per-unit Overage cost

cu per-unit underage cost

S Warehouse storage size

K Capacity of the Truck

Vi Volume of the goods

[a]+ maximum of a and 0

ED Expected value in D

In general, the newsvendor problem assumes that a company purchases some goods at

the beginning of a period and sells them during the period. At the end of the period

unsold goods must be discarded, incurring a cost for overstocking (hold, salvage, dispose).

In addition, if it runs out of goods in the middle of the period, it incurs a cost (shortage,

back-order), losing potential profit [36]. These costs are called Underage cost (opportunity

cost) and Overage cost respectively.

The newsvendor’s cost function is thus

C(x;D) =


cu(D − x) if D > x

co(x−D) if D < x

(1)

where cu is per-unit underage cost and co is per-unit overage cost, see Table 1. If we use

11

the notation [a]+ = max(a, 0), we can rewrite (1) as

C(x;D) = cu[D − x]+ + co[x−D]+ (2)

However, finding the order quantity x that maximizes the expected profit is equivalent to

finding the order quantity x that minimizes the expected value of the sum of the underage

and overage costs, given that demand D is a random variable [39]. That is, the optimal

order quantity x∗ can be obtained by solving the following optimization problem :

min
x

C(x;D) = ED

(
cu[D − x]+ + co[x−D]+

)
(3)

As expressed in [36, 48], if F (·) is the cumulative density function of the demand distri-

bution and F−1 is it’s inverse, then the optimal solution of (3) can be obtained as

x∗ = F−1
(

cu
cu + co

)
(4)

where cu/(cu + co) is called the critical fractile.

1.3 Multi-Product Newsvendor Problem and It’s Challenges

In real-world problems ,companies rarely manage a single product, so it is important

to extend the classic newsvendor problem to provide solutions for multiple products. The

Multi-Product Newsvendor Problem (MPNP) is an extension of the classic newsvendor

problem. At the beginning of a single period, a buyer is interested in determining order

quantities xi for i (i = 1, 2, ..., n) products to satisfy the demand Di, where the underage

and overage cost is represented as

Ci(xi;Di) =


ciu(Di − xi) if Di > xi

cio(xi −Di) if Di < xi

(5)

12

We define the deterministic multi-product newsvendor problem as a linear program with

constraints as

min
xi

n∑
i=1

(
cixi + cui[Di − xi]+ + coi[xi −D]+

)
s.t.

n∑
i=1

xi ≤ K (6)

n∑
i=1

Vixi ≤ S

Also, when the demand is stochastic (i.e., a random variable), with probability density

function fi(·) and cumulative distribution function Fi(·), the objective function becomes

min
x

ED

 n∑
i=1

(
cixi + cui[Di − xi]+ + coi[xi −D]+

)
s.t.

n∑
i=1

xi ≤ K (7)

n∑
i=1

Vixi ≤ S

which is equivalent to

min
x

n∑
i=1

cixi +

∫ ∞
−∞

(
cui[Di − xi]+ + coi[xi −Di]

+
)
fi(Di)dDi

s.t.

n∑
i=1

xi ≤ K (8)

n∑
i=1

Vixi ≤ S

However, in the real world, the newsvendor problem is faced with some practical chal-

lenges. Some of the challenges are estimating the probability distribution, estimating the

underage and overage cost, and also the effect of some exogenous features.

As mentioned in [63], early research mainly focused on refinement of distributional and

mathematical method and solving the model as an optimization problem. For example, in

13

[27], they designed an algorithm for the price-dependent distribution method to include the

influence of price. A method for the extension of an assumed distribution to multi-product

cases was proposed by Zhou in [64]. In [2], they examined the newsvendor model in the

presence of correlated demands. Specifically under a stationary Autoregressive model, the

performance of a classic newsvendor solution vs. a dynamic forecast-based approach is

investigated. Scarf in [42] first tried to solve the newsvendor problem with only sample

mean x̃ and sample varience σ̂2 and this approach was later expanded to multi-product

case by calculating the demand for each item then adding them up [20].

Many approaches have concentrated on solving the problem by approximating the prob-

ability distribution and neglecting the effect of exogenous features (e.g., weather, day of the

week, time of the day, location of business, etc.) on the demand. The multi-feature newsven-

dor problem (MFNP) extends the multi-product newsvendor problem to “Big Data” whose

features can be used to address the challenges of the MPNP. In [40], they try to solve the

multi-product newsvendor problem by proposing a machine learning algorithm to solve the

problem. They claim that the algorithm can be extended to other situations, such as having

a new item with limited data, censored demand data, ordering for multiple items and so

on. They postulate that “the optimal base-stock level is related to the demand features via

a linear function, that is y∗ = wTx, where x is the vector of features {(x1, d1), . . . , (xn, dn)}

and w is a vector of weights”.

14

In [40, 5], they estimate these weights by solving the optimization problem

min
w

1

n

n∑
i=1

(
cu[di − wTxi]+ + co[w

Txi − di]+
)

+ λ‖w‖2k

s.t. [di − wTxi]+ ≥ di − w1 −
p∑
j=2

wix
j
i ; ∀i = 1, . . . , n. (9)

[wTxi − di]+ ≥ w1 +

p∑
j=2

wix
j
i − di;∀i = 1, . . . , n.

where n is the number of observations, p is the number of features, and λ‖w‖2k is the

regularization term. They claim that when the number of features is relatively small, the

regularization term can be ignored. They also claim that this approach works better than

other data-driven approaches such as sample average approximation (SAA) and separated

estimation and optimization (SEO) if there is access to historical data.

Recently, advanced machine learning and neural network techniques, such as Support

Vector Machine, recurrent neural networks, LSTM neural networks, etc. have been used to

solve the MFNP as seen in [10, 46].

1.4 Application of Deep Learning to the Newsvendor (NV) Problem

Deep learning, or deep neural networks (DNN), is a branch of machine learning that uses

multiple layers to define and train a function model. A deep neural network is an artificial

neural network with multiple layers between the input and output as illustrated in Figure

1, that consist of neurons, synapses, weights, biases, and activations (nonlinear functions)

[57]. Deep learning has been applied to various problems, such as speech recognition, image

recognition, natural language processing, drug discovery, recommendation systems, demand

prediction, and many more [57].

15

Figure 1: An illustration of a deep learning neural network [9].

To improve on the aforementioned machine learning algorithm approaches for solving the

newsvendor problem shown in [40, 5], Oroojlooyjadid et al. in [36] extended on the machine

learning methods applied in [5] by developing a new approach to solve the newsvendor

problem. They proposed an algorithm based on deep learning that optimizes the order

quantities for all products based on features of the demand data; this algorithm integrates

the forecasting and inventory-optimization steps, rather than solving them separately, as

it’s typically done, and does not require knowledge of the probability distributions of the

demand.

Referencing [36], Oroojlooyjadid et al. proposed a revised loss function of (9),

min
w

n∑
i=1

l
(
θ(xi;w), yi

)
+ λR(w) (10)

where w is the matrix of the weights, xi is the vector of the inputs, θ(·) is the Deep Neural

Network (DNN) activation function, and R(w) is the regularization function with weight λ.

The regularization term is typically l1 or l2 norm of the weights, which is used to prevent

over-fitting. The revised loss function they proposed considers the impact of inventory

shortage and holding costs and was aimed to measure the closeness of the outputs of the

16

model to the true values, which allows the deep learning algorithm to obtain the minimizer

of the newsvendor cost function directly.

As illustrated in Figure 1, the DNN they used has a cascade of many layers of linear or

nonlinear function. In each node j(j = 1, . . . , n) of a layer l(l = 1, . . . , n), the input value

zlj =
n∑
i=1

al−1i wi,j (11)

is calculated and the value of the function glj(z
l
j) provides the output value of the node,

where the function glj(·) is called the activation function and the value of glj(z
l
j) is called

the activation of the node denoted as alj . The data is represented as

[(x1i , d
1
i), . . . , (x

m
i , d

m
i)]ni=1

where xqi ∈ Rp and dqi ∈ R for i = 1, . . . , n and q = 1, . . . ,m. The mathematical problem is

Ei = min
y1i ,...,y

m
i

1

m

 m∑
q=1

cu[dqi − y
q
i]

+ + co[y
q
i − d

q
i]
+

 (12)

where Ei is the loss value of period i and E = 1
n

n∑
i=1

Ei is the total loss. Since one of the

two terms must be zero, the loss function (12) can be written as

Eqi =


cu(dqi − y

q
i) if yqi < dqi

co(y
q
i − d

q
i) if dqi ≤ y

q
i

(13)

They also proposed a revised Euclidean loss function, which is the square of (12) that

penalizes the order quantities that are far from di, much more than those that are close,

and claimed that sometimes leads to a better solution and the gradient is available in the

whole solution space, as follows:

Ei = min
y1i ,...,y

m
i

1

m

 m∑
q=1

(
cu[dqi − y

q
i]

+ + co[y
q
i − d

q
i]
+
)2 (14)

17

Then they have

Eqi =


1
2

∥∥cu(dqi − y
q
i)
∥∥2
2

if yqi < dqi

1
2

∥∥c0(yqi − dqi)∥∥22 if dqi ≤ y
q
i

(15)

The gradients and sub-gradient under the loss functions (13) and (15) respectively are

∂Eqi
∂wjk

=


aljδ

l
j(u) if yqi < dqi

aljδ
l
j(o) if dqi ≤ y

q
i

(16)

∂Eqi
∂wjk

=


(dqi − y

q
i)a

l
jδ
l
j(u) if yqi < dqi

(yqi − d
q
i)a

l
jδ
l
j(o) if dqi ≤ y

q
i

(17)

where alj = glj(z
l
j), δ

l
j(u) = cu(glj)

′
(zlj) and δlj(o) = co(g

l
j)

′
(zlj) .

The gradients are used to iteratively update the weights of the network. Stochastic Gradient

Descent (SDG) algorithm with a fixed momentum of 0.9 is used to obtain new weights.

Oroojlooyjadid et al. ended up with two DNN models called DNN-l1 from the Linear loss

function (13) and DNN-l2 from the Euclidean loss function (15) respectively.

They generated 100 fully connected networks with random structures, where in each

of the networks, the number of hidden layers is randomly selected as either two or three,

the number of nodes in each hidden layer is also selected randomly based on the number

of nodes in the layer before it, and also the learning rate and regularization parameters

are drawn uniformly from [10−5, 10−2]. Ultimately, in order to select the best model, they

use the Hyperband algorithm [28], by which they trained each of the 100 networks for one

epoch, then obtained the result on the test set, and removed the worst 10% of the network.

Then run another epoch on the remaining networks and remove the worst 10%, then repeats

the process to obtain the best model. The Tensorflow library was used to implement this

18

procedure. Google created and published the Tensorflow library, a python-based framework

for rapid numerical processing [1].

Finally, in order to check the validity of their algorithm, they implemented their DNN

algorithms, Empirical Quantile (EQ) model in [7], the Linear Machine Learning (LML)

and Kernel Regression (KR) in [40], the K-Nearest Neighbor (KNN) amd Random For-

est (RF) in [6] and the Separated Estimation Optimization (SEO) in [53]. They tested

the algorithms on a real-world retailer’s basket dataset and multiple simulated datasets

and concluded that their algorithm is superior to others when data is noisy and can also

get close to optimal solutions when the data are noise-free. The code used to implement

the DNN is open to public and can be found on Oroojlooyjadid’s repository on GitHub

(https://github.com/oroojlooy/newsvendor).

