
East Tennessee State University East Tennessee State University

Digital Commons @ East Digital Commons @ East

Tennessee State University Tennessee State University

Electronic Theses and Dissertations Student Works

5-2021

PLPrepare: A Grammar Checker for Challenging Cases PLPrepare: A Grammar Checker for Challenging Cases

Jacob Hoyos
East Tennessee State University

Follow this and additional works at: https://dc.etsu.edu/etd

 Part of the Computational Linguistics Commons, Computer Sciences Commons, Morphology

Commons, and the Slavic Languages and Societies Commons

Recommended Citation Recommended Citation
Hoyos, Jacob, "PLPrepare: A Grammar Checker for Challenging Cases" (2021). Electronic Theses and
Dissertations. Paper 3898. https://dc.etsu.edu/etd/3898

This Dissertation - unrestricted is brought to you for free and open access by the Student Works at Digital
Commons @ East Tennessee State University. It has been accepted for inclusion in Electronic Theses and
Dissertations by an authorized administrator of Digital Commons @ East Tennessee State University. For more
information, please contact digilib@etsu.edu.

https://dc.etsu.edu/
https://dc.etsu.edu/
https://dc.etsu.edu/etd
https://dc.etsu.edu/student-works
https://dc.etsu.edu/etd?utm_source=dc.etsu.edu%2Fetd%2F3898&utm_medium=PDF&utm_campaign=PDFCoverPages
https://network.bepress.com/hgg/discipline/375?utm_source=dc.etsu.edu%2Fetd%2F3898&utm_medium=PDF&utm_campaign=PDFCoverPages
https://network.bepress.com/hgg/discipline/142?utm_source=dc.etsu.edu%2Fetd%2F3898&utm_medium=PDF&utm_campaign=PDFCoverPages
https://network.bepress.com/hgg/discipline/380?utm_source=dc.etsu.edu%2Fetd%2F3898&utm_medium=PDF&utm_campaign=PDFCoverPages
https://network.bepress.com/hgg/discipline/380?utm_source=dc.etsu.edu%2Fetd%2F3898&utm_medium=PDF&utm_campaign=PDFCoverPages
https://network.bepress.com/hgg/discipline/486?utm_source=dc.etsu.edu%2Fetd%2F3898&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:digilib@etsu.edu

PLPrepare: A Grammar Checker for Challenging Cases

A thesis

presented to

the faculty of the Department of Computing

East Tennessee State University

In partial fulfillment

of the requirements for the degree

Master of Science in Computer Science, Applied Computer Science

by

Jacob Hoyos

May 2021

Dr. Ghaith Husari, Chair

Dr. Brian Bennett

Dr. Christopher Wallace

Keywords: natural language processing, dependency parsing, foreign language education,

arbitrary cases, rule-based morphology detection, hybrid grammar checking

2

ABSTRACT

PLPrepare: A Grammar Checker for Challenging Cases

by

Jacob Hoyos

This study investigates one of the Polish language’s most arbitrary cases: the genitive masculine

inanimate singular. It collects and ranks several guidelines to help language learners discern its

proper usage and also introduces a framework to provide detailed feedback regarding arbitrary

cases. The study tests this framework by implementing and evaluating a hybrid grammar checker

called PLPrepare. PLPrepare performs similarly to other grammar checkers and is able to detect

genitive case usages and provide feedback based on a number of error classifications.

3

DEDICATION

 This thesis is dedicated to the memory of my friend Christopher Nitzband, who was the

first person to introduce me to programming.

4

Copyright 2021 by Jacob Hoyos

All Rights Reserved

5

ACKNOWLEDGEMENTS

 I would like to thank my amazing Polish professors for teaching me this difficult and

beautiful language and ultimately equipping me to pursue this study. I offer my heartfelt

gratitude to Pani Jola (Dr. Jolanta Lion – Carnegie Mellon) and Pani Agnieszka (Dr. Agnieszka

Jezyk – University of Toronto) for patiently guiding me through the language. I also would like

to thank Dr. Oscar Edgar Swan – University of Pittsburgh, whose interest in Polish education

paved the way for people like me to learn.

 I would also like to thank my committee and especially Dr. Ghaith Husari for helping me

out and offering guidance through these two years of hard work and Dr. Brian Bennett for being

a great friend throughout my academic career.

 Finally, I would also like to thank both Herr Brown (Ken Brown – Alcoa High School)

and Frau Negrisanu (Raluca Negrisanu – ETSU) for jump-starting my interest in foreign

languages.

6

TABLE OF CONTENTS

ABSTRACT ... 2

ACKNOWLEDGEMENTS ... 5

LIST OF TABLES ... 8

LIST OF FIGURES ... 9

Chapter 1. Introduction ... 10

1.1. Genitive Case and the Genitive Masculine Inanimate Singular .. 10

1.2. Linguistic Vocabulary and Related Concepts ... 11

1.1.1. Some assorted definitions: ... 13

1.3. Natural Language Processing ... 13

1.4. Significance of the Study .. 14

1.5. Overview of the Study .. 16

Chapter 2. Related Research in Linguistics, Polish NLP, and Education................................. 17

2.1. Linguistic Significance ... 17

2.1.1. Challenges from a Linguistic Perspective.. 17

2.1.2. Implication of Related Work ... 18

2.2. NLP Tools and Other Resources in the Polish Language ... 22

2.2.1. Dictionaries .. 22

2.2.2. Machine Learning Models ... 25

2.2.3. Dependency Parsers and SpaCy’s Polish NLP Suite ... 30

2.2.4. Feedback Systems .. 32

2.3. Statement of Research ... 34

Chapter 3. Design and Implementation of PLPrepare: A Grammar Checker Specializing in

Providing Feedback to Language Learners... 35

3.1. Guidelines ... 35

3.1.1. Selecting Guidelines and Finding the Words They Govern 35

3.1.2. Finding Word Lists .. 36

3.2. Filtering the Wordlists .. 37

3.2.1. PLList ... 37

3.2.2. Processing Word Lists Using PLList ... 39

3.3. Finding the Genitive in a Sentence using Grammar Rules and Dependency Parsing .. 42

3.3.1. PLPrepare Pipeline ... 42

7

3.3.2. Collecting Grammar Rules .. 43

3.3.3. Dependency Parsing... 47

3.3.4. Mapping Syntactic Dependency Tokens to Grammar Rules 49

3.3.5. Confirming the Candidates .. 51

3.3.6. Grammar Rule Edge Cases and Limitations .. 53

3.4 Generating Automated Feedback Using PLPrepare .. 55

3.4.1. Detecting Grammatical Errors ... 56

3.4.2. Classification of Grammatical Errors .. 56

3.4.3. Generating the Feedback.. 60

Chapter 4. Performance and Evaluation ... 63

4.1. Gathering and Generating the Test Data ... 63

4.1.1. Sentence Collection Using NKJP .. 63

4.1.2. Sentence Preprocessing .. 66

4.1.3. Grammatical Error Injection .. 67

4.2. Evaluation Experiments .. 68

4.3. Results ... 69

4.3.1. Genitive Detection Results .. 70

4.3.2. Grammatical Error Classification Results ... 72

4.3.3. Generated Feedback Results .. 78

4.3.4. Results from the Perspective of the User ... 79

Chapter 5. Conclusion and Future Work .. 81

References ... 82

VITA .. 87

8

LIST OF TABLES

Table 1. Genitive Case Declension with the Masculine Inanimate Singular in Bold 11

Table 2. PLPrepare Compared with Other Language Learning Tools ... 15

Table 3. PLPrepare Compared with Recent Grammar Checkers ... 15

Table 4. SpaCy’s Polish Model Performance [32] ... 31

Table 5. Total Number of Examples Collected for each Category .. 36

Table 6. A Simplified Example of a PoliMorf Entry ... 40

Table 7. The -a vs -u Accuracy Scores for the Guidelines Selected for this Study 41

Table 8. List of Rules Governing the Genitive Case in Iwona Sadowska’s Polish: A

Comprehensive Grammar [1] .. 45

Table 9. Example of Contents of a Rule’s Word List .. 45

Table 10. Genitive Rules in the Database Requiring Word Lists .. 47

Table 11. SpaCy Lemmatizer Performance with Incorrect Entries. Correct Results in Bold 57

Table 12. NKJP Test Entry Preprocessing ... 66

9

LIST OF FIGURES

Figure 1. High Level Architecture for PLList ... 38

Figure 2. PLPrepare Pipeline .. 43

Figure 3. Simplified Pipeline .. 43

Figure 4. Example Output of SpaCy’s Dependency Parser – Figure Rendered by DisplayCy .. 48

Figure 5. Grammar Tree: Grammar Rules Requiring Additional Parsing in Red 50

Figure 6. Comparison of a Negated and Non-Negated Verb That Does Not Take an

Accusative Compliment .. 54

Figure 7. Grammatical Error Classification Decision Tree .. 60

Figure 8. Displaying Feedback from the Rule Verification Stage Regarding the Use of ‘Z’ 60

Figure 9. Reporting a Case Error Where ‘Wodorem’ Should be in the Genitive Case Due to

Possession by ‘Nadtlenku’ .. 61

Figure 10. Informing the User that a Word is Misspelled .. 61

Figure 11. Displaying Feedback for a Postfix Error with a Guideline Suggestion 61

Figure 12. Group 1 Gender Distribution – For Testing Genitive Usage Detection – Corrected

for Dictionary Retrieval Ambiguations ... 65

Figure 13. Group 2 Gender Distribution – For Testing Error Classification – Corrected for

Dictionary Retrieval Ambiguations ... 65

Figure 14. Genitive Usage Detection Performance by Test Set in Group 1 71

Figure 15. Error Distribution for the Error Classification Stage... 73

Figure 16. Recall for each Test Set ... 73

Figure 17. Precision for each Test Set .. 74

Figure 18. Total -a vs -u Feedback Found Per Test .. 78

10

Chapter 1. Introduction

 Learning languages is a difficult process. Languages consist of a broad spectrum of

grammatical constructs that are not always very intuitive. Several languages have seemingly

arbitrary grammar rules that make learning incredibly challenging. In particular, the Polish

language is rife with these grammar rules, the most common of which is the masculine inanimate

genitive singular case. This study proposes a language learning tool that uses natural language

processing (NLP) techniques to detect mistakes in this case and offers feedback using guidelines

to help language learners and their instructors navigate this difficult case.

1.1. Genitive Case and the Genitive Masculine Inanimate Singular

Iwona Sadowska describes case as a “grammatical concept that through a set of different

endings attached to the normal forms explains who does what to whom without heavily relying

on word order” [I]. These endings can give the same noun many different meanings in the Polish

language and have an almost immeasurable impact on interpreting the semantics of the language.

As such, it is a vital aspect of the morphology of the Polish language. Case shows the

relationship between words and their roles in the sentence. Each case has a set of possible

endings belonging to that case. The ending used is based on a series of qualities including

etymology, gender, animacy, and the pronunciation of the stem. One can often predict case

endings in Polish based on phonology. The masculine inanimate singular in the genitive case,

however, proves to be a troublesome exception. Table 1 shows this particular declension pattern

in relation to the rest of the genitive case declension patterns.

11

Table 1. Genitive Case Declension with the Masculine Inanimate Singular in Bold

Genitive Case Declension [2]

 Singular Plural

Gender Ending Change Ending Change

Masculine Men
not in -a

in -a

-a

-y/i

Most Nouns -ów Masculine Animate Most

Nouns

-a

Masculine

Inanimate

Most

Nouns

-u/-a

Feminine
Most

Nouns
-y/-i

After Hard Stems

After Soft Stems
-Ø

-y/-i

Neuter
Most

Nouns
-a

Most Nouns

After Some Soft

Stems

After -um

-Ø

-y/-I

No

Change

The genitive case in Polish shows a lack, an absence, a possession, or a quantity in

addition to several other uses. The genitive case in Polish roughly corresponds to the use of ‘of’

in English. The masculine inanimate singular in the genitive case can take a few different

endings, but, for the vast majority of nouns, the ending will either be -a or -u [1][2][3]. Stems

could take other endings that include the adjectival ending -ego (for nouns that decline like

adjectives), or a -Ø ending (for nouns that the Polish inflectional system cannot accept). The last

two cases are much easier to predict than the first two. Regarding the -a and -u endings, choosing

between the two seems incredibly arbitrary [3], but it does follow some very specific rules that

vary widely in their consistency [1]. The result is a grammatical case in which the inflection is

nearly impossible to predict using concrete grammar rules.

1.2. Linguistic Vocabulary and Related Concepts

This study refers to various linguistic concepts, explaining some specific concepts as the

need arises. However, the general concepts are important to understand.

12

The most referenced area of linguistic study in this study is morphology. Morphology is

the “study of the forms of words, and the ways in which words are related to other words of the

same language” [4]. While there are many types of morphology, this study refers to inflectional

morphology when using the general term. Inflectional morphology is the study of the formation

of words that relate to inflectional categories. An inflectional category could be gender, number,

case, or anything that helps one understand the grammatical structure of a word in relation to

others. This concept is not to be confused with declension. Declension constitutes a form of

inflection; inflection is a broader term. For example, conjugation is inflection that applies to

verbs, but declension does not apply to verbs but to nouns, pronouns, adjectives, etc.

Inflectional morphology collects and binds different forms of a word together. These

collections are called lexemes. In other words, a lexeme is a set of forms related by inflection [5].

These lexemes have an agreed-upon name that is called a lemma. An easy example is the English

lexeme ‘run.’ The lexeme contains the forms ‘run,’ ‘runs,’ ‘ran,’ and ‘running.’ All of these

forms are related by inflection, and the lexeme chooses ‘run’ as the lemma. The lemma will

almost always correspond to the nominative (subject/dictionary) form of the lexeme regarding

Polish nouns. The notion of a lemma and a stem are often confused. A lemma is a member of the

lexeme that linguists choose to represent the whole lexeme, but a stem is a part of a word with no

affixes or postfixes. In English, it is common that a word’s stem shares the same spelling as the

lexeme (e.g. ‘runs’→ ‘run,’ stemming reveals the lemma and the stem). The distinction is very

important in Polish because this is not often the case (e.g. ‘końca’ → ‘koniec,’ the word must be

lemmatized).

