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ABSTRACT 

Accelerometry and Global Navigation Satellite Systems Derived Training Loads 

by 

Abdulmalek K. Bursais 

 

The objectives of this dissertation include 1) to review accelerometry and Global Navigation 

Satellite System (GNSS) derived measures used to monitor training load, 2) to investigate the 

validity and reliability of accelerometers (ACCs) to identify stepping events and quantify 

training load, 3) to assess the relationship between accelerometry and Global Navigation Satellite 

Systems (GNSS) derived measures in quantifying training load. In Study I, acceleration data was 

collected via two tri-axial ACC (Device A and Device B) sampling at 100Hz mounted closely 

together at the xiphoid process level. Each participant (n=30) performed two trials of straight-

line walking, running, and sprinting on a 20m course. Device A was used to assess ACC validity 

to identify steps and the test-retest reliability of the instrument to quantify the external load. 

Device A and Device B were used to assess inter-device reliability. The reliability of 

accelerometry derived metrics Impulse Load (IL) and Magnitude g (MAG) were assessed. In 

Study II, known distance (DIST) was predicted via acceleration data collected by a tri-axial ACC 

sampling at 100Hz mounted at the xiphoid process level, simultaneously positional data 

collected using a triple GNSS unit sampling at 10Hz placed between scapulae. Each participant 

(n=30) walked different DIST around various movement constraints (small and large circles). 

Thirty distances were completed around each circle and ranged from 12.57–376.99m. In Study I, 

the instrument demonstrated a positive predictive value (PPV) of 96.98-99.41% and an 

agreement of 93.08-96.29% for step detection during all conditions. Good test-retest reliability 

was found with a coefficient of variation (CV) < 5% for IL and MAG during all locomotor 
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conditions. Good inter-device reliability was also found for all locomotor conditions (IL and 

MAG CV < 5%). These results indicated that tri-axial ACCs are a valid and reliable tool used to 

identify steps and quantify external load when movement is completed at a range of speeds. In 

Study 2, all linear regression models performed well for both movement constraints (R2=0.922-

0.999; RMSE=0.047-0.242, p<0.001). The correlation between all training load measures and the 

DIST illustrates that both technologies may be used to indicate a total distance completed while 

walking. 
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1. Chapter 1. Introduction 

 Training load is a term used to describe the physical effort athletes perform during sport-

related training, practice, and competition (Quarrie et al., 2016). To better understand the training 

process and predict the response of those training loads, practitioners often apply various 

methods to quantify the training load athletes perform (Bourdon et al., 2017; Gabbett et al., 

2017; Halson, 2014; Impellizzeri et al., 2019). Training load is generally categorized as external 

load or internal load. External loads refer to the physical work athletes engage in during training, 

practice and competitions. In contrast, internal load represents the physical and psychological 

response induced by the external load (Impellizzeri et al., 2019). Therefore, knowing the external 

training load and understanding the internal response will help practitioners optimize their 

practice. 

Objective measures such as total distance performed, number of accelerations and 

decelerations, mean power output, and amount of weight lifted during training or competition are 

examples of external load. Objective measures such as heart rate, blood lactate, oxygen 

consumption, and subjective measures such as the rating of perceived exertion (RPE) are 

examples of internal load. Additionally, response measures such as wellness questionnaires (Saw 

et al., 2017), heart rate measures (Botek et al., 2014), jumping tests (Sams et al., 2018) have also 

been used to assess the training's psychological, physiological, and performance response. 

Depending on the tools' availability and validity, practitioners choose one or more variables or 

methods to monitor training load. Due to the advancement of wearable technologies nowadays 

(particularly GNSS and microtechnology), coaches and sports scientists often estimate players' 

psychophysiological responses based on monitoring the external load (Impellizzeri et al., 2019). 



12 

 

 

However, directly assessing the internal load is recommended as players might respond 

differently to an equivalent training load (Bourdon et al., 2017). 

 Accelerometer (ACC) and Global Navigation Satellite Systems (GNSS) sensors are two 

of the most common tools used measure external loads in team, court and field sports (Colby et 

al., 2014). Although those technologies' capability to assess sports-related events during training 

or competitions has not received consensus. ACCs and GNSS are used separately or 

interchangeably to assess training load; however, both technologies' relationship to the same 

training load has not been well established. Therefore, there are two primary aims of this 

dissertation: 1. to investigate ACC validity and reliability when identifying sport related events 

and measuring training load, 2. to evaluate the relationship between different accelerometry 

derived metrics and GNSS to assess external load. Such information may provide sports 

scientists and researchers with new insights into the applicability and usefulness of modern 

technology used in the sports industry. 

Research Questions 

1. Can Accelerometry data be used accurately to detect steps during various locomotor 

conditions including walking, running, and sprinting? 

2. Can ACC be used to reliably quantify external load during various locomotor conditions 

including walking, running, and sprinting? 

3. Is there a relationship between accelerometry and GNSS derived measures of external load 

used to quantify the same task? 

4. How well can accelerometry and GNSS derived measures predict a known distance? 
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Hypotheses 

1. Steps will accurately be identified during various sport-related activities using 

accelerometry data. 

2. Training load will reliably be quantified by accelerometry derived measures while 

performing various sport-related activities. 

3. A strong relationship will be found between accelerometry and GNSS derived measures 

to quantify the same task. 

4. Known distance covered will be predicted by accelerometry and GNSS derived measures 

with different levels of predictivity.
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2. Chapter 2. Review of Literature 

Introduction 

Identifying and monitoring human physical activity has been of interest to scientists for a 

variety of reasons, including health, fall prevention and sport performance (Bourke et al., 2007; 

Chambers et al., 2015; Mackintosh et al., 2016; Zhang et al., 2018). Both vision-based (Barris & 

Button, 2008) and wearable technologies (Aroganam et al., 2019) have been used to track human 

movements, however, vision-based systems may be prohibitively time consuming and costly to 

deploy when compared to the host of wearable technologies that have been developed. As 

wearables have become easier to deploy and costs have decreased, wearables have become 

essential tools used to track athlete activity and manage training loads in many different sports 

(Akenhead & Nassis, 2016). 

Training load is a term used to describe the physical effort athletes perform during sport 

related training, practice, and competition (Quarrie et al., 2016). The training loads athletes 

complete produce the physiological adaptations required to perform in sport. To optimize 

specific physiological adaptations, coaches and sport scientists not only plan or prescribe training 

loads, but use various monitoring strategies to quantify athlete training loads and responses to 

those training loads (Bourdon et al., 2017; Gabbett et al., 2017; Halson, 2014; Impellizzeri et al., 

2019). A considerable body of literature supports the use of load monitoring and suggests that 

training load monitoring and subsequent training modifications may enhance outcomes (e.g., 

performance, fitness, and readiness) and mitigate negative influences (e.g., excessive fatigue, 

illness, and injury) of training (Andrade et al., 2020; Bourdon et al., 2017; Gabbett et al., 2017; 

Halson, 2014; Impellizzeri et al., 2019). 
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Training load is generally categorized as external load or internal load. This concept was 

initially presented at the 8th Annual Congress of the European College of Sport Science in 2003 

by Impellizzeri et al. (2019). External loads refer to the physical work athletes are exposed to in 

practice or competitions. In contrast, internal load represents the physical and psychological 

response induced by the external load (Impellizzeri et al., 2019). Objective measures such as 

total distance covered, number of acceleration and deceleration, mean power output, and amount 

of weight lifted during training or competition are examples of external load. Objective measures 

such as heart rate, blood lactate, oxygen consumption, and subjective measures such as the rating 

of perceived exertion (RPE) are examples of internal load. Depending on the tools' availability 

and validity to a sport, practitioners choose one or more variables or methods to monitor training 

load. 

Due to technological advancement in recent years, various wearable devices have been 

developed to monitor training load (Borges & Driller, 2016; Chambers et al., 2015; Colby et al., 

2014; Cummins et al., 2013; Ferrari et al., 2011). Heart rate measures (HR) and near-infrared 

spectroscopy (NIRS) are examples of wearable instruments used to assess athletes' internal load. 

HR measures one of the earlier standards used to assess training load. Variables such as HR 

(Hopkins, 1991), HR recovery (Daanen et al., 2012), HR variability (Plews et al., 2013), and 

Training Impulse (TRIMP) (Banister & Calvert, 1980) are examples of HR variables evaluated 

during or after training or competitions to assess internal load. HR-based assessments are 

common and easy to use but might not be applicable in some sports (Impellizzeri et al., 2019). 

NIRS measures local muscle oxidative metabolism at rest or during exercise (Ferrari et al., 

2011). Recently, NIRS devices were embedded in sports garments which may extend the 
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application of NIRS in the future (Borges & Driller, 2016). However, this technology's validity 

to assess internal load during various sports is not well established yet. 

Nevertheless, an indirect measure such as the session rating of perceived exertion (sRPE), 

can also estimate internal load. sRPE is obtained by multiplying the athlete's perceived effort of 

training load (on a 1–10 scale) over the session duration (in minutes) (Foster, 1998). sRPE is a 

sensitive measure for training load and strongly correlated to internal load measures such as HR-

based assessments (Borresen & Lambert, 2008; Foster, 1998; Lovell et al., 2013). sRPE has also 

correlated to external load measures such as acceleration-based assessments (Casamichana et al., 

2013; Gaudino et al., 2015; J. Gentles et al., 2018; Lovell et al., 2013). Despite the promising 

performance of sRPE to assess training load, coupling an objective assessment along sRPE is 

highly recommended as some players might unreliably assess their own training load perception 

(Bourdon et al., 2017). 

Furthermore, accelerometry and GNSS derived load have become some of the dominant 

objective measures to monitor external load in sport (Colby et al., 2014). These wearable 

technologies can be integrated or used separately to provide an indicator of the external work 

performed by athletes; consequently, practitioners may be better able to manage fatigue and 

direct adaptation. The role of ACC and GNSS in load monitoring has received increased 

attention across a number of sports in recent years (Chambers et al., 2015; Cummins et al., 2013) 

and will be the primary focus of this dissertation. 