In chapter 3, we discuss how we applied a variation of their DNN algorithms to solve the

Ice cream Vendor problem by adapting a Pytorch version of DNNs discussed above from

Karn Watcharasupat’s repository on GitHub.

1.5 Discrete Event Simulation with Simpy

The goal of newsvendor problems is to find optimal strategies for inventory optimization,

but these strategies cannot be verified as optimal using real world data. Instead, optimal

strategies tend to be developed via data produced by controlled simulations, after which

such strategies are applied to actual data [61].

Discrete event simulation (DES) models a real world system that can be decomposed

into a set of logically separate processes that produce discrete events over time. It is useful

for evaluating different circumstances in a system without expensive field experiments, such

19

as simulating the day-to-day operation of a warehouse under different circumstances.

SimPy is an open-source package written in Python that is used for discrete-event sim-

ulation (DES). According to [31], “processes in SimPy are defined by Python generator

functions and may, for example, be used to model active components like customers, vehi-

cles or agents”. It describes that in the operation of a warehouse, whereby the purchase

orders reduces the inventory and inventory been replenished time to time, a typical Simpy

variable would be the inventory.

We considered several exogenous features and produced demand data that are dependent

on these features such as temperature, precipitation, wind speed, relative humidity and so

on.

Our goal is to collect feature driven Big Data for uncertain demand from a discrete events

simulation, which represents real-world event, that will be used for data driven solution to

the Newsvendor problem.

20

2 STOCHASTIC LINEAR PROGRAMMING, MACHINE LEARNING AND DEEP

LEARNING

In order to understand the role of uncertainty in newsvendor problems, we introduce the

concept of probability and it’s relationship to stochastic linear programming.

2.1 Probability and Randomness

Probability is the chance (likelihood) of an event happening. It is a mathematical descrip-

tion of randomness and uncertainty. Some relevant definitions and properties of probability

will be introduced in other to understand stochastic linear programming.

A random experiment is a mechanism by which we observe uncertain outcome. The set

of all possible outcomes (result of random experiment) is called the sample space S. An

event is a subset of the sample space [23].

Definition 2.1 (Event Space [23]) The collection F of subsets of the sample space S is

called an event space if

F is non-empty,

if A ∈ F , then S \ A ∈ F ,

ifA1,A2, . . . ∈ F then

∞⋃
i=1

Ai ∈ F .

Definition 2.2 (Probability Space [23]) A probability space is a triple (S,F ,P) of ob-

jects such that

(a) S is a non-empty set,

(b) F is an event space of subsets of S,

21

(c) P is a probability measure of (S, F)

Definition 2.3 (Conditional Probability [23]) If A, B ∈ F and P(B) > 0, the condi-

tional probability of A given B is denoted by P (A \ B) and defined by

P(A \ B) =
P(A ∩ B)

P(B)

Definition 2.4 Events A and B of a probability space (S,F ,P) are called independent if

P (A ∩ B) = P(A)P(B),

and dependent otherwise [23].

A random variable X is a function from the sample space S to the real numbers, that

is, X : S → R [23]. A random variable can either be discrete or continuous. A random

variable X is said to be discrete, if its possible values (range) form a countable set and it’s

distribution can be described by a probability mass function (pmf).

Definition 2.5 (Probability Mass Function) The probability mass function (or pmf)

of a discrete random variable X is the function pX(x) : R→ [0, 1] defined by

pX(x) = P(X = x)

Thus, pX(x) is the probability that the mapping X takes value x [23].

Definition 2.6 (Expected Value) If X is a discrete random variable, the expectation of

X is denoted by E(X) and defined by

E(X) =
∑
x

xP(X = x) =
∑
x

xpX(x)

22

The expectation of X is often called the expected value or mean of X [23].

Definition 2.7 If X is a random variable on (S,F ,P), the cumulative distribution function

of X is the function FX : R→ [0, 1] defined by

FX(x) = P(X ≤ x).

A random variable X is said to be continuous, if it takes infinite number of possible values.

A continuous random variable is defined over an interval of values, and is represented by

the area under a curve (integral).

Definition 2.8 A random variable X is continuous if its cumulative distribution function

FX may be written in the form

FX(x) = P(X ≤ x) =

∫ x

−∞
fX(u)du for x ∈ R

for some non-negative function fX . In this case, we say X has a probability density function

(or pdf) fX [23].

Definition 2.9 If X is a continuous random variable with density function fX , the expec-

tation of X is denoted by E(X) and defined by

E(X) =

∫ ∞
−∞

xfX(x)dx

Also, the total area under the probability density function is always equal to 1, that is,

∫ +∞

−∞
fX(x)dx = 1

23

2.2 Stochastic Linear Programming

2.2.1 Linear Programming

Linear programming is the optimization of a linear function, called the objective function,

which is subject to a set of linear constraints. The simplicity of linear functions makes

linear models easy to formulate, interpret, and analyze. Linear programs are particularly

important because they accurately represent many practical applications of optimization

[19].

A linear programming problem can be described as follows:

minimize z = c1x1 + · · ·+ cnxn

subject to

a11x1 + · · ·+ a1nxn = b1
...

am1x1 + · · ·+ amnxn = bm
xj ≥ 0, j = 1, . . . , n

(18)

For i = 1, . . . ,m. and j = 1, . . . , n., the xj are non-negative decision variables, cj are coef-

ficients associated with the decision variables, aij and bi represent the constant associated

with the constraints. Let x = (x1, x2, . . . , xn)T , c = (c1, c2, . . . , cn)T , b = (b1, b2, . . . , bm)T ,

and A = matrix of (aij), the linear programming problem above can be represented as

follows:

minimize cTx

subject to
Ax = b
x ≥ 0

(19)

Linear programming (LP) problems can be classified into deterministic and stochastic

optimization problems base on the type of parameters (data) involve. We say a linear

programming problem is deterministic if the data associated with the problem are known

accurately, while a LP problem is stochastic if the data has elements of uncertainty or

24

randomness, such has future price of a certain product, product demand during a specific

period, and many more.

2.2.2 Stochastic Linear Programming

Stochastic linear programming problems represent real-world problems because uncer-

tainty is embedded into the model and it takes the advantage that the probability distri-

bution of the data is known or can be estimated. In stochastic linear programming, the

parameters become random variables [52].

The concept of recourse, or the ability to take remedial action after a random event,

lies at the heart of stochastic linear programming. We minimize the cost of the first-period

decision in addition to the expected cost of the second-period recourse decision as follows:

minimize cTx + EwQ(x,w)

subject to
Ax = b
x ≥ 0

(20)

where EwQ(x,w) is the optimum value of the second stage problem and w is a random

event, then Q(x,w) is

minimize d(w)Ty

subject to
T(w)x + W(x)y = h(w)

y ≥ 0

(21)

The second linear program minimizes the cost dT y and describes how to choose y(w), subject

to some recourse constraints. This is also known as two-stage stochastic programming [44].

The Newsvendor problem is an example of a stochastic linear programming problem,

because the vendor must decide now how much order quantity is needed to meet future un-

predictable (stochastic) demand while minimizing cost (i.e.maximizing profit) under certain

25

limitations.

2.3 Solutions to Stochastic Linear Programs

The main objective of solving stochastic linear program is to find the optimal value

for model parameters influenced by random event. The primary idea behind stochastic

programming is to turn a stochastic problem into an appropriate deterministic problem

that can be addressed with a suitable classical or modern numerical technique. In this

thesis, we discuss the sampling method and the data science machine learning method for

solving stochastic linear problems.

2.3.1 Approximation and Sampling Method

The sample average approximation (SAA) method is a Monte Carlo simulation-based

approach to solving stochastic optimization problems. A sample average estimate derived

from a random sample is often used to approximate the expected objective function of the

stochastic problem, that is the recourse funcion Q(x,w) in (12) is replaces with a Monte-

Carlo estimate

EwQ(x,w) =
1

N

N∑
i=1

Q(x,wk)

and (12) becomes as expressed in [32]

minimize cTx +
1

N

N∑
i=1

Q(x,wk)

subject to

Ax = b
T(w)x + W(x)y = h(w)

x ≥ 0,y ≥ 0
k = 1, 2, . . . , N.

(22)

Various applications of stochastic optimization have effectively employed sampling-based

approaches, such as, asset liability management in [24], supply chain network design in [41],

26

and many more.

2.3.2 Data Science Machine Learning Approach

The newsvendor model is an example of a stochastic linear programming problem , where

we have the problem of minimizing the cost function in order to estimate the optimum order

quantity X, that is

min
x

1

n

n∑
i=1

(
cu[Di −X]+ + co[X −Di]

+
)

(23)

possibly subject to linear constraints.

This problem becomes complex when there is large demand data, where order quantity

becomes a function of some features zi and parameters β, that is, X = zTi β, and the problem

becomes

min
β

1

n

n∑
i=1

(
cu[Di − zTi β]+ + co[z

T
i β −Di]

+
)

(24)

possibly subject to linear constraints.

Its equivalent linear program, if si = D − zTi β and ti = zTi β −D becomes

minimize
β

1

n

n∑
i=1

(cusi + +coti)

subject to
si ≥ D − zTi β
ti ≥ zTi β −D
si ≥ 0, ti ≥ 0

(25)

the machine learning model solves the linear program and produce optimum parameters

β∗, which is then used to estimate order quantity given new datasets, that is

X∗ = zTnewβ
∗

To solve multistage stochastic programming problem, a machine learning technique was

used in [12].

27

2.4 Machine Learning (ML)

Machine learning is the process of creating algorithms (systems) that extract useful

information from data automatically [13]. Machine learning is basically the concept of

teaching a computer program or algorithm how to improve over time at a given task.

Data, mathematical model, and ‘learning’ are the three concepts at the core of a ma-

chine learning algorithm. There are basically three classes of machine learning algorithms:

supervised learning, unsupervised learning, and reinforcement learning.

2.4.1 Supervised Learning

Supervised learning is a type of machine learning that makes use of labeled datasets.

These datasets are divided into train and test sets and used to train or “supervise” al-

gorithms so that they can properly categorize data or predict outcomes [14]. The train

dataset has output variable which needs to be predicted or classified. These algorithms

can be classifies into Regression and Classification algorithms. Simple Linear Regression,

Decision Tree Regression, Support Vector Regression are examples of regression algorithms,

while K-Nearest Neighbours, Decision Tree, Support Vector Machine are examples of clas-

sification algorithms. Also, some of these algorithms can be leveraged for both classes [3].

Figure 2 illustrates a typical supervised machine learning process. Some of the applications

of Supervised learning models are spam detection, sentiment analysis, weather forecasting,

and pricing predictions [14]. We’ll go through some of the most common supervised machine

learning algorithms and discuss how they use data to learn and generate predictions.

28

Figure 2: A supervise ML process [3].

k-Nearest Neighbors (KNN) : It is arguably the simplest machine learning algorithm,

which assumes that similar observations exist in close proximity, and the algorithm makes

predictions based on distance between points. In it’s simplest form it considers one nearest

neighbor which is closest to the training data point of interest and it’s prediction is simply

identifying such data point. In the case of large datasets, instead of considering only one

closest neighbor, we can also consider k arbitrary number of neighbors [33]. There are

several ways of calculating proximity and the choice of calculation depends on the problem,

but the most popular choice is the euclidean distance (straight line distance). In practice

KNN algorithm depends entirely on two questions , which are, how to calculate distance

and what number of k will be efficient. The choice of k can simply be determined by running

the algorithm several times with different values of k. The best k reduces the error on new

29

dataset. It can also be used for both classification and regression problems. See [38] for

implementation in Python.

