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ABSTRACT 

PLPrepare: A Grammar Checker for Challenging Cases 

by 

Jacob Hoyos 

This study investigates one of the Polish language’s most arbitrary cases: the genitive masculine 

inanimate singular. It collects and ranks several guidelines to help language learners discern its 

proper usage and also introduces a framework to provide detailed feedback regarding arbitrary 

cases. The study tests this framework by implementing and evaluating a hybrid grammar checker 

called PLPrepare. PLPrepare performs similarly to other grammar checkers and is able to detect 

genitive case usages and provide feedback based on a number of error classifications. 
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Chapter 1. Introduction 

 Learning languages is a difficult process. Languages consist of a broad spectrum of 

grammatical constructs that are not always very intuitive. Several languages have seemingly 

arbitrary grammar rules that make learning incredibly challenging. In particular, the Polish 

language is rife with these grammar rules, the most common of which is the masculine inanimate 

genitive singular case. This study proposes a language learning tool that uses natural language 

processing (NLP) techniques to detect mistakes in this case and offers feedback using guidelines 

to help language learners and their instructors navigate this difficult case. 

1.1. Genitive Case and the Genitive Masculine Inanimate Singular 

Iwona Sadowska describes case as a “grammatical concept that through a set of different 

endings attached to the normal forms explains who does what to whom without heavily relying 

on word order” [I]. These endings can give the same noun many different meanings in the Polish 

language and have an almost immeasurable impact on interpreting the semantics of the language. 

As such, it is a vital aspect of the morphology of the Polish language. Case shows the 

relationship between words and their roles in the sentence. Each case has a set of possible 

endings belonging to that case. The ending used is based on a series of qualities including 

etymology, gender, animacy, and the pronunciation of the stem. One can often predict case 

endings in Polish based on phonology. The masculine inanimate singular in the genitive case, 

however, proves to be a troublesome exception. Table 1 shows this particular declension pattern 

in relation to the rest of the genitive case declension patterns. 
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Table 1. Genitive Case Declension with the Masculine Inanimate Singular in Bold 

Genitive Case Declension [2] 

  Singular Plural 

Gender Ending Change Ending  Change 

Masculine Men 
not in -a 

in -a 

-a 

-y/i 

Most Nouns -ów Masculine Animate Most 

Nouns 

-a 

Masculine 

Inanimate 

Most 

Nouns 

-u/-a 

Feminine 
Most 

Nouns 
-y/-i 

After Hard Stems 

After Soft Stems 
-Ø 

-y/-i 

Neuter 
Most 

Nouns 
-a 

Most Nouns 

After Some Soft 

Stems 

After -um 

-Ø 

-y/-I 

No 

Change 
 

The genitive case in Polish shows a lack, an absence, a possession, or a quantity in 

addition to several other uses. The genitive case in Polish roughly corresponds to the use of ‘of’ 

in English. The masculine inanimate singular in the genitive case can take a few different 

endings, but, for the vast majority of nouns, the ending will either be -a or -u [1][2][3]. Stems 

could take other endings that include the adjectival ending -ego (for nouns that decline like 

adjectives), or a -Ø ending (for nouns that the Polish inflectional system cannot accept). The last 

two cases are much easier to predict than the first two. Regarding the -a and -u endings, choosing 

between the two seems incredibly arbitrary [3], but it does follow some very specific rules that 

vary widely in their consistency [1]. The result is a grammatical case in which the inflection is 

nearly impossible to predict using concrete grammar rules.  

1.2. Linguistic Vocabulary and Related Concepts 

This study refers to various linguistic concepts, explaining some specific concepts as the 

need arises. However, the general concepts are important to understand. 
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The most referenced area of linguistic study in this study is morphology. Morphology is 

the “study of the forms of words, and the ways in which words are related to other words of the 

same language” [4]. While there are many types of morphology, this study refers to inflectional 

morphology when using the general term. Inflectional morphology is the study of the formation 

of words that relate to inflectional categories. An inflectional category could be gender, number, 

case, or anything that helps one understand the grammatical structure of a word in relation to 

others. This concept is not to be confused with declension. Declension constitutes a form of 

inflection; inflection is a broader term. For example, conjugation is inflection that applies to 

verbs, but declension does not apply to verbs but to nouns, pronouns, adjectives, etc. 

Inflectional morphology collects and binds different forms of a word together. These 

collections are called lexemes. In other words, a lexeme is a set of forms related by inflection [5]. 

These lexemes have an agreed-upon name that is called a lemma. An easy example is the English 

lexeme ‘run.’ The lexeme contains the forms ‘run,’ ‘runs,’ ‘ran,’ and ‘running.’ All of these 

forms are related by inflection, and the lexeme chooses ‘run’ as the lemma. The lemma will 

almost always correspond to the nominative (subject/dictionary) form of the lexeme regarding 

Polish nouns. The notion of a lemma and a stem are often confused. A lemma is a member of the 

lexeme that linguists choose to represent the whole lexeme, but a stem is a part of a word with no 

affixes or postfixes. In English, it is common that a word’s stem shares the same spelling as the 

lexeme (e.g. ‘runs’→ ‘run,’ stemming reveals the lemma and the stem). The distinction is very 

important in Polish because this is not often the case (e.g. ‘końca’ → ‘koniec,’ the word must be 

lemmatized).  

Finally, this study examines sentences using a morphosyntactic paradigm. Meaning the 

syntax and morphology of the words in the sentence are both important. Where inflectional 
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morphology relates words in the context of a lexeme, syntax relates them in the context of a 

broader sentence structure [6]. The specific syntactic dependency relationships that this entails 

are discussed where relevant, as there are far too many to discuss them all here.  

1.1.1. Some assorted definitions: 

• Clitic – A morpheme that has its own syntactic characteristics, but it relies on a ‘host’ for 

its pronunciation [13]. 

• Digraph – A pair of characters that represent a single sound. 

• Lexicon – The set of all of the lexemes in a language [5].  

• Modal Verb – A verb that expresses modality and requires the infinitive form of the verb 

it is connected to. 

• Morpheme – The smallest set of characters that has any meaning in a language.  

• Postfix – An attachment to the stem of a word, usually indicates some inflectional 

information.  

• Phoneme – The smallest phonetic unit that can produce a different word. 

1.3. Natural Language Processing 

Jacob Eisenstein defines Natural Language Processing (NLP) as “… the set of methods 

for making human language accessible to computers.” [8]. NLP is a computer science field that 

is closely intertwined with linguistics and has applications spanning the spectrum of daily life. 

There is a difference between NLP and computational linguistics, however. NLP is most 

concerned with the analysis of algorithms and the design of systems that can help computers 

process natural languages. In contrast, computational linguistics uses algorithms and systems to 

learn more about natural languages and their constructs. This study uses a pipeline of NLP 

techniques, most importantly, stemming, lemmatization, and dependency parsing.  
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Stemming and lemmatization are extremely similar. Stemming reduces a form of a word 

to the bare stem as described in section 1.2. Lemmatization, on the other hand, reduces a form of 

a word to the lemma. In NLP, lemmatization is often preferred because it guarantees that a real 

word will be returned (ex. ‘Chłopca’ → ‘Chłopiec’), whereas a form’s stem may not always be a 

member of a lexeme (ex. ‘Chłopca’ → ‘Chłop’ or ‘Chłopc’ depending on the algorithm). 

Stemming techniques can involve algorithms that use statistical models, or they can use finite-

state transducers to describe character-level rules, like the Porter Stemmer [9]. Lemmatization 

techniques can vary between statistical models that try to guess the lemma and simple lookups. 

The statistical models can predict lemmas from unseen lexemes, whereas a lookup is limited by 

the number of lexemes it can access. 

The third technique used extensively in this study is dependency parsing. Dependency 

parsing is the act of making attachments between words in a sentence in the form of a directed 

graph [8]. A dependency parse will result in a spanning tree where the edges describe a syntactic 

dependency. The head of this syntactic dependency determines what type of dependency the 

relationship will be. Eisenstein uses the example of nouns as being the head of noun phrases and 

verbs at the head of verb phrases. The tail (or dependent) describes the subtree of dependencies 

that have the head as its parent. This technique is incredibly important for resolving the syntactic 

information necessary to discern where grammar structures ought to be used. For more 

discussion regarding dependency parsers, see sections 2.2.3 and 3.3.3. 

1.4. Significance of the Study 

The ultimate goal of this study was to introduce a framework for helping students learn 

arbitrary cases in natural languages. The study focused on the Polish genitive masculine 

inanimate singular because of the case’s prevalence and the amount of research available on the 
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case. To test the framework, this study introduced two tools: PLList – a word list management 

tool, and PLPrepare – a grammar checker designed to give grammar feedback to students when 

using the Genitive Case.  

The framework that PLPrepare embodies serves to fill in the gaps left by other language 

learning tools. Table 2 shows a comparison between PLPrepare and other tools. The most 

common problem is that these language learning tools rely on user configuration. Both Quizlet 

and DuoLingo offer feedback in real time, but they do not explain grammar mistakes in real 

time. Grammar Checkers, on the other hand, do. The problem is that grammar checkers neglect 

guideline-based feedback for arbitrary cases, and they do not offer grammar feedback that targets 

foreign language learners. PLPrepare offers both. Table 3 differentiates between PLPrepare and 

some recent grammar checkers.  

Table 2. PLPrepare Compared with Other Language Learning Tools 

 

Table 3. PLPrepare Compared with Recent Grammar Checkers 
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PLPrepare is not a comprehensive tool, but unlike other tools, it aims to give real-time feedback 

to language learners struggling with arbitrary cases. 

1.5. Overview of the Study 

Chapter 1 introduced the problem and its importance. It also gave background 

information for easier understanding of the techniques that this study employs. Chapter 2 reviews 

the literature related to the problem. Chapter 3 presents the methodology used in the study and 

Chapter 4 reports and interprets the results. Chapter 5 offers a discussion regarding the 

researcher’s conclusions and directions for future research. 
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Chapter 2. Related Research in Linguistics, Polish NLP, and Education 

2.1. Linguistic Significance 

 The incredible linguistic strides that were taken to understand the genitive masculine 

inanimate singular, unfortunately, produce controversy. Within the field of linguistics, there are 

arguments regarding which model of childhood acquisition best describes reality. This section 

will explore some of the experiments performed by linguistic researchers to try to understand 

how Polish children end up learning this case. This will highlight the challenges that this case 

pose.  

2.1.1. Challenges from a Linguistic Perspective 

To illustrate the problem, consider the examples of different forms below: 

Nominative Singular: Młot (Hammer)    - Genitive Singular: Młota (-a) 
Nominative Singular: Płot (Fence)     - Genitive Singular: Płotu (-u) 
Nominative Singular: Fotel (Armchair) - Genitive Singular: Fotela (-a) 
Nominative Singular: Hotel (Hotel)    - Genitive Singular: Hotelu (-u) 
 

These pairs of words share final and penultimate consonants, they rhyme, and they are in the 

same grammatical gender. However, the pairs still possess different endings when considering 

the genitive singular. Because of this, there must be some model by which Polish speakers 

acquire this case. In this example, the choice between -u and -a appears completely arbitrary.  

The arbitrariness involved in the genitive masculine inanimate singular takes its toll on 

the native speakers of the language. According to an experiment done by inter-lingual 

researchers on Polish, Estonian, and Finnish speaking children, Polish children made the most 

mistakes [13]. Of these mistakes, using an -a ending where a -u ending was required was the 

second most frequent mistake of those involving leaving the lemma in the Nominative Case (in 

other words, mistakes where the child did not attempt an inflection at all) were not counted. This 
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study paints a bleak picture regarding the acquisition of the genitive case until the actual ratio for 

correct vs incorrect inflections is revealed. 