Finally, this study examines sentences using a morphosyntactic paradigm. Meaning the

syntax and morphology of the words in the sentence are both important. Where inflectional

13

morphology relates words in the context of a lexeme, syntax relates them in the context of a

broader sentence structure [6]. The specific syntactic dependency relationships that this entails

are discussed where relevant, as there are far too many to discuss them all here.

1.1.1. Some assorted definitions:

• Clitic – A morpheme that has its own syntactic characteristics, but it relies on a ‘host’ for

its pronunciation [13].

• Digraph – A pair of characters that represent a single sound.

• Lexicon – The set of all of the lexemes in a language [5].

• Modal Verb – A verb that expresses modality and requires the infinitive form of the verb

it is connected to.

• Morpheme – The smallest set of characters that has any meaning in a language.

• Postfix – An attachment to the stem of a word, usually indicates some inflectional

information.

• Phoneme – The smallest phonetic unit that can produce a different word.

1.3. Natural Language Processing

Jacob Eisenstein defines Natural Language Processing (NLP) as “… the set of methods

for making human language accessible to computers.” [8]. NLP is a computer science field that

is closely intertwined with linguistics and has applications spanning the spectrum of daily life.

There is a difference between NLP and computational linguistics, however. NLP is most

concerned with the analysis of algorithms and the design of systems that can help computers

process natural languages. In contrast, computational linguistics uses algorithms and systems to

learn more about natural languages and their constructs. This study uses a pipeline of NLP

techniques, most importantly, stemming, lemmatization, and dependency parsing.

14

Stemming and lemmatization are extremely similar. Stemming reduces a form of a word

to the bare stem as described in section 1.2. Lemmatization, on the other hand, reduces a form of

a word to the lemma. In NLP, lemmatization is often preferred because it guarantees that a real

word will be returned (ex. ‘Chłopca’ → ‘Chłopiec’), whereas a form’s stem may not always be a

member of a lexeme (ex. ‘Chłopca’ → ‘Chłop’ or ‘Chłopc’ depending on the algorithm).

Stemming techniques can involve algorithms that use statistical models, or they can use finite-

state transducers to describe character-level rules, like the Porter Stemmer [9]. Lemmatization

techniques can vary between statistical models that try to guess the lemma and simple lookups.

The statistical models can predict lemmas from unseen lexemes, whereas a lookup is limited by

the number of lexemes it can access.

The third technique used extensively in this study is dependency parsing. Dependency

parsing is the act of making attachments between words in a sentence in the form of a directed

graph [8]. A dependency parse will result in a spanning tree where the edges describe a syntactic

dependency. The head of this syntactic dependency determines what type of dependency the

relationship will be. Eisenstein uses the example of nouns as being the head of noun phrases and

verbs at the head of verb phrases. The tail (or dependent) describes the subtree of dependencies

that have the head as its parent. This technique is incredibly important for resolving the syntactic

information necessary to discern where grammar structures ought to be used. For more

discussion regarding dependency parsers, see sections 2.2.3 and 3.3.3.

1.4. Significance of the Study

The ultimate goal of this study was to introduce a framework for helping students learn

arbitrary cases in natural languages. The study focused on the Polish genitive masculine

inanimate singular because of the case’s prevalence and the amount of research available on the

15

case. To test the framework, this study introduced two tools: PLList – a word list management

tool, and PLPrepare – a grammar checker designed to give grammar feedback to students when

using the Genitive Case.

The framework that PLPrepare embodies serves to fill in the gaps left by other language

learning tools. Table 2 shows a comparison between PLPrepare and other tools. The most

common problem is that these language learning tools rely on user configuration. Both Quizlet

and DuoLingo offer feedback in real time, but they do not explain grammar mistakes in real

time. Grammar Checkers, on the other hand, do. The problem is that grammar checkers neglect

guideline-based feedback for arbitrary cases, and they do not offer grammar feedback that targets

foreign language learners. PLPrepare offers both. Table 3 differentiates between PLPrepare and

some recent grammar checkers.

Table 2. PLPrepare Compared with Other Language Learning Tools

Table 3. PLPrepare Compared with Recent Grammar Checkers

16

PLPrepare is not a comprehensive tool, but unlike other tools, it aims to give real-time feedback

to language learners struggling with arbitrary cases.

1.5. Overview of the Study

Chapter 1 introduced the problem and its importance. It also gave background

information for easier understanding of the techniques that this study employs. Chapter 2 reviews

the literature related to the problem. Chapter 3 presents the methodology used in the study and

Chapter 4 reports and interprets the results. Chapter 5 offers a discussion regarding the

researcher’s conclusions and directions for future research.

17

Chapter 2. Related Research in Linguistics, Polish NLP, and Education

2.1. Linguistic Significance

 The incredible linguistic strides that were taken to understand the genitive masculine

inanimate singular, unfortunately, produce controversy. Within the field of linguistics, there are

arguments regarding which model of childhood acquisition best describes reality. This section

will explore some of the experiments performed by linguistic researchers to try to understand

how Polish children end up learning this case. This will highlight the challenges that this case

pose.

2.1.1. Challenges from a Linguistic Perspective

To illustrate the problem, consider the examples of different forms below:

Nominative Singular: Młot (Hammer) - Genitive Singular: Młota (-a)
Nominative Singular: Płot (Fence) - Genitive Singular: Płotu (-u)
Nominative Singular: Fotel (Armchair) - Genitive Singular: Fotela (-a)
Nominative Singular: Hotel (Hotel) - Genitive Singular: Hotelu (-u)

These pairs of words share final and penultimate consonants, they rhyme, and they are in the

same grammatical gender. However, the pairs still possess different endings when considering

the genitive singular. Because of this, there must be some model by which Polish speakers

acquire this case. In this example, the choice between -u and -a appears completely arbitrary.

The arbitrariness involved in the genitive masculine inanimate singular takes its toll on

the native speakers of the language. According to an experiment done by inter-lingual

researchers on Polish, Estonian, and Finnish speaking children, Polish children made the most

mistakes [13]. Of these mistakes, using an -a ending where a -u ending was required was the

second most frequent mistake of those involving leaving the lemma in the Nominative Case (in

other words, mistakes where the child did not attempt an inflection at all) were not counted. This

18

study paints a bleak picture regarding the acquisition of the genitive case until the actual ratio for

correct vs incorrect inflections is revealed.

Another study focusing strictly on genitive case acquisition in children measured the

overgeneralization error rate [3]. An overgeneralization error occurs when a child takes an

inflectional pattern and applies it to a different lemma that produces an incorrect result [13]. An

example using the forms listed above would be a child trying to apply an -a ending to ‘Młot”

because the child is familiar with the inflectional pattern of “Płot.” The overgeneralization error

rate was an average of 2.02% when children formed the Genitive Case Masculine Inanimate [3].

This error rate is extraordinarily impressive especially for children, but there is a caveat that

within this error rate. The majority of the overgeneralization errors involving the genitive case

were on masculine inanimate singular nouns. This result shows the extent to which young

children have mastered this form, but it also shows that there are still some improvements

needed.

2.1.2. Implication of Related Work

These results suggest that children gain understanding by sub-consciously manipulating

data, keeping track of frequency, pattern matching, and the intersection of all of them [13]. First,

the exposure to the inflectional pattern is measured in Surface Form Frequency (SFF). The

similarity of the patterns (and the forms) is measured in the Phonological Neighborhood Density

(PND), sub-divided into two related measures: Form-Based and Class-Based PND. Form-Based

PND references a specific form, whereas Class-Based PND looks at all forms across the whole

morphological spectrum. An important element of Class-Based PND is that the similarity tracked

also considers various criteria including phonological aspects, animacy and gender. The diversity

19

of the criteria used makes Class-Based PND a potent tool for children rapidly searching for

patterns.

 To contrast this finding for the first experiment, Dąbrowska suggests using the Dual

Mechanism Theory to model this acquisition [3]. This theory describes that, when given an

unfamiliar form, children will search their memories to find it. When they fail, they will try to

respond with a default. This default is formed by examining clusters of irregular words in the

memory and finding the most frequent form that works for that specific, often phonologically

based, cluster. Dual Mechanism Theory has gained an enormous amount of traction when

representing English past tense acquisition, but this is because transformations in the English

past tense are phonologically based [3]. The morphology of the genitive masculine inanimate

singular is not phonologically based, so additional factors must be considered.

Given the mental tools described by these different case acquisition models, children still

navigate the arbitrary Masculine Inanimate Genitive Singular with great difficulty. However,

they eventually eliminate the error through the combination of Class-Based PND and Surface

Form Frequency. This interaction works based on labeling lemmas as friends or enemies based

on the inflection pattern. Using the example of Młot-Płot as shown before, a child, knowing that

Płot ends in an -u, would attempt to label Młot as an -u because of the similarity denoted in

Class-Based PND. This error would be reflected in a sub-conscious classification of Młot as an

enemy of that pattern in Form-Based PND. Once this process continues throughout a child’s

early development, the Surface Form Frequency reinforces the learned patterns and enemies of

those patterns so a child will either know the form or could predict the form.

Despite this insight, there are still complications when predicting this case. One

complication is mobile e (often denoted -e-) and that children innately search for a default ending

20

in inflectional systems [3]. The mobile e can be predicted in most forms, so it does not pose

much of a barrier in the acquisition process. The search for a default, on the other hand, can lead

to overgeneralization in favor of the -a ending. This generalization occurs because, when the

genitive case is examined with Masculine Inanimate in addition to Masculine Animate and

Masculine personal, the -a ending is overwhelmingly more common. The commonality causes

children to overgeneralize patterns from the other parts of the masculine genitive into the

masculine inanimate.

Despite this fact, Dąbrowska states that there was no evidence to suggest that any ending

was treated as a default. This finding, along with each circumstance not being tied to a single

ending, contradicts some central tenants in the Dual Mechanism Theory. As noted above, DMT

suggests that overgeneralization errors are made when the irregular form is unknown, and the

default was used in an attempt to guess the correct form. This proves that DMT’s ability to

describe Polish is somewhat diminished from its prevalence in the English language.

A third experiment conducted by Ewa Dąbrowska [14] gives some interesting results

regarding this case. Dąbrowska [14] notes that around eighty percent of substance nouns take

their endings in -u while object nouns take the -a endings at around the same rate. This finding

gives another rule to help predict this case in a rule-based fashion. Dąbrowska’s [14] experiment

was designed to highlight this particular rule, asking children to produce target forms in both -u

and -a in a conscious effort to see if the rule was taking hold in the children’s minds. It is

necessary to note that, as children develop, their skills in producing the correct forms increase

dramatically as their brains produce rules that solidify. The results defied all expectations. The

children avoided acquiring the abstract pattern that would improve prediction, and continued to

make errors in choosing between -a and -u. To make matters worse, older children should have

21

been able to take advantage of these rules, but they still produced incorrect forms when even

adapting according to the rules would have improved their performance. Despite all of this, the

output was generally correct. The author argues that this indicates that correct usage is tied to

memorization.

Regarding the problems with the models addressed so far, it is important to recognize that

the acquisition of these cases does not occur all at once but is rather a gradient [15]. The rules vs.

schemas debate at the heart of the issue regarding models has had an incredibly difficult time

pinning down Polish case acquisition for some time. The debate is not new in the linguistics

community. Krajewski [15] states there has not been a model that accounts for the distinctions

between regular and irregular nouns, the contexts that create them, and how they can help choose

the correct form, or even whether or not predicting the correct forms is even possible given the

context. According to Krajewski [15], DMT is insufficient to model Polish correctly, but it does

offer a way to navigate the irregularity of Polish. Navigation is possible because of how DMT

models the storage of irregular inflections. The genitive case is part of why this compromise has

to be made, as it is difficult to work out the criteria for inflection. Krajewski [15] does note that a

schema’s productivity is based on the variability of what has been produced in the past. The

more a form is produced, the easier it is to adapt to new patterns.

2.1.3. Applications

 In practice, the experiments discussed in the previous section reveal fundamental findings

about this case. First, students cannot rely on phonetic rules to learn this case. Second, teachers

cannot rely on a default ending to teach students adequately. Third, students must practice

reinforcing knowledge and identifying the ‘enemies’ that Krajewski [15] mentions. Fourth, rules,

22

while not as important as exposure, are important for acquisition. Finally, it is indeed possible to

acquire the case.

 PLPrepare is a reaction to the truths revealed in these experiments. While this study

makes no claims regarding a linguistic model for case acquisition, PLPrepare provides a

framework for students to get feedback for essays, grammar drills, and other exercises to

increase their exposure to new forms. The feedback itself addresses the need for rules and does

not attempt to identify any default ending for the entire case.

2.2. NLP Tools and Other Resources in the Polish Language

Polish is a unique language that requires special treatment when it comes to using NLP.

There are too many Polish grammatical structures that are not shared with more common

languages, requiring additional NLP constructs [16]. The issue of transformations and the

commonality of passive voice, adjectival participles, inflection of negated direct objects, valid

double negatives, and more virtually guarantee NLP systems’ inability to be adapted to Polish

from any non-Slavic language.

Despite its particular needs, the Polish language has a multitude of parsers, spell

checkers, valence dictionaries, and other tools that prove that researchers in the NLP field have

not neglected Polish. There are limits to these tools concerning the focus of this study, however.

As these tools are surveyed, their usefulness and shortcomings are examined.

2.2.1. Dictionaries

Two Polish mainstream language parsers integrate a valence dictionary called Walenty,

so it is extraordinarily relevant to the field as a whole [17][18]. A valence dictionary produces a

massive amount of inflectional information for each lemma passed into it [19][20]. Parsers can

use this to evaluate the lemmas that they come across and produce productive output. Walenty

23

can map verbs to phrases, and it makes an extraordinary attempt at untangling complex Polish

idioms. There are some problems, however. Linguistically speaking, Walenty is theory-neutral,

which means that it does not adapt itself to modeling the output according to any particular

theory. This neutrality improves its universality but reduces its effectiveness regarding this

problem [18]. The output is both machine- and human-readable, but this output is not ideal.