Accelerometers 

ACCs are responsive motion sensors that measure the magnitude of acceleration in single 

or multiple axes, generally expressed as the change in velocity every second (m·s−2) or 
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gravitational equivalents (g; where 1 g = 9.81 m·s−2). ACCs are often combined with gyroscopes 

and magnetometers which are used as an inertial measurement unit (IMU). IMUs can measure 

velocity, orientation, and gravitational force, often in the three axes (x = anterior-posterior, y = 

medial-lateral, z = vertical). As described above, ACCs measure acceleration, while gyroscopes 

measure angular rotation, and magnetometers assess the bearing magnetic direction (Ahmad et 

al., 2013). ACCs are often used to estimate the intensity of human movement, but may also be 

used to identify specific types of movement or positions such as locomotor activities and posture 

(Fortune, Lugade, Morrow, et al., 2014; Lugade et al., 2013). Moreover, the combination of 

these three sensors has improved the event detection precision such as tennis strokes by 10%, as 

IMU reported 90% accuracy while ACCs alone reported 80% (Connaghan et al., 2011). In fact, 

ACCs have been used since the 1950s to monitor human movement (Saunders et al., 1953) and a 

growing body of literature points to the utility of ACCs to assess human motion in a variety of 

settings (Moe-Nilssen & Helbostad, 2004; Sant’Anna & Wickström, 2010). 

Locomotion and Locomotor Events 

Illustrating the range of activities that can be identified via accelerometry, Lugade et al. 

(2013) demonstrated two triaxial ACC mounted at the waist and thigh can be used identify the 

static posture orientations of standing, sitting, and laying down as well as differentiate between a 

range of gait velocities. Much of the literature concerns gait velocities conducted in a clinical 

setting. Matsushima et al. (2015) found postural sway, gait velocity, cadence, and step length 

were significantly different between patients and control subjects, showing triaxial ACC 

positioned at the lower back could be used to assess the gait of ataxic patients. Regarding ACCs 

placement during movement analysis, various accelerometry techniques can be used to assess 

gait symmetry. Using two sensors on the feet, accelerometry can assess symmetry by measuring 
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the gait cycle based on the timing of two consecutive foot-flats, or measuring the angular 

velocity of feet on each gait cycle (Mariani et al., 2013). A single triaxial ACC sensor mounted 

at the lower trunk can also be used to measure symmetry by analyzing the repetitive movement 

pattern of the center of mass on each gait cycle (Moe-Nilssen & Helbostad, 2004). Concerning 

sensors position and the number of sensors used, researchers have found good consistency and 

correlations between gait symmetry measured with a single 3D ACC attached at the low back 

and a sensor of each foot (Spearman correlation: |ρ| = [0.82, 0.88], p < 0.05) during a straight 

walk condition (Zhang et al., 2018). This suggests that a single sensor mounted at the low back 

may be more sensitive and practical to use compared to a sensor on each foot for gait symmetry 

assessments. 

Events such as steps (Pham et al., 2017), falls (Bourke et al., 2007) and jumps (Choukou 

et al., 2014) can be identified using specific algorithms. Steps are often counted based on toe-off, 

heel-strike, and/or mid-swing identification with established acceleration thresholds and 

timespan between sequential gait events to determine valid steps (Salarian et al., 2004). 

Algorithms that use vertical acceleration (Din et al., 2016) or anterior-posterior acceleration 

(Micó-Amigo et al., 2016) have been validated to identify steps. For instance, using 

accelerometry data, Pham et al. (2017) reported an accuracy of 88% with a positive predictive 

value of 94% when detecting steps in a home-like environment that included turning events, and 

91% accuracy with 98% positive predictive value when turning events were not included. 

Furthermore, at velocities ranging from 0.1 to 4.8 m/s, three different commercial ACCs attached 

at the ankle, waist, and wrist, in addition to a custom-designed activity monitoring system 

(AMS) consisting of four ACCs positioned at the waist, right thigh, and bilateral ankles have 

demonstrated a diversity of median interquartile range (IQR) agreements with manual step 
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counts (Fortune, Lugade, Morrow, et al., 2014). The authors conclude that the AMS algorithm 

could identify steps with a higher median agreement and/or smaller IQR (92% (8%)) than the 

commercial ACCs located at the ankle (92% (36%)), waist (93% (22%)), wrist (33% (35%)) in a 

laboratory-based setting, suggesting that their algorithm is suitable for detecting steps in a free-

living environment (Fortune, Lugade, Morrow, et al., 2014). 

Likewise, algorithms have been developed to discriminate falls among daily living 

activities of elderly people (Bourke et al., 2007). A recent experiment by Siregar et al. (2018) 

involved a tri-axial ACC and gyroscope, where the device was used to successfully detect the 

direction of falling and distinguished between intentional and accidental falling. Separate 

algorithms have been used to identify and measure jumps. Vertical jump height can be estimated 

via flight time (Linthorne, 2001) where flight time is the period that a body is not in direct 

contact with the ground. Although temporal bias has been found when estimating takeoff and 

touchdown when jumping (Casartelli et al., 2010; Choukou et al., 2014), Choukou et al.(2014) 

reported good reliability when assessing jump height during hops, countermovement jumps, and 

squat jumps (intraclass correlation coefficient (ICC) = 0.74 - 0.89, coefficient of variation (CV) 

= 4.25 - 6.42%) using a lower back mounted ACCs. Collectively this evidence seems to suggest 

that specific algorithms can be employed to identified various events using data from triaxial 

ACCs. 

Sport Related Events 

Movements specific to individual and team sports can also be identified using ACCs 

(Chambers et al., 2015). Events such as kicks (Ellens et al., 2017), throws (Koda et al., 2010), 

tennis strokes (Connaghan et al., 2011), baseball bat swings (Ghasemzadeh & Jafari, 2011) and 
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golf swings (Lai et al., 2011) can be identified using specific algorithms. The quantity and 

intensity of kicks in Australian Football have been classified using ACCs placed above the 

approximate ankle joint (Ellens et al., 2017). Additionally, two IMU sensors were placed at a 

forearm and upper arm to analyze the upper limb's acceleration and angular velocity while 

pitching a baseball (Koda et al., 2010). The authors proposed an algorithm to estimate the 

trajectory of throws and were highly correlated to throws identified by the criterion method 

(Vicon 3D motion capture system). In tennis, an IMU system placed on a players' dominant 

forearm was used to classify strokes (serves, backhands, forehands) by measuring the spike in 

ACC data due to ball impact (Connaghan et al., 2011). Accelerometry data can also be used to 

discriminate between skilled golfers and non-golfers by assessing swing patterns via IMU 

sensors attached to the leading hand and upper arm, pelvis, and upper back (Lai et al., 2011). The 

authors stated that skilled golfers adequately perform high acceleration swings with lower pelvis 

movement than beginner golfers. Additionally, movement and event identification in water 

(Jensen et al., 2013), snow (Chardonnens et al., 2012), and combat (Shepherd et al., 2017) sports 

have also been reported. Taken together, these studies indicate that accelerometry can be used to 

analyze motion and detect events within a variety of sports. 

Athlete Training Loads 

ACCs are valid and reliable instruments to measure training load in the field and 

laboratory environments (Johnstone, Ford, Hughes, Watson, & Garrett, 2012a, 2012b; Johnstone, 

Ford, Hughes, Watson, Mitchell, et al., 2012). There is a growing body of literature that 

recognizes the ability of ACCs to quantify the external demand of team and individual sports. 

For instance, the within and between device reliability of ACCs has been established across a 

variety of movement demands in both laboratory and on-field conditions in Australian football 
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(Boyd et al., 2011). Gentles et al. (2018) found strong to nearly perfect correlations between 

accelerometry derived training load and session rating of perceived exertion (sRPE) (r= 0.84; p < 

0.001) and total distance measured using GPS (r = 0.95; p < 0.001) among NCAA women’s 

soccer players. ACCs have also been used to illustrate the differences in the activity profile 

between singles and doubles match play in tennis (J. A. Gentles et al., 2018). In rugby, ACCs 

outperformed GPS by recognizing the differences in training load between players based on their 

position on the field; additionally, the accelerometry derived training load clearly detected the 

decline in second half activity level compared to the first half (Howe et al., 2017). Moreover, 

accelerometry has also been shown to be a valid assessment of a test designed to simulate 

basketball play, suggesting that ACCs can be used to quantify the external demand of basketball 

(Staunton et al., 2017). Further, energy expenditure has been estimated based on linear 

regression equations derived from raw ACCs data (Freedson et al., 2005). 

Many accelerometry derived metrics have been used to quantify training load, including 

Body Load (Aguiar et al., 2013), Player Load (Boyd et al., 2011), Force Load (Buchheit & 

Simpson, 2017), Dynamic Stress Load (Gaudino et al., 2015), and Impulse Load (J. Gentles et 

al., 2018). These metrics are modified vector magnitude based on the three planes' accelerations 

(x, y, and z), often detected by ACCs sampling at 100 Hz, and data are expressed in arbitrary 

units (AU). Body Load and Player Load are expressed as the square root of the sum of the 

squared instantaneous rate of change in acceleration in each of the three planes and divided by 

the sampling frequency of the device (generally sampling at 100 Hz) (Aguiar et al., 2013; Boyd 

et al., 2011). As shown in the following formula (Table 2.1), all expressions are performed inside 

the square root in Player Load; however, in Body Load, the division of the 100 is processed 

outside the square root. Interestingly, different equations and descriptions for Player Load have 
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also been reported in the literature (Boyd et al., 2011; Howe et al., 2017; Randers et al., 2014). 

Moreover, Howe et al. (2017) did not specify the scaling factor they used to divide the vector 

magnitude summation. Randers et al. (2014) did not include division in their formula. For 

instance, a recent study by Bredt et al. (2020) investigated different Player Load descriptions and 

equations reported in the literature by assessing training load during a team sport-related activity. 

Player Load equations across studies led to different training load values, making it difficult to 

compare athletes given that differences could be attributed to the calculation methods, not to 

athletes' mechanical effort (Bredt et al., 2020). Player Load has also been described as 

Acceleration Load (Schelling & Torres, 2016). Further, Dynamic-stress load is calculated as the 

total weighted impacts (collisions or steps impacts) identified as maximum ACC magnitude 

values above 2 g in 0.1 seconds over a defined period (Beato et al., 2019). 

Although Player Load is the most commonly reported measure in the literature 

(Vanrenterghem et al., 2017), its potential to monitor training load has been questioned (Bredt et 

al., 2020). Compared to other metrics that include a variation of the sum of all accelerations, 

Player Load includes only the sum of the differences in acceleration and may not best represent 

training load (Bredt et al., 2020). Additionally, training load could be misrepresented due to the 

inclusion of non-locomotor activities in Player Load (Buchheit & Simpson, 2017). Force Load 

and Impulse Load are examples of metrics that aim to only include locomotor activities (e.g., 

walking, running, bounding, jumping) and impacts (Buchheit & Simpson, 2017; J. Gentles et al., 

2018). Force Load is derived from the product of player body mass and magnitude vectors from 

a triaxial ACC, used to estimate ground-reaction forces during all foot impacts and collisions 

(Buchheit & Simpson, 2017). Impulse Load is derived from the square root of the sum of the 

magnitude vectors from a triaxial ACC divided by the force of gravity (g = 9,8067) (Table 2.1) 
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(J. Gentles et al., 2018). Training load may be better assessed using metrics that aim to include 

only locomotor activity, but future research is needed to investigate this possibility. 