Another study focusing strictly on genitive case acquisition in children measured the 

overgeneralization error rate [3]. An overgeneralization error occurs when a child takes an 

inflectional pattern and applies it to a different lemma that produces an incorrect result [13]. An 

example using the forms listed above would be a child trying to apply an -a ending to ‘Młot” 

because the child is familiar with the inflectional pattern of “Płot.” The overgeneralization error 

rate was an average of 2.02% when children formed the Genitive Case Masculine Inanimate [3]. 

This error rate is extraordinarily impressive especially for children, but there is a caveat that 

within this error rate. The majority of the overgeneralization errors involving the genitive case 

were on masculine inanimate singular nouns. This result shows the extent to which young 

children have mastered this form, but it also shows that there are still some improvements 

needed. 

2.1.2. Implication of Related Work 

These results suggest that children gain understanding by sub-consciously manipulating 

data, keeping track of frequency, pattern matching, and the intersection of all of them [13]. First, 

the exposure to the inflectional pattern is measured in Surface Form Frequency (SFF). The 

similarity of the patterns (and the forms) is measured in the Phonological Neighborhood Density 

(PND), sub-divided into two related measures: Form-Based and Class-Based PND. Form-Based 

PND references a specific form, whereas Class-Based PND looks at all forms across the whole 

morphological spectrum. An important element of Class-Based PND is that the similarity tracked 

also considers various criteria including phonological aspects, animacy and gender. The diversity 
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of the criteria used makes Class-Based PND a potent tool for children rapidly searching for 

patterns. 

 To contrast this finding for the first experiment, Dąbrowska suggests using the Dual 

Mechanism Theory to model this acquisition [3]. This theory describes that, when given an 

unfamiliar form, children will search their memories to find it. When they fail, they will try to 

respond with a default. This default is formed by examining clusters of irregular words in the 

memory and finding the most frequent form that works for that specific, often phonologically 

based, cluster. Dual Mechanism Theory has gained an enormous amount of traction when 

representing English past tense acquisition, but this is because transformations in the English 

past tense are phonologically based [3]. The morphology of the genitive masculine inanimate 

singular is not phonologically based, so additional factors must be considered. 

Given the mental tools described by these different case acquisition models, children still 

navigate the arbitrary Masculine Inanimate Genitive Singular with great difficulty. However, 

they eventually eliminate the error through the combination of Class-Based PND and Surface 

Form Frequency. This interaction works based on labeling lemmas as friends or enemies based 

on the inflection pattern. Using the example of Młot-Płot as shown before, a child, knowing that 

Płot ends in an -u, would attempt to label Młot as an -u because of the similarity denoted in 

Class-Based PND. This error would be reflected in a sub-conscious classification of Młot as an 

enemy of that pattern in Form-Based PND. Once this process continues throughout a child’s 

early development, the Surface Form Frequency reinforces the learned patterns and enemies of 

those patterns so a child will either know the form or could predict the form. 

Despite this insight, there are still complications when predicting this case. One 

complication is mobile e (often denoted -e-) and that children innately search for a default ending 
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in inflectional systems [3]. The mobile e can be predicted in most forms, so it does not pose 

much of a barrier in the acquisition process. The search for a default, on the other hand, can lead 

to overgeneralization in favor of the -a ending. This generalization occurs because, when the 

genitive case is examined with Masculine Inanimate in addition to Masculine Animate and 

Masculine personal, the -a ending is overwhelmingly more common. The commonality causes 

children to overgeneralize patterns from the other parts of the masculine genitive into the 

masculine inanimate.  

Despite this fact, Dąbrowska states that there was no evidence to suggest that any ending 

was treated as a default. This finding, along with each circumstance not being tied to a single 

ending, contradicts some central tenants in the Dual Mechanism Theory. As noted above, DMT 

suggests that overgeneralization errors are made when the irregular form is unknown, and the 

default was used in an attempt to guess the correct form. This proves that DMT’s ability to 

describe Polish is somewhat diminished from its prevalence in the English language. 

A third experiment conducted by Ewa Dąbrowska [14] gives some interesting results 

regarding this case. Dąbrowska [14] notes that around eighty percent of substance nouns take 

their endings in -u while object nouns take the -a endings at around the same rate. This finding 

gives another rule to help predict this case in a rule-based fashion. Dąbrowska’s [14] experiment 

was designed to highlight this particular rule, asking children to produce target forms in both -u 

and -a in a conscious effort to see if the rule was taking hold in the children’s minds. It is 

necessary to note that, as children develop, their skills in producing the correct forms increase 

dramatically as their brains produce rules that solidify. The results defied all expectations. The 

children avoided acquiring the abstract pattern that would improve prediction, and continued to 

make errors in choosing between -a and -u. To make matters worse, older children should have 
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been able to take advantage of these rules, but they still produced incorrect forms when even 

adapting according to the rules would have improved their performance. Despite all of this, the 

output was generally correct. The author argues that this indicates that correct usage is tied to 

memorization.  

Regarding the problems with the models addressed so far, it is important to recognize that 

the acquisition of these cases does not occur all at once but is rather a gradient [15]. The rules vs. 

schemas debate at the heart of the issue regarding models has had an incredibly difficult time 

pinning down Polish case acquisition for some time. The debate is not new in the linguistics 

community. Krajewski [15] states there has not been a model that accounts for the distinctions 

between regular and irregular nouns, the contexts that create them, and how they can help choose 

the correct form, or even whether or not predicting the correct forms is even possible given the 

context. According to Krajewski [15], DMT is insufficient to model Polish correctly, but it does 

offer a way to navigate the irregularity of Polish. Navigation is possible because of how DMT 

models the storage of irregular inflections. The genitive case is part of why this compromise has 

to be made, as it is difficult to work out the criteria for inflection. Krajewski [15] does note that a 

schema’s productivity is based on the variability of what has been produced in the past. The 

more a form is produced, the easier it is to adapt to new patterns. 

2.1.3. Applications 

 In practice, the experiments discussed in the previous section reveal fundamental findings 

about this case. First, students cannot rely on phonetic rules to learn this case. Second, teachers 

cannot rely on a default ending to teach students adequately. Third, students must practice 

reinforcing knowledge and identifying the ‘enemies’ that Krajewski [15] mentions. Fourth, rules, 
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while not as important as exposure, are important for acquisition. Finally, it is indeed possible to 

acquire the case. 

 PLPrepare is a reaction to the truths revealed in these experiments. While this study 

makes no claims regarding a linguistic model for case acquisition, PLPrepare provides a 

framework for students to get feedback for essays, grammar drills, and other exercises to 

increase their exposure to new forms. The feedback itself addresses the need for rules and does 

not attempt to identify any default ending for the entire case.  

2.2. NLP Tools and Other Resources in the Polish Language 

Polish is a unique language that requires special treatment when it comes to using NLP. 

There are too many Polish grammatical structures that are not shared with more common 

languages, requiring additional NLP constructs [16]. The issue of transformations and the 

commonality of passive voice, adjectival participles, inflection of negated direct objects, valid 

double negatives, and more virtually guarantee NLP systems’ inability to be adapted to Polish 

from any non-Slavic language. 

Despite its particular needs, the Polish language has a multitude of parsers, spell 

checkers, valence dictionaries, and other tools that prove that researchers in the NLP field have 

not neglected Polish. There are limits to these tools concerning the focus of this study, however. 

As these tools are surveyed, their usefulness and shortcomings are examined. 

2.2.1. Dictionaries 

Two Polish mainstream language parsers integrate a valence dictionary called Walenty, 

so it is extraordinarily relevant to the field as a whole [17][18]. A valence dictionary produces a 

massive amount of inflectional information for each lemma passed into it [19][20]. Parsers can 

use this to evaluate the lemmas that they come across and produce productive output. Walenty 
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can map verbs to phrases, and it makes an extraordinary attempt at untangling complex Polish 

idioms. There are some problems, however. Linguistically speaking, Walenty is theory-neutral, 

which means that it does not adapt itself to modeling the output according to any particular 

theory. This neutrality improves its universality but reduces its effectiveness regarding this 

problem [18]. The output is both machine- and human-readable, but this output is not ideal. 

Additionally, the focus is on verbs and their roles in the sentence. Because of this, the inner 

workings of Walenty are not pertinent to the methodology of this project. It does, however, shed 

some light on one of the necessary components of a language parser. For example, dictionaries 

like Walenty can be used as an input source for several other components along the pipeline, 

including a formal grammar, which can then be used to generate a structure bank for referencing 

various syntactical elements and structures. All of these resources combined can be useful for 

morphological analysis [18]. 

Despite these shortcomings, Walenty also provides some insight into the case inflections 

that are common throughout Polish. Grammatical case is usually directly specified by some 

external factor which could be a verb, a sentence structure, adjectives, or even another noun [17]. 

As a consequence, the syntax surrounding grammatical cases is extraordinarily complex, which 

makes valence dictionaries very useful for analyzing the circumstances under which certain cases 

appear. The context and its syntactical impact may prove to be valuable in approaching the 

problem of the Polish genitive case. Unfortunately, the valence dictionary itself cannot tackle 

this problem alone, but it can work with a formal grammar model to navigate the difficulty of 

Polish syntax. 

The core of this study is the morphological aspect. As such, an examination of 

Morphological Analyzers will shed light on how the existing tools tackle the problem of the 
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Masculine Inanimate Genitive Singular. Of the twelve morphological tools found by the 

PoliMorf developers, only a select few were of a quality fit for research, and of those, even fewer 

were large enough to provide sufficient coverage of the Polish lexicon [21]. This led these 

developers to create a new tool that merged SGJP and Morfologik, which are both morphological 

dictionaries developed using data from an eleven-volume dictionary of the Polish language. 

Scholars of the language manually annotated this data to make it fit for a morphological 

dictionary. These enormous dictionaries, when combined, could produce the morphological 

information for all cases – including the masculine inanimate genitive singular. This result did 

not come through a language acquisition model, machine learning, or any dynamically produced 

methodology [22]. Instead, it utilized a collection of around a thousand unique morphological 

patterns [21]. 

While it is useful to parse large groups of data that only require surface-level information 

[22], relational models used to generate inflectional patterns mean it is difficult for a human to 

determine causal relationships between a form and the grammar information that created it. What 

these models lead to is a dictionary that can decompose the morphological rules but cannot 

explain anything about reaching its conclusions. Also, it does not truly acquire the rules, but it 

stores patterns in a database. Thus, it cannot show why particular patterns are chosen while other 

seemingly valid patterns are less correct. To language learners, linguists, and students, the 

relational models used cannot reveal any useful patters that improve their understanding of the 

language. PoliMorf is, however, an invaluable tool for generating the underlying morphological 

information needed to make sense of sentences. This study makes extensive use of the PoliMorf 

dictionary, which serves as the underlying grammar dictionary in the PLList system introduced 

in section 3.2.1. 
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2.2.2. Machine Learning Models 

The actual process children use to acquire the Masculine Inanimate Genitive Singular is, 

conceptually, very close to the process of training a computer to perform a task using a neural 

network. Several attempts have been made, however, to predict various morphological elements 

based on a single word. The richness of the field of machine learning for re-inflection is 

astounding. These machine learning techniques provide insight into how making context-

informed case predictions might be possible. 