Linear Regression : Linear regression, also known as ordinary least square, is the most

classic method for regression which establishes the relationship between independent and

dependent variables by fitting a best line which is known as regression line [33]. The linear

model can be represented in its simplest form as an equation of a straight line

Ŷ = b0X + b1

where Ŷ is the dependent variables (target), X is the independent variables (features),

b0 is the slope and b1 is the intercept. The model finds the parameters b0 and b1 that

minimize the mean square error between predictions and actual targets on the training

dataset as seen in Figure 4. There are mainly two types, Simple (one independent variable)

and Multiple Linear Regression is used for training set with more than one independent

variable. When model becomes complex, where the parameters predicts well but are large,

then this problem can be solved by introducing the regularization which then extends the

model to either Ridge regression or LASSO, see [58]. Examples and implementation can be

seen in [38].

30

Figure 3: A linear regression model

Decision Tree : Decision trees are widely used machine learning algorithms for both

classification and regression problems [33]. It is a decision support model that learns a

hierarchy of if/else questions that lead to a decision. It consists of the root nodes, branches

and the terminal notes and uses different types of algorithm such as Gini, Chi-Square,

Information Gain , and so on, to decide on how it splits into branches. Scikit-Learn uses the

Classification and Regression Tree (CART) to train Decision trees, by splitting the training

set into two subsets using a single feature and threshold. Once successful, it splits the subset

using the same approach, then continues the process until it reaches the maximum depth

defined or cannot find a split that will reduce impurity [33]. It is a very useful tool in data

mining and it is easy to understand even with complex data. See [38] for implementation

of Decision Tree in Python.

31

Figure 4: An example of a decision tree

Support Vector Machine (SVM) : SVM is one of the most widely used machine

learning technique for classification problems. It works on the principle of margin calcu-

lation. In it simplest form, it draws margin in such a way that the distance between the

margin and the classes is maximized, hence reducing classification error. It constructs a

hyperplane (a flat affine subspace of dimension N-1, i.e a line in 2D or a flat plane in 3D)

or set of hyperplanes in a high-dimensional space, which can be used for classification, re-

gression , or outlier detection. A good separation is achieved by the hyperplane that has

the largest distance to the nearest training-data point of any class [62]. The classifier can

be linear or nonlinear. If the classifier is linear, the algorithm depends on the subset of the

training data points, typically the ones that lie on the border between the classes. These

data points are called the support vectors and they are equidistance from the hyperplane

as seen in Figure 5a. In real-world problems, many datasets are not linearly separable.

One approach to handling nonlinear datasets is to add more features such as polynomial

features. If the polynomial degree is low, it won’t be able to handle complex datasets.

32

(a) Linear classification (b) Nonlinear classification

Figure 5: Examples of SVM

Also, with a high polynomial degree it creates a huge number of features making the model

too slow. This problems can be addressed using the kernel trick [33]. Scikit-learn has a

comprehensive introduction and implementation of SVM maching learning algorithm, see

[38].

2.4.2 Unsupervised Learning

Unsupervised machine learning uses machine learning algorithms to analyze unlabeled

data [14]. It learns features (patterns) from the data and when new data is introduced, it

recognizes the data’s class using previously learned features without the need for human

intervention. These algorithms are mainly used for data clustering, association and feature

reduction [15]. Example are Principal Component Analysis (PCA), Singular Value Decom-

position (SVD), K-means Clustering, and so on. These models are applied in anomaly

detection, recommendation engines, medical imaging, and many more.

Principal Component Analysis (PCA) : PCA is the most popular dimensionality

33

reduction algorithm. It is a process that converts observations of possibly correlated vari-

ables into linearly uncorrelated variables through orthogonal transformation [30]. It can be

thought of as a projection method where data with m columns is projected into a lower-

dimensional data while preserving as much variance as possible. It uses the Singular Value

Decomposition (SVD) to calculate the eigenvalues and eigenvectors of the covariance matrix

of the dataset. The eigenvectors represent the principal components and the eigenvalues

represents the magnitudes for the components.

2.4.3 Reinforcement Learning

Reinforcement learning is a type of machine learning in which the learner makes judg-

ments about which activities to do in order to improve the outcome. Until a situation is

presented, the learner has no idea what steps to take and its actions now may have an

impact on future situations [15]. It solely depends on trial and error search and delayed

outcome [51]. Reinforcement learning algorithms interact with an environment, so there is

a feedback loop between the learning system and its experiences.

As explained in [25], the model consists of a discrete set of environment states, a discrete

set of agents actions, and a set of scalar reinforcement signals, typically {0,1}. These

models are commonly applied in industry automation, self-driving cars, natural language

processing, healthcare, trading automation and many more [29].

2.5 Deep Learning

Deep learning, also known as Deep Neural Networks, is a machine learning approach

that learns several layers of data representations or features and generates cutting-edge

34

prediction results [21]. It is an artificial neural network with multiple layers between inputs

(data) and outputs [36]. Deep neural networks have the capacity to model complex nonlinear

relationships and it is suitable for dealing with complex large datasets [45].

Figure (1) depicts a deep neural network with 1 input layer, 3 hidden layers, and 1 output

layer, that are connected. Weight averaging and activation function are core attributes of

the connectivity of a deep neural network.

In this thesis, we applied deep learning approach to solve an extension of a newsvendor

problem. The following are definitions and theorems relevant in understanding deep learning

process.

Definition 2.10 (Convex Set [8]) A set Ω is convex if the line segment between any

two points in Ω lies in Ω, that is ∀ x1, x2 ∈ Ω and θ ∈ [0, 1]

θx1 + (1− θ)x2 ∈ Ω

In general, a convex combination of points x1, x2, . . . , xk ∈ Ω is any point of form θ1x1 +

θ2x2 + . . .+ θkxk, where θi ≥ 0, i = 1, 2, . . . , k, and
k∑
i=1

θ1 = 1.

Definition 2.11 (Convex function) A function f : Rn → R, is convex if its domain is

a convex set and ∀ x1, x2 in its domain and all θ ∈ [0, 1], we have that

f
(
θx1 + (1− θ)x2

)
≤ θf(x1) + (1− θ)f(x2)

Thus, a function f is convex if and only if its epigraph, the set of all points above the

function graph, is a convex set. A function is strictly convex if ∀ x1, x2 in its domain and

all θ ∈ [0, 1], we have that

f
(
θx1 + (1− θ)x2

)
< θf(x1) + (1− θ)f(x2)

35

Theorem 2.1 If f : Rn → Rm is convex and g : Rm → Rl is convex, then

g ◦ f : Rn → Rl

is convex.

Theorem 2.2 If a function f is convex on a compact set Ω, then f has a global minimum

on Ω.

Artificial neural networks (ANNs), often known as neural networks are comprised of

node layers, containing an input layer, hidden layer(s), and an output layer. Each node is

connected to the others and has a weight and threshold assigned to it. If a node’s output

exceeds a certain threshold value, the node is activated, and data is sent to the next layer

of the network [16]. Neural networks are core to deep learning algorithms.

The most significant distinction between neural networks and linear models is that a neu-

ral network’s nonlinearity causes most loss functions to become non-convex. This means

that neural networks are usually trained by using iterative, gradient-based optimizers that

do not guarantee convergence [21]. Deep learning algorithms can process unstructured data,

like images and text. Then through the processes of gradient descent and backpropagation

adjusts and fits itself for accuracy, allowing it to make predictions about a new data accu-

rately. These algorithms are possible today due to the emergence of faster computers with

larger memory and the availability of larger datasets which are used to train the networks.

Figure (6) depicts the structure of a DNN and illustrates how it works. Let X be the

input matrix of data points and Wih be the weights matrix to the hidden layer with some

biases bh. The first layer can be model as a function (linear transformation) that takes

in X and outputs Z1. Then Z1 is passed into an activation function σ(·) in the second

36

layer, which can be modelled as a function with input h1 and outputs Z2. Z2 is then

passed into another activation function, this process can be understood mathematically as

the composition of functions.

Figure 6: Structure of a DNN [29]

The forward movement is known as forward propagation and at each layer an activation

function is applied so as to get a desirable output for the next layer and the same process is

repeated. Subsequently, error is calculated from the output and a back-propagation process

(partial differentiation of functions) updates the weights and the biases. To compute an

error a loss function is employed.

A loss function is a function used to assess how effectively an algorithm models a dataset

[59]. Typically, if the prediction is far from the actual, the loss value will be high, otherwise,

the loss function outputs a lower value for a pretty good prediction. They are also sometimes

referred to as cost function especially when coupled with regularization parameters. Loss

functions can be classified into Regression loss functions and Classification loss functions.

The choice of loss function depends on the problem we are trying to solve. Some common

examples are

Mean Square Error (MSE) : which averages the squared difference between the actual value

37

and the predicted value.

MSE =
1

n

n∑
i=1

(yactual − ypredicted)2

Mean Absolute Error(MAE) : which measure as the average of sum of absolute differences

between predicted value and actual value

MAE =
1

n

n∑
i=1

|yactual − ypredicted|

Cross Entropy Loss(CEL) : commonly used for classification problems, it increases as

the predicted probability diverges from the actual label.

CEL = −
(
yi log(yi) + (1− yi) log(1− yi)

)
Activation functions are functions that are employed in neural networks to compute the

weighted sum of input and biases, as well as impart non-linearity in the network’s hidden

layers, which separates neural network algorithms from linear regression models. It can be

represented as

a = f(
N∑
i=0

wixi)

where xi and wi are the input data and their weights respectively. It manipulates the

presented data through some gradient processing usually gradient descent and afterwards

produce an output for the neural network, that contains the parameters in the data [35].

The choice of the activation functions depends on the complexity of the training data

and some popular examples are Linear, Sigmoid, Rectified Linear Unit (ReLu), Hyperbolic

tangent (Tanh), Leaky ReLu, and Softmax [47]. In modern neural networks, the default

recommendation is to use the ReLU defined by the activation function g(z) = max[0, z]

[21]. The core property of most of these activation functions is that they are continuously

differentiable.

38

The goal of machine learning models is to find hyperparameters that minimizes the cost

function, and this is done by the optimization process called gradient descent. It is an

optimization algorithm that is employed to find the global minimum of a function. It is an

iterative process that enables the model to ’learn’ by taking the derivative of the loss (cost)

function such that it converges toward the minimum value. In a deep neural network , the

gradients are typically calculated using the backpropagation process as illustrated in Figure

6. Stochastic gradient descent is an extension of the gradient descent algorithm where a

small set (batch) of the training data is used at each step of the ’descent’ instead of the

entire data [21].

Overfitting is when a model memorizes the noise and fits too closely to the training

set. That is, the model/network learns to do well on training set but does not extend

this accuracy on validation dataset [60]. Common practices used to prevent overfitting are

dropout, early stopping, feature selection, train with more data, and many more.

Overfitting is a serious problem in deep neural networks with large number of parameters.

In dealing with overfitting we use dropout as a strategy for preventing neurons from co-

adapting by randomly setting a fraction of them to 0 at each training iteration [49].

Momentum is a prominent approach that is used in conjunction with SGD [50]. Instead

of depending exclusively on the gradient of the current step to guide the search,momentum

considers the gradient of previous steps as well.

2.5.1 Hyperband Algorithm

Hyperband is the state-of -the-art Hyperparameter Optimization (HPO) algorithm that

helps to solve the challenges of tuning hyperparameters in machine learning and deep learn-

39

ing algorithms [4]. Typically, in machine learning algorithms many approaches have been

proposed to tackle HPO tuning problems such as Grid Search, Random Search, Bayesian

Optimization, Simulated Anealing, Successive Halving, and HyperBand [18]. In recent

years, Bayesian Optimization has been employed to improve upon grid and random search

approaches but in [28], they found out that Bayesian Optimization operates very well on

black box functions but does not work well with parallel resources duo because the op-

timization process is sequential. So they proposed a novel bandit-based approach called

Hyperband for HPO. We will briefly explain the concept of successive halving, upon which

Hyperband algorithm was developed.