Additionally, the focus is on verbs and their roles in the sentence. Because of this, the inner

workings of Walenty are not pertinent to the methodology of this project. It does, however, shed

some light on one of the necessary components of a language parser. For example, dictionaries

like Walenty can be used as an input source for several other components along the pipeline,

including a formal grammar, which can then be used to generate a structure bank for referencing

various syntactical elements and structures. All of these resources combined can be useful for

morphological analysis [18].

Despite these shortcomings, Walenty also provides some insight into the case inflections

that are common throughout Polish. Grammatical case is usually directly specified by some

external factor which could be a verb, a sentence structure, adjectives, or even another noun [17].

As a consequence, the syntax surrounding grammatical cases is extraordinarily complex, which

makes valence dictionaries very useful for analyzing the circumstances under which certain cases

appear. The context and its syntactical impact may prove to be valuable in approaching the

problem of the Polish genitive case. Unfortunately, the valence dictionary itself cannot tackle

this problem alone, but it can work with a formal grammar model to navigate the difficulty of

Polish syntax.

The core of this study is the morphological aspect. As such, an examination of

Morphological Analyzers will shed light on how the existing tools tackle the problem of the

24

Masculine Inanimate Genitive Singular. Of the twelve morphological tools found by the

PoliMorf developers, only a select few were of a quality fit for research, and of those, even fewer

were large enough to provide sufficient coverage of the Polish lexicon [21]. This led these

developers to create a new tool that merged SGJP and Morfologik, which are both morphological

dictionaries developed using data from an eleven-volume dictionary of the Polish language.

Scholars of the language manually annotated this data to make it fit for a morphological

dictionary. These enormous dictionaries, when combined, could produce the morphological

information for all cases – including the masculine inanimate genitive singular. This result did

not come through a language acquisition model, machine learning, or any dynamically produced

methodology [22]. Instead, it utilized a collection of around a thousand unique morphological

patterns [21].

While it is useful to parse large groups of data that only require surface-level information

[22], relational models used to generate inflectional patterns mean it is difficult for a human to

determine causal relationships between a form and the grammar information that created it. What

these models lead to is a dictionary that can decompose the morphological rules but cannot

explain anything about reaching its conclusions. Also, it does not truly acquire the rules, but it

stores patterns in a database. Thus, it cannot show why particular patterns are chosen while other

seemingly valid patterns are less correct. To language learners, linguists, and students, the

relational models used cannot reveal any useful patters that improve their understanding of the

language. PoliMorf is, however, an invaluable tool for generating the underlying morphological

information needed to make sense of sentences. This study makes extensive use of the PoliMorf

dictionary, which serves as the underlying grammar dictionary in the PLList system introduced

in section 3.2.1.

25

2.2.2. Machine Learning Models

The actual process children use to acquire the Masculine Inanimate Genitive Singular is,

conceptually, very close to the process of training a computer to perform a task using a neural

network. Several attempts have been made, however, to predict various morphological elements

based on a single word. The richness of the field of machine learning for re-inflection is

astounding. These machine learning techniques provide insight into how making context-

informed case predictions might be possible.

 To begin, recently, recurrent neural networks have been a popular tool to perform

morphological analysis [23]. There is also the possibility of using a linear model on untrained

data sets, which offers cheaper computation at the cost of a slight amount of accuracy. The

model described in Ç. Çöltekin, J. Barnes [23] utilized a linear support vector machine (SVM) to

predict lemmas, the part-of-speech, and other morphological information. They accomplished

this by using a pipeline structure that included an encoder that retained other models’ recurrent

bidirectional networks and placed the input into an embedding layer. Eventually, that

information reached a part-of-speech (PoS) classifier that took advantage of two hidden layers

with rectified linear units. From there, a softmax classifier was used to export a probability

model. The morphological prediction involved the same basic steps as the PoS classifier. It made

use of the same two-layer setup with rectified linear units. The difference is that it involved

separating the analysis into distinct features. Each morphological feature was placed into several

feed-forward networks.

 This linear model was compared to a neural model that used 64 as the embedding size

and utilized forward and backward gated recurrent units. This model learned 512-dimensional

representations, which led it to have great performance [23]. The linear model performed

26

admirably and produced more accurate lemma predictions than the neural model, but it was still

outperformed in almost every other avenue.

 There is a difference between morphological analysis and morphological reinfection,

however. This difference is best explained in two steps. The first step is morphological analysis

and the second step is morphological generation [24]. In the model to be examined in this

section, convolutional architectures were used. These architectures are powerful tools that are

used to great effect in image processing, but they can be applied re-infection. Typically, a well-

performing convolutional neural network model is created by using a single decoder to avoid

data sparsity. They also tend to use letter sequences in addition to convolution for input. Finally,

some form of long short-term memory is used very deep in the pipeline to decode. Long short-

term memory is used for processing sequences of data, which makes its use for strings of

characters extremely common.

 The model described above is an actual system developed by Robert Östling [24]. His

experiments used a system that had two Long Short-Term Memory (LSTM) architectures tied

together in a pipeline along with four Convolutional Layers and 256 LSTM units at the encoder

level and the decoder level. These fed into even more layers of Convolutional filters until a

hidden layer was finally reached. Morphological features were used as input to the decoder in the

form of binary vectors. Once the time came for the decoding step in the pipeline, a beam search

was used. Finally, an output string was generated. Models like this perform well when given a

small amount of information, making them extraordinarily relevant for the purposes of predicting

the Polish Genitive.

 To introduce the enormous array of other models used in morphological re-inflection, the

CoNLL-SIGMORPHON 2018 shared task on supervised learning of morphological generation

27

saw the use of several models using neural networks to predict morphological information [25].

These models utilized supervised learning on data sets acquired through Wiktionary [25], which

provides almost every aspect of morphological data imaginable. The data were separated into

high, medium, and low conditions, amounting to different levels of difficulty. The first of the

tests involved taking the source form of a word and producing a target form via the

morphosyntactic description. The second test involved producing the form from a sentential

context. This test is more difficult than the earlier tests and also more relevant to predicting

noun’s inflectional forms. The second test requires the systems to produce a lemma in a given

context. The test that was used to evaluate these systems was performed for 103 languages. For

the harder sets of data, the performance was much lower, especially for Polish. One of the

models that performed well, notably in Polish, was the Copenhagen System [26].

 The Copenhagen System, like many of the other systems used in this experiment, made

use of an encoder-decoder system. Like the system described in Çöltekin, J. Barnes [23], it

utilized a recurrent neural network [26]. Something that increased its performance that this

system combined the training data for the languages in this test. This system also treated the

morphosyntactic description as an auxiliary task.

 This system provided several novel solutions to common problems of efficiency and did

so on the baseline system provided at CoNLL [26]. For example, when given the list of

languages for the task, this system performed tuning on the groupings of the randomly selected

languages and then utilized those languages for a different type of training. The system’s core

value is that it assumed that morphosyntactic features of languages are similar regardless of

which language they belong to. This value provides an interesting philosophy, especially

considering the differences that arise when examining languages of different families. This

28

approach complements the combination of multilingual tuning discussed earlier with

monolingual training.

Another interesting part of this system is that the weights of the monolingual training sets

were less than the multilingual training. This difference reinforces the core value that these

languages share morphosyntactic features. The models from these experiments trained for fifty

epochs, including validation. Also, for task 1, the passed context was stored in an LSTM. Once

this training was complete and predictions were ready to be made, the system relied upon five

models to generate the target form rather than a single model. This prevents overfitting. The

most intriguing part of this system is the notion that it utilized an additional task to improve the

prediction performance by not only predicting the form of a target but also by tagging it. The

addition of tagging improved the performance by tying in a separate thread to the learning and

giving the system more awareness of the distinct morphological features. Finally, most of the

incorrect predictions were nowhere near the target form. Target forms mostly come from

substituting a few letters near the end of the source form. The authors observe that their model

did not effectively learn to copy the source forms and apply the necessary transformations very

often [26]. They also observe that the issue could be fixed using techniques that push the system

toward encoding by data augmentation. All of these adjustments contributed to excellent overall

performance [26]. This performance gives evidence to the assumptions made by the authors and

to the merit of their adjustments.

 Another top performer in this task was the UZH system which set itself apart from the

other contenders by using a beam search for the decoding process [27]. The encoder-decoder

models tend to lag in these models, so this system (and many others) attempted to learn edit

operations as a sequence instead of relying on string-to-string transductions. Also, this system

29

used an alignment step that was completely removed from the application of the edit sequence.

These factors led to the system’s success in these tasks and should be noted for future attempts at

morphological prediction systems.

 The UZH system used a transition-based transducer system that operates by performing a

sequence of edits on individual characters in a string [27]. Each of these edits is made based on

the history of all of the edits and the representation of the character edits. The Recurrent Neural

Network has the task of choosing the proper edit out of several possible edits. This process is

modeled using several time stamps. A probability is calculated for each of the possible edits

using classifier weights and LSTM at a specific time. At a specific time, a probability is

calculated for each of the possible edits using classifier weights and Long Short-Term Memory.

At this time, the system generates a prediction of the loss for actions that take place after the

transition has taken place. The prediction step has the effect of allowing the system to look ahead

and determine the proper course of action while knowing the possible consequences of a choice.

 One of the problems that this particular system was attempting to solve is the problem of

using character alignment algorithms, which are incredibly important to a transducer’s proper

functioning [27]. They do have some problems, however. For example, actions that generate a

productive result are referred to as Gold Actions. Character alignment algorithms typically

generate such actions, but several sequences often create probability ties. At this point, these

algorithms suffer because they could choose either action without any morphosyntactic

description. In other words, they are not sensitive to certain information that ought to inform the

choice, leading to removing this common step from the system.

 Also, this model worked at an ascending gradient that performed two distinct phases over

and over again. These are the roll-in and roll-out phases: First, the roll-in phase is sampled from

30

the set of all of the optimal edits found or selected from the set of possible edits that exist at that

particular time. Once completed, the roll-out phase will perform the roll-in step for all of the

input or perform that step for a possible action to be taken and stores the effect on the sequence

level loss. Finally, this model was used in a group along with other models to avoid overfitting.

The UZH model had excellent performance for re-inflection because of these adjustments to the

common RNN architecture that is often deployed for these tasks. Furthermore, these

improvements introduced the notion of a transition-based transducer system that critically breaks

down these words in terms of transitions [27]. This breakdown is a clever idea that makes these

systems more transition-aware – critical in a transition-heavy environment like morphological

reinfection.

2.2.3. Dependency Parsers and SpaCy’s Polish NLP Suite

 There are several dependency parsers available to the NLP community. The dependency

parsers often train on dependency treebanks to generate specific models, so the dependency parsers

discussed in this section can be trained on any language that a treebank exists for [28]. Dependency

parsers use various approaches from using dynamic oracles to word embeddings and from using

transition-based paradigms to using decomposition paradigms [29]. Broadly, they can use either a

greedy or non-greedy approach. According to an experiment performed by Choi, Tetreault, and

Stent [29], greedy parsers were consistently faster than their non-greedy counterparts. These

parsers sacrificed accuracy for speed, however, as non-greedy solutions offered consistently better

accuracy. In this experiment, the non-greedy Mate system had the best performance, but it was

among the slowest competitors. The greedy SpaCy model was the fastest and had good

performance for a greedy model (UAS of 89.61% in sentences with punctuation, where greedy

31

models averaged 88.5% UAS). From this experiment, SpaCy’s dependency parser appears to be

the best of both worlds.

 On top of the SpaCy dependency parser’s performance in the experiment described above,

SpaCy continues to improve its dependency parser. In 2015, Honnibal and Johnson [30] improved

their parser. The newer parser, like the old, was a greedy, non-monotonic transition-based

dependency parser [30]. The novel approach here is creating a new non-monotonic transition set,

which necessitates the use of Goldberg and Nivre’s [28] dynamic oracle. This approach was an

improvement on previous greedy non-monotonic systems that improves the UAS score by 0.6%

and bringing the directed accuracy measure up to 91.85%. These accuracy improvements

combined with the speed of a greedy approach makes the SpaCy dependency parser an attractive

choice for this project.

SpaCy offers pipelines for NLP processing in many languages, including Polish. In

addition to dependency parsing, the SpaCy Polish model offers lemmatization, morphologizing,

PoS tagging, and many more services [31]. This model is armed with the tools to tackle almost

any problem involving NLP. The dependency parser model was trained using the dependency

treebank developed by Alina Wróblewska, et. al. [32]. The pipeline itself was trained on lemmas

from Morfeusz 2[33] and on material from the National Corpus of Polish (Narodowy Korpus

Języka Polskiego) [34]. The SpaCy Polish pipeline reports the accuracy measurements as show

in Table 4.

Table 4. SpaCy’s Polish Model Performance [32]

32

2.2.4. Feedback Systems

 In the realm of tools designed to give feedback, two areas that merit discussion. First is

the grammar checker, which find grammar mistakes based on three general approaches [12]. The

second is Kostikov’s Adaptive Learning paradigm [16] [35]. This direction is very new and not

widely known. Given this paradigm’s goals and their similarity to those of this study, it is worth

examining.

 Grammar checkers can be classified into three approaches [12]. The first is the rule-based

grammar checker, which provides feedback based on manually created rules. Rule-based

grammar checkers involve a great deal of manual entry and configuration, but these remain the

most common. The second is the data-driven grammar checker, which uses statistical techniques

like PoS tagging combined with a corpus-based approach to compare the input to corpus data to

determine correctness. Finally, the hybrid approach combines elements of the two. Typically,

this means adding some concrete rule-based parsing to a statistical approach.

 Grammar checkers will often follow a four-stage process:

1. Sentence Tokenization

2. Morphological Analysis

3. POS-Tagging

4. Parsing.

The sentence tokenization stage breaks the input into tokens and performs word segmentation to

generate lexical information about each word in the sentence. Next, the morphological analysis

stage finds word stems, and the PoS tagging stage determines which word in the sentence

belongs to which PoS. Finally, the parsing stage uses this information and syntactic constraints to

determine the structure of the sentence and mark any errors that violate the constraints. In a

33

survey of grammar checkers for ten languages, only three could offer a correction for an error,

and none were designed for language learners. Furthermore, none were designed with arbitrary

cases in mind [12].