 To begin, recently, recurrent neural networks have been a popular tool to perform 

morphological analysis [23]. There is also the possibility of using a linear model on untrained 

data sets, which offers cheaper computation at the cost of a slight amount of accuracy. The 

model described in Ç. Çöltekin, J. Barnes [23] utilized a linear support vector machine (SVM) to 

predict lemmas, the part-of-speech, and other morphological information. They accomplished 

this by using a pipeline structure that included an encoder that retained other models’ recurrent 

bidirectional networks and placed the input into an embedding layer. Eventually, that 

information reached a part-of-speech (PoS) classifier that took advantage of two hidden layers 

with rectified linear units. From there, a softmax classifier was used to export a probability 

model. The morphological prediction involved the same basic steps as the PoS classifier. It made 

use of the same two-layer setup with rectified linear units. The difference is that it involved 

separating the analysis into distinct features. Each morphological feature was placed into several 

feed-forward networks.  

 This linear model was compared to a neural model that used 64 as the embedding size 

and utilized forward and backward gated recurrent units. This model learned 512-dimensional 

representations, which led it to have great performance [23]. The linear model performed 
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admirably and produced more accurate lemma predictions than the neural model, but it was still 

outperformed in almost every other avenue.  

 There is a difference between morphological analysis and morphological reinfection, 

however. This difference is best explained in two steps. The first step is morphological analysis 

and the second step is morphological generation [24]. In the model to be examined in this 

section, convolutional architectures were used. These architectures are powerful tools that are 

used to great effect in image processing, but they can be applied re-infection. Typically, a well-

performing convolutional neural network model is created by using a single decoder to avoid 

data sparsity. They also tend to use letter sequences in addition to convolution for input. Finally, 

some form of long short-term memory is used very deep in the pipeline to decode. Long short-

term memory is used for processing sequences of data, which makes its use for strings of 

characters extremely common.  

 The model described above is an actual system developed by Robert Östling [24]. His 

experiments used a system that had two Long Short-Term Memory (LSTM) architectures tied 

together in a pipeline along with four Convolutional Layers and 256 LSTM units at the encoder 

level and the decoder level. These fed into even more layers of Convolutional filters until a 

hidden layer was finally reached. Morphological features were used as input to the decoder in the 

form of binary vectors. Once the time came for the decoding step in the pipeline, a beam search 

was used. Finally, an output string was generated. Models like this perform well when given a 

small amount of information, making them extraordinarily relevant for the purposes of predicting 

the Polish Genitive. 

 To introduce the enormous array of other models used in morphological re-inflection, the 

CoNLL-SIGMORPHON 2018 shared task on supervised learning of morphological generation 
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saw the use of several models using neural networks to predict morphological information [25]. 

These models utilized supervised learning on data sets acquired through Wiktionary [25], which 

provides almost every aspect of morphological data imaginable. The data were separated into 

high, medium, and low conditions, amounting to different levels of difficulty. The first of the 

tests involved taking the source form of a word and producing a target form via the 

morphosyntactic description. The second test involved producing the form from a sentential 

context. This test is more difficult than the earlier tests and also more relevant to predicting 

noun’s inflectional forms. The second test requires the systems to produce a lemma in a given 

context. The test that was used to evaluate these systems was performed for 103 languages. For 

the harder sets of data, the performance was much lower, especially for Polish. One of the 

models that performed well, notably in Polish, was the Copenhagen System [26]. 

 The Copenhagen System, like many of the other systems used in this experiment, made 

use of an encoder-decoder system. Like the system described in Çöltekin, J. Barnes [23], it 

utilized a recurrent neural network [26]. Something that increased its performance that this 

system combined the training data for the languages in this test. This system also treated the 

morphosyntactic description as an auxiliary task.  

 This system provided several novel solutions to common problems of efficiency and did 

so on the baseline system provided at CoNLL [26]. For example, when given the list of 

languages for the task, this system performed tuning on the groupings of the randomly selected 

languages and then utilized those languages for a different type of training. The system’s core 

value is that it assumed that morphosyntactic features of languages are similar regardless of 

which language they belong to. This value provides an interesting philosophy, especially 

considering the differences that arise when examining languages of different families. This 
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approach complements the combination of multilingual tuning discussed earlier with 

monolingual training.  

Another interesting part of this system is that the weights of the monolingual training sets 

were less than the multilingual training. This difference reinforces the core value that these 

languages share morphosyntactic features. The models from these experiments trained for fifty 

epochs, including validation. Also, for task 1, the passed context was stored in an LSTM. Once 

this training was complete and predictions were ready to be made, the system relied upon five 

models to generate the target form rather than a single model. This prevents overfitting. The 

most intriguing part of this system is the notion that it utilized an additional task to improve the 

prediction performance by not only predicting the form of a target but also by tagging it. The 

addition of tagging improved the performance by tying in a separate thread to the learning and 

giving the system more awareness of the distinct morphological features. Finally, most of the 

incorrect predictions were nowhere near the target form. Target forms mostly come from 

substituting a few letters near the end of the source form. The authors observe that their model 

did not effectively learn to copy the source forms and apply the necessary transformations very 

often [26]. They also observe that the issue could be fixed using techniques that push the system 

toward encoding by data augmentation. All of these adjustments contributed to excellent overall 

performance [26]. This performance gives evidence to the assumptions made by the authors and 

to the merit of their adjustments. 

 Another top performer in this task was the UZH system which set itself apart from the 

other contenders by using a beam search for the decoding process [27]. The encoder-decoder 

models tend to lag in these models, so this system (and many others) attempted to learn edit 

operations as a sequence instead of relying on string-to-string transductions. Also, this system 
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used an alignment step that was completely removed from the application of the edit sequence. 

These factors led to the system’s success in these tasks and should be noted for future attempts at 

morphological prediction systems.  

 The UZH system used a transition-based transducer system that operates by performing a 

sequence of edits on individual characters in a string [27]. Each of these edits is made based on 

the history of all of the edits and the representation of the character edits. The Recurrent Neural 

Network has the task of choosing the proper edit out of several possible edits. This process is 

modeled using several time stamps. A probability is calculated for each of the possible edits 

using classifier weights and LSTM at a specific time. At a specific time, a probability is 

calculated for each of the possible edits using classifier weights and Long Short-Term Memory. 

At this time, the system generates a prediction of the loss for actions that take place after the 

transition has taken place. The prediction step has the effect of allowing the system to look ahead 

and determine the proper course of action while knowing the possible consequences of a choice.  

 One of the problems that this particular system was attempting to solve is the problem of 

using character alignment algorithms, which are incredibly important to a transducer’s proper 

functioning [27]. They do have some problems, however. For example, actions that generate a 

productive result are referred to as Gold Actions. Character alignment algorithms typically 

generate such actions, but several sequences often create probability ties. At this point, these 

algorithms suffer because they could choose either action without any morphosyntactic 

description. In other words, they are not sensitive to certain information that ought to inform the 

choice, leading to removing this common step from the system.  

 Also, this model worked at an ascending gradient that performed two distinct phases over 

and over again. These are the roll-in and roll-out phases: First, the roll-in phase is sampled from 
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the set of all of the optimal edits found or selected from the set of possible edits that exist at that 

particular time. Once completed, the roll-out phase will perform the roll-in step for all of the 

input or perform that step for a possible action to be taken and stores the effect on the sequence 

level loss. Finally, this model was used in a group along with other models to avoid overfitting. 

The UZH model had excellent performance for re-inflection because of these adjustments to the 

common RNN architecture that is often deployed for these tasks. Furthermore, these 

improvements introduced the notion of a transition-based transducer system that critically breaks 

down these words in terms of transitions [27]. This breakdown is a clever idea that makes these 

systems more transition-aware – critical in a transition-heavy environment like morphological 

reinfection. 

2.2.3. Dependency Parsers and SpaCy’s Polish NLP Suite 

 There are several dependency parsers available to the NLP community. The dependency 

parsers often train on dependency treebanks to generate specific models, so the dependency parsers 

discussed in this section can be trained on any language that a treebank exists for [28]. Dependency 

parsers use various approaches from using dynamic oracles to word embeddings and from using 

transition-based paradigms to using decomposition paradigms [29]. Broadly, they can use either a 

greedy or non-greedy approach. According to an experiment performed by Choi, Tetreault, and 

Stent [29], greedy parsers were consistently faster than their non-greedy counterparts. These 

parsers sacrificed accuracy for speed, however, as non-greedy solutions offered consistently better 

accuracy. In this experiment, the non-greedy Mate system had the best performance, but it was 

among the slowest competitors. The greedy SpaCy model was the fastest and had good 

performance for a greedy model (UAS of 89.61% in sentences with punctuation, where greedy 
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models averaged 88.5% UAS). From this experiment, SpaCy’s dependency parser appears to be 

the best of both worlds. 

 On top of the SpaCy dependency parser’s performance in the experiment described above, 

SpaCy continues to improve its dependency parser. In 2015, Honnibal and Johnson [30] improved 

their parser.  The newer parser, like the old, was a greedy, non-monotonic transition-based 

dependency parser [30]. The novel approach here is creating a new non-monotonic transition set, 

which necessitates the use of Goldberg and Nivre’s [28] dynamic oracle. This approach was an 

improvement on previous greedy non-monotonic systems that improves the UAS score by 0.6% 

and bringing the directed accuracy measure up to 91.85%. These accuracy improvements 

combined with the speed of a greedy approach makes the SpaCy dependency parser an attractive 

choice for this project. 

SpaCy offers pipelines for NLP processing in many languages, including Polish. In 

addition to dependency parsing, the SpaCy Polish model offers lemmatization, morphologizing, 

PoS tagging, and many more services [31]. This model is armed with the tools to tackle almost 

any problem involving NLP. The dependency parser model was trained using the dependency 

treebank developed by Alina Wróblewska, et. al. [32]. The pipeline itself was trained on lemmas 

from Morfeusz 2[33] and on material from the National Corpus of Polish (Narodowy Korpus 

Języka Polskiego) [34]. The SpaCy Polish pipeline reports the accuracy measurements as show 

in Table 4. 

Table 4. SpaCy’s Polish Model Performance [32] 
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2.2.4. Feedback Systems 

 In the realm of tools designed to give feedback, two areas that merit discussion. First is 

the grammar checker, which find grammar mistakes based on three general approaches [12]. The 

second is Kostikov’s Adaptive Learning paradigm [16] [35]. This direction is very new and not 

widely known. Given this paradigm’s goals and their similarity to those of this study, it is worth 

examining.  

 Grammar checkers can be classified into three approaches [12]. The first is the rule-based 

grammar checker, which provides feedback based on manually created rules. Rule-based 

grammar checkers involve a great deal of manual entry and configuration, but these remain the 

most common. The second is the data-driven grammar checker, which uses statistical techniques 

like PoS tagging combined with a corpus-based approach to compare the input to corpus data to 

determine correctness. Finally, the hybrid approach combines elements of the two. Typically, 

this means adding some concrete rule-based parsing to a statistical approach. 

 Grammar checkers will often follow a four-stage process:  

1. Sentence Tokenization  

2. Morphological Analysis  

3. POS-Tagging  

4. Parsing.  

The sentence tokenization stage breaks the input into tokens and performs word segmentation to 

generate lexical information about each word in the sentence. Next, the morphological analysis 

stage finds word stems, and the PoS tagging stage determines which word in the sentence 

belongs to which PoS. Finally, the parsing stage uses this information and syntactic constraints to 

determine the structure of the sentence and mark any errors that violate the constraints. In a 
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survey of grammar checkers for ten languages, only three could offer a correction for an error, 

and none were designed for language learners. Furthermore, none were designed with arbitrary 

cases in mind [12].  

 One paradigm that is targeted toward language learners is Mykola Kostikov’s Adaptive 

Learning approach [16]. Adaptive Grammar Learning attempts to predict nouns’ inflectional 

forms using the lemma itself and some additional inputs [16]. The largest problem facing this 

model is the lack of accuracy. To make matters worse, this model has a particular weakness to 

grammatical exceptions. Another problem is the lack of research that surrounds this model. A 

few papers involve rule-based paradigms to model the transformations of grammar, but it is a 

model that requires more research.  