 

Table 2.1 

Formula for Body Load, Player Load, and Impulse Load 

Metric Definition and formula* 

Player Load  𝑃𝐿 = √(𝑎𝑦1 − 𝑎𝑦−1)
2

+ (𝑎𝑥1 − 𝑎𝑥−1)2 + (𝑎𝑥1 − 𝑎𝑥−1)2

100
 

 

Body Load 

 

𝐵𝐿 =
√(𝑎𝑦1 − 𝑎𝑦−1)

2
+ (𝑎𝑥1 − 𝑎𝑥−1)2 + (𝑎𝑥1 − 𝑎𝑥−1)2

100
 

 

Impulse Load** 𝐼𝐿 =  ∑
√𝑥𝑠

2 + 𝑦𝑠
2 + 𝑧𝑠

2

9.8067

𝑛

𝑠=1

 

*In the formulas above, x = forward and backward acceleration, y = lateral acceleration and z = vertical acceleration.  

** IL is propriety by the manufacture and is only associated with locomotor events that are detected by Zephyr (e.g., walking, running, bounding, 

jumping). 

 

Sensor Position 

Accelerometry data can be collected using a single or multiple sensors (Fortune, Lugade, 

& Kaufman, 2014). Sensors can be placed at a variety of different anatomical locations including 

upper limb (shoulder, arm, elbow, forearm, or hands), lower limb (thigh, knee, leg, or foot), 

multiple limps (upper and/or lower limbs at the same time), or other body regions (head, trunk, 

back or hip) (López-Nava & Muñoz-Meléndez, 2016). Moreover, ACCs have been placed at 
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specific anatomical locations to assess their accelerations, such as the wrist (Whiteside et al., 

2017), head (Beanland et al., 2014), and tibia (Sinclair et al., 2016). ACCs have also been 

attached to sports equipment to assess their accelerations; this includes but is not limited to 

barbells (Balsalobre-Fernández et al., 2016), kayak cockpits (Janssen & Sachlikidis, 2010), and 

bikes (Macdermid et al., 2014). Furthermore, ACCs measure the body segment's acceleration 

attached to (Nedergaard et al., 2017); however, no consensus has been formulated regarding the 

best anatomical references to assess training load. The Center of Mass (COM) is a common 

location to assess whole-body movements (Barrett et al., 2014; Cleland et al., 2013), although 

COM is highly variable during movements that are not practical to track. Additionally, 

identifying sport-related events such as kicks, pitches, tennis strokes may not be optimized when 

a sensor is placed at COM. 

It is common to fix ACCs between scapulae in team sports due to the inclusion of GNSS 

sensors given that GNSS sensors benefit from unobstructed signal orbiting satellites. Researchers 

have thus attempted to compare training load assessed using ACCs fixed at the COM and 

between scapulae (Barrett et al., 2014). Barrett et al. (2014) found moderate to high test-retest 

reliability at both the scapulae (ICC .80–.93, CV 5.3–14.8%) and the COM (ICC .87–.97, CV 

4.2–11.5%) during a standardized bout of treadmill running. Nevertheless, the three planes' (x, y, 

z) relative contribution to loading was different as a result of unit position. The unit placed at 

scapulae underestimated training load by 15.7% ± 9.7%, mostly due to the lower contributions of 

the mediolateral-plane loading. Barrett et al. (2014) interpreted this as a weakness related to 

detecting hip rotation during running compared to the COM placement. Additionally, scapular 

units increased the vertical-plane percentage contribution to loading, which is likely caused by 

the greater vertical displacement associated with shoulder-girdle movements or trunk flexion 
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during running. Furthermore, ACCs were observed to reliably measure training loads resulting 

from treadmill running and a Soccer-Specific Aerobic Field Test (SAFT90) when placed at four 

locations: scapulae, lower back, knee, and ankle (r2  0.989), in which scapular presented the 

least variable as a CV of 2.05% during the treadmill test, and a CV of 2.46% during the sport-

specific test has been reported (Gómez-Carmona et al., 2019). The evidence reviewed here seems 

to suggest a pertinent relationship between sensor location and the object intended to be 

assessed, to which COM appears to be the most suitable location to assess the acceleration of 

whole-body during individual and team sports. 

Global Navigation Satellite System 

Global Navigation Satellite Systems (GNSS), of which there are several, are a 

constellation of satellites that provide location and time information for tracking objects. GNSS 

is an umbrella term that includes several different satellite networks such as Global Positioning 

System (GPS), Global Navigation Satellite System (GLONASS), Galileo, and BeiDou. GNSS 

was initially developed for military purposes, but has expanded to be used in many applications, 

including sports for athletes monitoring purposes. The first paper that investigated GPS 

applicability for sports purposes was published in 2001 (Larsson & Henriksson-Larsén, 2001). In 

recent years, researchers have shown an increased interest in the role of GNSS in load 

monitoring within sports. 

GNSS in Sports 

GNSS is primarily used to measure the horizontal displacement of the object the GNSS 

sensor is fixed. In sport, the GNSS sensor is most often secured to the athlete and provides 

information on player position, velocity, and on-field movement patterns. Total distance, speed, 
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number of accelerations and decelerations (m.s-2) are some variables that can be acquired by 

GNSS. Positional differentiation and Doppler shift are two different methods used to determine 

distance and velocity. Moreover, GNSS identifies the receiver location by continually calculating 

its distance to the satellites, from which GNSS receiver's latitude, longitude, and altitude 

acquired. Distance is calculated by measuring the change in location with each signal travels 

from satellites to the receiver (Positional differentiation) (Larsson, 2003). Velocity is calculated 

by measuring the change in location over time (Positional differentiation) or the change in 

frequency of satellite emitted periodic signal to the receiver, as the receiver's movement velocity 

influences the signaling rate (Doppler shift) (Larsson, 2003). While positional differentiation and 

doppler shift are both valid assessments of position and velocity, during linear running using a 1-

Hz GPS device, the Doppler shift method was more precise and accurate (Townshend et al., 

2008). 

GNSS Validity and Reliability 

Distance. An instrument is considered valid if it accurately assesses what it intends to 

assess (Hopkins, 2004), and an instrument is reliable if measurements are reproducible (Hopkins, 

2000) Nonetheless, an instrument can be reliable but might consistently mismeasure what it 

intends to assess (Choukou et al., 2014). Moreover, an instrument's reliability is thought to be 

more valuable to practitioners as it helps identify meaningful changes in training load. The total 

distance covered by players during a playing period is perhaps the variable most routinely 

monitored using GNSS. GNSS networks such as GPS are valid indicators of distances of 40m 

completed during different movement patterns. However, GNSS may not accurately measure 

shorter distances (less than 20m) completed during high-speed running, sprinting, and changes of 

direction (Jennings et al., 2010). Higher sampling frequencies (5-10Hz) have been shown to 
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improve the accuracy of GPS (Delaney et al., 2018; Jennings et al., 2010), although some 

evidence suggests that increasing sampling frequency to 15 Hz does not improve accuracy when 

assessing distance completed during unstructured movements (Vickery et al., 2014). Further, 

GPS sampling at 15Hz underestimated a longer distance (13,300m) completed during a rapid 

multidirectional movement (bias: -2.16%), and overestimated the same distance completed 

during a curvilinear trial (bias: 2.99%) compared to the criterion measure (surveyor's wheel) 

(Rawstorn et al., 2014) The authors attributed the miscalculation of distance by GPS during the 

shuttle trial to the interaction between GPS position sampling and movement demands. 

Moreover, the rapid multidirectional movements cause GPS to partition continuous movement 

paths into discrete linear segments, from which GPS calculates distance across individual 

sampling epochs. However, the source of the bias during the curvilinear trials is unclear 

(Rawstorn et al., 2014). 

 The inter-device and intra-device or test-retest reliability of GNSS sensors have also been 

assessed in numerous investigations (Akenhead & Nassis, 2016; Buchheit et al., 2014; 

Castellano et al., 2011; Johnston et al., 2014; Rawstorn et al., 2014; Vickery et al., 2014). 

Jennings et al. (2010) found moderate to poor test-retest reliability with 1Hz (CV= <7.0 - 77.2%) 

and 5Hz (CV= <6.6% - 39.5%) GPS devices when used to assess straight-line sprinting distance 

(10-40m, 20-40m interval). However, using a GPS unit sampling at 10Hz, Castellano et al. 

(2011) reported a good level of intra-unit (15m CV < 4%; 30m CV < 3%) and inter-unit (15m 

CV = 1.3%, ; 30m CV < 0.7%) reliability when measuring distance during a 15m and 30m 

straight-line sprint. Although a higher sampling frequency seems to improve reproducibility, 

GPS devices sampling at 15Hz did not improved test-retest reliability when assessing distance 

completed during a simulated team sports circuit compared to 10Hz units (Johnston et al., 2014). 
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Johnston et al. (2014) reported a typical error of measurement (TEM) of 1.9-12.1% for 15Hz 

units and a TEM of 1.3-11.5% for 10Hz devices. To be expected, the available evidence 

demonstrates that intra-unit reliability is better than inter-unit reliability; therefore, assigning a 

single unit for each individual is recommended (Buchheit et al., 2014; Castellano et al., 2011; 

Rawstorn et al., 2014; Scott et al., 2016). Considering the evidence, it seems that GNSS sensors 

sampling at 10Hz provide the highest accuracy and reproducibility. Additionally, assessing 

distance appears to be more precise over longer distances with few changes in velocity (Scott et 

al., 2016). 

Speed. Measuring the instantaneous speed (Akenhead et al., 2014; Varley et al., 2012), 

peak speed (Johnston et al., 2014; Vickery et al., 2014), mean speed (MacLeod et al., 2009; 

Vickery et al., 2014) has been reported using GNSS. Instantaneous speed is defined as a player's 

speed at a given moment in time measured in meters per second (m/s), while mean speed is the 

average speed of a player during a certain playing period measured in meter per second (m/s) or 

kilometers per hour (km.h-1). Peak speed is the maximum speed reached by a player for a one-

second sample period. Acceleration and deceleration is the rate of change in velocity measured 

in meters per second squared (m/s2). The number of accelerations and decelerations of a player, 

or the anatomical reference in which the unit is fixed, can also be reported using GNSS data 

(Hennessy & Jeffreys, 2018; Scott et al., 2016). 