 One paradigm that is targeted toward language learners is Mykola Kostikov’s Adaptive

Learning approach [16]. Adaptive Grammar Learning attempts to predict nouns’ inflectional

forms using the lemma itself and some additional inputs [16]. The largest problem facing this

model is the lack of accuracy. To make matters worse, this model has a particular weakness to

grammatical exceptions. Another problem is the lack of research that surrounds this model. A

few papers involve rule-based paradigms to model the transformations of grammar, but it is a

model that requires more research.

The Adaptive Learning Model involves manually encoded sequences that are recorded

[35]. Manual encoding presents the problem of how these sequences are checked for accuracy.

An external factor must ensure that the manually encoded sequences are correct. External factors

highlight this model’s weaknesses regarding the necessity of user input. The author details that if

sequences are entered incorrectly, they can simply be redone. Such loose error-handling does not

inspire confidence regarding the correctness of the encoded sequences. However, it should be

mentioned that this model’s goal is to be used to aid language learners. Unfortunately, the

prospects of piggybacking this model onto research-oriented models shrink with the amount of

user input required. The goal is to provide visual aids to display the transformations that take

place as lemmas are placed in different cases. This could prove to be very useful in determining a

potential rule behind the Polish Genitive but given that these analyses do not provide any

information as to why the forms change beyond a description given by a process of

decomposition, its usefulness stops there.

34

Still, some intriguing concepts are addressed. First, the concern with the eventual

transformation of a word instead of the immediate transformation is an interesting concept [35].

An eventual transformation describes that, given a word, several potential transformations could

be applied to that word. This set of transformations becomes a set of building blocks to reach a

description of that word’s final transformations eventually. A similar idea presented is that a

decomposition can take place to create a sequence of transformations and then describe what

caused the previous transformation. The sequence itself does not give a complete explanation,

but it instead determines the criteria surrounding a transformation. The criteria can give the

learner at least some clue as to what caused the transformation. All of these extra ideas involved

in producing forms can serve a purpose breaking down this problem.

2.3. Statement of Research

 The motivating problem presented in this chapter was the need to provide language

learners with a way to navigate and master arbitrary cases in languages. In the Polish language,

the genitive masculine inanimate singular presents one of the largest arbitrary cases and one of

the most difficult challenges for language learners. This study proposed an approach to construct

a hybrid grammar checker that is primarily designed to provide detailed, accessible feedback to

its users. This study produced the PLPrepare Hybrid Grammar Checker to test this approach.

35

Chapter 3. Design and Implementation of PLPrepare: A Grammar Checker Specializing in

Providing Feedback to Language Learners

 PLPrepare is a tool for finding and correcting errors that students make in the Genitive

case. The system’s end goal was to use NLP resources to mark and provide feedback for these

errors. Accomplishing this goal required the system to be able to detect where the Genitive Case

should be used, examine the word in that location, determine if that word has the correct

morphology, and, if not, classify the error to provide feedback. Additionally, the arbitrary

genitive masculine inanimate singular case required more information to produce meaningful

feedback, so the system generated that feedback with the help of a guideline database.

3.1. Guidelines

Over time, Polish linguists have discovered patterns that can inform students’ decisions

regarding the genitive masculine inanimate singular case, so the system uses these patterns

(referred to henceforth as guidelines) to arm them with the knowledge to avoid repeating those

mistakes [1]. To provide feedback on the genitive masculine inanimate singular, a sample of

guidelines was taken, lists of applicable words were filled, those lists were processed with a tool

called PLList (Discussed in section 3.2.1.) to create a database of words that these guidelines

govern.

3.1.1. Selecting Guidelines and Finding the Words They Govern

 Because of the number of guidelines and the limited resources of this project, only a

sample of guidelines were catalogued. The selected guidelines were those for which word lists

could be filled easily. “Easily” here means that accessible, unambiguous lists could be found for

those guidelines on collaborative pages such as wiki projects and other sources.

36

3.1.2. Finding Word Lists

The guidelines each specify a category of words describing similar things, body parts,

buildings, and spices, for example. The problem with using these categories is that it is not

always easy for the observer to know exactly where one category ends and another begins. To

avoid merged categories, the word lists use pre-compiled lists that correspond to a category that

fits the guideline’s meaning. Most of the wordlists were found on Wikipedia, where word lists

were found by recording the names of pages according to Wikipedia categories. Those found on

Wiktionary were already organized into a convenient list format. Table 5 lists the categories

found, the raw number of found words, and the source.

Table 5. Total Number of Examples Collected for each Category

 Table 5 introduces two sub-categories of word lists: those translated and those that did

not originate from a wiki project. One potential problem was that these words could stray outside

the bounds of the given guideline. To prevent straying outside the guideline, words were

translated into English and checked against existing English word lists that did not exist on the

corresponding Polish wiki page. The remaining problem is that Polish grammar does not always

recognize categories like English does [1]. This lack of recognition could be considered an edge

37

case that is a potential subject for further research. Given the lack of a reliable Polish

corroborating categorization, the English category suffices.

3.2. Filtering the Wordlists

 The result of the previous stage was a selection of unfiltered word lists. In their unfiltered

form, they are useless because they contained feminine and neuter nouns as well as masculine

inanimate nouns. Additionally, they appeared in the nominative case, which is the subject or

dictionary form [1][2]. The word lists must contain only masculine inanimate singular nouns in

the Genitive case to provide the correct feedback to students and catalog the guideline’ accuracy.

At this stage, the word lists also contained duplicates, adjectives, and other superfluous

information. A preprocessing stage was necessary to make these word lists usable.

3.2.1. PLList

 The task of reviewing 2,089 words’ grammatical properties is a time-consuming one, so

the PLList system was developed to handle the task of preprocessing these lists. The PLList

system provided a basic but user-friendly flag system that allowed for easy removal of unwanted

items by allowing the user to specify filtering information in the form of a command line flag. At

its core, PLList is a command-line tool that facilitates batch NLP operations on lists without

requiring the user to learn PoliMorf’s tagset [21] for identifying morphosyntactic tags.

The architecture of PLList is relatively simple; it stores PoliMorf’s rows in an indexed

SQLite database and uses the user’s command and filter information to query PoliMorf for the

morphosyntactic tags in each of the words in a given list. Then, the system processes the items

according to the morphosyntactic tags retrieved and the specified command and filter

information. PLList then outputs the results in the form of a list. Figure 1 shows an overview of

PLList’s architecture.

38

Figure 1. High Level Architecture for PLList

 PLList performs the following basic tacks: simple filtering, applying a morphological

case to the words in the list, retrieving a dictionary form of inflected words, retrieving the

grammar information of the words, and filtering based on grammar information. These tasks are

achieved by querying the PoliMorf database, which contains the grammar information necessary

to accomplish these tasks. The user simply enters a command with a filter and a file to process,

and the command is parsed. Once PLList recognizes a supported command, it checks the file.

Then, it uses a regular expression table to translate from the user-friendly filtering information

into a query compatible with PoliMorf’s grammar tags. The command processor then manages

all of the calls necessary to the NLP module to accomplish the task. The NLP module then gets

feedback from the Database Manager and forwards that information back to the Command

Processor, which sorts the output and sends the new lists to the File Formatter to be structured

and written to the hard drive.

39

3.2.2. Processing Word Lists Using PLList

 To remove all of the words that the guidelines do not govern, PLList had to remove all

words in a list that are not masculine inanimate in gender or singular in number. It filtered out

any word that is not a noun, and it inflected all of the words in the list into the genitive case.

Also, it had to remove duplicates, classifying and descriptive adjectives, and any accompanying

tokens that were present in the word list.

 Before PLList could filter any words, it had to read the file correctly. The system

preprocessed the word list as it scanned the file. The priority was to ensure that each entry in the

list contained only one word. For this study, descriptive adjectives that inform the meaning of

nouns were removed. One example is ‘okulary przeciwsłoneczne’ or sunglasses, the adjective

‘przeciwsłoneczne’ (lit. against the sun) is vitally important to the meaning of the noun but, in

most cases, it does not affect morphosyntactic attributes of the lexeme ‘okulary.’ So, it was safe

to remove these adjectives. Furthermore, the preprocessing stage stripped each word of things

like white space and punctuation, and excess tokens are treated as separate words that the system

will filter based on the user’s filter information. It was generally unsafe to remove tokens by

length because several Polish prepositions and conjunctions are one letter long (a – contrasting

and; i – inclusive and; o – about; w – in, at; etc.) [1].

 After filtering, the word lists had to be reinflected using PLList’s ‘case’ command.

PLList’s ‘case’ command accepts a target case, filter flags, and an input and output file. The

command works by first generating a new word list according to the user filters for gender,

number, etc. and then lemmatizing the words. PLList lemmatizes words by searching the

database for the present form of the word and retrieving the lemma from the lexeme category. As

a result, only the relevant words are present in the new word list. Then, the command module

40

sends the new word list to the NLP module which requests the rows from the database that match

both the lexeme and the target case.

 As an example, the vegetable list contains the word pomidor (tomato) (Table 6). If the

accusative form of the word is present in the list, the lookup finds the accusative form pomidor

(2nd row) and checks the morphosyntactic tags in the 3rd column of the figure against the user

filters. The lexeme pomidor is then returned and used in a separate query to find the form in the

1st column that matches the “gen” or genitive field in the 3rd column (the reasons for performing

this operation as two separate queries instead of one is discussed below). Once the result is

returned, PLList adds the genitive form to the list and sends the list to the File Formatter to print.

Table 6. A Simplified Example of a PoliMorf Entry

Thus, if the user wants to put everything in the list into the genitive case and remove

everything that is not a noun or masculine inanimate, then the command would look like this:

case VegetableList.txt VegetableListInGen.txt gen -d -p -m noun -g ma mn -n sg

The -m (mode) flag with the ‘noun’ argument tells PLList to filter out all rows that do not

contain a common noun or a gerund (subst or ger). It is important to note that nouns that decline

like adjectives (e.g. znajomy - acquaintance, Luty - February) are still considered nouns. The -g

(gender) flag with the ‘ma mn’ argument filters out all rows that are not either masculine animate

or masculine inanimate. The -n (number) flag with the ‘sg’ argument filters out all rows that are

not singular. PLList compares this information against the morphosyntactic tags in the 3rd

column in the figure below. The -d (duplicate) flag specifies that PLList should remove all

duplicates and, finally, the -p (postfix) flag causes PLList to append postfix statistics at the end

41

of the list. PLList performed this process on each of the word lists to generate new, inflected

wordlists.

 Postfix statistics counted the postfix on each of the words in the new word lists and

displayed a percentage breakdown of the postfixes that occurred in the list. This percentage

breakdown was necessary for creating guideline entries in the database for providing feedback in

future steps. Also, a further distinction was necessary in order to quantify the accuracy of the

guidelines properly. These guidelines considered only a limited breadth of words, so it is

inappropriate to count words governed by different guidelines. Examples included foreign nouns

(e.g. kiwi - kiwi), nouns that decline like adjectives (e.g. Luty - February), and indeclinable

nouns (e.g. dur – major (scale)). In other words, the results only considered those words for

which the -a/-u choice is present. Table 7 shows the results of this stage.

Table 7. The -a vs -u Accuracy Scores for the Guidelines Selected for this Study

 Multiple nouns share the same forms, for example: list (letter) in the nominative singular

and list (lists) in the genitive plural. This is an ambiguous case, which is why the level of

disambiguation depends on the accuracy and detoken value of the filters. Without any filter

information, the system could recognize either as the correct form. The reason that the query was

42

split into two steps is twofold. The first reason is to reduce ambiguation that could stem from

lexemes whose forms overlap. The second reason was to provide better feedback by first

segmenting off the unusable words where PLList can classify them into further subcategories

and print them if the user wishes.

3.3. Finding the Genitive in a Sentence using Grammar Rules and Dependency Parsing

 After the sample guidelines were ready, the next stage was detecting where it was proper

to use the genitive case in a sentence. For example, if a student entered the sentence “Nie ma

jabłek (There are no apples),” it was easy to pick out the genitive because jabłek is the genitive

plural of jabłko. The negative existential ‘nie ma’ requires a genitive predicate noun. Since this

study aimed to provide students with feedback for incorrect usages, a student could just as easily

have entered the sentence “Nie ma jabłkami,” which would replace the genitive plural with the

instrumental plural. There is no way to parse the sentence as written natively and know that a

given word should be in the genitive case. There had to be a process to break the sentence into its

fundamental pieces and examine them to find the rules that require the genitive case.

3.3.1. PLPrepare Pipeline

 PLPrepare is a tool that parses sentences for genitive case rule candidates, verifies them,

and later compares the contents of the sentence to the requirements of the rules found. This tool

was developed to provide detailed, automated feedback to students and teachers. It is the tool

that determines where the genitive should be used in a sentence. Figure 2 shows the basic

pipeline, which will be discussed at length in the following sections. The pipeline could be

further simplified as shown in Figure 3.

43

Figure 2. PLPrepare Pipeline

Figure 3. Simplified Pipeline

3.3.2. Collecting Grammar Rules

 The first step to building this grammar checker was to collect the rules. From a design

standpoint, there are two types of rules: those that require word lists and those that do not. An

example of a rule that does not require a word list would be the genitive possession. This rule

44

states that the first noun in a pair of adjacent nouns exerts possession over the second [1]. For

rules like this, there is no need to refer to outside information and can be easily included in the

system. An example of a rule that requires outside information would be the rules related to

preposition governance over nouns. This means that the genitive case governs several

prepositions, and these prepositions should be in a database to help the system pick out where the

genitive case ought to be.

 Iwona Sadowska’s [1] Comprehensive Grammar provides several grammar rules that the

genitive case governs. Table 8 shows which of these rules are used and which of them require

additional word lists to be effective. The rule coverage is incomplete because Polish numbers can

be incredibly complex and require significant effort to include for completeness. In its current

state, the rule database only supports finding genitive after nominative numbers not ending in 1-

4. Additionally, time expressions are difficult to collect due to their volume and variety, so they

are not supported. Finally, some nouns can take either -a or -u in speech depending on social

preferences [1]. This case is difficult to quantify from an implementation standpoint, and it is just

as difficult to provide feedback for in a written context. Due to these factors, this case was

ignored and is best left to future research.