The Adaptive Learning Model involves manually encoded sequences that are recorded 

[35]. Manual encoding presents the problem of how these sequences are checked for accuracy. 

An external factor must ensure that the manually encoded sequences are correct. External factors 

highlight this model’s weaknesses regarding the necessity of user input. The author details that if 

sequences are entered incorrectly, they can simply be redone. Such loose error-handling does not 

inspire confidence regarding the correctness of the encoded sequences. However, it should be 

mentioned that this model’s goal is to be used to aid language learners. Unfortunately, the 

prospects of piggybacking this model onto research-oriented models shrink with the amount of 

user input required. The goal is to provide visual aids to display the transformations that take 

place as lemmas are placed in different cases. This could prove to be very useful in determining a 

potential rule behind the Polish Genitive but given that these analyses do not provide any 

information as to why the forms change beyond a description given by a process of 

decomposition, its usefulness stops there.  
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Still, some intriguing concepts are addressed. First, the concern with the eventual 

transformation of a word instead of the immediate transformation is an interesting concept [35]. 

An eventual transformation describes that, given a word, several potential transformations could 

be applied to that word. This set of transformations becomes a set of building blocks to reach a 

description of that word’s final transformations eventually. A similar idea presented is that a 

decomposition can take place to create a sequence of transformations and then describe what 

caused the previous transformation. The sequence itself does not give a complete explanation, 

but it instead determines the criteria surrounding a transformation. The criteria can give the 

learner at least some clue as to what caused the transformation. All of these extra ideas involved 

in producing forms can serve a purpose breaking down this problem. 

2.3. Statement of Research 

 The motivating problem presented in this chapter was the need to provide language 

learners with a way to navigate and master arbitrary cases in languages. In the Polish language, 

the genitive masculine inanimate singular presents one of the largest arbitrary cases and one of 

the most difficult challenges for language learners. This study proposed an approach to construct 

a hybrid grammar checker that is primarily designed to provide detailed, accessible feedback to 

its users. This study produced the PLPrepare Hybrid Grammar Checker to test this approach. 
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Chapter 3. Design and Implementation of PLPrepare: A Grammar Checker Specializing in 

Providing Feedback to Language Learners 

 PLPrepare is a tool for finding and correcting errors that students make in the Genitive 

case. The system’s end goal was to use NLP resources to mark and provide feedback for these 

errors. Accomplishing this goal required the system to be able to detect where the Genitive Case 

should be used, examine the word in that location, determine if that word has the correct 

morphology, and, if not, classify the error to provide feedback. Additionally, the arbitrary 

genitive masculine inanimate singular case required more information to produce meaningful 

feedback, so the system generated that feedback with the help of a guideline database.  

3.1. Guidelines 

Over time, Polish linguists have discovered patterns that can inform students’ decisions 

regarding the genitive masculine inanimate singular case, so the system uses these patterns 

(referred to henceforth as guidelines) to arm them with the knowledge to avoid repeating those 

mistakes [1]. To provide feedback on the genitive masculine inanimate singular, a sample of 

guidelines was taken, lists of applicable words were filled, those lists were processed with a tool 

called PLList (Discussed in section 3.2.1.) to create a database of words that these guidelines 

govern.  

3.1.1. Selecting Guidelines and Finding the Words They Govern 

 Because of the number of guidelines and the limited resources of this project, only a 

sample of guidelines were catalogued. The selected guidelines were those for which word lists 

could be filled easily. “Easily” here means that accessible, unambiguous lists could be found for 

those guidelines on collaborative pages such as wiki projects and other sources.  
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3.1.2. Finding Word Lists 

The guidelines each specify a category of words describing similar things, body parts, 

buildings, and spices, for example. The problem with using these categories is that it is not 

always easy for the observer to know exactly where one category ends and another begins. To 

avoid merged categories, the word lists use pre-compiled lists that correspond to a category that 

fits the guideline’s meaning. Most of the wordlists were found on Wikipedia, where word lists 

were found by recording the names of pages according to Wikipedia categories. Those found on 

Wiktionary were already organized into a convenient list format. Table 5 lists the categories 

found, the raw number of found words, and the source.  

Table 5. Total Number of Examples Collected for each Category 

 

 Table 5 introduces two sub-categories of word lists: those translated and those that did 

not originate from a wiki project. One potential problem was that these words could stray outside 

the bounds of the given guideline. To prevent straying outside the guideline, words were 

translated into English and checked against existing English word lists that did not exist on the 

corresponding Polish wiki page. The remaining problem is that Polish grammar does not always 

recognize categories like English does [1]. This lack of recognition could be considered an edge 
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case that is a potential subject for further research. Given the lack of a reliable Polish 

corroborating categorization, the English category suffices.  

3.2. Filtering the Wordlists 

 The result of the previous stage was a selection of unfiltered word lists. In their unfiltered 

form, they are useless because they contained feminine and neuter nouns as well as masculine 

inanimate nouns. Additionally, they appeared in the nominative case, which is the subject or 

dictionary form [1][2]. The word lists must contain only masculine inanimate singular nouns in 

the Genitive case to provide the correct feedback to students and catalog the guideline’ accuracy. 

At this stage, the word lists also contained duplicates, adjectives, and other superfluous 

information. A preprocessing stage was necessary to make these word lists usable. 

3.2.1. PLList 

 The task of reviewing 2,089 words’ grammatical properties is a time-consuming one, so 

the PLList system was developed to handle the task of preprocessing these lists. The PLList 

system provided a basic but user-friendly flag system that allowed for easy removal of unwanted 

items by allowing the user to specify filtering information in the form of a command line flag. At 

its core, PLList is a command-line tool that facilitates batch NLP operations on lists without 

requiring the user to learn PoliMorf’s tagset [21] for identifying morphosyntactic tags.  

The architecture of PLList is relatively simple; it stores PoliMorf’s rows in an indexed 

SQLite database and uses the user’s command and filter information to query PoliMorf for the 

morphosyntactic tags in each of the words in a given list. Then, the system processes the items 

according to the morphosyntactic tags retrieved and the specified command and filter 

information. PLList then outputs the results in the form of a list. Figure 1 shows an overview of 

PLList’s architecture. 
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Figure 1. High Level Architecture for PLList 

 PLList performs the following basic tacks: simple filtering, applying a morphological 

case to the words in the list, retrieving a dictionary form of inflected words, retrieving the 

grammar information of the words, and filtering based on grammar information. These tasks are 

achieved by querying the PoliMorf database, which contains the grammar information necessary 

to accomplish these tasks. The user simply enters a command with a filter and a file to process, 

and the command is parsed. Once PLList recognizes a supported command, it checks the file. 

Then, it uses a regular expression table to translate from the user-friendly filtering information 

into a query compatible with PoliMorf’s grammar tags. The command processor then manages 

all of the calls necessary to the NLP module to accomplish the task. The NLP module then gets 

feedback from the Database Manager and forwards that information back to the Command 

Processor, which sorts the output and sends the new lists to the File Formatter to be structured 

and written to the hard drive.  
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3.2.2. Processing Word Lists Using PLList 

 To remove all of the words that the guidelines do not govern, PLList had to remove all 

words in a list that are not masculine inanimate in gender or singular in number. It filtered out 

any word that is not a noun, and it inflected all of the words in the list into the genitive case. 

Also, it had to remove duplicates, classifying and descriptive adjectives, and any accompanying 

tokens that were present in the word list.  

 Before PLList could filter any words, it had to read the file correctly. The system 

preprocessed the word list as it scanned the file. The priority was to ensure that each entry in the 

list contained only one word. For this study, descriptive adjectives that inform the meaning of 

nouns were removed. One example is ‘okulary przeciwsłoneczne’ or sunglasses, the adjective 

‘przeciwsłoneczne’ (lit. against the sun) is vitally important to the meaning of the noun but, in 

most cases, it does not affect morphosyntactic attributes of the lexeme ‘okulary.’ So, it was safe 

to remove these adjectives. Furthermore, the preprocessing stage stripped each word of things 

like white space and punctuation, and excess tokens are treated as separate words that the system 

will filter based on the user’s filter information. It was generally unsafe to remove tokens by 

length because several Polish prepositions and conjunctions are one letter long (a – contrasting 

and; i – inclusive and; o – about; w – in, at; etc.) [1]. 

 After filtering, the word lists had to be reinflected using PLList’s ‘case’ command. 

PLList’s ‘case’ command accepts a target case, filter flags, and an input and output file. The 

command works by first generating a new word list according to the user filters for gender, 

number, etc. and then lemmatizing the words. PLList lemmatizes words by searching the 

database for the present form of the word and retrieving the lemma from the lexeme category. As 

a result, only the relevant words are present in the new word list. Then, the command module 
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sends the new word list to the NLP module which requests the rows from the database that match 

both the lexeme and the target case. 

 As an example, the vegetable list contains the word pomidor (tomato) (Table 6). If the 

accusative form of the word is present in the list, the lookup finds the accusative form pomidor 

(2nd row) and checks the morphosyntactic tags in the 3rd column of the figure against the user 

filters. The lexeme pomidor is then returned and used in a separate query to find the form in the 

1st column that matches the “gen” or genitive field in the 3rd column (the reasons for performing 

this operation as two separate queries instead of one is discussed below). Once the result is 

returned, PLList adds the genitive form to the list and sends the list to the File Formatter to print.  

Table 6. A Simplified Example of a PoliMorf Entry 

 

Thus, if the user wants to put everything in the list into the genitive case and remove 

everything that is not a noun or masculine inanimate, then the command would look like this:  

case VegetableList.txt VegetableListInGen.txt gen -d -p -m noun -g ma mn -n sg 

The -m (mode) flag with the ‘noun’ argument tells PLList to filter out all rows that do not 

contain a common noun or a gerund (subst or ger). It is important to note that nouns that decline 

like adjectives (e.g. znajomy - acquaintance, Luty - February) are still considered nouns.  The -g 

(gender) flag with the ‘ma mn’ argument filters out all rows that are not either masculine animate 

or masculine inanimate. The -n (number) flag with the ‘sg’ argument filters out all rows that are 

not singular. PLList compares this information against the morphosyntactic tags in the 3rd 

column in the figure below. The -d (duplicate) flag specifies that PLList should remove all 

duplicates and, finally, the -p (postfix) flag causes PLList to append postfix statistics at the end 
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of the list. PLList performed this process on each of the word lists to generate new, inflected 

wordlists.  

 Postfix statistics counted the postfix on each of the words in the new word lists and 

displayed a percentage breakdown of the postfixes that occurred in the list. This percentage 

breakdown was necessary for creating guideline entries in the database for providing feedback in 

future steps. Also, a further distinction was necessary in order to quantify the accuracy of the 

guidelines properly. These guidelines considered only a limited breadth of words, so it is 

inappropriate to count words governed by different guidelines. Examples included foreign nouns 

(e.g. kiwi - kiwi), nouns that decline like adjectives (e.g. Luty - February), and indeclinable 

nouns (e.g. dur – major (scale)). In other words, the results only considered those words for 

which the -a/-u choice is present. Table 7 shows the results of this stage.  

Table 7. The -a vs -u Accuracy Scores for the Guidelines Selected for this Study 

 

 Multiple nouns share the same forms, for example: list (letter) in the nominative singular 

and list (lists) in the genitive plural. This is an ambiguous case, which is why the level of 

disambiguation depends on the accuracy and detoken value of the filters. Without any filter 

information, the system could recognize either as the correct form. The reason that the query was 



42 

 

split into two steps is twofold. The first reason is to reduce ambiguation that could stem from 

lexemes whose forms overlap. The second reason was to provide better feedback by first 

segmenting off the unusable words where PLList can classify them into further subcategories 

and print them if the user wishes.  