Succesive halving randomly sample a set of hyperparameter configurations, then it eval-

uate the performances of all the currently remaining configurations, after which it throws

out the bottom half of the worst scoring configurations, then it evaluate the performances of

the configurations again and repeats the same process until one configuration remains [28].

But a huge concern about Successive Halving is finding the right trade-off between total

resources and total number of configurations, that is how many configurations is needed at

the start and how many cuts should be done. This concern was addressed in the Hyperband

Algorithm.

Hyperband is an extension of the successive halving algorithms , that proposed to fre-

quently perform the successive halving method with different budgets to find the best con-

figurations of hyperparameters. It assumes that the best configuration on a large number

of iteration should perform in the top half of the configurations after a small number of

iterations. This may not always be the case, and situations like this was accounted for by

hedging the loop over varying degrees of the aggressiveness , balancing the depth and the

40

breadth based search. Hyperband requires the ability to sample a hyperparameter con-

figuration, the ability to train them until it reaches a given number of iterations (that is

resuming from a previous checkpoint), and get back the loss on a validation set [28]. This

is a novel technique that has been adopted for many machine learning algorithms but has

also been adopted for deep learning algorithms which often need several configurations of

hyperparameters.

41

3 THE ICE CREAM VENDOR PROBLEM

The ice cream vendor problem is an extension of the Newsvendor problem, whereby a

vendor needs to decide how many ordered ice cream is necessary to satisfy his customers

(e.g. students on campus) considering various exogenous factors, in order to realise an

optimum profit (minimum cost) at the end of the period. For the purpose of this thesis, we

will limit our scope to a single period.

3.1 Derivation of the Ice Cream Vendor Problem

An ice cream vendor on a college campus buys X units of ice cream at a cost of $c each.

He sells each for $p and expects a demand D at the end of a selling period. At the end of

this period, he incurs an underage cost cu when the demand D is more than the ordered

ice cream X. Otherwise, he incurs an overage cost co when the demand D is less than

the ordered ice cream X. In a classical newsvendor problem, the demand distribution is

known or can be estimated, but in a real-world scenario like that of an ice cream vendor, the

demand doesn’t follow a known distribution since it depends on many exogenous features

such as day of the week, temperature, wind speed, precipitation, and many more.

Therefore, our goal is not to predict the demand but to predict the order quantity that

minimizes the cost function below, that is, given a set of data points:

[
(z1, D1), (z2, D2), . . . , (zn, Dn)

]n
i=1

minimize
w

1

n

n∑
i=1

(
cu[Di − f(zi, w)]+ + co[f(zi, w)−Di]

+
)

(26)

42

where z are data features (columns), w are weights, Di are demand, and f(z, w) is a

nonlinear relationship between the parameters and their weights. As illustrated in section

(2.5), order quantity X = f(z, w) is a composition of functions, which defines relationship

between order quantity and features.

3.2 Simulation of Ice Cream Vendor

In order to produce the relevant demand data necessary to solve this problem, in the

absence of historical data, we simulated an ice cream vendor using the discrete event sim-

ulation technique to produce feature dependent demand data. We set up the simulation

to mirror the real life situation of an ice cream vendor that sells ice cream from 10am to

3pm on a college campus with 10,000 students, taking into account how temperature, pre-

cipitation, cloud cover, relative humidity could affect the demand for ice cream during the

period.

In setting up the simulation in Simpy, we concentrated solely on the consumer (students

in this case), and modelled the event base on features that may affect the decision of a

consumer to either buy an ice cream or not, such as class schedules, temperature at a

particular time, day of the week, and so on. We assumed that

• students take 15 hours of classes each week (i.e 5 courses at 3 hours each)

• each student has a meal plan with the college but often get ice cream or coffee from

a vendor

• students have two types of class schedule, one hour class on Monday, Wednesday and

Friday , and one and half hours on Tuesday and Thursday.

43

• a student has a 2 to 1 odds of scheduling classes on Tuesday and Thursday

• classes are from 8am to 4pm from Monday to Friday.

We defined a function that randomly generates a student class schedule and outputs a free

time in a day that the student might decide to get ice cream, then we defined another

function that outputs ‘1’ if the students gets ice cream and ‘0’ if not. Then we defined

functions that outputs multipliers that either increase or decrease the odds of getting an ice

cream at that time, these odds are dependent on temperature, cloud cover, relative humidity,

precipitation and wind speed, which then randomly generates a meaningful demand.

The model parameters were defined inside a Python class (CollegeStudents) with at-

tributes and multiple instances of schedules were created to generate 25000 rows of feature

dependent demand data. All simulations were done on a 12 cores computer with cores of

2.6 GHz computation power and 128 GB of memory. The Simpy code is listed in Appendix

A. Table 2 shows a sample of the simulated data.

Table 2: Simulated Demand Data

Day Tmax Tmin FeelsLike Precip W.Speed C.Cover R.Humidity Demand

M 67.5 53.4 59.3 0.02 20.4 52.0 63.09 852.0

T 74.1 41.0 42.3 0.00 20.0 1.8 46.99 280.0

T 74.1 41.0 42.3 0.00 20.0 1.8 46.99 280.0

R 75.6 46.8 60.1 0.13 14.2 58.6 66.72 270.0

F 61.0 46.2 42.7 0.02 17.2 68.5 59.96 846.0

M 62.1 31.8 44.9 0.00 9.1 35.2 56.66 916.0

T 59.4 38.9 50.2 0.00 8.6 88.3 62.22 309.0

W 64.0 46.1 46.2 0.00 7.6 87.2 53.36 913.0

R 63.3 46.4 46.1 0.02 10.8 70.6 54.53 310.0

F 72.8 38.5 55.9 0.00 14.8 31.3 56.90 891.

44

3.3 Linear Programming Approach

The solution of a linear programming problem reduces to finding the optimum value

of the linear objective function subject to set of linear constraints. The ice cream vendor

problem aims to minimize the sum of the underage and overage cost, in order to predict the

optimum order quantity. This can be expressed mathematically as an optimization problem

minimize
β

1

n

n∑
i=1

(
cu[Di − zTi β]+ + co[z

T
i β −Di]

+
)

(27)

and can be equivalently represented as a linear objective function with linear constraints.

Our goal is to get the β∗ for each features that optimizes the order quantity.

minimize
β

1

n

n∑
i=1

(cusi + coti)

subject to

si ≥ D − zTi β
ti ≥ zTi β −D
si ≥ 0, ti ≥ 0

(28)

To solve this problem we used the GNU MathProg, the modelling language of the open

source GNU Linear Programming Kit (GLPK) project, and calculations are done using the

GLP Solve which is embedded in the program. The main components of MathProg are

data, model, and report [56]. The model is specified in MathProg using model objects such

as sets, variables, parameters, constraints, and objectives. Each model object is given a

symbolic name that serves as a unique identifier for reference purpose . We used a portion

of the simulated data to calculate the parameters β∗, the estimated β∗ are used to calculate

the order quantities X∗, that is

X∗ = zTnewβ
∗

45

The MathProg code is listed in Appendix B and Table 3 shows some of the predicted order

quantities when the percentage of holding cost to shortage cost was varied.

The columns of Table 3 ‘Pi Order’ where [i = 10, 30, 50, 70, 100] represent the predicted

order quantities when the holding cost is ten percent, thirty percent, fifty percent, seventy

percent, and equal to the shortage cost.

Table 3: LP Predicted Order Quantity

Demand P10 Order P30 Order P50 Order P70 Order P100 Order

290 10565 4797 1083 1030 882

922 6667 3655 787 759 676

858 7834 3704 752 715 638

872 8159 4082 958 922 775

996 10383 4769 1057 1006 856

806 9139 4243 1028 985 866

769 6694 3501 874 846 694

334 10297 4952 1012 962 819

280 6255 3384 793 767 624

305 8243 4210 863 826 704

762 8351 4250 1148 1112 952

887 7075 3679 844 814 664

316 11287 5097 1160 1104 944

285 6690 3606 733 704 574

294 9976 4765 1108 1060 935

3.4 Deep Learning Approach

While solution to the classical newsvendor problem requires that we know the demand

distribution, we have found that deep learning can be used as an alternative to solve this

problem [36], albeit still novel. Referencing [36], they proposed an algorithm based on deep

neural network (DNN) that predicts the order quantity that minimizes the vendor’s total

46

cost.

To solve the ice cream vendor problem, a Pytorch implementation of the deep neural

network algorithm in [36] was adapted from Karn Watcharasupat’s repository on GitHub

(https://github.com/karnwatcharasupat/DeepNewsvendor). Referencing [54], their Python

implementation which was adapted for our problem could be categorized into six aspects,

which are, data formatting, parameter and hyperparameter declaration, loss function, newsven-

dor model, hyperparameter optimization (HPO), and model training.

3.5 Implementation

For data preparation, they defined a function labelled ′csv to npz′ which converts a

comma-separated values file (csv) into a numpy file format that compresses array data, then

a python class object was created to convert the compressed file into a tensor. A tensor is

a multidimensional array of data used in Pytorch . This process aimed to transform our

simulated training and testing demand dataset from csv file to tensor format.

They created a python code (params.py) which stores parameter and hyperparameters

which would be used to train the newsvendor model, these parameters are minimum and

maximum number of hidden layers for our neural network , the number of data features,

number of fully connected neural networks, shortage cost and holding cost, number of

epochs, batch size, dropout and so on. They created two python classes that defines the

newsvendor cost function and its euclidean version as in equation (12) and (14) as explained

in section (1.4). These loss functions are used in the backpropagation of the deep learning

to update the weights during the SGD and finally outputs the total cost. We compared the

two loss values and output the lesser as the best overall cost as seen in Table 4. The ice

47

cream vendor neural network was adapted from a python class labelled ‘DeepVendorSim-

ple’, which includes a feedforward neural network architecture, with randomized number

of hidden layers and nodes; each hidden layer is structured to have function which applies

linear transformation (nn.Linear()) on the input data, a Leaky ReLU activation function

(nn.LeakyReLU()) with a default negative slope of 0.01, and dropout (nn.Dropout()) with

probability 0.2 of an element to be zeroed, which prevents the co-adaptation of neurons.

In order to use SGD with backpropagation of errors to train DNN, a nonlinear activation

function that acts like a linear function is needed, allowing complex relationships in the data

to be learned. Rectified Linear Unit (ReLU) has been a solution to this problem and has

been preferred in modern applications to the sigmoid activation function and hyperbolic

tangent activation function [21]. ReLU activation function is a simple calculation that

returns the input value, or zero (0) when input is less than or equal to zero (0), that is

g(x) = max(0, x), making it fast and easy to train deep neural networks despite not been

differentiable at x = 0. In the case where most of the inputs is in the negative range,

ReLU tends not to perform because most of it’s output will be zero and the this affect the

gradients flow during backpropagation, which makes large part of the network to become

inactive and unable to learn further. This problem is called the ‘dying ReLU’. To avoid such

scenario, we used an extension of the ReLU function called Leaky ReLU, which modifies the

function to allow a small non-zero gradient when the unit is not active. The leaky ReLU

can be defined as

LeakyReLU(x) =


x, if x ≥ 0

slope× x otherwise

(29)

and illustrated in Figure 7.