45

Table 8. List of Rules Governing the Genitive Case in Iwona Sadowska’s Polish: A

Comprehensive Grammar [1]

 The word lists for the rules that require them were found using lektorek.org, which is an

online Polish dictionary with both inflection information and case governance information [46].

For each of the supported rules requiring a list, the PoS filter in addition to the ‘+G‘ search term

were used to return all words of that PoS that require the genitive case. These results were then

stored with the lemma, the case(s) required, and the rule’s frequency into an SQLite database

table. Table 9 below shows a few examples from the verb rule table to illustrate how these are

stored.

Table 9. Example of Contents of a Rule’s Word List

46

 The verbs, for example, were ordered in imperfective-perfective pairs. The case column

refers to the case(s) that the verb’s predicate should take. The verb rule table considers the

lemmas themselves and the different constructions available to the verbs stored there. For

example, the verb brakować (to lack) takes a simple genitive predicate whereas uczyć-nauczyć

(to teach) could take an accusative direct object and followed by a genitive noun. This

construction has the meaning ‘to teach someone something.’ Finally, many verbs are either

exclusively or frequently reflexive. The verb list makes a distinction between the reflexive and

non-reflexive constructions of a lemma. Maintaining this construction information allowed the

system to recognize and differentiate between a lemma’s different forms.

The frequency column refers to how often the lemma with the construction specified in

the case column is used. This information helped the system provide feedback on certain cases.

The value ‘aw’ means always, and the value ‘st’ means sometimes. For example, there is a subtle

difference between using an accusative predicate and a genitive predicate for the verb chcieć (to

want). Both are correct, but the genitive implies wanting something that is not there [1].

Determining the correct usage of something of that complexity is beyond the study’s scope but

having the frequency table enabled the system to give this feedback to the student.

Furthermore, some words are part of several distinct constructions with distinct

meanings. Consider the verb pair przestrzegać przestrzec. It has two distinct meanings; one is ‘to

warn against’ which requires the preposition przed + I, and the second meaning is to ‘observe or

uphold’ (as in laws and rules). The second meaning requires the genitive case, so the rows with

‘m2’ indicate that one of a lemma’s many meanings requires the genitive and not necessarily all

of them. What differentiates this from the construction information in the case column is that a

significant change in meaning occurs when compared to changing the construction. For example,

47

consider uczyć-nauczyć + G (to teach) and uczyć-nauczyć + A + G (to teach someone

something) with przestrzegać-przestrzec przed + I (to warn against something) and przestrzegać-

przestrzec + G (to uphold something). These distinctions exist to better serve the student in

providing detailed feedback for mistakes involving these more subtle cases.

 Of course, the coverage is not wholly comprehensive. Table 10 indicates how many

entries were recorded for each of the rules requiring these lists. For some (such as the preposition

list), the list is nearly complete. For others (such as the verb list), the number of existing

examples in the Polish language is so large that it is hard to approximate the upper limit of

relevant constructions, so the coverage is extensive but by no means complete.

Table 10. Genitive Rules in the Database Requiring Word Lists

3.3.3. Dependency Parsing

 There must be a roadmap of the sentence to use as a guide for checking to apply the rules

found. This roadmap is the network of relationships that the tokens in a sentence have with each

other. Dependency parsing offers a fast, accurate way to provide a token valued analysis of a

sentence’s PoS tags and their relationships to each other through a statistical approach [29]. The

result is a series of labeled syntactic dependencies that map one PoS tag to another.

 Regarding the SpaCy Dependency parser that PLPrepare used, the set of labeled syntactic

dependencies contain PoS tags, a relationship tag that describes that syntactic dependency, an

48

attempt at finding the lemma, and the original word’s text [30]. The data that these syntactic

dependencies provide ensures that one sentence can be broken apart into all of the pieces that

make it function as a cohesive whole. The sentence can then be examined in terms of its

relationships, allowing the system to track down the relationships that signal the use of the

genitive case. SpaCy’s tokens contain a vast swath of information that this system did not use, so

PLPrepare used a different token format which contains only the head text, the head PoS tag, the

token value text, the token value PoS tag, and the dep (syntactic dependency) tag that describes

the relationship. Figure 4 shows an example of SpaCy’s dependency parser at work.

Figure 4. Example Output of SpaCy’s Dependency Parser – Figure Rendered by DisplayCy

A note to prevent confusion: this figure was generated from DisplayCy, a library of

SpaCy to print out dependency relationships. The arrows display the relationships between a

token’s head and its children NOT between the head of a token and the token value itself. The

next few paragraphs describe to the relationship between the head of a token and the token itself

and not between the token and its child. The head of these arrows will refer to the token itself,

referred to as the token value and the tail end will refer to the head. The focus on the individual

tokens rather than the relationships between head and child causes this subtle distinction.

49

The tags used to describe these relationships are somewhat more abstract, but they can

help to identify where the genitive case is needed. Usually, rules can be detected by simply using

the parts of speech of the head and the token value of the relationship, but, for some sentences,

this is insufficient. For example, the sentence ‘Nie możemy popełnić żadnego błędu’ (We cannot

commit an error) consists of a negated complex verb phrase with a modal verb (możemy – we

can) and an infinitive main verb (popełnić – commit). There is also a direct object of the main

verb with an adjective modifier (żadnego błędu – no error). Because of the negation, the verb’s

direct object and its modifier are placed in the genitive case. The advmod tag indicates an adverb

modifier. If an advmod has the token value text of ‘nie,’ it indicates that the verb is being

negated. The xcomp tag indicates an open clausal complement, which means that it launches a

new clause that is detached from a ‘higher’ subject. In this case, ‘możemy’ launches the new

clause ‘popełnić żadnego błędu.’ The xcomp tag can be used to transfer the negation detected

earlier from the modal verb to the main verb by tracking the head of the advmod token and

matching it with the token value of the xcomp token. Finally, the obj tag indicates a direct object

which links popełnić to błędu. Because popełnić was negated, the system knew that błędu ought

to be in the genitive case, so the grammar rule parser could return the head of the obj token.

3.3.4. Mapping Syntactic Dependency Tokens to Grammar Rules

 The section above described how a dependency parser breaks down a sentence. This

breakdown included applying the previously described relationships to pick out specific

grammar rules as described in section 3.3.2. To determine which of the genitive rules might

apply to a given token, the system had to parse each of these tokens to flag candidates that might

require the genitive case. To do this in an organized and efficient way, the system stored the

information that points to the different rules in a tree structure.

50

 PLPrepare queried the grammar tree in the form of a request, which is just the

information contained in a token but with two differences. The first is that it allows the

PLPrepare to adjust and swap out defective or unhelpful PoS tags. For example, the PoS tag

representing an uncertain PoS is ‘x’ [31][48]. When injecting errors, the dependency parser had

difficulty assigning a PoS tag to words with misspellings and other errors. Hence, the system

would give the questionable token a ‘noun’ PoS tag to those it could not reliably classify. The

second difference is that the token’s information was stored in an ordered list format to pass

through the tree faster. When the system finished processing a request, the grammar tree would

evaluate the request according to the ordered list. Besides the first element, the rest of the list

elements would correspond to the following order: head pos tag, token value pos tag, and dep

tag. Figure 5 below illustrates the tree structure for mapping tokens to rules.

Figure 5. Grammar Tree: Grammar Rules Requiring Additional Parsing in Red

51

 The grammar tree used the head and token value PoS to determine the possible

interaction. The tree consisted of a root that organizes two subtrees. These subtrees handled cases

where the system must handle the token value or the relationship’s head first. For most grammar

rules, the system had to examine the syntactic dependencies from the head to the token value, but

prepositional phrases were the exception. The system navigated the tree by getting the ith

element of the request’s ordered list and compares it to the node’s children. If a node had no

children, the tree checked if a grammar rule was present in that node (denoted by rectangles in

the diagram) and would return it.

To continue with the example given in section 3.3.3, PLPrepare flagged the nie ←

możemy token as a candidate for the genitive following an adverb of quantity rule because the

head was a verb, the token value was a participle, and the relationship was an advmod. Because

the token did not contain a preposition, the system made element 0 of the request’s list ‘Head,’

and would then contain the head ‘verb’ and the token value ‘part.’ This led to the

Negation/Absence grammar rule. The system grouped the negation and absence rules together

and the linked noun rules together because they were identical in terms of the tags that identify

them. The only difference between a negation and an absence token was that an absence token’s

head contains a form of the lemma ‘być’ (to be); thus, the two could be safely combined to

simplify the tree. Finally, the tree returned the grammar rule as a potential candidate for the

genitive case.

3.3.5. Confirming the Candidates

 After finding the candidates, most of them required additional processing to see if the

selected rule applies. If the rule spanned multiple tokens (marked in Figure 3 by red rectangles),

then the system had to find that candidate’s child token and validate its relationship to the parent.

52

If the rule required a text list, the grammar rule checker had to query the database of word lists to

determine if the genitive case applied to the token. Finally, once the system had verified that the

token takes the genitive case, the grammar rule checker returned the part of the token that

contained the noun.

 The cases that required additional parsing were either a negation (like the ‘nie mogę…’

example above) or a clause with an adverb of quantity. These cases required the system to look

beyond the immediate token to find the noun because the token either contained only a participle

and a verb or an adverb and a verb. The system could do this by iterating through the token’s

children and comparing those tokens to the required text and syntactic dependency relationship.

The solution was adequate, but when handling erroneous input, the dependency parser had a

more difficult time creating the parent-child relationships with the affected token. The solution

was to store the relevant verb object tokens in a dictionary using the head text of the verb as a

key at the beginning of the grammar rule mapping stage. The additional preprocessing eliminated

the need to parse the token’s children and improves robustness, but it added a slight performance

drain for tokens that did not require additional parsing.

 The next case was simpler; if a token required a word list, the grammar rule checker

would use PLList’s interface to lemmatize the words. The grammar rule checker would then

query the word lists with the lemma and return the case required and frequency, if applicable. If

the token required neither of these special cases, the grammar rule checker would simply return

the noun text because the syntactic dependency token was enough to infer the rule. After the

system had detected the nouns that ought to be in the genitive case, it would send the noun text

along with other information to the reporting module where it would compile a noun use report.

53

3.3.6. Grammar Rule Edge Cases and Limitations

 The grammar rule collection and verification process was complex and included edge

cases and other limitations that PLPrepare did not handle at all or handled in a way that increased

false positives. There were problems regarding words that use multiple cases, sentences with

certain negated verbs, and dependency parsing sentences with misspellings. The system cannot

handle all cases well, but it mitigated some of these problems, focusing on providing feedback

where possible.

PLPrepare could not handle negated verbs that did not have an accusative complement.

The negation rule for the genitive case affects only negated verbs that have an accusative

complement. Consider the example: ‘Co sprawiło, że zajęłaś się aktywizmem?’ (What caused

you to engage in activism?) (Top of Figure 6). Most Polish verbs take the accusative case as a

complement [1], but this verb takes the instrumental case as a complement. The negation of this

sentence would look like this: ‘Co sprawiło, że nie zajęłaś się aktywizmem?’ (What caused you

not to engage in activism?) (Bottom of Figure 6). The sentence is a bit contrived, but the

relationship between ‘zająć’ and ‘aktywizm’ when ‘zająć’ is not negated is a nominal subject

(nsubj). When negated, the relationship becomes an open-clausal complement. The system

would usually interpret an open-clausal complement with a verb phrase as signaling a modal

verb. Hence, the system marked ‘aktywizm’ as needing the genitive case even though the rule

did not apply here. The negation of these types of verbs were more rare their accusative

counterparts, but it did increase the number of false positives.

54

Figure 6. Comparison of a Negated and Non-Negated Verb That Does Not Take an Accusative

Compliment

The handling of words that take multiple cases was a problem. Prepositions represented

most of these words as most prepositions can be used in different contexts that govern different

cases. For example, the preposition ‘z’ could govern the genitive case to mean ‘from, of.’ It

could govern the instrumental case to mean ‘with,’ and it could govern the accusative case to act

as an approximation [1]. The system did not distinguish the different uses of this preposition, so

the system tagged all uses of ‘z’ as needing the genitive case. To handle this problem, the system

reported that the word may take multiple cases, but this approach was far from ideal. This case

increased false positives in tests where these types of prepositions are concerned. From the user’s

perspective, the feedback provided may be an inconvenience, but the system, as a result, could

cover many more prepositions.

55

One challenge that the system faced was the complexity of dependency parsing as a

whole. Consider the preposition ‘z.’ It was very difficult to differentiate between ‘z’ as a simple

preposition and ‘z’ as a clitic. The sentence ‘Jestem z wami’ (I am with you all) sees ‘z’

assimilate to the pronunciation with ‘wami,’ leading wami to be pronounced as ‘swami.’ The

dependency changes based on this distinction. There were several different dependency

relationships that could occur with the same parts of speech, so not every subtilty could be

considered in the implementation.

 When dealing with potentially incorrect sentences with misspellings, it was vital to

mitigate both junk data and misspellings. Due to incorrect input, the SpaCy dependency parser

occasionally could not determine the PoS tag and syntactic dependency of a token. When this

happened, the dependency parser assigned a pos tag of ‘x’ or a syntactic dependency tag of ‘dep’

[30][48]. The system could resolve the dependency and not the pos tag or vice versa, so they did

not necessarily occur together. PLPrepare did not do anything to the ‘dep’ tag because it did not

affect the grammar rule parsing. It did, however, treat all ‘x’ pos tags as nouns. Polish

morphology is so rich that the postfix and the context of a word give clues to the PoS [21], so

junk entries or misspellings that overwrote a word’s morphology and ignored other

morphological patterns were the likeliest candidates of the ‘x’ pos tag. The best way to handle

this was to treat them as nouns that needed to be examined by the reporting module.