3.3. Finding the Genitive in a Sentence using Grammar Rules and Dependency Parsing 

 After the sample guidelines were ready, the next stage was detecting where it was proper 

to use the genitive case in a sentence. For example, if a student entered the sentence “Nie ma 

jabłek (There are no apples),” it was easy to pick out the genitive because jabłek is the genitive 

plural of jabłko. The negative existential ‘nie ma’ requires a genitive predicate noun. Since this 

study aimed to provide students with feedback for incorrect usages, a student could just as easily 

have entered the sentence “Nie ma jabłkami,” which would replace the genitive plural with the 

instrumental plural. There is no way to parse the sentence as written natively and know that a 

given word should be in the genitive case. There had to be a process to break the sentence into its 

fundamental pieces and examine them to find the rules that require the genitive case.  

3.3.1. PLPrepare Pipeline  

 PLPrepare is a tool that parses sentences for genitive case rule candidates, verifies them, 

and later compares the contents of the sentence to the requirements of the rules found. This tool 

was developed to provide detailed, automated feedback to students and teachers. It is the tool 

that determines where the genitive should be used in a sentence. Figure 2 shows the basic 

pipeline, which will be discussed at length in the following sections. The pipeline could be 

further simplified as shown in Figure 3. 
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Figure 2. PLPrepare Pipeline 

 

 

Figure 3. Simplified Pipeline 

 

3.3.2. Collecting Grammar Rules 

 The first step to building this grammar checker was to collect the rules. From a design 

standpoint, there are two types of rules: those that require word lists and those that do not. An 

example of a rule that does not require a word list would be the genitive possession. This rule 
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states that the first noun in a pair of adjacent nouns exerts possession over the second [1]. For 

rules like this, there is no need to refer to outside information and can be easily included in the 

system. An example of a rule that requires outside information would be the rules related to 

preposition governance over nouns. This means that the genitive case governs several 

prepositions, and these prepositions should be in a database to help the system pick out where the 

genitive case ought to be.  

 Iwona Sadowska’s [1] Comprehensive Grammar provides several grammar rules that the 

genitive case governs. Table 8 shows which of these rules are used and which of them require 

additional word lists to be effective. The rule coverage is incomplete because Polish numbers can 

be incredibly complex and require significant effort to include for completeness. In its current 

state, the rule database only supports finding genitive after nominative numbers not ending in 1-

4. Additionally, time expressions are difficult to collect due to their volume and variety, so they 

are not supported. Finally, some nouns can take either -a or -u in speech depending on social 

preferences [1]. This case is difficult to quantify from an implementation standpoint, and it is just 

as difficult to provide feedback for in a written context. Due to these factors, this case was 

ignored and is best left to future research. 



45 

 

Table 8. List of Rules Governing the Genitive Case in Iwona Sadowska’s Polish: A 

Comprehensive Grammar [1] 

 

 The word lists for the rules that require them were found using lektorek.org, which is an 

online Polish dictionary with both inflection information and case governance information [46]. 

For each of the supported rules requiring a list, the PoS filter in addition to the ‘+G‘ search term 

were used to return all words of that PoS that require the genitive case. These results were then 

stored with the lemma, the case(s) required, and the rule’s frequency into an SQLite database 

table. Table 9 below shows a few examples from the verb rule table to illustrate how these are 

stored. 

Table 9. Example of Contents of a Rule’s Word List 
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 The verbs, for example, were ordered in imperfective-perfective pairs. The case column 

refers to the case(s) that the verb’s predicate should take. The verb rule table considers the 

lemmas themselves and the different constructions available to the verbs stored there. For 

example, the verb brakować (to lack) takes a simple genitive predicate whereas uczyć-nauczyć 

(to teach) could take an accusative direct object and followed by a genitive noun. This 

construction has the meaning ‘to teach someone something.’ Finally, many verbs are either 

exclusively or frequently reflexive. The verb list makes a distinction between the reflexive and 

non-reflexive constructions of a lemma. Maintaining this construction information allowed the 

system to recognize and differentiate between a lemma’s different forms.  

The frequency column refers to how often the lemma with the construction specified in 

the case column is used. This information helped the system provide feedback on certain cases. 

The value ‘aw’ means always, and the value ‘st’ means sometimes. For example, there is a subtle 

difference between using an accusative predicate and a genitive predicate for the verb chcieć (to 

want). Both are correct, but the genitive implies wanting something that is not there [1]. 

Determining the correct usage of something of that complexity is beyond the study’s scope but 

having the frequency table enabled the system to give this feedback to the student.  

Furthermore, some words are part of several distinct constructions with distinct 

meanings. Consider the verb pair przestrzegać przestrzec. It has two distinct meanings; one is ‘to 

warn against’ which requires the preposition przed + I, and the second meaning is to ‘observe or 

uphold’ (as in laws and rules). The second meaning requires the genitive case, so the rows with 

‘m2’ indicate that one of a lemma’s many meanings requires the genitive and not necessarily all 

of them. What differentiates this from the construction information in the case column is that a 

significant change in meaning occurs when compared to changing the construction. For example, 
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consider uczyć-nauczyć + G (to teach) and uczyć-nauczyć + A + G (to teach someone 

something) with przestrzegać-przestrzec przed + I (to warn against something) and przestrzegać-

przestrzec + G (to uphold something). These distinctions exist to better serve the student in 

providing detailed feedback for mistakes involving these more subtle cases.  

 Of course, the coverage is not wholly comprehensive. Table 10 indicates how many 

entries were recorded for each of the rules requiring these lists. For some (such as the preposition 

list), the list is nearly complete. For others (such as the verb list), the number of existing 

examples in the Polish language is so large that it is hard to approximate the upper limit of 

relevant constructions, so the coverage is extensive but by no means complete.   

Table 10. Genitive Rules in the Database Requiring Word Lists 

 

3.3.3. Dependency Parsing 

 There must be a roadmap of the sentence to use as a guide for checking to apply the rules 

found. This roadmap is the network of relationships that the tokens in a sentence have with each 

other. Dependency parsing offers a fast, accurate way to provide a token valued analysis of a 

sentence’s PoS tags and their relationships to each other through a statistical approach [29]. The 

result is a series of labeled syntactic dependencies that map one PoS tag to another. 

 Regarding the SpaCy Dependency parser that PLPrepare used, the set of labeled syntactic 

dependencies contain PoS tags, a relationship tag that describes that syntactic dependency, an 
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attempt at finding the lemma, and the original word’s text [30]. The data that these syntactic 

dependencies provide ensures that one sentence can be broken apart into all of the pieces that 

make it function as a cohesive whole. The sentence can then be examined in terms of its 

relationships, allowing the system to track down the relationships that signal the use of the 

genitive case. SpaCy’s tokens contain a vast swath of information that this system did not use, so 

PLPrepare used a different token format which contains only the head text, the head PoS tag, the 

token value text, the token value PoS tag, and the dep (syntactic dependency) tag that describes 

the relationship. Figure 4 shows an example of SpaCy’s dependency parser at work. 

 

Figure 4. Example Output of SpaCy’s Dependency Parser – Figure Rendered by DisplayCy 

 

A note to prevent confusion: this figure was generated from DisplayCy, a library of 

SpaCy to print out dependency relationships. The arrows display the relationships between a 

token’s head and its children NOT between the head of a token and the token value itself. The 

next few paragraphs describe to the relationship between the head of a token and the token itself 

and not between the token and its child. The head of these arrows will refer to the token itself, 

referred to as the token value and the tail end will refer to the head. The focus on the individual 

tokens rather than the relationships between head and child causes this subtle distinction.  
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The tags used to describe these relationships are somewhat more abstract, but they can 

help to identify where the genitive case is needed. Usually, rules can be detected by simply using 

the parts of speech of the head and the token value of the relationship, but, for some sentences, 

this is insufficient. For example, the sentence ‘Nie możemy popełnić żadnego błędu’ (We cannot 

commit an error) consists of a negated complex verb phrase with a modal verb (możemy – we 

can) and an infinitive main verb (popełnić – commit). There is also a direct object of the main 

verb with an adjective modifier (żadnego błędu – no error). Because of the negation, the verb’s 

direct object and its modifier are placed in the genitive case. The advmod tag indicates an adverb 

modifier. If an advmod has the token value text of ‘nie,’ it indicates that the verb is being 

negated. The xcomp tag indicates an open clausal complement, which means that it launches a 

new clause that is detached from a ‘higher’ subject. In this case, ‘możemy’ launches the new 

clause ‘popełnić żadnego błędu.’ The xcomp tag can be used to transfer the negation detected 

earlier from the modal verb to the main verb by tracking the head of the advmod token and 

matching it with the token value of the xcomp token. Finally, the obj tag indicates a direct object 

which links popełnić to błędu. Because popełnić was negated, the system knew that błędu ought 

to be in the genitive case, so the grammar rule parser could return the head of the obj token.   

3.3.4. Mapping Syntactic Dependency Tokens to Grammar Rules 

 The section above described how a dependency parser breaks down a sentence. This 

breakdown included applying the previously described relationships to pick out specific 

grammar rules as described in section 3.3.2. To determine which of the genitive rules might 

apply to a given token, the system had to parse each of these tokens to flag candidates that might 

require the genitive case. To do this in an organized and efficient way, the system stored the 

information that points to the different rules in a tree structure.   
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 PLPrepare queried the grammar tree in the form of a request, which is just the 

information contained in a token but with two differences. The first is that it allows the 

PLPrepare to adjust and swap out defective or unhelpful PoS tags. For example, the PoS tag 

representing an uncertain PoS is ‘x’ [31][48]. When injecting errors, the dependency parser had 

difficulty assigning a PoS tag to words with misspellings and other errors. Hence, the system 

would give the questionable token a ‘noun’ PoS tag to those it could not reliably classify. The 

second difference is that the token’s information was stored in an ordered list format to pass 

through the tree faster. When the system finished processing a request, the grammar tree would 

evaluate the request according to the ordered list. Besides the first element, the rest of the list 

elements would correspond to the following order: head pos tag, token value pos tag, and dep 

tag. Figure 5 below illustrates the tree structure for mapping tokens to rules. 

 

 

Figure 5. Grammar Tree: Grammar Rules Requiring Additional Parsing in Red 
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 The grammar tree used the head and token value PoS to determine the possible 

interaction. The tree consisted of a root that organizes two subtrees. These subtrees handled cases 

where the system must handle the token value or the relationship’s head first. For most grammar 

rules, the system had to examine the syntactic dependencies from the head to the token value, but 

prepositional phrases were the exception. The system navigated the tree by getting the ith 

element of the request’s ordered list and compares it to the node’s children. If a node had no 

children, the tree checked if a grammar rule was present in that node (denoted by rectangles in 

the diagram) and would return it. 

To continue with the example given in section 3.3.3, PLPrepare flagged the nie ← 

możemy token as a candidate for the genitive following an adverb of quantity rule because the 

head was a verb, the token value was a participle, and the relationship was an advmod. Because 

the token did not contain a preposition, the system made element 0 of the request’s list ‘Head,’ 

and would then contain the head ‘verb’ and the token value ‘part.’ This led to the 

Negation/Absence grammar rule. The system grouped the negation and absence rules together 

and the linked noun rules together because they were identical in terms of the tags that identify 

them. The only difference between a negation and an absence token was that an absence token’s 

head contains a form of the lemma ‘być’ (to be); thus, the two could be safely combined to 

simplify the tree. Finally, the tree returned the grammar rule as a potential candidate for the 

genitive case.  