48

Figure 7: Leaky rectified linear activation function

We adapted the code labelled ‘model.py’ to randomly generate ten (10) neural networks

with similar structure as discussed.

For example, Table 5 illustrates the structure of a candidate best network which has five

layers, each layers have twelve (12), twenty three (23), forty two (42), twenty two (22) and

one (1) nodes respectively.

The hyperparameter optimization phase was implemented with the novel Hyperband

algorithm approach as discussed in section (2.5.1), which basically runs multiple iteration of

successive halving. We declared a random number of hidden layers (hidden layers), number

of nodes of ith layer (nni), regularization learning rate (lr) and weight decay (lambd).

The number of nodes in the input layer is equal to the number of data features which is

twelve (12), but for networks with two hidden layers, we choose nn2 ∈ [0.5nn1; 3nn1] ,

nn3 ∈ [0.5nn2;nn2] , and nn4 = 1 . Similarly, for networks with three hidden layers, we

choose nn2 ∈ [0.5nn1; 3nn1] , nn3 ∈ [0.5nn2;nn2], nn4 ∈ [0.5nn3;nn3] , and nn5 = 1.

Then for each network, the number of nodes in each layer are drawn uniformly from the

ranges given, the learning rate and weight decay are drawn randomly from [10−5, 10−2]. See

49

column four on Table 4 for the number of layers and nodes for the best network.

Following the defined hyperband, in order to select the best network among the generated

ten networks with random structures, we trained each of them for one epoch (25 iterations),

obtained the results on the validation set, and then removed the worst 10% of the networks.

Subsequently, we run another set of iteration on the remaining networks and remove the

worst 10%, and this process was repeated until the best network is obtained. This process is

defined in the python code labelled ‘train utils.py’ where the the discriminative trainer and

discriminative evaluate function was defined, with the EarlyStopping class (MIT licensed

open source code) was declared.

Finally, all the defined python codes were imported into one code labelled ‘train.py’ to

be used to train the model and apply all the definitions specified. The result was illustrated

in Table 4 with the cost coefficients, the holding cost varied (0.1 to 1.0), and the shortage

cost was fixed (1.0), through out several trainings. Note that we assume that the shortage

cost is greater than or equal to the holding cost which is nearly almost the case for real

world applications.

50

Table 4: DNN Training Log Table 1

Index B. Model ID H. Cost DNN No. of Layer/Nodes Min. Cost

0 7 0.1 [12, 29, 50, 32, 1] 335.60

1 1 0.1 [12, 11, 13, 11, 1] 398.78

2 0 0.1 [12, 13, 12, 1] 445.15

3 3 0.2 [12, 18, 16, 1] 648.28

4 8 0.2 [12, 31, 31, 22, 1] 754.18

5 3 0.2 [12, 32, 42, 38, 1] 594.32

6 5 0.3 [12, 31, 50, 27, 1] 841.61

7 6 0.3 [12, 31, 16, 1] 803.81

8 8 0.4 [12, 19, 11, 1] 1280.55

9 5 0.4 [12, 33, 30, 1] 1118.46

10 8 0.4 [12, 15, 19, 18, 1] 942.85

11 1 0.5 [12, 24, 37, 31, 1] 1468.19

12 0 0.5 [12, 21, 31, 16, 1] 1247.30

13 2 0.5 [12, 16, 14, 1] 1693.94

Table 5: DNN Training Log Table 2

Index B. Model ID H. Cost DNN No. of Layer/Nodes Min. Cost

14 3 0.6 [12, 25, 17, 1] 1338.27

15 1 0.6 [12, 14, 9, 5, 1] 1718.27

16 0 0.6 [12, 33, 25, 1] 1669.87

17 3 0.7 [12, 11, 8, 1] 1382.65

18 2 0.7 [12, 36, 19, 1] 1834.16

19 2 0.7 [12, 28, 21, 1] 1489.31

23 0 0.8 [12, 32, 28, 1] 1768.97

21 1 0.8 [12, 23, 27, 22, 1] 1722.64

22 8 0.8 [12, 28, 27, 25, 1] 1443.54

23 3 0.8 [12, 21, 41, 26, 1] 1776.05

24 8 0.9 [12, 25, 23, 1] 1698.38

25 9 0.9 [12, 28, 15, 1] 1782.36

27 2 1.0 [12, 11, 8, 1] 2165.29

28 3 1.0 [12, 27, 34, 22, 1] 2092.30

51

3.6 Results and Conclusions

When we compare the predicted order quantities from the deep learning and linear pro-

gramming approaches, we can infer from Tables 3 that the linear programming approach is

unable to model this type of data and problem. This is evident from the huge difference be-

tween the actual demand and the predicted order quantities. That is, the weights predicted

from the linear relationship of the features are not optimum.

However, Table 7 shows that the relationship between the features is better modeled by

the functions configured in the DNN, that is, the nonlinearity of the deep neural networks

closely modeled the data and was able to closely predict order quantities that are relatively

similar to the demand, and could do better with better parameter tuning and network

exploration as we can infer from Table 5, that neural networks with higher number of nodes

performed better, and have lower cost compared with those with small number of nodes.

52

Table 6: DNN Test Data

Index FeelsLike Precip W.Speed C.Cover R.Humid Demand

0 87.0 0.0 10.0 52.0 81.0 321.0

1 85.0 0.0 6.0 50.0 82.0 995.0

2 83.0 1.0 13.0 68.0 84.0 916.0

3 87.0 0.0 6.0 37.0 78.0 1056.

4 90.0 0.0 7.0 37.0 80.0 326.0

5 79.0 0.0 7.0 32.0 75.0 347.0

6 68.0 0.0 14.0 34.0 78.0 896.0

7 67.0 0.0 6.0 20.0 74.0 1013.

8 74.0 0.0 11.0 11.0 79.0 335.0

Table 7: DNN Predicted Order Quantity

Demand P10 Order P30 Order P50 Order P70 Order P100 Order

321.0 231.0 216.0 252.0 277.0 302.0

995.0 589.0 687.0 736.0 809.0 824.0

916.0 550.0 655.0 687.0 759.0 781.0

1056. 617.0 697.0 773.0 842.0 875.0

326.0 237.0 221.0 253.0 285.0 305.0

347.0 215.0 219.0 241.0 271.0 299.0

896.0 567.0 638.0 689.0 753.0 808.0

1013. 582.0 667.0 711.0 778.0 831.0

335.0 226.0 666.0 716.0 784.0 821.0

53

4 FUTURE DIRECTIONS

Ultimately, the purpose of this study is to assist a decision maker in estimating the impact

of a supply chain disruption, such as what happens when a student’s schedule changes in the

case of an ice cream vendor. What happens if a pandemic suddenly causes the institution

to adopt a hybrid structure?

The Ice Cream Vendor Problem is perhaps a framework to study how a sudden shift in

demand affects the supply chain . It could be used in both the corporate and public sectors.

For instance, a government may use it as a research tool to determine how a new policy

(for example, a change in trade tariffs) would influence the country’s supply chain.

Motivated by the results of the deep learning on the ice cream vendor problem, we suggest

that more exploration can be done to refine the algorithm, such as, increasing the number of

generated DNN, increasing the complexity of the simulated dataset by adding some relevant

features, and many more. We suggest that this idea can be extended to other supply chain

problems with more complex structure. Finally, other machine learning techniques such as

Kernel Density Estimator (KDE), K-Nearest Neighbors (KNN), Random Forest could also

be applied on the simulated data and compared to real world datasets.

54

BIBLIOGRAPHY

[1] Mart́ın Abadi, Paul Barham, Jianmin Chen, Zhifeng Chen, Andy Davis, Jeffrey Dean,

Matthieu Devin, Sanjay Ghemawat, Geoffrey Irving, Michael Isard, et al. Tensorflow:

A system for large-scale machine learning. In 12th {USENIX} symposium on operating

systems design and implementation ({OSDI} 16), pages 265–283, 2016.

[2] Layth C Alwan, Minghui Xu, Dong-Qing Yao, and Xiaohang Yue. The dynamic

newsvendor model with correlated demand. Decision Sciences, 47(1):11–30, 2016.

[3] Taiwo Oladipupo Ayodele. Types of machine learning algorithms. New advances in

machine learning, 3:19–48, 2010.

[4] MJ Bahmani. Hyperband and bohb: Understanding state of the art hyperparameter

optimization algorithms, May 2021.

[5] Gah-Yi Ban and Cynthia Rudin. The big data newsvendor: Practical insights from

machine learning. Operations Research, 67(1):90–108, 2019.

[6] Dimitris Bertsimas and Nathan Kallus. From predictive to prescriptive analytics. arXiv

preprint arXiv:1402.5481, 2014.

[7] Dimitris Bertsimas and Aurélie Thiele. A data-driven approach to newsvendor prob-

lems. Working Papere, Massachusetts Institute of Technology, 2005.

[8] Stephen Boyd, Stephen P Boyd, and Lieven Vandenberghe. Convex optimization.

Cambridge university press, 2004.

[9] Jennifer Bresnick. What is deep learning and how will it change healthcare?, Dec 2019.

55

[10] Real Carbonneau, Kevin Laframboise, and Rustam Vahidov. Application of machine

learning techniques for supply chain demand forecasting. European Journal of Opera-

tional Research, 184(3):1140–1154, 2008.

[11] CFI. Supply chain - overview, importance, and examples, Jul 2020.

[12] Boris Defourny. Machine learning solution methods for multistage stochastic program-

ming. PhD thesis, PhD thesis, Institut Montefiore, Université de Liège, 2010.

[13] Marc Peter Deisenroth, A Aldo Faisal, and Cheng Soon Ong. Mathematics for machine

learning. Cambridge University Press, 2020.

[14] Julianna Delua. Supervised vs. unsupervised learning: What’s the difference?, Mar

2021.

[15] Ayon Dey. Machine learning algorithms: a review. International Journal of Computer

Science and Information Technologies, 7(3):1174–1179, 2016.

[16] IBM Cloud Education. What are neural networks?

[17] Jason Fernando. Supply chain management (scm): What you need to know, Dec 2020.

[18] Matthias Feurer and Frank Hutter. Hyperparameter optimization. In Automated ma-

chine learning, pages 3–33. Springer, Cham, 2019.

[19] Robert Fourer, David M Gay, and Brian W Kernighan. AMPL: A mathematical pro-

gramming language. AT & T Bell Laboratories Murray Hill, NJ, 1987.

[20] Guillermo Gallego and Ilkyeong Moon. The distribution free newsboy problem: review

and extensions. Journal of the Operational Research Society, 44(8):825–834, 1993.

56

[21] Ian Goodfellow, Yoshua Bengio, and Aaron Courville. Deep Learning. MIT Press,

2016. http://www.deeplearningbook.org.

[22] Sherry Gray. Inventory optimization for small business.

[23] Geoffrey Grimmett and Dominic Welsh. Probability: an introduction. Oxford Univer-

sity Press, 2014.

[24] Arthur V Hill. The newsvendor problem. White Paper, pages 57–23, 2011.

[25] Leslie Pack Kaelbling, Michael L Littman, and Andrew W Moore. Reinforcement

learning: A survey. Journal of artificial intelligence research, 4:237–285, 1996.

[26] Will Kenton. How supply chains work, Sep 2020.

[27] Amy Hing-Ling Lau and Hon-Shiang Lau. The newsboy problem with price-dependent

demand distribution. IIE transactions, 20(2):168–175, 1988.

[28] Lisha Li, Kevin Jamieson, Giulia DeSalvo, Afshin Rostamizadeh, and Ameet Talwalkar.