 As with total distance, identifying speed measures using GNSS devices sampling at 10Hz 

seems to be more precise data than 1Hz, 5Hz, or 15Hz (Johnston et al., 2014; Scott et al., 2016; 

Varley et al., 2012; Vickery et al., 2014). It has been shown that GNSS is a useful tool to 

measure instantaneous speed (Akenhead et al., 2014; Varley et al., 2012; Vickery et al., 2014); 
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however, the accuracy and reproducibility might be compromised when a high rate of change in 

velocity occurred (Akenhead et al., 2014; Varley et al., 2012). Additionally, during repetitive and 

unstructured movements, Vickery et al. (2014) found that peak and mean speed were 

underestimated (14–29%, and 13–29%, respectively) compared to the criterion measure (VICON 

system); however, the differences were not statistically significant. 

 Speed can also be categorized into several zones, usually enumerated from one to six 

zones, ranging from 0 to 36 km.h-1, where zone one represents low velocity while zone six 

represents high velocity (Cummins et al., 2013; Hennessy & Jeffreys, 2018). Distance covered 

and time spent in each zone can also be obtained by GNSS. Although the range of speed in each 

zone is diverse and not standardized across sports or brand of sensor, distance and time spent in 

each zone have been used to estimate an athlete's work rate during training or competition 

(Cummins et al., 2013; Hennessy & Jeffreys, 2018). Considering the evidence, it seems that 

GNSS could be utilized to assess the volume and intensity of training load; however, caution 

should be used in sports that feature high velocity and rapid directional change (e.g., soccer, 

football, rugby, tennis) as training load might be misrepresented by GNSS. 

Metrics that integrate ACCs and GNSS data to monitor training load have also been 

developed; the so-called Dynamic stress load (Kampakis, 2016) or Fatigue index (Beato et al., 

2019) are examples and are deemed as indicators of fatigue. Fatigue index is the ratio between 

instantaneous speed measured by GNSS and weighted impact values derived by ACC (Beato et 

al., 2019). Beato et al. (2019) found this metric to be sensitive to monitor fatigue during 

submaximal intermittent exercise. Additionally, Dynamic stress load has demonstrated the 
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potential to predict injury among football players (Kampakis, 2016). However, further work is 

needed to confirm the validity and advantages of using such metrics in load monitoring. 

Factors Influencing GNSS Precision 

Assessing player position using GNSS networks may be influenced dramatically by the 

number and separation of satellites that are connected to the receiver. GNSS enables receivers to 

acquire signals from multiple satellite networks (e.g., GPS, GLONASS, Galileo, and BeiDou), 

increasing the number of available satellites. Combined satellite systems improve satellite 

geometry and resulting precision (Tahsin et al., 2015). Dilution of Precision (DOP) is a 

description of satellite geometry. DOP is composed of two elements: horizontal dilution of 

precision (HDOP) and vertical dilution of precision (VDOP) (for more detail about DOP, see 

Tahsin et al. (2015)). HDOP is one indicator of GNSS accuracy and is influenced by the 

separation of the satellites. HDOP values range from 0 to 50, with a value of less than 1 

considered ideal distribution of satellites. HDOP is low and precision is excellent when 

substantial distance exists between satellites, while HDOP is high and precision is poor when 

satellites are in close proximity. Additionally, indoor fields, stadiums with high walls or roofs, 

and cloudy weather are factors that can reduce the quality of GNSS data (Cummins et al., 2013). 

Relationship Between ACC and GNSS 

Evaluating the precision of ACC and GNSS to assess sport-related events/locomotion or 

training load has been of interest to researchers and sports scientists (Boyd et al., 2011; 

Connaghan et al., 2011; Delaney et al., 2018; Ellens et al., 2017; J. Gentles et al., 2018; Howe et 

al., 2017; Jennings et al., 2010; Vickery et al., 2014). A systematic literature review by 

Chambers et al. (2015) concluded that an IMU has excellent potential to detect sports-related 
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events and quantify external load. Additionally, a review by Scott et al. (2016) offers perhaps the 

most comprehensive review of the utility of GNSS in sport. The authors concluded that GNSS 

could assess external load in a variety of sport settings (Scott et al., 2016). However, little is 

known about the relationship between both technologies to assess the same event or training 

load. 

 To date, several investigations have assessed the relationship between accelerometry and 

GNSS derived measures. A study by Polglaze et al. (2015) found large to very large correlations 

between Player Load and total distance accumulated during men's hockey practice (r = 0.742; p 

< 0.00001) and competition (r = 0.868; p < 0.00001). Additionally, a strong correlation was 

found between Player Load and total distance completed in men's soccer training (r = 0.70; p < 

0.01) (Casamichana et al., 2013), and a nearly perfect correlation (r = 0.95; p < 0.001) was found 

between Impulse Load and total distance in women's soccer matches (J. Gentles et al., 2018). 

However, no study has investigated the relationship between different accelerometry-based 

metrics and GNSS with a known distance to our knowledge. 

Conclusion 

The evidence reviewed here seems to suggest that monitoring training load during 

practices and competitions serves an essential role in optimizing sports performance. Various 

monitoring strategies are available to quantify athletes training load (external load) and assess 

responses to those training load (internal load). Due to the ease of use and capability to provide 

coaches with real-time data, ACC and GNSS sensors have been commonly utilized in various 

sports to monitor external load. ACCs and GNSS can be used separately or integrated to provide 

indicators of the external load. Despite this, the relationship between both technologies to assess 
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the same task and the validity and reliability of these technologies to identify sport related 

events, has not been adequately investigated. Indeed, practitioners may be better able to manage 

training load if they better understand the capabilities and deficiencies of such technologies.  
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Abstract 

This study aimed to assess the validity and reliability of tri-axial accelerometers to 

identify steps and quantify external load during several locomotor conditions including walking, 

running, and sprinting. Thirty physically active college students (height = 176.8 ± 6.1cm, weight 

= 82.3 ± 12.8kg) participated. Acceleration data was collected via two tri-axial accelerometers 

(Device A and Device B) sampling at 100Hz, mounted closely together at the xiphoid process. 

Each participant completed two trials of straight-line walking, running, and sprinting on a 20m 

course. Device A was used to assess accelerometer validity to identify steps against steps 

counted manually from videography. Device A was also used to assess the test-retest reliability 

of the instrument to quantify the external load. Device A and Device B were used to assess inter-

device reliability. The reliability of accelerometry derived metrics Impulse Load (IL) and 

Magnitude g (MAG) were assessed. The instrument demonstrated a positive predictive value 

(PPV) of 96.98-99.41% and an agreement of 93.08-96.29% for step detection during all 

conditions. Good test-retest reliability was found with a coefficient of variation (CV) < 5% for IL 

and MAG during all locomotor conditions. Good inter-device reliability was also found for all 

locomotor conditions (IL and MAG CV < 5%). These results indicated that tri-axial 

accelerometers are a valid and reliable tool used to identify steps and quantify external load 

when movement is completed at a range of speeds. 

 

 

Key Words: wearable technologies, accelerometers, training load, external load, monitoring  
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Introduction 

Wearable technologies have become common place in team and individual sports to 

assess internal and external loads of athletes. These technologies are used to measure various 

physiological-related variables including heart rate, oxidative muscle metabolism, breathing 

frequency, skin temperature (17,25,27,33), as well as activity-related variables such as total 

distance, acceleration, deceleration, and posture (7,25,27,34). The estimation of physical work 

performed by athletes is of particular importance to many practitioners and coaches. Therefore, 

devices used to evaluate the physical effort of athletes during practice and competition have 

become essential components of load monitoring (1). Accelerometers are one type of wearable 

technology used to indicate the quantity of mechanical work performed by athletes (10), that 

may improve the ability of practitioners to better manage fatigue and direct adaptation. The role 

of accelerometers in load monitoring has received increased attention across a number of sports 

in recent years (8,11). Despite this, the validity and reliability of accelerometers to detect events 

and quantify training load during sport-related activities is not well established. 

 

Accelerometers are a responsive motion sensor that measure the magnitude of 

acceleration in one or more axes (x  =  anterior-posterior, y  =  medial-lateral, z  =  vertical). 

Accelerometers are often used to assess the intensity of human movement and identify specific 

types of motion or positions such as locomotor activities and posture (18,29). Events including 

steps, jumps, kicks and throws have been identified using accelerometers (9,16,28,32). However, 

most studies that have investigated the validity of this technology were conducted in a laboratory 

setting. 
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A variety of event-specific algorithms and acceleration thresholds are used in 

accelerometry based event identification and human movement assessment. For instance, steps 

are often counted based on toe-off, heel-strike, and/or mid-swing identification with established 

acceleration thresholds and time between sequential gait events (35). Algorithms using vertical 

acceleration (14) or anterior-posterior acceleration (31), have also been validated to identify 

steps. Pham et al. (32) provides an example of this, finding that in a home-like environment, 

accelerometry data could be used to detect steps that included turning events with an accuracy of 

88% and positive predictive value of 94%, while steps without turning events were detected with 

91% accuracy and 98% positive predictive value. Moreover, to validate steps identification using 

accelerometers, Fortune et al.(18) assessed a custom-designed activity monitoring system (AMS) 

that consisted of four accelerometers positioned at the waist, right thigh, and bilateral ankles. 

Three different commercial accelerometers were also attached at the ankle, waist, and wrist. The 

authors conclude that the AMS algorithm could identify steps at a higher median agreement and 

smaller interquartile range (92% and 8%) than the commercial accelerometers located at the 

ankle (92% and 36%), waist (93% and 22%), wrist (33% and 35%) when dynamic activities at 

velocities ranging from 0.1-4.8 m/s were performed. This suggests that the algorithms used by 

Fortune et al. (18) are suitable for detecting steps in a free-living environment. While multiple 

accelerometers may be difficult to use in sport, Armitage et al. (2) recently investigated the 

reliability of step counting using two accelerometers placed on the right shank. The authors 

reported excellent inter-unit reliability (intra-class coefficient (ICC) = 0.96) and (95% confidence 

interval (CI) = 0.90-0.99) during various running-based team sports (2). Additional sport related 

validation of step counting and identification via accelerometry remains necessary. 
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Accelerometry derived external loads have been assessed in field and laboratory 

environments (4,25–27). Johnstone et al. (27) validated accelerometry derived training load 

against oxygen (O2) consumption in a field-based environment and reported a very strong 

relationship (r > 0.90; p < 0.01). Accelerometry derived training load has also been correlated to 

a heart rate-based training impulse during soccer training and showed a large relationship (r > 

0.80; p < 0.01) (36). There is a growing body of literature that recognizes the ability of 

accelerometers to quantify the demands of team and individual sports. Gentles et al. (19) found 

strong to nearly perfect correlations between an accelerometry derived training load and session 

rating of perceived exertion (sRPE) (r = 0.84; p < 0.001) and total distance measured using GPS 

(r = 0.95; p < 0.001) among NCAA women’s soccer players during an entire regular season. 