3.3.5. Confirming the Candidates 

 After finding the candidates, most of them required additional processing to see if the 

selected rule applies. If the rule spanned multiple tokens (marked in Figure 3 by red rectangles), 

then the system had to find that candidate’s child token and validate its relationship to the parent. 
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If the rule required a text list, the grammar rule checker had to query the database of word lists to 

determine if the genitive case applied to the token. Finally, once the system had verified that the 

token takes the genitive case, the grammar rule checker returned the part of the token that 

contained the noun. 

 The cases that required additional parsing were either a negation (like the ‘nie mogę…’ 

example above) or a clause with an adverb of quantity. These cases required the system to look 

beyond the immediate token to find the noun because the token either contained only a participle 

and a verb or an adverb and a verb. The system could do this by iterating through the token’s 

children and comparing those tokens to the required text and syntactic dependency relationship. 

The solution was adequate, but when handling erroneous input, the dependency parser had a 

more difficult time creating the parent-child relationships with the affected token. The solution 

was to store the relevant verb object tokens in a dictionary using the head text of the verb as a 

key at the beginning of the grammar rule mapping stage. The additional preprocessing eliminated 

the need to parse the token’s children and improves robustness, but it added a slight performance 

drain for tokens that did not require additional parsing.  

 The next case was simpler; if a token required a word list, the grammar rule checker 

would use PLList’s interface to lemmatize the words. The grammar rule checker would then 

query the word lists with the lemma and return the case required and frequency, if applicable. If 

the token required neither of these special cases, the grammar rule checker would simply return 

the noun text because the syntactic dependency token was enough to infer the rule. After the 

system had detected the nouns that ought to be in the genitive case, it would send the noun text 

along with other information to the reporting module where it would compile a noun use report. 
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3.3.6. Grammar Rule Edge Cases and Limitations 

 The grammar rule collection and verification process was complex and included edge 

cases and other limitations that PLPrepare did not handle at all or handled in a way that increased 

false positives. There were problems regarding words that use multiple cases, sentences with 

certain negated verbs, and dependency parsing sentences with misspellings. The system cannot 

handle all cases well, but it mitigated some of these problems, focusing on providing feedback 

where possible.  

PLPrepare could not handle negated verbs that did not have an accusative complement. 

The negation rule for the genitive case affects only negated verbs that have an accusative 

complement. Consider the example: ‘Co sprawiło, że zajęłaś się aktywizmem?’ (What caused 

you to engage in activism?) (Top of Figure 6). Most Polish verbs take the accusative case as a 

complement [1], but this verb takes the instrumental case as a complement. The negation of this 

sentence would look like this: ‘Co sprawiło, że nie zajęłaś się aktywizmem?’ (What caused you 

not to engage in activism?) (Bottom of Figure 6). The sentence is a bit contrived, but the 

relationship between ‘zająć’ and ‘aktywizm’ when ‘zająć’ is not negated is a nominal subject 

(nsubj). When negated, the relationship becomes an open-clausal complement. The system 

would usually interpret an open-clausal complement with a verb phrase as signaling a modal 

verb. Hence, the system marked ‘aktywizm’ as needing the genitive case even though the rule 

did not apply here. The negation of these types of verbs were more rare their accusative 

counterparts, but it did increase the number of false positives. 
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Figure 6. Comparison of a Negated and Non-Negated Verb That Does Not Take an Accusative 

Compliment 

The handling of words that take multiple cases was a problem. Prepositions represented 

most of these words as most prepositions can be used in different contexts that govern different 

cases. For example, the preposition ‘z’ could govern the genitive case to mean ‘from, of.’ It 

could govern the instrumental case to mean ‘with,’ and it could govern the accusative case to act 

as an approximation [1]. The system did not distinguish the different uses of this preposition, so 

the system tagged all uses of ‘z’ as needing the genitive case. To handle this problem, the system 

reported that the word may take multiple cases, but this approach was far from ideal. This case 

increased false positives in tests where these types of prepositions are concerned. From the user’s 

perspective, the feedback provided may be an inconvenience, but the system, as a result, could 

cover many more prepositions.  
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One challenge that the system faced was the complexity of dependency parsing as a 

whole. Consider the preposition ‘z.’ It was very difficult to differentiate between ‘z’ as a simple 

preposition and ‘z’ as a clitic. The sentence ‘Jestem z wami’ (I am with you all) sees ‘z’ 

assimilate to the pronunciation with ‘wami,’ leading wami to be pronounced as ‘swami.’ The 

dependency changes based on this distinction. There were several different dependency 

relationships that could occur with the same parts of speech, so not every subtilty could be 

considered in the implementation.  

 When dealing with potentially incorrect sentences with misspellings, it was vital to 

mitigate both junk data and misspellings. Due to incorrect input, the SpaCy dependency parser 

occasionally could not determine the PoS tag and syntactic dependency of a token. When this 

happened, the dependency parser assigned a pos tag of ‘x’ or a syntactic dependency tag of ‘dep’ 

[30][48]. The system could resolve the dependency and not the pos tag or vice versa, so they did 

not necessarily occur together. PLPrepare did not do anything to the ‘dep’ tag because it did not 

affect the grammar rule parsing. It did, however, treat all ‘x’ pos tags as nouns. Polish 

morphology is so rich that the postfix and the context of a word give clues to the PoS [21], so 

junk entries or misspellings that overwrote a word’s morphology and ignored other 

morphological patterns were the likeliest candidates of the ‘x’ pos tag. The best way to handle 

this was to treat them as nouns that needed to be examined by the reporting module.  

3.4 Generating Automated Feedback Using PLPrepare 

 After the system found the words that needed the genitive case, the next step was to 

compare what was written to what PLPrepare calculates should have been there. The reporting 

module handled this stage of the pipeline, and it generated a noun usage report based on its 

findings. 
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3.4.1. Detecting Grammatical Errors 

 The first step to determining whether the student made a mistake was to first determine 

what the target case was. Because the system focused on the genitive case, the target case would 

be the genitive case. The reporting module queried the PoliMorf database via the PLList 

interface for any morphosyntactic information in the dictionary. If morphosyntactic information 

existed, it stored that information and compared it to the target case. If the noun was both in the 

dictionary and it matched the correct case, then the system considered it correct.   

 PLList queries required a great deal of information to avoid ambiguation errors. The only 

information available to the reporting module was the noun text, the target case, and the PoS. In 

most cases, this was enough to avoid ambiguation errors, as it is extremely rare for two lemmas 

to share a genitive form. At that point, if what was passed in was recognizable as a genitive form, 

then the input would be considered correct regardless.  

3.4.2. Classification of Grammatical Errors 

 If the noun was either not in the dictionary or did not match the target case, then there 

was an error. The system had to determine what kind of error occurred to provide specific 

feedback. The system tracked three primary error types: spelling errors, case errors, and postfix 

errors. A spelling error occurred when one or more characters inside the stem of a noun was 

incorrect. A ‘postfix error’ occurred when the characters beyond the stem were incorrect – this 

was not a true postfix error, as the entire postfix of the given form may not be affected and was 

to differentiate a spelling error affecting the ending of a word and a case error. A case error 

occurred when the system recognized that the word is in a case other than the target case. 

 If the noun was not correct because it was not in the dictionary, the system had to 

determine why it was not in the dictionary. Typically, it was either a spelling error, a postfix 
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error, or it was correct but the system missed it initially. After the initial comparison, the system 

checked if the stem or the postfix caused the error. If an incorrect postfix caused the error, then 

reducing that word to the lemma would reveal a form that would be in the dictionary. Therefore, 

the system attempted to find a match in the dictionary by a combination of statistical 

lemmatization and stemming. 

 The system first tried SpaCy’s statistical lemmatization to reduce the word [49]. 

Unfortunately, the SpaCy Polish model did not handle erroneous data very well. Table 11 shows 

the results for different misspellings of ‘system.’ The lemmatization only returned correct 

lemmas for those with the proper genitive endings “systemu” and “systemów.”  

Table 11. SpaCy Lemmatizer Performance with Incorrect Entries. Correct Results in Bold 

This lemmatizer can be helpful for picking out difficult stems, particularly for nouns with stem 

changes, e.g. ‘koniec’ (end – nom) -> ‘końca’ (gen), but it was not enough. A stemming step 

occurred after the initial lemmatization attempt to catch more postfix errors.  

If the lemmatization did not return a valid noun, the algorithm removed the ending and 

tried again. This process was limited by the number of checks which simply divided the word 

length by two and cut off the decimal. The number of checks could be no greater than four. It 
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would almost never take more than four checks to reveal the stem of any noun and would never 

take more than four checks to reveal the stem of a noun in the genitive case. The smaller the 

word, the more likely the ending took up a more significant portion of the noun, so the algorithm 

removed fewer endings for smaller nouns. Additionally, removing more characters increases the 

risk of uncovering a new stem, which is all the more reason to reduce the number of checks 

where possible. 

 

 The algorithm would remove ending the after ending checking the new noun if it was in 

the dictionary. It first checked if the new noun was in the dictionary via a PoliMorf look up, and 

then it attempted to lemmatize the noun via the SpaCy algorithm. This process continued until 

there was a match or the number of checks was depleted.  

 

 If the algorithm found the form, it was possible that it found a lemma that was unrelated 

to the original form. A student could enter ‘Sabaton,’ which is not a Polish word, and the 

algorithm would find ‘sabat’ (sabbath). Either way, if the algorithm found a lemma in the 

dictionary, it was safe to declare that the ending that the user typed was incorrect. This 

approach’s only downside was that the system could misclassify simple spelling mistakes as 
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postfix errors. Additionally, as a defense against ambiguation errors, the system performed a 

final inflection attempt with the found lemma to determine if it matched the original form. If the 

inflected form of the found lemma matched the original entry, then an error occurred and the 

dictionary did not find it the first time, so the original entry was correct all along. If the algorithm 

could not find a lemma by any means, then the original entry was either a valid word that was 

not in the dictionary or a spelling error. Either way, the system classified the entry as a spelling 

error.  

 The last case that the system considered was if the entry was in the dictionary but was not 

in the target case. The result was most often a case error. For example, consider the difference 

between ‘motel’ (motel) and ‘motela’ (a classification of fish with two dorsal fins). The genitive 

singular of ‘motel’ is ‘motelu,’ so a student could mistakenly enter ‘motela’ as the genitive form 

of ‘motel.’ The entry would be in the dictionary but was not in the target case. The question 

became whether an incorrect postfix led to the dictionary finding a different lemma or the correct 

lemma with an incorrect case inflection. The problem was rooted in lemmas of a different gender 

sharing different forms, so the solution to this problem was to stem the entry and reinflect it into 

the target case. If the entry could be stemmed and reinflected for case and number of the original 

entry successfully, and if it was a different gender than the original, then the entry had an 

incorrect postfix. On the other hand, if the entry was present in the dictionary and could not be 

stemmed and reinflected, then the case of the original entry was incorrect. Figure 7 shows an 

overview of this classification process.  
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Figure 7. Grammatical Error Classification Decision Tree 

3.4.3. Generating the Feedback 

 PLPrepare used a combination of error classification, grammar rules, and guidelines to 

provide detailed feedback. The system generated this information as a sentence moved through 

the pipeline, but PLPrepare determined what feedback to display based on the error 

classification. Once the system chose the feedback, it then showed it to the user. 

The Grammar Rule Mapping Stage, the Rule Verification Stage, and the Reporting Stage 

all sent potential feedback. The process began with the Grammar Rule Mapping Stage. Each rule 

in the grammar tree had a description to inform the student how to spot the corresponding rule. 

At the Rule Verification Stage, the system added any relevant structural and frequency 

information discussed in section 3.3.5. This information provided the system with a variety of 

feedback to address most of the user’s problems when writing sentences using the genitive case. 