3.4 Generating Automated Feedback Using PLPrepare

 After the system found the words that needed the genitive case, the next step was to

compare what was written to what PLPrepare calculates should have been there. The reporting

module handled this stage of the pipeline, and it generated a noun usage report based on its

findings.

56

3.4.1. Detecting Grammatical Errors

 The first step to determining whether the student made a mistake was to first determine

what the target case was. Because the system focused on the genitive case, the target case would

be the genitive case. The reporting module queried the PoliMorf database via the PLList

interface for any morphosyntactic information in the dictionary. If morphosyntactic information

existed, it stored that information and compared it to the target case. If the noun was both in the

dictionary and it matched the correct case, then the system considered it correct.

 PLList queries required a great deal of information to avoid ambiguation errors. The only

information available to the reporting module was the noun text, the target case, and the PoS. In

most cases, this was enough to avoid ambiguation errors, as it is extremely rare for two lemmas

to share a genitive form. At that point, if what was passed in was recognizable as a genitive form,

then the input would be considered correct regardless.

3.4.2. Classification of Grammatical Errors

 If the noun was either not in the dictionary or did not match the target case, then there

was an error. The system had to determine what kind of error occurred to provide specific

feedback. The system tracked three primary error types: spelling errors, case errors, and postfix

errors. A spelling error occurred when one or more characters inside the stem of a noun was

incorrect. A ‘postfix error’ occurred when the characters beyond the stem were incorrect – this

was not a true postfix error, as the entire postfix of the given form may not be affected and was

to differentiate a spelling error affecting the ending of a word and a case error. A case error

occurred when the system recognized that the word is in a case other than the target case.

 If the noun was not correct because it was not in the dictionary, the system had to

determine why it was not in the dictionary. Typically, it was either a spelling error, a postfix

57

error, or it was correct but the system missed it initially. After the initial comparison, the system

checked if the stem or the postfix caused the error. If an incorrect postfix caused the error, then

reducing that word to the lemma would reveal a form that would be in the dictionary. Therefore,

the system attempted to find a match in the dictionary by a combination of statistical

lemmatization and stemming.

 The system first tried SpaCy’s statistical lemmatization to reduce the word [49].

Unfortunately, the SpaCy Polish model did not handle erroneous data very well. Table 11 shows

the results for different misspellings of ‘system.’ The lemmatization only returned correct

lemmas for those with the proper genitive endings “systemu” and “systemów.”

Table 11. SpaCy Lemmatizer Performance with Incorrect Entries. Correct Results in Bold

This lemmatizer can be helpful for picking out difficult stems, particularly for nouns with stem

changes, e.g. ‘koniec’ (end – nom) -> ‘końca’ (gen), but it was not enough. A stemming step

occurred after the initial lemmatization attempt to catch more postfix errors.

If the lemmatization did not return a valid noun, the algorithm removed the ending and

tried again. This process was limited by the number of checks which simply divided the word

length by two and cut off the decimal. The number of checks could be no greater than four. It

58

would almost never take more than four checks to reveal the stem of any noun and would never

take more than four checks to reveal the stem of a noun in the genitive case. The smaller the

word, the more likely the ending took up a more significant portion of the noun, so the algorithm

removed fewer endings for smaller nouns. Additionally, removing more characters increases the

risk of uncovering a new stem, which is all the more reason to reduce the number of checks

where possible.

 The algorithm would remove ending the after ending checking the new noun if it was in

the dictionary. It first checked if the new noun was in the dictionary via a PoliMorf look up, and

then it attempted to lemmatize the noun via the SpaCy algorithm. This process continued until

there was a match or the number of checks was depleted.

 If the algorithm found the form, it was possible that it found a lemma that was unrelated

to the original form. A student could enter ‘Sabaton,’ which is not a Polish word, and the

algorithm would find ‘sabat’ (sabbath). Either way, if the algorithm found a lemma in the

dictionary, it was safe to declare that the ending that the user typed was incorrect. This

approach’s only downside was that the system could misclassify simple spelling mistakes as

59

postfix errors. Additionally, as a defense against ambiguation errors, the system performed a

final inflection attempt with the found lemma to determine if it matched the original form. If the

inflected form of the found lemma matched the original entry, then an error occurred and the

dictionary did not find it the first time, so the original entry was correct all along. If the algorithm

could not find a lemma by any means, then the original entry was either a valid word that was

not in the dictionary or a spelling error. Either way, the system classified the entry as a spelling

error.

 The last case that the system considered was if the entry was in the dictionary but was not

in the target case. The result was most often a case error. For example, consider the difference

between ‘motel’ (motel) and ‘motela’ (a classification of fish with two dorsal fins). The genitive

singular of ‘motel’ is ‘motelu,’ so a student could mistakenly enter ‘motela’ as the genitive form

of ‘motel.’ The entry would be in the dictionary but was not in the target case. The question

became whether an incorrect postfix led to the dictionary finding a different lemma or the correct

lemma with an incorrect case inflection. The problem was rooted in lemmas of a different gender

sharing different forms, so the solution to this problem was to stem the entry and reinflect it into

the target case. If the entry could be stemmed and reinflected for case and number of the original

entry successfully, and if it was a different gender than the original, then the entry had an

incorrect postfix. On the other hand, if the entry was present in the dictionary and could not be

stemmed and reinflected, then the case of the original entry was incorrect. Figure 7 shows an

overview of this classification process.

60

Figure 7. Grammatical Error Classification Decision Tree

3.4.3. Generating the Feedback

 PLPrepare used a combination of error classification, grammar rules, and guidelines to

provide detailed feedback. The system generated this information as a sentence moved through

the pipeline, but PLPrepare determined what feedback to display based on the error

classification. Once the system chose the feedback, it then showed it to the user.

The Grammar Rule Mapping Stage, the Rule Verification Stage, and the Reporting Stage

all sent potential feedback. The process began with the Grammar Rule Mapping Stage. Each rule

in the grammar tree had a description to inform the student how to spot the corresponding rule.

At the Rule Verification Stage, the system added any relevant structural and frequency

information discussed in section 3.3.5. This information provided the system with a variety of

feedback to address most of the user’s problems when writing sentences using the genitive case.

Figure 8. Displaying Feedback from the Rule Verification Stage Regarding the Use of ‘Z’

61

At the Reporting Stage, the system chose the feedback to display based on the error

classification. If there were no errors, then the system would not produce any feedback. If the

error involved an incorrect case being used, the system chose to display the grammar rule

information, the incorrect case the user used, and the correct form.

Figure 9. Reporting a Case Error Where ‘Wodorem’ Should be in the Genitive Case Due to

Possession by ‘Nadtlenku’

If the error involved a misspelling, PLPrepare simply displayed the word that was not in the

dictionary with a message informing the user that the word was not found.

Figure 10. Informing the User that a Word is Misspelled

If the error involved an incorrect postfix, then the system displayed the correct postfix

and any guidelines found for that word. This step tied into the guideline lists from section 3.1.

PLPrepare queried the guideline lists for the lemma and retrieved the guideline’s name, the

postfix that the guideline recommends, the reliability of the guideline, and the number of words

that the system had on file for that guideline.

Figure 11. Displaying Feedback for a Postfix Error with a Guideline Suggestion

62

The feedback effectively informed the user of what he/she did wrong, what the correct form was,

and how to improve in the future.

63

Chapter 4. Performance and Evaluation

 The evaluation of PLPrepare covered a few of the possible mistakes that students might

make and focused on evaluating the three most crucial stages of the pipeline, the genitive

detection stage, the error classification, and the guideline assignment. The evaluation focused on

recall and precision of classifying three basic error types (and the no-error), the recall and

precision of the genitive detection system, and the recall of the -a vs -u feedback from the

wordlists discussed in the previous chapter. The testing stage’s basic outline was to collect

sentences, inject errors into those sentences, and compare the injected error to the classified

error.

4.1. Gathering and Generating the Test Data

 To test PLPrepare’s performance, there had to be a wide variety of sentences containing

the genitive case to give to the system. The National Corpus of Polish (Narodowy Korpus Języka

Polskiego – or NKJP) could be queried using a powerful query language to extract sentences

[50], so NKJP provided an ideal corpus to extract sentences. The sentences also required

preprocessing before the testing system can inject any errors.

4.1.1. Sentence Collection Using NKJP

When testing the genitive detection stage, every sentence had to contain a correct

example of genitive case usage so the system can inject an error into it. This test did not focus on

precision because it was difficult to manually label 6,000 sentences as either having or lacking

the genitive case. Finding the recall here required certainty. One of the problems facing this goal

was the issue of ambiguous cases. Several masculine inanimate nouns shared a genitive ending

with the accusative case of that noun [1]. Because of this problem, a query such as ‘[case=="gen"

& pos=="subst|ger|depr" & gnd=="m[23]" & number=="sg|pl"] within s’ (select sentences where

64

NKJP can evaluate a noun to be masculine animate or inanimate and singular or plural) would

return sentences with ambiguations where the noun would be in the accusative (or other) case(s)

[50]. To mitigate this problem, a strict criterion was injected into the query to only extract words

that the system was certain are in the genitive case as they appear in the sentence. The query then

became ‘[case~~"gen" & pos=="subst|ger|depr" & gnd=="m[23]" & number=="sg|pl"] within s.’

Unfortunately, this seriously reduced the overall population of sentences to select from. It was

difficult to find forms of a lemma where the genitive form did not share a form with another

case. Using this query type virtually eliminated the feminine singular and masculine animate

because the genitive case for these genders almost always shared the genitive case form with

another case. These eliminations reduced the diversity of the selected words in the test. Still, it

provided a measure of consistency in that the system would not have to throw out a significant

portion of the test data because the words only appeared to be genitive but were in the accusative

case. This type of query was ideal for testing the genitive detection stage’s recall stage but

ineffective for testing classification because of the exceedingly low gender diversity in them.

To test a variety of the system’s capabilities, two groups of six sets containing one

thousand sentences each (12,000 sentences total) were collected according to different numbers

and genders of the nouns they featured. The first group used the strictest query discussed above

to guarantee that genitive case examples were included. This group was used to test the genitive

detection system. The second group used the looser query, which included some accusative

examples. This group was used to test the error classification stage. The groups were composed

as follows: The first two sets were made up of singular and plural nouns of all genders, the next

two were singular and plural sets of masculine animate nouns, and the final two were singular

65

and plural sets of only masculine inanimate nouns. Figures 12 and 13 below show the exact

gender breakdown for each group.

Figure 12. Group 1 Gender Distribution – For Testing Genitive Usage Detection – Corrected

for Dictionary Retrieval Ambiguations

Figure 13. Group 2 Gender Distribution – For Testing Error Classification – Corrected for

Dictionary Retrieval Ambiguations

1 2 0 0 0 00 3 3 7 1 4

394

281

443 457 446
473

3

67

0 0 0 0

85 89

0 0 0 0
0

50

100

150

200

250

300

350

400

450

500

Gen. All Genders Sg.
Only 482

Gen. All Genders Sg.
Pl. 476

Gen. Masc. Anim Sg.
Only 468

Gen. Masc. Anim.
Sg. Pl. 435

Gen. Masc. Inanim.
Sg. Only 460

Gen. Masc. Inainim
Sg. Pl. 463

Gender Distribution by Test Set

m. men m. anim. m. inanim. f n

45 51

0 0 0 04 4

442

391

0 0

117 127

13 19

424 415

184 167

0 0 0 0

103 95

0 0 0 0
0

50

100

150

200

250

300

350

400

450

500

Gen. All Genders Sg.
Only 482

Gen. All Genders Sg.
Pl. 476

Gen. Masc. Anim
Sg. Only 468

Gen. Masc. Anim.
Sg. Pl. 435

Gen. Masc. Inanim.
Sg. Only 460

Gen. Masc. Inainim
Sg. Pl. 463

Gender Distribution by Test Set

m. men m. anim. m. inanim. f n

66

4.1.2. Sentence Preprocessing

 Despite the specificity of the queries used to extract the sentences from NKJP, the

sentences required some cleaning to be useful. NKJP fulfills the queries in either an HTML or

CSV file with a user-specified amount of context surrounding the query result. To form a testable

sentence, the query result had to be re-injected into a recombined sentence. For example, the

sentence ‘Jak twierdzi Hubert, do szczytu możemy iść bez liny’ appeared as Table 12 below. The

bolded word was the example that had to be held as the target word but was reinjected into the

sentence to give the system the necessary context. The resulting test entry is displayed below.

Table 12. NKJP Test Entry Preprocessing

NKJP CSV (Before Preprocessing)

Jak twierdzi Hubert, do szczytu możemy iść bez liny.

Test Entry (After Preprocessing)

szczytu Jak twierdzi Hubert, do szczytu możemy iść bez liny

 Because context was collected at a consistent margin throughout the query, there were a

few problems regarding a few of the sentence’s testability. Some of the entries in the NKJP .csv

files contained one or even two additional sentences because of the context. One example was

‘wędkowanie. W Grand Prix Wrocławia jestem w pierwszej szóstce.’ In this case, the final word

of the preceding sentence was included in the entry. The entry may even have contained context

from the next sentence on the rightmost cell. Also, a few entries did not contain enough context

to express a complete thought. In the example ‘- np. przy sprzedaży samochody - dotyczy

obecnie całego niewykorzystanego’, no punctuation was present indicating the end of the

sentence or even the thought, and there was no capital letter or preceding punctuation indicating

that a new sentence had begun. Other sentences were simply incomprehensible by the tool and

67

difficult to understand even by human standards. The entry ‘. G. (pismo Areszty Śledzczego w S.

z’ was one example where more context was needed. To solve these problems, a few criteria

were introduced. The first was that the test sets could only include a sentence if either the first

word was capitalized or the period from the preceding sentence was visible in the context. Next,

the righthand context had to include some punctuation to signal a finishing thought. Finally, all

enclosing punctuation had to include an opening and a closing. A complete sentence was not

necessary for the detection step, but a complete thought that the dependency parser could

properly examine was necessary. These criteria did not guarantee perfect test entries, but they

eliminated the majority of bad candidates. Group 1 saw that, out of six initial sets of one

thousand sentences each, the final testing data set contained a total of 2,835 sentences all

together with around 400 sentences for each set.