Accelerometers have also been used to illustrate the differences in the activity profile between 

single and double match play in tennis (20). In rugby, accelerometers outperformed GPS by 

recognizing the differences in players' movement demand based on their position on the field 

(backs vs. forwards) and period of match play (1st vs. 2nd) (24). Additionally, the within and 

between device reliability of accelerometers has been established across a variety of movement 

demands in a laboratory and on-field conditions (4,7,21). Two accelerometers aligned on players' 

upper back reliably quantified external load (CV 1.9%) during Australian football matches (7). 

Furthermore, Gomez et al. (21) assessed the within and between device reliability of eight 

devices mounted at four anatomical locations during a Sport-Specific Aerobic Field Test 

(SAFT90). The authors reported excellent between-device reliability (CV = 2.96%) and excellent 

values (r = 0.86-0.96; p = 0.46-0.98) for within-device reliability and no significant differences 

between trials. Current literature suggests that accelerometers may be used to assess external 
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load, although additional research is needed to evaluate the use of accelerometry data to detect 

events (e.g., steps, jumps, impacts) and quantify training load during sport related movement. 

 

Therefore, the purpose of this study was twofold. First, this study aimed to assess the 

validity of accelerometers to identify steps during several locomotor conditions including 

walking, running, and sprinting. Second, this study sought to assess the inter-device and test-

retest reliability of accelerometers to quantify external load while walking, running, and 

sprinting. 

Methods 

Experimental Approach for the Problem 

This investigation was conducted to assess the validity and reliability of a tri-axial 

accelerometer to identify steps and quantify external load while completing a twenty-meter 

straight-line course. Video recording was conducted and served as a reference instrument to 

evaluate step counts for construct validity. 

Subjects 

Thirty participants (height = 176.8 ± 6.1cm, weight = 82.3 ± 12.8kg) volunteered to 

participate in this study. Subjects were physically active and participated in some form of 

physical activity at least three times a week. This study was approved by the university’s 

Institutional Review Board and participants provided written consent for their involvement and 

video recording. 
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Procedures 

The twenty-meter straight-line course was designed on a grass field (Figure 3.1). Each 

participant completed six trials of the experiment. The six trials included two trials of each of the 

following locomotor conditions: walking, running, and sprinting. A research assistant served as a 

pacemaker in each locomotor condition. A metronome (Pro Metronome App, 2014 EUMLab, 

Xanin Tech) was used to gait the velocity of each condition (walking, running, sprinting) to limit 

the variation between subjects and trials. The research assistant was wearing headphones to listen 

to the metronome, and participants were directed to keep pace with the research assistant. The 

tempo was set at 45, 70 and 90 beats per minute for walking, running and sprinting, respectively. 

A full gait cycle (i.e., two steps) was complete for each beat and a single research assistant 

guided all trials. Before initiating each trial, participants were directed to remain still after 

positioning their feet precisely at the start position; they were also instructed to stop precisely at 

the end of the course. Additional signs were placed at 15m to alert subjects to decelerate in the 

sprinting course to allow for a precise stop at the finish line. Small stutter steps were sometimes 

used by subjects to break, particularly during the running and sprinting trials, as they approach 

the end of the course. To keep step counts consistent with the locomotor condition, stutter steps 

were removed from analysis. Each trial was preceded by a 5 second countdown followed by the 

command of "go" from the research assistant. Participants performed a familiarization trial for 

each condition. Following familiarization, each subject completed each condition twice on the 

20m course. 
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Figure 3.1 Illustration of The Course Design 

*Each participant performed 2x 20m walking, running, and sprinting. 

*5m is a deceleration zone for the sprinting course 

 

Instrumentation 

Acceleration data was collected during each 20m trial via two tri-axial accelerometers 

sampling at 100Hz (ZephyrTM BioHarness v3, Zephyr Technology Corp., Annapolis, MD, USA). 

Two accelerometry derived loads were assessed; 1) Impulse Load (IL) an accumulative measure 

of mechanical load defined in Table 3.1 and expressed in arbitrary units, and 2) the square root 

of the sum of squared accelerations (MAG) expressed as gravitational equivalents (1g = 

9.81m/s2). It should also be noted that IL aims to include only accelerations from locomotor 

events (e.g., walking, running, jumping) and impacts, but as a proprietary metric, the methods 

used to identify accelerations from these events are not public. Mean absolute IL and MAG were 

calculated for all conditions. 
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Each subject wore two BioharnessTM devices (A and B) located closely together at the 

xiphoid process level, along the midsternal line. Device A was used for the validity and test-

retest reliability, while devices A and B were used to assess inter-device reliability. The 

beginning and end of each trial were marked by the subject tapping on the accelerometers four 

times; this served as identifier to expedite data analysis. Video of each trial was recorded for the 

purposes of step identification using a smartphone camera (iPhone 6; 1080p at 30 fps) and was 

placed 23m to the side of the 20m course (Figure 3.1). 

 

Table 3.1 Formula for Each Accelerometry Based Metric 

Metric Definition and formula* 

Impulse Load** 𝐼𝐿 =   ∑
√𝑥𝑠

2 + 𝑦𝑠
2 + 𝑧𝑠

2

9.8067

𝑛

𝑠 = 1

 

MAG 𝑀𝐴𝐺 =   ∑ √𝑥𝑠
2 + 𝑦𝑠

2 + 𝑧𝑠
2

𝑛

𝑠 = 1

 

* In the formulas above, x  =  forward and backward acceleration, y  =  lateral acceleration and z  =  vertical acceleration. 

** IL is propriety by the manufacture and is only associated with locomotor events that are detected by Zephyr (e.g., walking, running, bounding, 

jumping). 

 

Event Detection Validity 

Device A was used to assess the ability of the BioharnessTM to detect steps during each 

locomotion condition. The methods used by ZephyrTM to identify steps detected using the 

BioharnessTM are proprietary and therefore, we are not able to detail those methods here. Video 

recording and data from device A were uploaded to and synchronized using RaceRender 

software (version 3.7.3; 2019 HP Tuners LLC / RaceRender LLC, USA) to identify steps (Figure 
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3.2). Heel strike and toe-off were determined using video and associated acceleration data 

according to step classification recommended from a previous investigation (32). 

 

 
Figure 3.2 Video and Acceleration Data were Uploaded to and Synchronized Using 

RaceRender Software 

*The research assistant (far side) and a participant (near side) performing a sprinting trial. 

 

Test-Retest and Inter-Device Reliability 

Device A was used to assess the test-retest reliability of the BioharnessTM during each 

locomotor condition. IL and MAG from the first and second trials were assessed. Devices A and 

B were used to assess the inter-device reliability of the BioharnessTM during each locomotor 

condition. IL and MAG from the first trial recorded by each device were used for analysis. 
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Statistical Analysis 

Accelerometry data were downloaded to OmniSenseTM Analysis (version 4.1.4; Zephyr 

Technology Corporation, Annapolis, MD, USA), then exported to Microsoft Excel 2019 

(Microsoft Corporation, Redmond, WA, USA) for analysis. Data were expressed as means and 

standard deviations for each locomotor condition. 

Validity 

Agreement and positive predictive value (PPV) were calculated for all trials to assess 

BioharnessTM's ability to detect steps. Agreement is the percentage of steps detected by device A 

relative to those counted manually from video. PPV is the ratio of true-positive steps to the sum 

of true- and false-positive steps. A true-positive step is defined as step identified on video, and 

identified by device A, while a false-positive step is defined as a step identified by device A, but 

not identified using video. Bland-Altman plots were also generated to identify systematic error 

and produce upper and lower limits of agreement between video and device derived methods of 

step detection (6). 

Reliability 

Using the first and second trials of each locomotor condition, test-retest reliability was 

assessed by calculating the CV and 90% CI for IL and MAG from device A. Additionally, using 

the first trial from each locomotor condition, inter-device reliability was assessed by calculating 

CV and 90% CI for IL and MAG from devices A and B. In sports literatures, CV has been 

categorized as good ( < 5%), moderate (5-10%), or poor ( > 10%) for reliability investigations 

(3,12,15,23,37). 
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Results 

Thirty participants completed a total of 180 trials, 60 trials for each locomotor condition. 

Means and standard deviations for each metric and trial are detailed in Table 3.2



 

 

Table 3.2 Means and 90% CI for IL, MAG, and Step Counts for Each Trial from Device A, and IL and MAG of First Trials 

from Device B 

 
Device B 

Trial 1 

Mean 

(90% CI) 

Device A 

 Trial 1  

Mean 

(90% CI) 

Device A 

Trial 2 

Mean 

(90% CI) 

IL        

Walk 77.2 ± 12.1 73.5 - 80.9 77.0 ± 12.6 73.1 - 80.9 76.9 ± 11.8 73.2 - 80.5 

Run 91.4 ± 9.6 88.5 - 94.4 91.1 ± 9.4 88.2 - 94.0 90.0 ± 10.7 86.7 - 93.3 

Sprint  53.7 ± 4.9 52.2 - 55.3 53.9 ± 5.2 52.3 - 55.5 53.2 ± 3.6 52.1 - 54.3 

MAG        

Walk 44.8 ± 3.1 43.9 - 45.8 44.4 ± 3.4 43.3 - 45.5 45.2 ± 2.3 44.5 - 45.9 

Run 67.9 ± 9.3 65.1 - 70.8 67.2 ± 9.5 64.3 - 70.2 67.5 ± 11.4 64.0 - 71.1 

Sprint  60.7 ± 8.5 58.0 - 63.3 60.4 ± 8.3 57.8 - 62.9 61.1 ± 10.4 57.9 - 64.3 

Video steps        

Walk - - 31.5 ± 1.4 31.1 - 31.9 31.4 ± 1.3 31.0 - 31.8 

Run - - 25.4 ± 2.5 24.6 - 26.1 25.2 ± 2.6 24.4 - 26.0 

Sprint - - 16.8 ± 1.0 16.5 - 17.1 16.7 ± 1 16.4 - 17.0 

BioharnessTM steps        

Walk - - 31.2 ± 2.5 30.5 - 32.0 31.1 ± 1.7 30.6 - 31.6 

Run - - 26.0 ± 2.5 25.3 - 26.8 25.8 ± 2.7 25.0 - 26.7 

Sprint - 

 

- 17.9 ± 1.3 16.5 - 18.3 17.4 ± 1.3 17.0 - 17.8 
IL  =  Impulse Load; MAG  =  Magnitude g; CI  =  Confidence interval 



 

 

Validity 

BioharnessTM demonstrated a PPV of 96.98-99.41 % and an agreement of 93.08-96.29 % 

in detecting steps during all conditions. The results of each locomotor are detailed in Table 3.3. 