 

Figure 8. Displaying Feedback from the Rule Verification Stage Regarding the Use of ‘Z’ 
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At the Reporting Stage, the system chose the feedback to display based on the error 

classification. If there were no errors, then the system would not produce any feedback. If the 

error involved an incorrect case being used, the system chose to display the grammar rule 

information, the incorrect case the user used, and the correct form.  

 

Figure 9. Reporting a Case Error Where ‘Wodorem’ Should be in the Genitive Case Due to 

Possession by ‘Nadtlenku’ 

If the error involved a misspelling, PLPrepare simply displayed the word that was not in the 

dictionary with a message informing the user that the word was not found.  

 

Figure 10. Informing the User that a Word is Misspelled 

If the error involved an incorrect postfix, then the system displayed the correct postfix 

and any guidelines found for that word. This step tied into the guideline lists from section 3.1. 

PLPrepare queried the guideline lists for the lemma and retrieved the guideline’s name, the 

postfix that the guideline recommends, the reliability of the guideline, and the number of words 

that the system had on file for that guideline.  

 

Figure 11. Displaying Feedback for a Postfix Error with a Guideline Suggestion 
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The feedback effectively informed the user of what he/she did wrong, what the correct form was, 

and how to improve in the future.  
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Chapter 4. Performance and Evaluation 

 The evaluation of PLPrepare covered a few of the possible mistakes that students might 

make and focused on evaluating the three most crucial stages of the pipeline, the genitive 

detection stage, the error classification, and the guideline assignment. The evaluation focused on 

recall and precision of classifying three basic error types (and the no-error), the recall and 

precision of the genitive detection system, and the recall of the -a vs -u feedback from the 

wordlists discussed in the previous chapter. The testing stage’s basic outline was to collect 

sentences, inject errors into those sentences, and compare the injected error to the classified 

error.  

4.1. Gathering and Generating the Test Data  

 To test PLPrepare’s performance, there had to be a wide variety of sentences containing 

the genitive case to give to the system. The National Corpus of Polish (Narodowy Korpus Języka 

Polskiego – or NKJP) could be queried using a powerful query language to extract sentences 

[50], so NKJP provided an ideal corpus to extract sentences. The sentences also required 

preprocessing before the testing system can inject any errors. 

4.1.1. Sentence Collection Using NKJP 

When testing the genitive detection stage, every sentence had to contain a correct 

example of genitive case usage so the system can inject an error into it. This test did not focus on 

precision because it was difficult to manually label 6,000 sentences as either having or lacking 

the genitive case. Finding the recall here required certainty. One of the problems facing this goal 

was the issue of ambiguous cases. Several masculine inanimate nouns shared a genitive ending 

with the accusative case of that noun [1]. Because of this problem, a query such as ‘[case=="gen" 

& pos=="subst|ger|depr" & gnd=="m[23]" & number=="sg|pl"] within s’ (select sentences where 
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NKJP can evaluate a noun to be masculine animate or inanimate and singular or plural) would 

return sentences with ambiguations where the noun would be in the accusative (or other) case(s) 

[50]. To mitigate this problem, a strict criterion was injected into the query to only extract words 

that the system was certain are in the genitive case as they appear in the sentence. The query then 

became ‘[case~~"gen" & pos=="subst|ger|depr" & gnd=="m[23]" & number=="sg|pl"] within s.’ 

Unfortunately, this seriously reduced the overall population of sentences to select from. It was 

difficult to find forms of a lemma where the genitive form did not share a form with another 

case. Using this query type virtually eliminated the feminine singular and masculine animate 

because the genitive case for these genders almost always shared the genitive case form with 

another case. These eliminations reduced the diversity of the selected words in the test. Still, it 

provided a measure of consistency in that the system would not have to throw out a significant 

portion of the test data because the words only appeared to be genitive but were in the accusative 

case. This type of query was ideal for testing the genitive detection stage’s recall stage but 

ineffective for testing classification because of the exceedingly low gender diversity in them.  

To test a variety of the system’s capabilities, two groups of six sets containing one 

thousand sentences each (12,000 sentences total) were collected according to different numbers 

and genders of the nouns they featured. The first group used the strictest query discussed above 

to guarantee that genitive case examples were included. This group was used to test the genitive 

detection system. The second group used the looser query, which included some accusative 

examples. This group was used to test the error classification stage. The groups were composed 

as follows: The first two sets were made up of singular and plural nouns of all genders, the next 

two were singular and plural sets of masculine animate nouns, and the final two were singular 
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and plural sets of only masculine inanimate nouns.  Figures 12 and 13 below show the exact 

gender breakdown for each group. 

 

Figure 12. Group 1 Gender Distribution – For Testing Genitive Usage Detection – Corrected 

for Dictionary Retrieval Ambiguations 

 

Figure 13. Group 2 Gender Distribution – For Testing Error Classification – Corrected for 

Dictionary Retrieval Ambiguations 
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4.1.2. Sentence Preprocessing  

 Despite the specificity of the queries used to extract the sentences from NKJP, the 

sentences required some cleaning to be useful. NKJP fulfills the queries in either an HTML or 

CSV file with a user-specified amount of context surrounding the query result. To form a testable 

sentence, the query result had to be re-injected into a recombined sentence. For example, the 

sentence ‘Jak twierdzi Hubert, do szczytu możemy iść bez liny’ appeared as Table 12 below. The 

bolded word was the example that had to be held as the target word but was reinjected into the 

sentence to give the system the necessary context. The resulting test entry is displayed below. 

Table 12. NKJP Test Entry Preprocessing 

NKJP CSV (Before Preprocessing) 

Jak twierdzi Hubert, do  szczytu możemy iść bez liny. 

 

Test Entry (After Preprocessing) 

szczytu Jak twierdzi Hubert, do szczytu możemy iść bez liny 

 

 Because context was collected at a consistent margin throughout the query, there were a 

few problems regarding a few of the sentence’s testability. Some of the entries in the NKJP .csv 

files contained one or even two additional sentences because of the context. One example was 

‘wędkowanie. W Grand Prix Wrocławia jestem w pierwszej szóstce.’ In this case, the final word 

of the preceding sentence was included in the entry. The entry may even have contained context 

from the next sentence on the rightmost cell. Also, a few entries did not contain enough context 

to express a complete thought. In the example ‘- np. przy sprzedaży samochody - dotyczy 

obecnie całego niewykorzystanego’, no punctuation was present indicating the end of the 

sentence or even the thought, and there was no capital letter or preceding punctuation indicating 

that a new sentence had begun. Other sentences were simply incomprehensible by the tool and 
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difficult to understand even by human standards. The entry ‘. G. (pismo Areszty Śledzczego w S. 

z’ was one example where more context was needed. To solve these problems, a few criteria 

were introduced. The first was that the test sets could only include a sentence if either the first 

word was capitalized or the period from the preceding sentence was visible in the context. Next, 

the righthand context had to include some punctuation to signal a finishing thought. Finally, all 

enclosing punctuation had to include an opening and a closing. A complete sentence was not 

necessary for the detection step, but a complete thought that the dependency parser could 

properly examine was necessary. These criteria did not guarantee perfect test entries, but they 

eliminated the majority of bad candidates. Group 1 saw that, out of six initial sets of one 

thousand sentences each, the final testing data set contained a total of 2,835 sentences all 

together with around 400 sentences for each set. 

4.1.3. Grammatical Error Injection 

 To test the system’s error classification capabilities, the testing system injected errors to 

simulate the different types of errors that the system attempted to classify. The error injection 

step involved retrieving the target word from each test entry and reinjecting a modified form of 

the word into the sentence. There were four possibilities that the system randomly applies to each 

sentence in the test set, each of which were equally likely. This error injection technique allowed 

for easy, unique retests, and it also tested the dependency parser’s ability to work with a variety 

of erroneous sentences. For a discussion of the meaning of each of the error types, see section 

3.4.2.  

To perform the error injection, one of four operations were used. To inject a case error, 

the system found the target word’s lemma and reinflected the word into a new, randomly 

selected case. For example, in the test entry ‘|głosu| Kto wstrzymał się od głosu?’ The word 
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‘głos’ (voice) would be reinflected into a random case. If the randomly selected case was the 

instrumental case, the test entry would be modified to read ‘|głosem| Kto wstrzymał się od 

głosem.’ The function disallowed any form that matched the original form. To inject a postfix 

error, the final character was randomly replaced by a member of a set of the Polish phonemes 

(including those with multiple letters, e.g., dż, rz, ch, etc.) Because this was not a true postfix 

error, it was intentionally not replaced with a valid postfix to differentiate a spelling error 

affecting the ending of a word and a case error. The distinction also necessitated that the postfix 

error did not randomly form a case error, so the error injection algorithm checked to see if the 

new noun was in the dictionary. If it was, then the algorithm removed the attempted postfix from 

the set and tried again. In the example sentence above, the word ‘głosu’ could become something 

like ‘głost’ or ‘głosrz,’ as these forms did not correspond to any forms in the lemma. But it could 

not have become ‘głosy’ because that form corresponds to the nominative and accusative plural 

form of the word. The system injected a spelling error by lemmatizing the word, selecting a 

character position, and injecting a random member of the Polish phoneme set discussed above to 

the word’s original form. Finally, the system tracked a ‘no error’ error type as a control. In this 

case, the error injection system simply passed the sentence to the next stage. 

4.2. Evaluation Experiments 

 The evaluation process involved injecting errors into each of the test sets separately and 

then determining the system’s performance for each of them. For example, to test the genitive all 

genders set, the system first randomly injected errors in the manner discussed in section 4.1.3. 

and then the system began testing the sentences in the set. The tests were conducted on a 

sentence-by-sentence basis. For each sentence, the test involves recording the injected error, 

putting the system through the pipeline, and determining whether PLPrepare caught the injected 
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error. Because the system could catch multiple errors in a sentence, the test recorded only the 

reports on the word with the injected error. If there were no noun usage records associated with 

the erroneous word in the sentence, the test recorded that as a failure on the part of the genitive 

detection pipeline. The classification was tested by comparing the noun usage report findings to 

the recorded error injection type. Suppose the classification of the error found did not match that 

of the injected error. In that case, the system recorded that as a failure of the error classification 

system in the pipeline’s reporting stage. A confusion matrix was constructed by recording all of 

the injected error types and all of PLPrepare’s corresponding classifications. If the injected 

classification did not match the reported classification then, a false negative was recorded. If the 

system was testing for a particular classification and the classification was reported even though 

it was not present, a false positive was reported. The evaluation stage used the confusion matrix 

to interpret the findings in the coming sections. 

After running through all of the entries, the system then reported the confusion matrix 

with the recall, precision, F1-Score, and the macro and weighted average. The system then 

displayed the number of times that it failed to detect the target genitive usage and the recall for 

each error type that corrects for the system missing the genitive detection. The following sections 

discuss these initial results and indicate the level of performance that a user could expect to see, 

an evaluation of the genitive detection system, and the coverage of the wordlists used to provide 

-a vs -u feedback.  

4.3. Results 

 The results for each stage of the pipeline will be presented below in the order specified in 

section 3.3.1. The inputs, outputs, and relevant background information will be specified with 

graphs illustrating the relevant figures. The following subsections will summarize the results and 
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detail the key takeaways from the data. Finally, each subsection will discuss any data points that 

appear out of place and briefly describe how to improve results in future work.  

4.3.1. Genitive Detection Results 

 The genitive detection system was tested for recall by running a normal test with the data 

in group 1 and with a separate test to determine precision. The conditions of the testing described 

above necessitated a separate precision test because those tests only work with sentences that 

used the genitive case, so the genitive detection system would not have the opportunity to 

produce a false positive. The precision test involved 92 sentences where half of the sentences did 

not use the genitive case and the other half did. These sets were human verified before testing. 