4.1.3. Grammatical Error Injection

 To test the system’s error classification capabilities, the testing system injected errors to

simulate the different types of errors that the system attempted to classify. The error injection

step involved retrieving the target word from each test entry and reinjecting a modified form of

the word into the sentence. There were four possibilities that the system randomly applies to each

sentence in the test set, each of which were equally likely. This error injection technique allowed

for easy, unique retests, and it also tested the dependency parser’s ability to work with a variety

of erroneous sentences. For a discussion of the meaning of each of the error types, see section

3.4.2.

To perform the error injection, one of four operations were used. To inject a case error,

the system found the target word’s lemma and reinflected the word into a new, randomly

selected case. For example, in the test entry ‘|głosu| Kto wstrzymał się od głosu?’ The word

68

‘głos’ (voice) would be reinflected into a random case. If the randomly selected case was the

instrumental case, the test entry would be modified to read ‘|głosem| Kto wstrzymał się od

głosem.’ The function disallowed any form that matched the original form. To inject a postfix

error, the final character was randomly replaced by a member of a set of the Polish phonemes

(including those with multiple letters, e.g., dż, rz, ch, etc.) Because this was not a true postfix

error, it was intentionally not replaced with a valid postfix to differentiate a spelling error

affecting the ending of a word and a case error. The distinction also necessitated that the postfix

error did not randomly form a case error, so the error injection algorithm checked to see if the

new noun was in the dictionary. If it was, then the algorithm removed the attempted postfix from

the set and tried again. In the example sentence above, the word ‘głosu’ could become something

like ‘głost’ or ‘głosrz,’ as these forms did not correspond to any forms in the lemma. But it could

not have become ‘głosy’ because that form corresponds to the nominative and accusative plural

form of the word. The system injected a spelling error by lemmatizing the word, selecting a

character position, and injecting a random member of the Polish phoneme set discussed above to

the word’s original form. Finally, the system tracked a ‘no error’ error type as a control. In this

case, the error injection system simply passed the sentence to the next stage.

4.2. Evaluation Experiments

 The evaluation process involved injecting errors into each of the test sets separately and

then determining the system’s performance for each of them. For example, to test the genitive all

genders set, the system first randomly injected errors in the manner discussed in section 4.1.3.

and then the system began testing the sentences in the set. The tests were conducted on a

sentence-by-sentence basis. For each sentence, the test involves recording the injected error,

putting the system through the pipeline, and determining whether PLPrepare caught the injected

69

error. Because the system could catch multiple errors in a sentence, the test recorded only the

reports on the word with the injected error. If there were no noun usage records associated with

the erroneous word in the sentence, the test recorded that as a failure on the part of the genitive

detection pipeline. The classification was tested by comparing the noun usage report findings to

the recorded error injection type. Suppose the classification of the error found did not match that

of the injected error. In that case, the system recorded that as a failure of the error classification

system in the pipeline’s reporting stage. A confusion matrix was constructed by recording all of

the injected error types and all of PLPrepare’s corresponding classifications. If the injected

classification did not match the reported classification then, a false negative was recorded. If the

system was testing for a particular classification and the classification was reported even though

it was not present, a false positive was reported. The evaluation stage used the confusion matrix

to interpret the findings in the coming sections.

After running through all of the entries, the system then reported the confusion matrix

with the recall, precision, F1-Score, and the macro and weighted average. The system then

displayed the number of times that it failed to detect the target genitive usage and the recall for

each error type that corrects for the system missing the genitive detection. The following sections

discuss these initial results and indicate the level of performance that a user could expect to see,

an evaluation of the genitive detection system, and the coverage of the wordlists used to provide

-a vs -u feedback.

4.3. Results

 The results for each stage of the pipeline will be presented below in the order specified in

section 3.3.1. The inputs, outputs, and relevant background information will be specified with

graphs illustrating the relevant figures. The following subsections will summarize the results and

70

detail the key takeaways from the data. Finally, each subsection will discuss any data points that

appear out of place and briefly describe how to improve results in future work.

4.3.1. Genitive Detection Results

 The genitive detection system was tested for recall by running a normal test with the data

in group 1 and with a separate test to determine precision. The conditions of the testing described

above necessitated a separate precision test because those tests only work with sentences that

used the genitive case, so the genitive detection system would not have the opportunity to

produce a false positive. The precision test involved 92 sentences where half of the sentences did

not use the genitive case and the other half did. These sets were human verified before testing.

The constraining factor for the test size was the number of sentences that did not use genitive.

Out of a random sample of 1000 sentences from the NKJP, the computer threw out 878

sentences for containing genitive and data cleaning purposes. The human reviewer eliminated an

additional 76 sentences for containing the genitive case. The 46 non-genitive sentences were

matched by 46 sentences containing the genitive case. No errors were injected into these

sentences.

 PLPrepare flagged 16 sentences as false positives, 46 sentences as true positives, and 30

sentences as true negatives. The test saw a recall of 1.00 and a precision of 0.74. For the most

part, the system correctly flagged genitive case usage, but the cause for most of the false

positives was the noun rule, which cast too large of a net. The most prevalent problem was when

noun/noun tokens had child tokens. In some instances, this token contained a conjunction, which

the system had to mark because of how Polish distributes case between items shared by a

conjunction. In others, it was difficult for PLPrepare to determine the position of child tokens in

the sentence. In some cases, the genitive noun possession rule could pass over interfering words,

71

especially adjectives. In others, the words interrupted the possession. Both cases required an

additional level of abstraction to ascertain the role of child tokens.

 More striking, however, was the comparison of this result with those of the experiment

described in section 4.2. When testing the genitive detection system with the error-injected

sentences, the recall plummeted as low as 70%. The results hovered between 70 and 75%, which

was disappointing considering the precision test’s recall. Figure 14 below shows the recall of the

Genitive detection system for each test.

Figure 14. Genitive Usage Detection Performance by Test Set in Group 1

 Two primary factors led to the discrepancy in the observed performance in genitive

detection. The first was the sample size. It was much easier to find sentences with rarer verbs or

sentences with obscure structures that the grammar tree (described section in 3.3.4.) could not

find in a sample size of 2,835 sentences. The second factor was the inability of the dependency

parser to make sense of some tokens with errors. The dependency parser that PLPrepare used

67%

68%

69%

70%

71%

72%

73%

74%

75%

Gen. All
Genders Sg.

Only 495

Gen. All
Genders Sg.
and Pl. 466

Gen. Masc.
Animate Sg.

Only 455

Gen. Anim. Sg.
Pl. 474

Gen. Inanim.
Sg. Only 454

Gen. Inainim
Sg. Pl. 491

Gen. Detection Recall By Case and

Number

72

was trained on the Polish PUD treebank [31][32]. This treebank was built on examples spanning

multiple corpora including the NKJP [32][33], which contained minimal errors. The dependency

parser performed extremely well with erroneous data all things considered, but it was not

explicitly optimized to handle the badly mutilated Polish words that these tests involved. The

most straightforward way to improve these results could be to expand the external wordlists to

cover more of the Polish lexicon. Expanding the word lists could be done by compiling grammar

information from multiple sources, such as SGJP [51]. Another way to expand them would be to

train a dependency parser to provide parsing with more confidence on tagging erroneous input.

This enterprise would not be a trivial one, and it would require additional research. Finally, a

more detailed grammar tree could help the system pick out more rules involving the genitive

case by scanning more obscure sentence structures for genitive case usage.

4.3.2. Grammatical Error Classification Results

 After the system detected the genitive usages, it sent those genitive usages to be checked

for errors. This stage required a test that involved the test sets in group 2. These were discussed

in section 4.4.1. Here, the breakdown of the error injections was important for understanding the

input. Figure 15 shows the comparison of the error injections for each test. The tests were

injected fairly uniformly with no error type hoarding an overwhelming majority, though some

test cases could be overrepresented compared to others. It was to these injections that the

classification output was compared to measure recall and precision.

73

Figure 15. Error Distribution for the Error Classification Stage

This stage of the tests fared somewhat better with a few exceptions. Figures 16-17 below

detail the results of this stage.

Figure 16. Recall for each Test Set

70
77

55

89

70

92

58

69

78
73 71

63
71

61 58

67
62

93

80

68

86
90

75 78

0

10

20

30

40

50

60

70

80

90

100

Gen. All Genders
Sg. Only 495

Gen. All Genders
Sg. Pl. 466

Gen. Masc. Anim
Sg. Only 455

Gen. Masc. Anim.
Sg. Pl. 474

Gen. Masc. Inanim.
Sg. Only 454

Gen. Masc. Inainim
Sg. Pl. 491

Error Distribution by Test Set

Spelling Postfix Case No Error

0%

10%

20%

30%

40%

50%

60%

70%

80%

90%

100%

Spelling Postfix Case No Error macro avg weighted avg

Recall by Number and Gender

Gen. All Genders Sg. Only 482 Gen. All Genders Sg. Pl. 476
Gen. Masc. Anim Sg. Only 462 Gen. Masc. Anim. Sg. Pl. 481
Gen. Masc. Inanim. Sg. Only 460 Gen. Masc. Inainim Sg. Pl. 463

74

Figure 17. Precision for each Test Set

Spelling Errors (exempting non-errors) were among the simplest to detect, so it made

sense that PLPrepare’s spelling error classification would hover around 90% recall. Most of the

false negatives came from the noun reduction algorithm (described in section 3.4.2) checking for

a postfix error. The algorithm would reduce the word into a separate lemma, which the system

would recognize and declare a postfix error. This performance remained high throughout most of

the tests with the recall dipping slightly for plural nouns. Regardless, the best way to improve the

spelling recall would be to improve the noun reduction algorithm, which will be discussed in the

next paragraph. Regarding precision, the spelling classification had lowest precision because a

spelling error was essentially the default value that the classifier assigned to any word that was

not in the PoliMorf dictionary. The difficulty in determining the difference between a postfix and

0%

10%

20%

30%

40%

50%

60%

70%

80%

90%

100%

Spelling Postfix Case No Error macro avg weighted avg

Precision by Number and Gender

Gen. All Genders Sg. Only 482 Gen. All Genders Sg. Pl. 476
Gen. Masc. Anim Sg. Only 462 Gen. Masc. Anim. Sg. Pl. 481
Gen. Masc. Inanim. Sg. Only 460 Gen. Masc. Inainim Sg. Pl. 463

75

a spelling error was the root cause of this low precision. Simple dictionary misses, although rare,

also contributed.

The Postfix Recall performed reasonably well for the masculine singular only sets, but it

saw a significant reduction in recall for the all-gender plural set. This was because, when the

feminine and neuter plurals were introduced, several new concepts were also introduced. The

most impactful concept was the neuter verbal noun (nouns in a -nie ending). Neuter verbal nouns

were very common and were difficult for the noun reduction algorithm to treat correctly because

of the genitive plural, which causes most neuter nouns take a null ending. The null ending in

these verbal nouns led to the diagraph ‘ni’ being replaced with ‘ń,’ altering the stem’s

appearance e.g. czytanie (nom sg - the reading) → czytań (gen pl. – of the readings). The noun

reduction algorithm was entirely reliant on the SpaCy statistical lemmatization step of the

algorithm to catch nouns with any kind of stem alterations and expansions. In these cases, the

algorithm could not uncover the correct lemma by just removing characters. This problem was

not exclusive to verbal nouns, but they were the most plentiful. The null ending also applies to

most feminine and neuter plural nouns. The system had serious trouble detecting null endings

partially because the system anticipated a final postfix and not the absence of one. This was also

reflected in the number of these cases where the system wrongly identified these errors as

correct.

On average, the postfix classification precision was the second-worst precision

measurement due to how easy it was for the noun reduction algorithm to uncover a stem

belonging to a different lemma and mistakenly label the error a postfix error. The underlying

problem was that the lemmatizer used in the algorithm was part of the same model that handles

the dependency parsing, so it shared the same drawbacks as the dependency parser discussed

76

above. The self-reported lemmatization accuracy of this lemmatizer was 89% [28], and it did not

perform as well as the dependency parser for guessing a correct form. To improve accuracy for

erroneous data, it could be possible to train a lemmatizer with correct lemmas and incorrect

approximations to improve guessing. This innovation is a subject for future research, as

producing a statistical lemmatizer with acceptable accuracy is incredibly challenging.

The recall of the postfix tests was the worst of all of the measurements. The average

recall was around 76% though much of the same problems concerning neuter and feminine

nouns persist. Despite this, PLPrepare performed much better at predicting the original problem

area of the masculine inanimate genitive singular because the guesswork of SpaCy’s lemmatizer

was not required as frequently. Thought there were still stem alterations, almost every noun

ended in an -a or -u, so finding the stem was often as simple as removing the final character. The

system performed fairly well when there were no stem changes involved in a lemma’s inflection.

However, these stem changes are extremely common, and the noun reduction algorithm must

undergo some changes to improve recall in this test.

The case test results showed that masculine-only sets have an average recall of over 90%

with the all-gender all-number set trailing behind. The problems that faced the case recall were

mostly tied to the disambiguation step discussed in section 3.4.2. The existing error occurred

because the system marked some injected case errors as ambiguous, meaning the system did not

know if the found form of the word belonged to one lemma or another. Unfortunately, this was

common enough to affect the recall, and the null endings only exacerbated this problem. There is

no way to read the user’s mind, so it is impossible to truly determine which lemma the user is

referring to in this case. In the future, however, the system can take advantage of usage

frequency information to better infer which lemma the user is referring to. The precision, on the

77

other hand, was stellar. The system caught the vast majority of case errors, and it was almost

entirely certain when it declared that an error was a case error.

The success of case detection was interesting because case performance surpassed postfix

performance since detecting a malformed postfix ought to have been easier than detecting the

incorrect morphosyntactic information. The use of the stored morphological data in the PoliMorf

dictionary made this task almost trivial. Whenever the system reported a noun, the PLList

interface retrieved that information from the dictionary, so it was straightforward to know when

a user used an incorrect case. On the other hand, the postfix relied on the system being able to

differentiate between a simple misspelling of the stem and that of the postfix, which was a more

complex task.