Additionally, low systematic error was identifiable using the Bland-Altman plot of BioharnessTM 

steps counts for all trials as illustrated in Figure 3.3. 

 

Table 3.3 The Validity of BioharnessTM in Detecting Steps 

  Video 

steps  

Device A 

steps 

Percent 

difference  

PPV Agreement 

Walk  1887 1870 -0.9% 96.98% 94.97% 

Run 1516 1556 2.64% 99.41% 96.29% 

Sprint 1006 1058 5.17% 98.91% 93.08% 
PPV  =  positive predictive value 

 

 
Figure 3.3 Bland-Altman Plot Demonstrating the Difference between the BioharnessTM 

and Visual Step Counts 

*The number of steps taken changes as a result of changes in each locomotor condition velocity. 

*The solid line is the mean, while the dashed lines represent the repeatability coefficient (  ± 1.96 SD). 
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Reliability 

BioharnessTM reliability quantified the external load during all courses. Both metrics (IL 

and MAG) demonstrated good reliability between repeated trials and between devices as the CV 

were below < 5% for all conditions. The results of both metrics during all courses are detailed in 

Table 3.4 (IL) and Table 3.5 (MAG). 

 

Table 3.4 The Test-Retest and Inter-Device Reliability of the Accelerometry Derived 

Metrics IL 

IL Test-retest CV (%) CV 90% CI  Inter-device CV (%) CV 90% CI 

Walk 4.99% 3.76 - 6.22% 2.67% 1.98 - 3.37% 

Run 3.22% 2.45 - 3.99% 1.13% 0.81 - 1.43% 

Sprint 4.54% 3.46 - 5.62% 1.82% 1.30 - 2.34% 

All conditions 4.25% 3.65 - 4.85% 1.87% 1.55 - 2.19% 
IL  =  Impulse Load; CV  =  Coefficient of variation; CI  =  Confidence interval 

All conditions  =  all courses combined (walking, running, and sprinting). 

 

Table 3.5 The Test-Retest and Inter-Device Reliability of the Accelerometry Derived 

Metric MAG 

MAG Test-retest CV (%) CV 90% CI  Inter-device CV (%) CV 90% CI  

Walk 3.46% 2.59 - 4.33% 1.69% 1.09 - 2.28% 

Run 3.12% 2.25 - 3.99% 1.61% 1.25 - 1.98% 

Sprint 3.49% 2.54 - 4.44% 2.10% 1.61 - 2.59% 

All conditions 3.36% 2.86 - 3.86% 1.80% 1.52 - 2.07% 
MAG  =  Magnitude g; CV  =  Coefficient of variation; CI  =  Confidence interval 

All conditions  =  all courses combined (walking, running, and sprinting). 
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Discussion 

The purpose of this study was to assess the validity and reliability of accelerometers in 

identifying steps and quantify training load during different locomotor conditions. A primary 

finding is that the BioharnessTM is a valid instrument used to detect steps when movement is 

completed at a range of speeds. Additionally, BioharnessTM are highly reliable to assess external 

load when walking, running, and sprinting are performed. This may also suggest that 

accelerometry derived measures can quantify training loads associated with sport-related training 

and competition. 

 

 While BioharnessTM precisely detected steps during all conditions, steps were best 

detected during running trials (PVV = 99.41%, agreement = 96.29%). It appears the 

BioharnessTM may marginally underestimate total walking steps and slightly overestimate 

running and sprint steps (Table 3.3). During walking trials, the BioharnessTM occasionally did 

not identify steps upon initiating and ending movement. Specifically for the walking condition, 

acceleration at the beginning and end of the trials may not be of sufficient magnitude to be 

identified as a step. In contrast, during high-velocity trials, particularly during sprinting, the 

BioharnessTM recorded false positive steps, potentially due to trunk movement at the beginning 

and end of each trial. This appears consistent with previous investigations which found that 

inaccuracies when detecting steps occur most frequently at the beginning and end of locomotion 

(13,18). Nevertheless, Bland-Altman plots revealed low systematic error during all conditions 

evidenced by the similarity in number of steps detected by the BioharnessTM and steps counted 

manually from video (Figure 3.3). 
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Despite the difficulties of repeating a locomotor effort accurately, this study used a 

metronome to gait the speed of participants to reduce intra- and inter-subject differences between 

trials. This investigation revealed promising test-retest (IL CV = 3.22-4.99 %; MAG CV = 3.12-

3.49%) and inter-device (IL CV = 1.13-2.67 %; MAG CV = 1.61-2.10%) reliability during all 

conditions. There appears to be some agreement in the literature that step detection and activity 

classification accuracy using accelerometers improves with a prolonged activity (13,18,22). 

However, the BioharnessTM was precise and reliable when detecting steps and quantifying 

external load from a short bout of exercise. 

 

Several factors may confound accelerometry derived measures while quantifying external 

load, including movement artifact of the device, running economy, and stride properties (4,5,30). 

In the current study, the two BioharnessTM devices were placed as close to the manufacture's 

recommended position, but using two devices simultaneously did not permit placement that 

followed manufacturer guidelines exactly. In addition to device placement, variation in 

participant anthropometrics and gait may also influence external load and steps detected during 

each trial. Despite potential confounding factors, test-retest and inter-device reliability for IL 

(test-retest CV = 3.22-4.99 %; inter-device CV = 1.13-2.67 %) and MAG (test-retest CV = 3.12-

3.49%; inter-device CV = 1.61-2.10%) were good (< 5%). 

 

 Although this study has successfully demonstrated that the BioharnessTM is a valid and 

reliable instrument for step detection and evaluation of external load, this study has several 

limitations. First, while the BioharnessTM devices were placed closely together, they could not be 

placed in the same position. This may cause movement to be measured differently between 
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devices, albeit the differences are likely trivial. Second, while walking, running and sprinting 

were performed, other actions such as change of direction, jumping and impacts, were not 

included. Therefore, caution should be used when applying the current results to individual and 

team sports. Third, while efforts were made to ensure that participants performed repeat trials in 

the same manner each time, locomotor variability in speed, stopping location, stride length and 

other variables are inevitable. While the BioharnessTM demonstrated good reliability, these 

limitations make it difficult to isolate the source of variability. Future research should investigate 

whether accelerometry derived measures can accurately detect events (e.g., steps, jumps, kicks, 

and contact) and quantify external load during various sport-related movements including 

acceleration, deceleration, and directional change. 

Practical Applications 

The present research aimed to examine the validity and reliability of accelerometers when 

identifying events and assessing external load during sport-related movements. PVV and 

agreement analysis, as well Bland-Altman plots, revealed that steps could be accurately 

identified using accelerometers during walking, running, and sprinting. Additionally, good inter-

device and test-retest reliability was found for accelerometry derived measures of external load 

when locomoting at a range of speeds. The findings of this study may suggest that accelerometry 

derived measures can quantify external loads associated with sports training and competition. 

However, additional research is needed to investigate the use of this technology to detect 

sporting events (e.g., contact, jumps, sprinting, kicks) and quantify external loads associated with 

various sports-related movements (e.g., directional change, shuffling, and backward running), 

which are considered essential characteristics of match play in many sports. 
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Abstract 

This study aimed to assess and compare accelerometry and Global Navigation Satellite 

System (GNSS) ability to predict known distance completed using different movement 

constraints. Thirty physically active college students (height: 176.8 ± 6.1cm, weight: 82.3 ± 

12.8kg) participated. Acceleration data was collected via a tri-axial accelerometer sampling at 

100Hz. Accelerometry derived metrics included the sum of the absolute values of acceleration 

(SUM), the square root of the sum of squared accelerations (MAG), Player Load (PL) and 

Impulse Load (IL). Distance (GNSSD) was measured from positional data collected using a 

triple GNSS unit sampling at 10Hz. Each subject walked two different known distances (DIST) 

around a 2m diameter circle (small circle), and a different distance around an 8m diameter circle 

(large circle). Each distance completed around the small circle by one subject, was completed 

around the large circle by a different subject. The same 30 distances were completed around each 

circle and ranged from 12.57 to 376.99m. Separate simple linear regression models were created 

to assess the ability of each independent variable to predict DIST. All regression models 

performed well (R2 = 0.922-0.999; RMSE = 0.047-0.242). GNSSD (small circle, R2 = 0.997, 

RMSE = 0.047; large circle, R2 = 0.999, RMSE = 0.027), and the accelerometry derived metric 

MAG (small circle, R2 = 0.983, RMSE = 0.112; large circle, R2 = 0.995, RMSE = 0.064) 

performed best among all models. This research illustrates both GNSS and accelerometry may be 

used to indicate total distance completed while walking. 

 

Key Words: wearable technologies, accelerometers, GNSS, GPS, monitoring, training load  
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Introduction 

Wearable technologies have become popular tools used in team and individual sports. 

Tracking player activity using these microtechnologies is an essential component of load 

monitoring (2). Accelerometers and Global Navigation Satellite System (GNSS) devices have 

become some of the dominant wearable technologies used to monitor training load in sport (11). 

These technologies can be integrated or used separately to provide an indicator of the external 

work performed by athletes; consequently, practitioners may be better able to manage fatigue 

and direct adaptation. GNSS primarily measures horizontal displacement, while accelerometers 

primarily measure acceleration in single or multiple axes. The role of accelerometers and GNSS 

in load monitoring has received increased attention across a number of sports in recent years 

(10,12). Despite this, the relationship between both technologies to quantify the same load is not 

well established. 

 

Accelerometers are a responsive motion sensor that measures the magnitude of 

acceleration in one or more axes. Accelerometers are valid and reliable instruments to measure 

training load in the field and laboratory environments (19–21). There is a growing body of 

literature that recognizes the ability of accelerometers to quantify the external demand of team 

and individual sports. For instance, the within and between device reliability of accelerometers 

has been established across a variety of movement demands in both laboratory and on-field 

conditions in Australian football (6). Gentles et al. (2018) found strong to nearly perfect 

correlations between accelerometry derived training load and session rating of perceived exertion 

(sRPE) (r= 0.84; p < 0.001) and total distance measured using GPS (r = 0.95; p < 0.001) among 

NCAA women’s soccer players (15). Accelerometers have also been used to illustrate the 
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differences in the activity profile between single and double match play in tennis (16). In rugby, 

accelerometers outperformed GPS in quantifying positional (backs vs. forward) and halves (1st 

vs. 2nd) differences in player maximum mean movement (17). Moreover, accelerometry has also 

been shown to be a valid assessment of a test designed to simulate basketball play, suggesting 

that accelerometers can be used to quantify the external demand of basketball (28). 