Hyperband: A novel bandit-based approach to hyperparameter optimization. The

Journal of Machine Learning Research, 18(1):6765–6816, 2017.

[29] Ben Lorica. Practical applications of reinforcement learning in industry, Dec 2017.

[30] Batta Mahesh. Machine learning algorithms-a review. International Journal of Science

and Research (IJSR).[Internet], 9:381–386, 2020.

[31] Norm Matloff. Introduction to discrete-event simulation and the simpy language. Davis,

CA. Dept of Computer Science. University of California at Davis. Retrieved on August,

2(2009):1–33, 2008.

57

[32] Thomas V Mikosch, Sidney I Resnick, and Stephen M Robinson. Springer series in

operations research and financial engineering, 2006.

[33] Andreas C Müller and Sarah Guido. Introduction to machine learning with Python: a

guide for data scientists. ” O’Reilly Media, Inc.”, 2016.

[34] Steven Nahmias and Ye Cheng. Production and operations analysis, volume 6.

McGraw-hill New York, 2009.

[35] Chigozie Nwankpa, Winifred Ijomah, Anthony Gachagan, and Stephen Marshall. Ac-

tivation functions: Comparison of trends in practice and research for deep learning.

arXiv preprint arXiv:1811.03378, 2018.

[36] Afshin Oroojlooyjadid, Lawrence V Snyder, and Martin Takáč. Applying deep learning

to the newsvendor problem. IISE Transactions, 52(4):444–463, 2020.

[37] Peter O’donovan, Kevin Leahy, Ken Bruton, and Dominic TJ O’Sullivan. Big data in

manufacturing: a systematic mapping study. Journal of Big Data, 2(1):1–22, 2015.

[38] F. Pedregosa, G. Varoquaux, A. Gramfort, V. Michel, B. Thirion, O. Grisel, M. Blondel,

P. Prettenhofer, R. Weiss, V. Dubourg, J. Vanderplas, A. Passos, D. Cournapeau,

M. Brucher, M. Perrot, and E. Duchesnay. Scikit-learn: Machine learning in Python.

Journal of Machine Learning Research, 12:2825–2830, 2011.

[39] Yan Qin, Ruoxuan Wang, Asoo J Vakharia, Yuwen Chen, and Michelle MH Seref. The

newsvendor problem: Review and directions for future research. European Journal of

Operational Research, 213(2):361–374, 2011.

58

[40] Cynthia Rudin and Gah-Yi Vahn. The big data newsvendor: Practical insights from

machine learning. 2014.

[41] Tjendera Santoso, Shabbir Ahmed, Marc Goetschalckx, and Alexander Shapiro. A

stochastic programming approach for supply chain network design under uncertainty.

European Journal of Operational Research, 167(1):96–115, 2005.

[42] Herbert E Scarf. A min-max solution of an inventory problem. Technical report, Rand

Corp Santa Monica California, 1957.

[43] Seyda SerdarAsan and Mehmet Tanyas. Dealing with complexity in the supply chain:

The effect of supply chain management initiatives. SSRN Electronic Journal, 05 2012.

[44] Alexander Shapiro, Darinka Dentcheva, and Andrzej Ruszczyński. Lectures on stochas-

tic programming: modeling and theory. SIAM, 2014.

[45] Neha Sharma, Reecha Sharma, and Neeru Jindal. Machine learning and deep learn-

ing applications-a vision. Global Transitions Proceedings, 2(1):24–28, 2021. 1st In-

ternational Conference on Advances in Information, Computing and Trends in Data

Engineering (AICDE - 2020).

[46] Xingjian Shi, Zhourong Chen, Hao Wang, Dit-Yan Yeung, Wai-Kin Wong, and Wang-

chun Woo. Convolutional lstm network: A machine learning approach for precipitation

nowcasting. arXiv preprint arXiv:1506.04214, 2015.

[47] P Sibi, S Allwyn Jones, and P Siddarth. Analysis of different activation functions

using back propagation neural networks. Journal of theoretical and applied information

technology, 47(3):1264–1268, 2013.

59

[48] Lawrence V Snyder and Zuo-Jun Max Shen. Fundamentals of supply chain theory.

Wiley Online Library, 2011.

[49] Nitish Srivastava, Geoffrey Hinton, Alex Krizhevsky, Ilya Sutskever, and Ruslan

Salakhutdinov. Dropout: a simple way to prevent neural networks from overfitting.

The journal of machine learning research, 15(1):1929–1958, 2014.

[50] Ilya Sutskever, James Martens, George Dahl, and Geoffrey Hinton. On the impor-

tance of initialization and momentum in deep learning. In International conference on

machine learning, pages 1139–1147. PMLR, 2013.

[51] R.S. Sutton and A.G. Barto. Reinforcement Learning, second edition: An Introduction.

Adaptive Computation and Machine Learning series. MIT Press, 2018.

[52] Gerhard Tintner. A note on stochastic linear programming. Econometrica: Journal of

the Econometric Society, pages 490–495, 1960.

[53] Nazli Turken, Yinliang Tan, Asoo J Vakharia, Lan Wang, Ruoxuan Wang, and Arda

Yenipazarli. The multi-product newsvendor problem: Review, extensions, and direc-

tions for future research. In Handbook of newsvendor problems, pages 3–39. Springer,

2012.

[54] Karn Watcharasupat. karnwatcharasupat/deepnewsvendorkarn, Feb 2020.

[55] Martin Wiener, Carol Saunders, and Marco Marabelli. Big-data business models: A

critical literature review and multiperspective research framework. Journal of Infor-

mation Technology, 35(1):66–91, 2020.

60

[56] Wikibooks. Glpk/gmpl (mathprog) — wikibooks, the free textbook project, 2017.

[Online; accessed 25-June-2021].

[57] Wikipedia contributors. Deep learning — Wikipedia, the free encyclopedia, 2021.

[Online; accessed 4-February-2021].

[58] Wikipedia contributors. Lasso (statistics) — Wikipedia, the free encyclopedia, 2021.

[Online; accessed 30-June-2021].

[59] Wikipedia contributors. Loss function — Wikipedia, the free encyclopedia, 2021. [On-

line; accessed 11-July-2021].

[60] Wikipedia contributors. Overfitting — Wikipedia, the free encyclopedia, 2021. [Online;

accessed 27-June-2021].

[61] Wikipedia contributors. Simulation — Wikipedia, the free encyclopedia, 2021. [Online;

accessed 5-July-2021].

[62] Wikipedia contributors. Support-vector machine — Wikipedia, the free encyclopedia,

2021. [Online; accessed 30-June-2021].

[63] Yanfei Zhang and Junbin Gao. Assessing the performance of deep learning algorithms

for newsvendor problem. In International Conference on Neural Information Process-

ing, pages 912–921. Springer, 2017.

[64] Yanju Zhou, Xiaohong Chen, Xuanhua Xu, and Changjun Yu. A multi-product

newsvendor problem with budget and loss constraints. International Journal of In-

formation Technology & Decision Making, 14(05):1093–1110, 2015.

61

APPENDICES

Appendix A : Ice Cream Vendor Data Simulation

SimPy code for the discrete event simulation of an Ice cream vendor. The following code

produces daily demand data.

#!/usr/bin/env python
coding: utf -8

<h1 align=’center ’> College "Snack" Demand Generation </h1>
#
Simulated Demands for "daily Ice Cream" snack at a

hypothetical "university" with __N_students__ students.

get_ipython ().run_line_magic(’matplotlib ’, ’inline ’)
import matplotlib.pyplot as plt

import numpy as np
import pandas as pd

from numpy.random import choice , rand , uniform

import tqdm.notebook as tqdm

__Scenario:__ A campus of N students , where each student
1. Takes 15 hours of classes (= 5 courses at 3 hours each)
2. Obtains lunch either from the "commons" or from one of a

number of local food trucks
3. Often gets something "on the fly" from an ice cream or

coffee vendor

ScheduleTimes = {(’M’,’W’,’F’):[8,9,10,11,12,13,14,15,16], #
Military time

(’T’,’R’):[8 ,9.5 ,11 ,12.5 ,14 ,15.5] } #
classes are 1.5 hours on TR

MWF = [8,9,10,11,12,13,14,15,16]
TR = [8 ,9.5 ,11 ,12.5 ,14 ,15.5]
_demand = 500 # Assuming No Features

RANDOM_SEED = 42
SIM_TIME = 300 # minutes per day
SIM_START = 10. # hours
SIM_END = 15. # hours
N_students = 10_000
nclasses = 5 # number of courses each student takes
pTR = 2/3 # probability of scheduling a course on a Tuesday or

Thursday

62

class CollegeStudent(object):
"""A template for the features relevant to buying either

ice cream or
hot chocolate for a student at a university with N

students """

def __init__(self , p_NoFeatures = _demand /N_students):
’’’Construct the Features that motivate a student to

buy either icecream or hot chocolate ’’’
Initialize
self.p_MWF = p_NoFeatures / (1-pTR)
self.p_TR = p_NoFeatures / pTR

Build Schedule
MWF = [8. ,9. ,10. ,11. ,12. ,13. ,14. ,15. ,16.]
TR = [8. ,9.5 ,11. ,12.5 ,14. ,15.5]
self.sched = {’MWF’:[],’TR’:[]}
for i in range(nclasses):

if(rand() < pTR and len(self.sched[’TR’]) < 5):
Force at least one MWF course -- if all

courses are TR ,
then no times on MWTRF that student goes to

vendor
crse = choice(TR)
self.sched[’TR’]. append(crse)
TR.remove(crse)

else:
crse = choice(MWF)
self.sched[’MWF’]. append(crse)
MWF.remove(crse)

if(len(self.sched[’MWF’]) > 0): self.sched[’MWF’].
sort()

if(len(self.sched[’TR’]) > 0): self.sched[’TR’].
sort()

pairs start time and menu choice
self.FoodOps = dict() # At most 1 per day
for day in [’M’,’T’,’W’,’R’,’F’]:

self.FoodOps[day] = []
daydur = (’MWF’ ,1.0) if day in [’M’,’W’,’F’] else

(’TR’ ,1.5)

ndurs = len(self.sched[daydur [0]])
if(ndurs == 0): continue

Food Ops between 10 a.m. and 3 p.m.
if(self.sched[daydur [0]][0] > SIM_START):

self.FoodOps[day]. append((SIM_START , self.
sched[daydur [0]][0]))

for i in range(ndurs):
start_time = max(10,self.sched[daydur [0]][i] +

daydur [1])
if(i+1 < ndurs):

63

end_time = min(SIM_END , self.sched[daydur
[0]][i+1])

else:
end_time = SIM_END

if(start_time < end_time):
self.FoodOps[day]. append((start_time ,

end_time))

def GetSnackTime(self ,day):
Negative if no snack time available that day
if(len(self.FoodOps[day]) > 0):

snackperiod = self.FoodOps[day][choice(range(len(
self.FoodOps[day])))]

return np.round(uniform (* snackperiod) ,4)
else:

return -1

def BuyIceCream(self , day , FeatureScales = None , ignore =
False): # does student buy ice cream at time t
""" Student Decides to buy ice cream or not:

returns Number_purchased """
if(day in [’T’,’R’]):

p = self.p_TR
else:

p = self.p_MWF
odds = p/(1-p) ## Features increase or decrease the

odds

if(len(self.FoodOps[day]) == 0):
return 0 ## Nothing purchased this day

if(not ignore): #Ignore all features other than
what day it is
Features Scale Proportionally
WinLen = 0
for per in self.FoodOps[day]:

WinLen += 60*(per [1] - per [0]) ## in minutes
odds = odds * WinLen / SIM_TIME ## restricted

opporunity decreases the odds

if(np.iterable(FeatureScales)):
for scaler in FeatureScales:

odds *= scaler # scalers are positive (
not zero)

p = odds/(odds + 1) # tranform back to a probability
if(rand() < p):

return 1 #buys one ice cream
else:

return 0

def __repr__(self):
return self.sched.__repr__ () + ’\n’ + self.FoodOps.