The constraining factor for the test size was the number of sentences that did not use genitive. 

Out of a random sample of 1000 sentences from the NKJP, the computer threw out 878 

sentences for containing genitive and data cleaning purposes. The human reviewer eliminated an 

additional 76 sentences for containing the genitive case. The 46 non-genitive sentences were 

matched by 46 sentences containing the genitive case. No errors were injected into these 

sentences. 

 PLPrepare flagged 16 sentences as false positives, 46 sentences as true positives, and 30 

sentences as true negatives. The test saw a recall of 1.00 and a precision of 0.74. For the most 

part, the system correctly flagged genitive case usage, but the cause for most of the false 

positives was the noun rule, which cast too large of a net. The most prevalent problem was when 

noun/noun tokens had child tokens. In some instances, this token contained a conjunction, which 

the system had to mark because of how Polish distributes case between items shared by a 

conjunction. In others, it was difficult for PLPrepare to determine the position of child tokens in 

the sentence. In some cases, the genitive noun possession rule could pass over interfering words, 
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especially adjectives. In others, the words interrupted the possession. Both cases required an 

additional level of abstraction to ascertain the role of child tokens. 

 More striking, however, was the comparison of this result with those of the experiment 

described in section 4.2. When testing the genitive detection system with the error-injected 

sentences, the recall plummeted as low as 70%. The results hovered between 70 and 75%, which 

was disappointing considering the precision test’s recall. Figure 14 below shows the recall of the 

Genitive detection system for each test. 

 

 

Figure 14. Genitive Usage Detection Performance by Test Set in Group 1 
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was trained on the Polish PUD treebank [31][32]. This treebank was built on examples spanning 

multiple corpora including the NKJP [32][33], which contained minimal errors. The dependency 

parser performed extremely well with erroneous data all things considered, but it was not 

explicitly optimized to handle the badly mutilated Polish words that these tests involved. The 

most straightforward way to improve these results could be to expand the external wordlists to 

cover more of the Polish lexicon. Expanding the word lists could be done by compiling grammar 

information from multiple sources, such as SGJP [51]. Another way to expand them would be to 

train a dependency parser to provide parsing with more confidence on tagging erroneous input. 

This enterprise would not be a trivial one, and it would require additional research. Finally, a 

more detailed grammar tree could help the system pick out more rules involving the genitive 

case by scanning more obscure sentence structures for genitive case usage. 

4.3.2. Grammatical Error Classification Results 

   After the system detected the genitive usages, it sent those genitive usages to be checked 

for errors. This stage required a test that involved the test sets in group 2. These were discussed 

in section 4.4.1. Here, the breakdown of the error injections was important for understanding the 

input. Figure 15 shows the comparison of the error injections for each test. The tests were 

injected fairly uniformly with no error type hoarding an overwhelming majority, though some 

test cases could be overrepresented compared to others. It was to these injections that the 

classification output was compared to measure recall and precision.  
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Figure 15. Error Distribution for the Error Classification Stage 

 

This stage of the tests fared somewhat better with a few exceptions. Figures 16-17 below 

detail the results of this stage.  

 

Figure 16. Recall for each Test Set 
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Figure 17. Precision for each Test Set 
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a spelling error was the root cause of this low precision. Simple dictionary misses, although rare, 

also contributed.  

The Postfix Recall performed reasonably well for the masculine singular only sets, but it 

saw a significant reduction in recall for the all-gender plural set. This was because, when the 

feminine and neuter plurals were introduced, several new concepts were also introduced. The 

most impactful concept was the neuter verbal noun (nouns in a -nie ending). Neuter verbal nouns 

were very common and were difficult for the noun reduction algorithm to treat correctly because 

of the genitive plural, which causes most neuter nouns take a null ending. The null ending in 

these verbal nouns led to the diagraph ‘ni’ being replaced with ‘ń,’ altering the stem’s 

appearance e.g. czytanie (nom sg - the reading) → czytań (gen pl. – of the readings). The noun 

reduction algorithm was entirely reliant on the SpaCy statistical lemmatization step of the 

algorithm to catch nouns with any kind of stem alterations and expansions. In these cases, the 

algorithm could not uncover the correct lemma by just removing characters. This problem was 

not exclusive to verbal nouns, but they were the most plentiful. The null ending also applies to 

most feminine and neuter plural nouns. The system had serious trouble detecting null endings 

partially because the system anticipated a final postfix and not the absence of one. This was also 

reflected in the number of these cases where the system wrongly identified these errors as 

correct.  

On average, the postfix classification precision was the second-worst precision 

measurement due to how easy it was for the noun reduction algorithm to uncover a stem 

belonging to a different lemma and mistakenly label the error a postfix error. The underlying 

problem was that the lemmatizer used in the algorithm was part of the same model that handles 

the dependency parsing, so it shared the same drawbacks as the dependency parser discussed 
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above. The self-reported lemmatization accuracy of this lemmatizer was 89% [28], and it did not 

perform as well as the dependency parser for guessing a correct form. To improve accuracy for 

erroneous data, it could be possible to train a lemmatizer with correct lemmas and incorrect 

approximations to improve guessing. This innovation is a subject for future research, as 

producing a statistical lemmatizer with acceptable accuracy is incredibly challenging.  

The recall of the postfix tests was the worst of all of the measurements. The average 

recall was around 76% though much of the same problems concerning neuter and feminine 

nouns persist. Despite this, PLPrepare performed much better at predicting the original problem 

area of the masculine inanimate genitive singular because the guesswork of SpaCy’s lemmatizer 

was not required as frequently. Thought there were still stem alterations, almost every noun 

ended in an -a or -u, so finding the stem was often as simple as removing the final character. The 

system performed fairly well when there were no stem changes involved in a lemma’s inflection. 

However, these stem changes are extremely common, and the noun reduction algorithm must 

undergo some changes to improve recall in this test.  

The case test results showed that masculine-only sets have an average recall of over 90% 

with the all-gender all-number set trailing behind. The problems that faced the case recall were 

mostly tied to the disambiguation step discussed in section 3.4.2. The existing error occurred 

because the system marked some injected case errors as ambiguous, meaning the system did not 

know if the found form of the word belonged to one lemma or another. Unfortunately, this was 

common enough to affect the recall, and the null endings only exacerbated this problem. There is 

no way to read the user’s mind, so it is impossible to truly determine which lemma the user is 

referring to in this case. In the future, however, the system can take advantage of usage 

frequency information to better infer which lemma the user is referring to. The precision, on the 



77 

 

other hand, was stellar. The system caught the vast majority of case errors, and it was almost 

entirely certain when it declared that an error was a case error.  

The success of case detection was interesting because case performance surpassed postfix 

performance since detecting a malformed postfix ought to have been easier than detecting the 

incorrect morphosyntactic information. The use of the stored morphological data in the PoliMorf 

dictionary made this task almost trivial. Whenever the system reported a noun, the PLList 

interface retrieved that information from the dictionary, so it was straightforward to know when 

a user used an incorrect case. On the other hand, the postfix relied on the system being able to 

differentiate between a simple misspelling of the stem and that of the postfix, which was a more 

complex task. 

 The control sentences that contained no errors were trivial for the system to detect, so the 

system rarely reported an error in a correct sentence. Occasionally, the system would mistakenly 

declare a case error as being correct on account of an ambiguation. Consider the nouns ‘obraza’ 

(insult) and ‘obraz’ (picture). If a case error produced ‘obraz’ in the nominative case, the 

classification stage would classify this as correct because the genitive plural of ‘obraza’ is 

‘obraz.’ The system, therefore, labelled the entry ‘obraz’ as correct. The ambiguation made 

entries like these more difficult for the system to classify correctly because the initial form was 

both in the correct case and in the dictionary. The only solution would be to use contextual 

information to parse the verb agreement and other information to determine the taken number 

and gender of the noun. Contextual information will help resolve any ambiguations, but this 

would require further implementation and is not present in the current system.  

 The classification results were promising but underline the need for further exploration of 

dependency tokens to map the relationships of verbs to nouns to help with disambiguation. 
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Additionally, a better solution is required to resolve the difference between postfix and stem 

misspellings statistically. From an instructor’s perspective, this classification recall and precision 

could help drastically reduce the workload of grading. The additional information in the 

feedback can tell an instructor where to look. From a learner’s perspective, however, any 

mistakes in classification that the system makes could lead to an incorrect understanding of the 

mistake. Thus, it is recommended that these improvements be made before any students use a 

system derived from this study. 

4.3.3. Generated Feedback Results  

 In a separate test, the system compared how postfix errors mapped to the word lists 

discussed in section 3.2.2. This test cast all test sentences as postfix errors to get a sense of how 

many of these words were present in the random samples taken from NKJP. This also indicated 

how frequently the system could give -a vs -u feedback with the current wordlists. The results of 

this stage are in Figure 18. 

 

Figure 18. Total -a vs -u Feedback Found Per Test 
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singular was well above the expected rate given the word lists’ small size compared to the Polish 

lexicon. This was because several of the words in the word lists were very commonly used, e.g., 

months and body parts [47]. 

 The coverage was surprising, but a tremendous amount of work will be required to 

expand this coverage to be helpful to students. Collecting words that meet these categories, as 

expressed in section 3.1.2., is a time-intensive process. There are several possibilities for 

expanding the coverage including word mapping, semantic analysis, and manually categorizing 

words. Ultimately, drawing the lines between the different categories to match a word to a 

guideline will require a great deal of research and implementation, so this task was best left to 

future research.  

4.3.4. Results from the Perspective of the User 

 The recall from each classification test showed that the system is very likely to pick out 

any error that the student makes. The classification was reasonably precise with some areas 

needing some additional work. The most significant point of contention in the classification was 

the distinction between a misspelling and a postfix error. PLPrepare has some problems 

addressing this distinction because of the flaws addressed in earlier paragraphs, but the problem 

means that a user cannot be certain of the nature of PLPrepare’s output. This is compounded by 

the fact that the genitive detection system only catches around 70% of the genitive usage cases 

with a similar precision. Overall, a user can expect a correct assessment only around 60% of the 

time. This severely impacts the usefulness of the tool in an educational context. One saving grace 

is that the classification system will almost always bring attention to a noun that not used 

correctly whether the postfix, case, or spelling is incorrect. Additionally, when the user is only 

working with the masculine inanimate singular the performance increases substantially. 
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PLPrepare clearly needs more work to be effective in an education setting, but these early results 

are promising.  
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Chapter 5. Conclusion and Future Work 

 This study introduced a hybrid grammar checker that was implemented to detect and 

catch different types of errors concerning the usage of the Polish genitive masculine inanimate 

singular. The novel approach was the integration of state-of-the-art dependency parsing and the 

available Polish NLP resources to give specific feedback geared towards language learners and 

their instructors. Additionally, this study introduced a framework for developing tools to help 

language learners master seemingly arbitrary cases by cataloging guidelines and integrating them 

into a grammar checker’s feedback. Finally, this study attempted to infer a deeper source of the 

entered errors instead of simply detecting them, and the system reacted to different types of 

misspellings differently.  

 The grammar checker itself performed in step with many similar models for the genitive 

case [12], but many of the approach’s problems will have to be addressed in future research. 

Given the small amount of data, there was a surprising amount of guideline coverage due to the 

frequency of use in the word lists, but the implementation requires much more labor to fully 

complete. This study pointed to the need for some statistical NLP techniques to increase 

robustness when dealing with erroneous input regarding this system’s more fundamental 

building blocks. Innovating to produce these improvements will be difficult but being able to 

read into spelling errors and other grammatical errors with greater detail will allow systems like 

this to provide even more specific feedback to language learners in the future.  
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