 

Many accelerometry derived metrics have been used in the literature to quantify training 

load, including Body Load (1), Player Load (6), Force Load (8), Dynamic Stress Load (14), and 

Impulse Load (15). Although Player Load is the most commonly reported measure in the 

literature (30), its potential to monitor training load has been questioned (7). Player Load is the 

sum of the square root of the sum of absolute differences of acceleration divided by the device 

sampling frequency (7). Therefore, Player Load does not represent the sum of all accelerations, 

and of the available accelerometry derived measures, may not best represent training load (7). 

Additionally, training load could be misrepresented due to the inclusion of non-locomotor 

activities in Player Load (8). Interestingly, different equations and descriptions for Player Load 

have also been reported in the literature (6,17,24). Player Load has also been described as Body 

Load (1) and Acceleration Load (26). To our knowledge, no study has compared different 

accelerometry derived measures when assessing training load, indicating a need for further 

investigation of accelerometry based measures of training load. 

 

GNSS is an umbrella term that includes several different satellite networks including 

Global Positioning System (GPS), Global Navigation Satellite System (GLONASS), Galileo, 

and BeiDou. In sport, GNSS networks are used to provide information about a player position, 
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velocity, and movement patterns on the field. Total distance and distance in speed zones are 

common variables used to monitor training loads. GNSS networks such as GPS have been shown 

to be valid indicators of distances of 40m completed during different movement patterns, but 

may not be a valid measure of shorter distances (less than 20m) completed during high speed 

running, sprinting, and change of direction (18). Higher sampling frequencies (5-10Hz) have 

been shown to improve the accuracy of GPS (13,18), although some evidence suggests that 

increasing sampling frequency to 15 Hz does not improve accuracy when assessing distance 

completed during unstructured movements (31). Assessing player position using GNSS networks 

may be influenced dramatically by the number and separation of satellites that are connected to 

the receiver. GNSS enables receivers to acquire signals from multiple satellite networks (e.g., 

GPS, GLONASS, Galileo, and BeiDou), increasing the number of available satellites. Combined 

satellite systems improve satellite geometry and resulting precision (29). Dilution of Precision 

(DOP) is a description of satellite geometry. DOP is composed of two elements: horizontal 

dilution of precision (HDOP) and vertical dilution of precision (VDOP) (for more detail about 

DOP, see (29)). HDOP is one indicator of GNSS accuracy and is influenced by the separation of 

the satellites. HDOP values range from 0 to 50, with a value of less than 1 considered ideal 

distribution of satellites. HDOP is low and precision is excellent when substantial distance exists 

between satellites, while HDOP is high and precision is poor when satellites are in close 

proximity. Additionally, indoor fields, stadiums with high walls or roofs, and cloudy weather are 

factors that can reduce the quality of GNSS data (12). 

 

Recently, receivers capable of acquiring signals from multiple GNSS networks 

simultaneously (e.g., GPS, GLONASS, Galileo, and BeiDou), have enhanced the availability and 
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signal strength of surrounding satellites (22). Beato et al. (2018) suggested that using multiple 

GNSS networks could explain the smaller bias (2.3 ± 1.1%) when measuring total distance 

during a sport-specific movement protocol (5), compared to the author’s previous research that 

used only GPS to detect total distance in a shuttle run over 5-20m (2.53 ± 6.03%) (4). Future 

research should compare the quality of data from single and multiple satellite systems in sport. 

 

To date, several investigations have assessed the relationship between accelerometry and 

GNSS derived measures. A study by Polglaze et al. (2015) found large to very large correlations 

between Player Load and total distance accumulated during men's hockey practice (r = 0.742; p 

< 0.00001) and competition (r = 0.868; p < 0.00001) (23). Additionally, a strong correlation was 

found between Player Load and total distance completed in men's soccer training (r = 0.70; p < 

0.01) (9) and a nearly perfect correlation (r = 0.95; p < 0.001) was found between Impulse Load 

and total distance in women's soccer matches (15). However, to our knowledge no study has 

investigated the relationship between different accelerometry based metrics and GNSS with a 

known distance. Therefore, this study aimed to assess and compare the ability of four different 

accelerometry derived metrics and a triple GNSS to predict known distance completed under 

different movement constraints. 

Methods 

Experimental Approach for the Problem 

A correlational design was used to assess the relationship between known distance 

(DIST) and total distance measured via GNSS, and 4 accelerometry derived metrics. DIST was 

completed under two different movement constraints. Two courses, a small circle (SC) and a 
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large circle (LC), were designed on a grass field. Table 4.1 details the dimensions of each circle, 

and Figure 4.1 Design of Small and Large Circles illustrates the course design. A measuring tape 

was used to measure the diameter of each circle, which was subsequently used to calculate 

circumference. Both circles were marked by flags to guide the walking path for subjects. Flags 

were approximately 5cm in height to minimize interference with walking. Circles were used to 

limit the influence of initiating movement and braking associated with changing direction. The 

total distance was the only variable evaluated through the investigation to assess training loads. 

 

Table 4.1 Dimensions of Small and Large Circle. 

 Small circle Large circle 

Diameter 2m 8m 

Circumference 6.28m 25.13m 

Distance 2x laps = 12.56m Half-lap = 12.56m 

 

 

Figure 4.1 Design of Small and Large Circles 
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Subjects 

Thirty participants (height 176.8 ± 6.1 cm, weight 82.3 ± 12.8 kg) volunteered to 

participate in this study. Subjects participated in some form of physical activity at least three 

times a week. This study was approved by the university’s Institutional Review Board, and 

participants provided written consent for their involvement and video recording. 

Procedures 

Prior to beginning each course, subjects were informed of the number of laps they were 

to complete around each course; participants also performed a familiarization trial prior to 

completing their trials. Following familiarization, each subject walked two different known 

distances (DIST), one distance around the SC and a different distance around the LC. Each 

distance completed around the SC by one subject was completed around the LC by a different 

participant. The same thirty distances were completed around each circle and ranged from 12.57 

to 376.99 m. Table 4.2 details the number of laps and total distance each participant completed. 

Subjects were directed to walk at their normal speed and keep the flags between their feet during 

the walk to ensure each course was completed accurately. Laps were counted loudly by a 

research assistant during the trials. Each subject also wore a triaxial accelerometer and triple 

GNSS sensor.  
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Table 4.2 Number of Laps and Distance Traveled around Small and Large Circle. 

 Subjects  
Large 

circle  

Known 

Distance/m 

Small 

circle  

Known 

Distance/m   

1 0.5 12.57 60 376.99 

2 1 25.13 58 364.43 

3 1.5 37.70 56 351.86 

4 2 50.27 54 339.29 

5 2.5 62.83 52 326.73 

6 3 75.40 50 314.16 

7 3.5 87.96 48 301.59 

8 4 100.53 46 289.03 

 9 4.5 113.10 44 276.46 

10 5 125.66 42 263.89 

11 5.5 138.23 40 251.33 

12 6 150.80 38 238.76 

13 6.5 163.36 36 226.19 

14 7 175.93 34 213.63 

15 7.5 188.50 32 201.06 

16 8 201.06 30 188.50 

17 8.5 213.63 28 175.93 

18 9 226.19 26 163.36 

19 9.5 238.76 24 150.80 

20 10 251.33 22 138.23 

21 10.5 263.89 20 125.66 

22 11 276.46 18 113.10 

23 11.5 289.03 16 100.53 

24 12 301.59 14 87.96 

25 12.5 314.16 12 75.40 

26 13 326.73 10 62.83 

27 13.5 339.29 8 50.27 

28 14 351.86 6 37.70 

29 14.5 364.42 4 25.13 

30 15 376.99 2 12.57 
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Instrumentation 

Acceleration data was collected via a tri-axial accelerometer sampling at 100 Hz 

(ZephyrTM BioHarness v3, Zephyr Technology Corp., Annapolis, MD, USA). The accelerometer 

was placed at the level of the xiphoid process, along the midsternal line. Four accelerometry 

derived metrics were used in this study; the formula for each accelerometry based metric is 

described in Table 4.3. To expedite data analysis, the beginning and end of each trial were 

marked by the subject tapping on the accelerometer four times. 

 

Table 4.3 Formula for Each Accelerometry Based Metric 

Metric Definition and formula* 

SUM 𝑆𝑈𝑀 =  ∑ √𝑥𝑠
2

𝑛

𝑠=1

+ √𝑦𝑠
2 + √𝑧𝑠

2 

MAG 𝑀𝐴𝐺 =  ∑ √𝑥𝑠
2 + 𝑦𝑠

2 + 𝑧𝑠
2

𝑛

𝑠=1

 

Impulse Load** 𝐼𝐿 =  ∑
√𝑥𝑠

2 + 𝑦𝑠
2 + 𝑧𝑠

2

9.8067

𝑛

𝑠=1

 

Player Load PL= ∑
√(xs = i + 1- xs = i)2+(y

s = i + 1
- y

s = i
)

2
 +(zs = i + 1- zs = i)2

100

n

s=1

 

* In the formulas above, x = forward and backward acceleration, y = lateral acceleration and z = vertical acceleration.  

** IL is propriety by the manufacture and is only associated with locomotor events that are detected by Zephyr (e.g., walking, running, bounding, 

jumping). 

 

A triple GNSS sensor sampling at 10 Hz and acquiring signals from GPS, GLONASS 

and Galileo networks (Titan Sensors 2, Houston, TX, USA), was used to measure distance 
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covered by each participant (GNSSD). All trials were performed on an outside field, clear of 

large buildings, and with a clear sky to enhance satellite acquisitions. The number of satellites 

connected to the receiver during the trials ranged between 19-26. A previous study that used 

GNSS reported the horizontal dilution of precision (HDOP) 0.4 ± 0 while the satellites connected 

held between 18-20 (5). The GNSS unit was activated 10-15 minutes prior to data collection and 

fixed to the back of the subjects at the base of the cervical spine between scapulae. Video was 

recorded (iPhone 6; 1080p at 30 fps, Cupertino, CA, USA) and synced with GNSS data to verify 

the beginning and end of each trial. 