__repr__ ()

64

create an instance
#Fred = CollegeStudent ()
#Fred.GetSnackTime(’M ’)
#Fred.BuyIceCream(’M ’)
Weather data for a semester
DailyData = pd.read_csv(’ETSU2020 -2021 AcademicYear.csv’,

index_col =0)
DailyData.head (100)
columns = DailyData.columns

WkDays = [’M’,’T’,’W’,’R’,’F’]*100
DailyData[’Day’] = WkDays [:len(DailyData)]
DailyDf = DailyData [[’Day’,’Maximum Temperature ’, ’Minimum

Temperature ’, ’Wind Chill ’, ’Heat Index ’, ’Precipitation ’,
’Wind Speed ’, ’Cloud Cover’, ’Relative Humidity ’]]

DailyDf.head()

fill up missing data
DailyDf[’Wind Chill’]. fillna(DailyDf[’Heat Index’], inplace =

True)
DailyDf[’Wind Chill’]. fillna(DailyData.Temperature , inplace =

True)

DailyDf.columns = [’Day’,’Tmax’,’Tmin’,’FeelsLike ’,’HeatIndex ’
,’Precipitation ’,’WindSpeed ’,

’CloudCover ’,’RelativeHumidity ’]
DailyDf.drop(’HeatIndex ’,axis=1,inplace=True)
DailyDf
DailyDf.head()

temperature model
Tmin = 60
Tmax = 80

Am = (Tmax - Tmin)/2
Mn = (Tmax + Tmin)/2

= np.pi /(60*12) #t in minutes
Temp = lambda t: Mn+Am*np.cos(*(t -17*60))

tran = np.linspace (0 ,24 ,1000)
plt.plot(tran ,Temp (60* tran))

= np.pi /(60*12) #time in minutes

temp at any given time
def TempAtTime(t,tempran):

Tmin , Tmax = tempran
Am = (Tmax - Tmin)/2
Mn = (Tmax + Tmin)/2
return Mn+Am*np.cos(*(t -17*60)) #max at 5 p.m. (so min

at 5 a.m.)

IC_ran = (40 ,110)
#HC_ran = (70,-20)

65

temp to odds
def TempToScaler(temp , ran , = 0.1):

p = (temp - ran [0])/(ran[1] - ran [0])
return 1+ *np.tanh(p -0.5)

TempToScaler (100, IC_ran)

In[]:

features to odds
def PrecipToScaler_IC(precip , = 0.1):

return np.exp(- *precip)
def PrecipToScaler_HC(precip , = 0.1):

return np.exp(*precip)
def WindSpeedToScaler_IC(windspeed , = 0.01):

return np.exp(- *windspeed)
def CloudCoverToScaler_IC(CC , = 0.1):

p = 1-CC/100
return 1+ *np.tanh(p -0.5)

def CloudCoverToScaler_HC(CC , = 0.1):
p = CC/100
return 1+ *np.tanh(p -0.5)

def RelativeHumidityToScaler(RH , = 0.1):
p = RH/100
return 1+ *np.tanh(p -0.5)

Generate Demands -- Single Instance of Schedules
CollegeStudents = [CollegeStudent () for __ in range(N_students

)]
WeekDays = [’M’,’T’,’W’,’R’,’F’]

FeaturesAndDemands = DailyDf.copy()
FeaturesAndDemands[’Demand ’] = np.zeros(len(DailyDf))
pd.DataFrame(columns = [’Day’,’Tmax’,’Tmin’,’FeelsLike ’,’

Precipitation ’,’WindSpeed ’,
’CloudCover ’,’

RelativeHumidity
’, ’Demand ’
],

index = DailyDf.index)
fdmax = np.zeros (6)
fdmin = 1e10*np.ones (6)
for idx , row in tqdm.tqdm(DailyDf.iterrows (), total=DailyDf.

shape [0]):
FeatureScalars = np.array(

[PrecipToScaler_IC(row.Precipitation)
,

WindSpeedToScaler_IC(row.WindSpeed),
CloudCoverToScaler_IC(row.CloudCover

),
RelativeHumidityToScaler(row.

RelativeHumidity),
TempToScaler(row.FeelsLike ,IC_ran),

66

1.0]) # for Max , Min temp scaling
Tmax = row.Tmax
Tmin = row.Tmin
n_purchases = 0
for student in CollegeStudents:

snackTemp = TempAtTime(student.GetSnackTime(row.Day),
(Tmin ,Tmax))

FeatureScalars [-1] = TempToScaler(snackTemp , IC_ran)
n_purchases += student.BuyIceCream(row.Day ,

FeatureScales=FeatureScalars)
FeaturesAndDemands.loc[idx ,’Demand ’] = n_purchases
fdmax = np.maximum(FeatureScalars , fdmax)
fdmin = np.minimum(FeatureScalars , fdmin)

FeaturesAndDemands.head (15)

fdmin , fdmax

FeatureScalars
FeaturesAndDemands.tail (20)

Multiple Instances of Schedules to create Demands
FeaturesAndDemands = DailyDf.copy()
for i in tqdm.trange (100):

CollegeStudents = [CollegeStudent () for __ in range(
N_students)]

FeaturesAndDemands[’Demand%s’%i] = np.zeros(len(DailyDf))
pd.DataFrame(columns = [’Day’,’Tmax’,’Tmin’,’FeelsLike ’,

’Precipitation ’,’WindSpeed ’,
’CloudCover

’,’
RelativeHumidity
’, ’
Demand ’
],

index = DailyDf.index)
fdmax = FeatureScalars
fdmin = FeatureScalars
for idx , row in tqdm.tqdm(DailyDf.iterrows (), total=

DailyDf.shape[0], leave=False):
FeatureScalars = np.array(

[PrecipToScaler_IC(row.
Precipitation),

WindSpeedToScaler_IC(row.
WindSpeed),

CloudCoverToScaler_IC(row.
CloudCover),

RelativeHumidityToScaler(row.
RelativeHumidity),

TempToScaler(row.FeelsLike ,
IC_ran),

1.0]) # for Max , Min temp
scaling

Tmax = row.Tmax
Tmin = row.Tmin
n_purchases = 0

67

for student in CollegeStudents:
snackTemp = TempAtTime(student.GetSnackTime(row.

Day), (Tmin ,Tmax))
FeatureScalars [-1] = TempToScaler(snackTemp ,

IC_ran)
n_purchases += student.BuyIceCream(row.Day ,

FeatureScales=FeatureScalars)
FeaturesAndDemands.loc[idx ,’Demand%s’%i] = n_purchases
fdmax = np.maximum(FeatureScalars , fdmax)
fdmin = np.minimum(FeatureScalars , fdmin)

This Will Take Approximately 3(100) = 300 minutes (5 hours)

FeaturesAndDemands.head (10)

one_hot = pd.get_dummies(FeaturesAndDemands[’Day’])

FeaturesAndDemands = FeaturesAndDemands.drop(’Day’ , axis= 1)

FeaturesAndDemands = FeaturesAndDemands.join(one_hot)
FeaturesAndDemands.head (10)

cols = list(FeaturesAndDemands.columns.values)

68

Appendix B : Solutions to Ice Cream Vendor Problem

Appendix B.1 : Linear Programming Approach

MathProg code for solving the newsvendor problem with implementation on jupyter

notebook.

#!/usr/bin/env python
coding: utf -8

import numpy as np
import pandas as pd
pd.set_option(’display.max_rows ’, None)

converts dataframe to .dat file
def ToGLPKdat(Df):

"""Df should be a DataFrame
"""
Lines = ’set ROWS := ’
for row in Df.index:

Lines += ’%s ’ % row
Lines += ’;\nset COLS := ’
for col in Df.columns [0: -1]:

Lines += ’%s ’ % col
Lines +=’;\n\nparam B: ’
for col in Df.columns [-1]:

Lines += ’%s’ % col
Lines += ’:= ’
Lines += ’\n%s ’ % Df[’Demand ’]
Lines += ’; \n\nparam A: ’
for col in Df.columns [0: -1]:

Lines += ’%s ’ % col
Lines += ’:=’
for row in Df.index:

Lines += ’\n%s ’ % row
for col in Df.columns [0: -1]:

Lines += ’%s ’ % Df.loc[row ,col]
Lines += ’; \n \nend;’
with open(’Training_Ice.dat’,’w’) as FileObject:

print(’Writing to Training_Ice.dat’)
FileObject.write(Lines)

return Lines

model implementation in jupyter notebook
%% script glpsol -m /dev/stdin -d Training_Ice.dat

set ROWS;
set COLS;

Parameters

69

param A{i in ROWS ,j in COLS};
param B{i in ROWS};
param c_u :=1.0;
param c_o :=1.0;

Variables
var s{j in COLS} >=0;
var t{j in COLS} >=0;
var Beta{COLS} >=0;

Objective function
minimize ExpectedCost:
sum{j in COLS}(c_u*s[j] + c_o*t[j]);

Constraints
subject to Underage{i in ROWS ,j in COLS}:
s[j] >= B[i] - A[i,j]*Beta[j];

subject to Overage{i in ROWS ,j in COLS}:
t[j] >= A[i,j]*Beta[j] - B[i] ;

subject to S{j in COLS}:
s[j] >= 0;

subject to T{j in COLS}:
t[j] >= 0;

solution
solve;

#output
display Beta;
display ExpectedCost;

end;

70

Appendix B.2 : Deep Learning approach

The following code are for implementation of the deep learning solution to the Ice cream

vendor problem. The code was adapted from Karn Watcharasupat’s repository on GitHub

(https://github.com/karnwatcharasupat/DeepNewsvendor) and I extend gratitude to the

authors for making it available.

parameters declaration
NN_MIN_LAYER = 2
NN_MAX_LAYER = 3
NUM_FEATURES = 12 #changed
DROPOUT = 0.2
NUM_MODELS = 10
SHORTAGE_COST = 1
HOLDING_COST = 1
NUM_EPOCHS = 25
BATCH_SIZE = 32 # 16
ANNEALING_FACTOR = 1e-5
PATIENCE = 10

#data preparation
import numpy as np
import params
import torch
from torch.utils.data import Dataset

class SalesDataset(Dataset):
Pytorch dataset for OpenMIC
def __init__(self , npz_path , randomize = True):

self.randomize = randomize
if not self.randomize:

data = np.load(npz_path)
self.X = data[’X’]
self.Y = data[’Y’]
self.length = self.X.shape [0]

else:
self.length = 1000

def __len__(self):
return self.length

def __getitem__(self , index):
if not self.randomize:

X = self.X[index]
Y = self.Y[index]

else:
X = np.random.rand (100, 24, params.NUM_FEATURES)
Y = np.random.rand (100, 24)

X = torch.tensor(X, requires_grad=False , dtype=torch.

71

float32)
Y = torch.tensor(Y.astype(float), requires_grad=False ,

dtype=torch.float32)

return X, Y

hyperband hyperparameter optimization
import numpy as np
import params

def random_nodes(hidden_layers):

l_bound = 0.5

if hidden_layers == 2:
u_bound = [0. ,3. ,1.]

elif hidden_layers == 3:
u_bound = [0. ,3. ,2. ,1.]

else:
raise NotImplementedError

n_nodes = []
n_nodes.append(params.NUM_FEATURES)

for i in range(1, hidden_layers +1):
n = int(np.round((np.random.rand()*(u_bound[i]-l_bound

) + l_bound) * n_nodes[i-1]))
n_nodes.append(n)

n_nodes.append (1)

n_nodes = np.array(n_nodes).astype(np.int)

print(f’Generating network with {hidden_layers +2} layers ,
each with {n_nodes} nodes’)

return n_nodes

def random_nn_params ():

hidden_layers = np.random.randint(params.NN_MIN_LAYER ,
params.NN_MAX_LAYER +1)

n_nodes = random_nodes(hidden_layers)
lr = np.power (10, np.random.rand()*3. - 5.)
lambd = np.power (10, np.random.rand()*3. - 5.)

return hidden_layers , n_nodes , lr , lambd

def __sanity_check ():
print(random_nn_params ())

__sanity_check ()

72

define feedforward dnn
import torch
import torch.nn as nn
import numpy as np
import params

def generate_fc(n_hidden , n_nodes):
layers = []

in_chan = n_nodes [0]
for i in range(n_hidden + 2):

out_chan = n_nodes[i]
layers += [

nn.Linear(in_chan , out_chan),
nn.LeakyReLU (),
nn.Dropout(params.DROPOUT)

]
in_chan = out_chan

return nn.Sequential (* layers)

class DeepVendorSimple(nn.Module):

def __init__(self , model_type = ’simple_fc ’, n_hidden = 2,
n_nodes = [4,3,2,1]):
super ().__init__ ()

self.n_features = n_nodes [0]

if model_type == ’simple_fc ’:
self.net = generate_fc(n_hidden , n_nodes)

else:
raise NotImplementedError

def forward(self , x):

’’’
input x: size n_product by n_obs by n_features
output y: size n_product
’’’
y = self.net(x)
y = y.squeeze ()

return y

euclidean loss function
import torch
import torch.nn as nn
import numpy as np

class EuclideanLoss(nn.Module):

def __init__(self , c_p , c_h):
super ().__init__ ()

73

self.c_p = c_p
self.c_h = c_h

def forward(self , y, d):
’’’
y: prediction , size = (n_product , n_obs)
d: actual sales , size = (n_product , n_obs)
’’’

diff = torch.add(y, -d)
diff = torch.add(torch.mul(torch.max(diff , torch.zeros

(1)), self.c_p), torch.mul(torch.max(-diff , torch.
zeros (1)), self.c_h))

diff = torch.norm(diff)
diff = torch.sum(diff)
return diff

linear loss function
class CostFunction(nn.Module):

def __init__(self , c_p , c_h):
super ().__init__ ()
self.c_p = c_p
self.c_h = c_h

def forward(self , y, d):
’’’
y: prediction , size = (n_product , n_obs)
d: actual sales , size = (n_product , n_obs)
’’’

cost = torch.add(y, -d)
cost = torch.add(torch.mul(torch.max(cost , torch.zeros

(1)), self.c_p), torch.mul(torch.max(-cost , torch.
zeros (1)), self.c_h))

cost = torch.sum(cost)

return cost

model evaluation
import os
import errno
import shutil
from tqdm import tqdm
import numpy as np
import torch

class AverageMeter(object):
""" Computes and stores the average and current value """

def __init__(self):
self.reset()

def reset(self):
self.val = 0

74

self.avg = 0
self.sum = 0
self.count = 0

def update(self , val , n=1):
self.val = val
self.sum += val * n
self.count += n
self.avg = self.sum / self.count

def discriminative_trainer(model , data_loader , optimizer ,
criterion):
torch.cuda.synchronize ()
print(torch.cuda.memory_allocated ())
model.eval()
model.train ()
loss_tracker = AverageMeter ()

for (X, Y) in tqdm(data_loader):
torch.cuda.empty_cache ()
device = torch.device(’cuda:0’ if torch.cuda.

is_available () else ’cpu ’)
device = torch.device(’cpu’)
X = X.to(device)
Y = Y.to(device)
outputs = model(X)
loss = criterion(outputs , Y)

optimizer.zero_grad ()
loss.backward ()
optimizer.step()

loss_tracker.update(loss.item())
return loss_tracker.avg

def discriminative_evaluate(model , data_loader , criterion):
torch.cuda.empty_cache ()
device = torch.device(’cuda:0’ if torch.cuda.

is_available () else ’cpu ’)
device = torch.device(’cpu’)
model.eval()
loss_tracker = AverageMeter ()
for (X, Y) in tqdm(data_loader):

X = X.to(device)
Y = Y.to(device)
outputs = model(X)
result = outputs.detach ().numpy()
loss = criterion(outputs , Y)
loss_tracker.update(loss.item())

return loss_tracker.avg ,result

earling stopping for hyperband
class EarlyStopping:

75

MIT License

Copyright (c) 2018 Bjarte Mehus Sunde

Permission is hereby granted , free of charge , to any
person obtaining a copy

of this software and associated documentation files (the
"Software "), to deal

in the Software without restriction , including without
limitation the rights

to use , copy , modify , merge , publish , distribute ,
sublicense , and/or sell

copies of the Software , and to permit persons to whom
the Software is

furnished to do so , subject to the following conditions:

The above copyright notice and this permission notice
shall be included in all

copies or substantial portions of the Software.

THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF
ANY KIND , EXPRESS OR

IMPLIED , INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF
MERCHANTABILITY ,

FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN
NO EVENT SHALL THE

AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM ,
DAMAGES OR OTHER

LIABILITY , WHETHER IN AN ACTION OF CONTRACT , TORT OR
OTHERWISE , ARISING FROM ,

OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR
OTHER DEALINGS IN THE

SOFTWARE.
""" Early stops the training if validation loss doesn’t

improve after a given patience."""

def __init__(self , patience=7, verbose=False):
"""
Args:

patience (int): How long to wait after last time
validation loss improved.

Default: 7
verbose (bool): If True , prints a message for each

validation loss improvement.
Default: False

"""
self.patience = patience
self.verbose = verbose
self.counter = 0
self.best_score = None
self.early_stop = False
self.val_loss_min = np.Inf

def __call__(self , val_loss , model):

76

score = -val_loss

if self.best_score is None:
self.best_score = score
self.save_checkpoint(val_loss , model)

elif score < self.best_score or np.abs(score - self.
best_score) < 1e-4:
self.counter += 1
print(

f’EarlyStopping counter: {self.counter} out of
 {self.patience}’)

if self.counter >= self.patience:
self.early_stop = True

else:
self.best_score = score
self.save_checkpoint(val_loss , model)
self.counter = 0

def save_checkpoint(self , val_loss , model):
’’’Saves model when validation loss decrease.’’’
if self.verbose:

print(
f’Validation loss decreased ({self.

val_loss_min :.6f} --> {val_loss :.6f}).
Saving model ...’)

torch.save(model.state_dict (), ’checkpoint.pt’)
self.val_loss_min = val_loss

model training and best model selection
import random
import torch
import numpy as np
import os
from copy import deepcopy
import datetime
from tqdm.notebook import tqdm , tnrange ,trange
from torch.utils.tensorboard import SummaryWriter
import params
from train_utils import *

model_type = ’simple_fc ’ # ’att_context ’
id = ’simple_fc ’

Set hyperparams:
missing = False
num_epochs = params.NUM_EPOCHS
batch_size = params.BATCH_SIZE
anneal_factor = params.ANNEALING_FACTOR
patience = params.PATIENCE

seed = np.random.randint (0 ,100000) ## change seed

torch.cuda.synchronize () # comment
torch.cuda.empty_cache ()

77

set random seeds
random.seed(seed)
torch.manual_seed(seed)
torch.cuda.manual_seed(seed)
np.random.seed(seed)

Other imports now
from data_utils import SalesDataset
from torch.utils.data import DataLoader

TRAIN = ’train.npz’
TEST = ’test.npz’

train_data = SalesDataset(TRAIN , randomize = False)
test_data = SalesDataset(TEST , randomize = False)

train_loader = DataLoader(train_data , batch_size , shuffle =
True)

test_loader = DataLoader(test_data , batch_size , shuffle = True
)

val_loader = test_loader

#------------------#
Model Definition
#------------------#

from hyperband import random_nn_params
from model import DeepVendorSimple
from loss_function import EuclideanLoss , CostFunction

best_overall_model = None
best_overall_cost = 100000.
best_model_idx = 0

for model_idx in tnrange(params.NUM_MODELS):

hidden_layers , n_nodes , lr , weight_decay =
random_nn_params ()

model = DeepVendorSimple(n_hidden = hidden_layers , n_nodes
= n_nodes)

torch.cuda.empty_cache ()
#torch.cuda.memory_summary ()
#device = torch.device(’cuda:0’ if torch.cuda.is_available

() else ’cpu ’)
device = torch.device(’cpu’)
print(device)
model = model.to(device)

optimizer = torch.optim.Adam(
model.parameters (),
lr=lr ,
weight_decay=weight_decay)

78

criterion = EuclideanLoss(params.SHORTAGE_COST , params.
HOLDING_COST)

test_criterion = CostFunction(params.SHORTAGE_COST , params
.HOLDING_COST)

writer_path = os.path.join(id+’_idx_ ’+str(model_idx))
writer = SummaryWriter(writer_path)

best_model = None
best_val_loss = 100000.0

try:
early_stopping = EarlyStopping(patience=patience ,

verbose=False)

for epoch in tnrange(num_epochs , total = None): ### (
range):
torch.cuda.empty_cache ()

Train model
loss = discriminative_trainer(

model=model ,
data_loader=train_loader ,
optimizer=optimizer ,
criterion=criterion)

#print(f’epoch: {epoch}, loss: {loss}’)

log in tensorboard
writer.add_scalar(’Training/Prediction Loss’, loss

, epoch)

Eval model
loss , result = discriminative_evaluate(model ,

val_loader , test_criterion)
writer.add_scalar(’Validation/Prediction Cost’,

loss , epoch)

if loss < best_val_loss:
best_val_loss = loss
best_model = deepcopy(model)

Anneal LR
early_stopping(loss , model)
if early_stopping.early_stop: # and epoch >

params.MIN_EPOCH:
#print ("Early stopping ")
break

except KeyboardInterrupt:
print(’Stopping training. Now testing ’)

Test the model
model = best_model
torch.cuda.empty_cache ()
loss ,result= discriminative_evaluate(model , test_loader ,

79

test_criterion)
print(’Test Prediction Cost: ’, loss)
if loss < best_overall_cost:

best_overall_model = deepcopy(model)
best_overall_cost = loss
best_model_idx = model_idx
best_model_nodes = n_nodes

torch.save(model.state_dict (), os.path.join(’best_model.pth’))

80

VITA

GAFFAR OLAMIDE SOLIHU

Education: B.S. Mathematics, University of Ilorin,

Ilorin, Nigeria 2014

M.S. Mathematical Sciences, East Tennessee State University,

Johnson City, Tennessee 2021

Professional Experience: High School Teacher , Salaudeen Community School,

Lagos State, Nigeria, 2015–2016

College PT Instructor, Lagos State Polytechnic,

Lagos State, Nigeria, 2017–2018

Mathematic Tutor, East Tennessee State University,

Johnson City, Tennessee, 2019–2021

Graduate Assistant, East Tennessee State University,

Johnson City, Tennessee, 2019–2021

81

	Applying Deep Learning to the Ice Cream Vendor Problem: An Extension of the Newsvendor Problem
	Recommended Citation

	tmp.1627091693.pdf.e8v_O