Statistical Analyses 

GNSS data and recorded video were uploaded and analyzed using Titan Sensors software 

(Titan Sync 3.0.0, 2019 and Titan Video 3.7.0, 2019). Accelerometry data were downloaded to 

OmniSenseTM Analysis (version 4.1.4; Zephyr Technology Corporation, Annapolis, MD, USA), 

then exported to Microsoft Excel 2019 (Microsoft Corporation, Redmond, WA, USA) for 

analysis. Data were log transformed using the natural logarithms (LN) of DIST, SUM, MAG, 

PL, IL, and GNSSD, to reduce the nonuniformity of error (27). Ten simple linear regression 

models were created to assess the ability of each independent variable (SUM, MAG, PL, IL, and 

GNSSD) to predict DIST completed during SC and LC. Residual and Q-Q plots were used to 

ensure the assumptions of homoscedasticity and normality were not violated. All data were 

analyzed using the statistical software JASP (JASP, Version 0.12.2, Amsterdam, Netherlands). 

Results 

All linear regression models performed well for both movement constraints (R2 = 0.922-

0.999; Root-mean-square error (RMSE) = 0.047-0.242, p<0.001). The results of all linear 
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regression models are detailed in Table 4.4 and each model is illustrated in Figure 4.2 - Figure 

4.6. GNSSD (SC, R2 = 0.997, RMSE = 0.047, p<0.001; LC, R2 = 0.999, RMSE = 0.027, 

p<0.001) and the accelerometry derived metric MAG (SC, R2 = 0.983, RMSE = 0.112, p<0.001; 

LC, R2 = 0.995, RMSE = 0.064, p<0.001) performed best among all models. 

 

Table 4.4 Summary of Linear Regression Models 

 Small Circle Large Circle 

Independent 

Variable 

R R2 

RMS

E 

p R R2 

RMS

E 

p 

GNSSD 0.999 0.997 0.047 <.001 1.000 0.999 0.027 <.001 

Impulse 

Load 

0.960 0.922 0.242 <.001 0.976 0.952 0.189 <.001 

MAG 0.992 0.983 0.112 <.001 0.997 0.995 0.064 <.001 

SUM 0.992 0.984 0.109 <.001 0.992 0.983 0.112 <.001 

Player Load 0.994 0.987 0.098 <.001 0987 0.973 0.141 <.001 
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Figure 4.2 The Relationship between DIST and GNSSD around SC and LC 

 

 

Figure 4.3 The Relationship between DIST and IL around SC and LC 

2.25

2.75

3.25

3.75

4.25

4.75

5.25

5.75

6.25

2.25 2.75 3.25 3.75 4.25 4.75 5.25 5.75 6.25

Lo
g 

(D
IS

T)

Log (GNSSD)

DIST - GNNSD

SC

LC

2.25

2.75

3.25

3.75

4.25

4.75

5.25

5.75

6.25

3.5 4 4.5 5 5.5 6 6.5 7 7.5 8

Lo
g 

(D
IS

T)

Log (IL)

DIST - IL

SC

LC



69 

 

 

 

 
Figure 4.4 The Relationship between DIST and MAG around SC and LC 

 

 
Figure 4.5 The Relationship between DIST and SUM around SC and LC 
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Figure 4.6 The Relationship between DIST and PL around SC and LC 

 

Discussion 

The purpose of this study was to assess and compare the ability of four different 

accelerometry derived metrics (IL, MAG, SUM, PL) and GNSS to predict a known distance 

completed using two movement constraints. A primary finding is that both GNSS and 

accelerometry derived measures are valid indicators of total distance when walking is performed 

around a SC and LC. This may also suggest that both GNSS and accelerometry are similarly 

capable of quantifying distance associated with sport-related training and competition under the 

current experimental conditions. 
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While all accelerometer derived measures performed well, MAG (SC, R2 = 0.983, RMSE 

= 0.112, p<0.001; LC, R2 = 0.995, RMSE = 0.064, p<0.001) and SUM (SC, R2 = 0.984, RMSE = 

0.109, p<0.001; LC, R2 = 0.983, RMSE = 0.112, p<0.001) performed best among all 

accelerometry models. MAG and SUM include locomotor and non-locomotor activities. This 

outcome is contrary to Buchheit and Simpson (2017) who proposed that using accelerometer-

derived measures that exclude non-locomotor activities may be more useful (8). However, this 

discrepancy could be attributed to the fact that little to no non-locomotor activity was included in 

this study, where sport includes a substantial quantity of both locomotive and non-locomotive 

activity. Our findings agree with previous suggestions that different accelerometry based metrics 

will not equally quantify training loads in sport-related events (7). Further research is needed to 

determine which accelerometry derived metrics best quantifies training load in sport. It is 

certainly possible that the simultaneous use of multiple accelerometry based load assessments is 

advantageous. 

 

Unlike GNSS, accelerometers can be influenced by between-subjects’ variability in 

loading patterns (e.g., stride characteristics) (3). However, in this study and others (9,15,23), 

strong relationships have been found between accelerometry derived loads and total distance, 

despite different subjects completing various distances. Much of the criticism that PL has 

attracted relates to calculating workloads by summing the rate of change in accelerations instead 

of the absolute value of accelerations (7). However, in this study, although PL did not perform 

best among the accelerometry derived measure, its potential to detect training load was 

encouraging (SC, R2= 0.987, RMSE= 0.098, p<0.001; LC, R2= 0.973, RMSE= 0.141, p<0.001). 
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Nonetheless, it may be important to address how PL would perform if repeat changes of 

direction were included, given that PL only increases with changes in acceleration. In accordance 

with the present results, a previous study demonstrated that the accelerometry derived metric 

average force (the product of the participant’s body mass and MAG), was a better indicator of 

running demands compared to PL (28). Future studies should investigate what, if any, 

advantages MAG or other accelerometry based measures may provide compared to PL. 

 

Previous research has indicated that, independent of movement velocity (i.e., walk, jog, 

run, sprint), rapid directional change degrades GNSS accuracy. For instance, GNSS may 

underestimate distance during shuttle trials (-2.16±3.84%) and overestimate distance during 

exercise completed on curvilinear tracks (2.99±2.96%) (25). However, the development of 

multiple GNSS technology may explain the high level of accuracy found in this study that 

included two different curvilinear conditions (SC, R2= 0.997, RMSE= 0.047, p<0.001; LC, R2= 

0.999, RMSE= 0.027, p<0.001). Despite these promising results, questions remain about 

multiple GNSS system accuracy when measuring distance completed in sport-related 

movements, where many changes of direction are required, and movement velocity is often 

higher than that used in this study. 

 

This investigation demonstrates that multiple GNSS systems and several accelerometry 

derived metrics can indicate total distance completed while walking. However, a host of 

questions remain regarding the potential advantages associated with these technologies to 

quantify training loads and detect events (e.g., contact, jumps, sprinting) in sport. In this study, 
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total distance was the only load accounted for, and only locomotor movements were included. Of 

course, in sport different factors can influence training loads (e.g., acceleration, deceleration, 

jumping), and locomotor and non-locomotor movements will be performed. More broadly, 

further investigation is needed to assess the ability of GNSS and accelerometry derived metrics 

to measure training loads that include different movements and events such as running, sprinting, 

change of direction, jumping, collision, and kicking. 

 

Although this study demonstrated that GNSS and accelerometry derived measures are 

valid indicators of total distance, three important limitations to this study should be considered. 

First, while walking was performed around circles to limit the influence of initiating movement 

and braking associated with changing direction and total distance was the only variable assessed, 

caution should be used when applying the current results to other activities. Second, subjects 

were asked to walk at their natural pace, and no method has been used to standardize the walking 

speed. In which differences in velocity rate between participants might induce some variation. 

Third, while investigators were precise during course set-up and participants followed 

instructions closely, actual distances completed by participants were likely different than 

planned; albeit these difference were probably very small. Future research should investigate 

whether training load quantification is enhanced using a combination of GNSS and 

accelerometry, or whether a single sensor, GNSS or accelerometer, is adequate to quantify 

training loads in sports that often include changes of direction, jumping, contact, and straight-line 

movement. 
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Practical Applications 

This is the first study to investigate the ability of four different accelerometry derived 

metrics and a triple GNSS to predict known distance. Linear regression analysis revealed that 

GNSSD, IL, MAG, SUM, and PL could indicate total distance completed while walking. The 

findings will be of interest to researchers and sports scientists to investigate whether GNSS and 

accelerometry are equally capable of quantifying training loads associated with sport-related 

training and competition. More research using controlled trials are needed to compare these 

technologies to detect sports events (e.g., contact, jumps, sprinting) and quantify training loads 

associated with acceleration, deceleration, and directional change, which are considered crucial 

characteristics of match play in some sports. Another possible area of future research would be to 

investigate whether training load quantification is enhanced using a combination of GNSS and 

accelerometry, or whether a single sensor, GNSS or accelerometer is adequate to quantify 

training loads in sports, considering not all teams can afford the high-cost of both technologies. 
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5. Chapter 5. Summary and Future Research 

The primary objective of this dissertation was to investigate the validity and reliability of 

accelerometers (ACCs) to identify stepping events and quantify training load. The second aim 

was to assess the relationship between accelerometry and Global Navigation Satellite Systems 

(GNSS) derived measures in quantifying training load. Two studies were conducted to fulfill this 

purpose. 

Based on our findings from Study I, steps were accurately identified using accelerometry 

data when straight-line walking, running, and sprinting were performed on an outside field. This 

research confirms previous findings and indicates ACC can be used to count steps during sport-

related activities. Additionally, inter-device and test-retest reliability when quantifying training 

load during running-based activity was high. These findings add to a growing body of literature 

focused on the use of ACC in load monitoring. The results of Study I suggest that ACC may be a 

useful tool distinguish between sport-related events and quantify external load. 

Study II assessed the ability of several accelerometry derived metrics and distance 

measured with a triple GNSS sensor, to predict a known distance. Separate simple linear 

regression analyses revealed that all accelerometry and GNSS derived measures were predictive 

of total distance completed while walking, indicating that both GNSS and accelerometry are 

similarly capable of quantifying distance completed while walking. Study II provides a much-

needed analysis of accelerometry and GNSS to quantify the same external load. 

Future research should include the following: 

• The ability of ACC to detect steps during other sport-related activities, including 

accelerating, deceleration, and directional change. 
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• The ability of ACC to identify other events such as kicks, throws, collisions, and jumps 

while performing sport-related activities. 

• The capability of ACC to quantify training loads associated with acceleration, 

deceleration, and directional change. 

• Investigate whether a specific accelerometry derived metric possess advantages over 

others when quantifying training load in sport. 

• The relationship between ACC and GNSS to quantify training loads associated with 

sports-related events (e.g., contact, jumps, sprinting) and acceleration, deceleration, and 

directional change. 

• Examine whether training load quantification is adequately assessed using a single sensor 

or using a combination of GNSS and accelerometry enhances the assessment of training 

load in sports.
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