 The control sentences that contained no errors were trivial for the system to detect, so the

system rarely reported an error in a correct sentence. Occasionally, the system would mistakenly

declare a case error as being correct on account of an ambiguation. Consider the nouns ‘obraza’

(insult) and ‘obraz’ (picture). If a case error produced ‘obraz’ in the nominative case, the

classification stage would classify this as correct because the genitive plural of ‘obraza’ is

‘obraz.’ The system, therefore, labelled the entry ‘obraz’ as correct. The ambiguation made

entries like these more difficult for the system to classify correctly because the initial form was

both in the correct case and in the dictionary. The only solution would be to use contextual

information to parse the verb agreement and other information to determine the taken number

and gender of the noun. Contextual information will help resolve any ambiguations, but this

would require further implementation and is not present in the current system.

 The classification results were promising but underline the need for further exploration of

dependency tokens to map the relationships of verbs to nouns to help with disambiguation.

78

Additionally, a better solution is required to resolve the difference between postfix and stem

misspellings statistically. From an instructor’s perspective, this classification recall and precision

could help drastically reduce the workload of grading. The additional information in the

feedback can tell an instructor where to look. From a learner’s perspective, however, any

mistakes in classification that the system makes could lead to an incorrect understanding of the

mistake. Thus, it is recommended that these improvements be made before any students use a

system derived from this study.

4.3.3. Generated Feedback Results

 In a separate test, the system compared how postfix errors mapped to the word lists

discussed in section 3.2.2. This test cast all test sentences as postfix errors to get a sense of how

many of these words were present in the random samples taken from NKJP. This also indicated

how frequently the system could give -a vs -u feedback with the current wordlists. The results of

this stage are in Figure 18.

Figure 18. Total -a vs -u Feedback Found Per Test

 It was expected that the all-gender sets would contain a lower density of words with a

matching guideline. The animate test set contained a few nouns due to the blurred lines between

inanimate nouns and grammatically alive nouns. The coverage for the masculine inanimate

9.04%
6.71%

3.11%
5.91%

16.16%
18.37%

0%

5%

10%

15%

20%

Gen. All Genders

Sg. Only 482

Gen. All Genders

Sg. Pl. 476

Gen. Masc. Anim

Sg. Only 468

Gen. Masc. Anim.

Sg. Pl. 435

Gen. Masc.

Inanim. Sg. Only

460

Gen. Masc.

Inainim Sg. Pl. 463

Lemmas That Map to a Guideline as a Percentage of Postfix

Errors

79

singular was well above the expected rate given the word lists’ small size compared to the Polish

lexicon. This was because several of the words in the word lists were very commonly used, e.g.,

months and body parts [47].

 The coverage was surprising, but a tremendous amount of work will be required to

expand this coverage to be helpful to students. Collecting words that meet these categories, as

expressed in section 3.1.2., is a time-intensive process. There are several possibilities for

expanding the coverage including word mapping, semantic analysis, and manually categorizing

words. Ultimately, drawing the lines between the different categories to match a word to a

guideline will require a great deal of research and implementation, so this task was best left to

future research.

4.3.4. Results from the Perspective of the User

 The recall from each classification test showed that the system is very likely to pick out

any error that the student makes. The classification was reasonably precise with some areas

needing some additional work. The most significant point of contention in the classification was

the distinction between a misspelling and a postfix error. PLPrepare has some problems

addressing this distinction because of the flaws addressed in earlier paragraphs, but the problem

means that a user cannot be certain of the nature of PLPrepare’s output. This is compounded by

the fact that the genitive detection system only catches around 70% of the genitive usage cases

with a similar precision. Overall, a user can expect a correct assessment only around 60% of the

time. This severely impacts the usefulness of the tool in an educational context. One saving grace

is that the classification system will almost always bring attention to a noun that not used

correctly whether the postfix, case, or spelling is incorrect. Additionally, when the user is only

working with the masculine inanimate singular the performance increases substantially.

80

PLPrepare clearly needs more work to be effective in an education setting, but these early results

are promising.

81

Chapter 5. Conclusion and Future Work

 This study introduced a hybrid grammar checker that was implemented to detect and

catch different types of errors concerning the usage of the Polish genitive masculine inanimate

singular. The novel approach was the integration of state-of-the-art dependency parsing and the

available Polish NLP resources to give specific feedback geared towards language learners and

their instructors. Additionally, this study introduced a framework for developing tools to help

language learners master seemingly arbitrary cases by cataloging guidelines and integrating them

into a grammar checker’s feedback. Finally, this study attempted to infer a deeper source of the

entered errors instead of simply detecting them, and the system reacted to different types of

misspellings differently.

 The grammar checker itself performed in step with many similar models for the genitive

case [12], but many of the approach’s problems will have to be addressed in future research.

Given the small amount of data, there was a surprising amount of guideline coverage due to the

frequency of use in the word lists, but the implementation requires much more labor to fully

complete. This study pointed to the need for some statistical NLP techniques to increase

robustness when dealing with erroneous input regarding this system’s more fundamental

building blocks. Innovating to produce these improvements will be difficult but being able to

read into spelling errors and other grammatical errors with greater detail will allow systems like

this to provide even more specific feedback to language learners in the future.

82

References

[1] Iwona Sadowska, Polish: A Comprehensive Grammar. New York, NY, USA: Routledge,

2012.

[2] O. Swan, “Polish Grammar in a Nutshell,” 2003. [Online]. Available:

http://www.skwierzyna.net/polishgrammar.pdf

[3] E. Dąbrowska, “Learning a morphological system without a default: the Polish genitive,”

Journal of Child Language, vol 28 pp. 545-574. [Online]. Available:

https://pdfs.semanticscholar.org/40e6/49685e0bca0177a81f97ece10b07c53528ac.pdf

[Accessed Sep. 11, 2019].

[4] S. Anderson, “Morphology”, in Encyclopedia of Cognitive Science, Macmillan

Reference, Ltd, (n. d.). [Online]. Available:

https://cowgill.ling.yale.edu/sra/morphology_ecs.htm

[5] An Introduction to Language and Linguistics, Ralph W. Fasold Ed. and Jeff Connor-

Linton Ed., 6th printing, Cambridge University Press, UK, 2013.

[6] M. Kracht, “Introduction to Linguistics,” (n.d.). [Online]. Available:

https://linguistics.ucla.edu/people/Kracht/courses/ling20-fall07/ling-intro.pdf

[7] SIL International. “SIL Glossary of Linguistic Terms: What is a clitic?" [Online]

Retrieved from "Archived copy". Archived from the original on 2004-05-10. Available:

https://web.archive.org/web/20040510110313/http://www.sil.org/linguistics/GlossaryOfL

inguisticTerms/WhatIsACliticGrammar.htm

[8] J. Eisenstein, Natural Language Processing, MIT Press, 2018.

[9] M. F. Porter, “An Algorithm for Suffix Stripping,” Program: Electronic Library and

Information Systems, Vol. 14. No3, pp 130-137. [Online]. Available:

https://www.emerald.com/insight/content/doi/10.1108/eb046814/full/html

[10] Quizlet, “Studying,” https://help.quizlet.com/hc/en-us/categories/360001601132-

Studying

[11] Duolingo, “How can I use Duolingo?,” https://support.duolingo.com/hc/en-

us/articles/360035932192-How-can-I-use-Duolingo-

[12] N. Bhirud, B. R.P, and P. B.V, “A survey of grammar checkers for natural languages,” 07

2017, pp. 51–62.

[13] S. Granlund, J. Kolak, V Vihman, et al. “Language-general and language-specific

phenomena in the acquisition of inflectional noun morphology: A cross-linguistic

elicited-production study of Polish, Finnish and Estonian,” Journal of Memory and

Language, vol. 107, August 2019, pp. 169-194. [Online]. Available:

https://www.sciencedirect.com/science/article/pii/S0749596X19300440#f0005 [Accessed

Sep. 10, 2019].

83

[14] E. Dąbrowska, “Productivity and Beyond: Mastering the Polish genitive inflection,”

Journal of Child Language vol. 32, pp. 191-205. [Online], Available:

http://eprints.whiterose.ac.uk/1588/1/dabrowska.e2.pdf

[15] G. Krajewski, “Productivity of a Polish child’s inflectional noun morphology: a

naturalistic study,” Morphology (Dordrecht), Vol. 22, no. 1, pp. 9-34, February 2012,

ISSN: 1971-5621.

[16] M. Kostikov, “Decomposing Morphological Rules of Polish for Adaptive Language

Learning,” International Conference on Intelligent Information Systems, IIS2013,

Chisinau, Republic of Moldova, August, 2013. pp. 223-226.

[17] A. Patejuk and A. Przepiórkowski, “Synergistic development of grammatical resources: a

valence dictionary, an LFG grammar, and an LFG structure bank for Polish,” in

Proceedings of the Thirteenth International Workshop on Treebanks and Linguistic

Theories, TLT, 13, January, 2014, pp. 113-126.

[18] A. Przepiórkowski, E. Hajnicz, A. Patejuk, et. al. “Walenty: Toward a Comprehensive

Valence Dictionary in Polish.” Proceedings of the Ninth International Conference on

Language Resources and Evaluation, Reykjavik, Iceland, 2014. pp. 2785-2792.

[19] A. Wróblewska, K. Krasnowska-Kieraś, “Polish evaluation dataset for compositional

distributional semantics models,” Proceedings of the 55th Annual Meeting of the

Association for Computational Linguistics, Vancouver, Canada, July 30 - August 4,

2017. pp. 784–792.

[20] A. Przepiórkowski, E. Hajnicz, A. Patejuk, et al. “Extended phraseological information in

a valence dictionary for NLP applications,” Proceedings of Workshop on Lexical and

Grammatical Resources for Language Processing, Dublin, Ireland, August 2014.

Association for Computational Linguistics and Dublin City University, Dublin, 2014. pp.

83-91.

[21] M. Woliński, M. Miłkowski, M. Ogrodniczuk, et al. “PoliMorf: a (not so) new open

morphological dictionary for Polish,” Proceedings of the Eighth International Conference

on Language Resources and Evaluation (LREC-2012), Istanbul, Turkey, May 2012. pp

860-864.

[22] M. Woliński, “A Relational Model of Polish Inflection in Grammatical Dictionary of

Polish,” Human Language Technology: Challenges of the Information Society. Berlin,

Heidelberg Springer-Verlag, 2009. pp. 96-106.

[23] Ç. Çöltekin, J. Barnes, “Neural and Linear Pipeline Approaches to Cross-Lingual

Morphological Analysis,” Proceedings of the Sixth Workshop on NLP for Similar

Languages, Varieties and Dialects, W19-1416, Minneapolis, MN, USA, June 7, 2019.

Association for Computational Linguistics, 2019. pp. 153-164.

[24] R. Östling. “Morphological Re-inflection with Convolutional NNs.” In Proceedings of

the 14th SIGMORPHON Workshop on Computational Research in Phonetics,

84

Phonology, and Morphology, Berlin, Germany, August 2016, Association for

Computational Linguistics. pp. 23-26.

[25] R. Cotterell, C. Kirov, J. Sylak-Glassman, et al. Proceedings of the CoNLL–

SIGMORPHON 2018 Shared Task: Universal Morphological Reinflection, Brussles,

Belgium, October 31, 2018. Association for Computational Linguistics, 2018.

[26] Y. Kementchedjhieva, J. Bjerva, I Augenstein, “Copenhagen at CoNLL–SIGMORPHON

2018: Multilingual Inflection in Context with Explicit Morphosyntactic Decoding.” In

Proceedings of the CoNLL–SIGMORPHON 2018 Shared Task: Universal Morphological

Reinflection, Brussles, Belgium, October 31, 2018. Association for Computational

Linguistics, 2018. pp 93-98.

[27] P. Markov and S. Cematide, “UZH at CoNLL–SIGMORPHON 2018 Shared Task on

Universal Morphological Reinflection Neural Multi-Source Morphological Reinflection,”

In Proceedings of the CoNLL–SIGMORPHON 2018 Shared Task: Universal

Morphological Reinflection, Brussles, Belgium, October 31, 2018. Association for

Computational Linguistics, 2018. pp 69-75.

[28] Y. Goldberg and J. Nivre, “A dynamic oracle for arc-eager dependency parsing,” in

Proceedings of COLING 2012. Mumbai, India: The COLING 2012 Organizing

Committee, Dec. 2012, pp. 959–976. [Online]. Available:

https://www.aclweb.org/anthology/C12-1059

[29] J. D. Choi, J. Tetreault, and A. Stent, “It depends: Dependency parser comparison using a

web-based evaluation tool,” in Proceedings of the 53rd Annual Meeting of the

Association for Computational Linguistics and the 7th International Joint Conference on

Natural Language Processing (Volume 1: Long Studys). Beijing, China: Association for

Computational Linguistics, Jul. 2015, pp. 387–396. [Online]. Available:

https://www.aclweb.org/anthology/P15-1038

[30] M. Honnibal and M. Johnson, “An improved non-monotonic transition system for

dependency parsing,” in Proceedings of the 2015 Conference on Empirical Methods in

Natural Language Processing. Lisbon, Portugal: Association for Computational

Linguistics, Sep. 2015, pp. 1373–1378. [Online]. Available:

https://www.aclweb.org/anthology/D15- 1162

[31] SpaCy, Explosion, “Available trained pipelines for Polish,” 2021. [Online]. Available:

https://spacy.io/models/pl Github Repository: https://github.com/explosion/spacy-

models/releases//tag/pl_core_news_lg-3.0.0

[32] A. Wroblewska, “Extended and enhanced polish dependency bank in universal

dependencies format,” in Proceedings of the Second Workshop on Universal

Dependencies (UDW 2018), M.-C. de Marneffe, T. Lynn, and S. Schuster, Eds.

Association for Computational Linguistics, 2018, pp. 173–182.

85

[33] M. Woliński, Morfeusz2: Dokumentacja techniczna i użytkowa, 2019. [Online].

Available: http://download.sgjp.pl/morfeusz/Morfeusz2.pdf

[34] A. Przepiórkowski M. Bańko, et. al., Narodowy Korpus Języka Polskiego, Wydawnictwo

Naukowe PWN, 2012.

[35] M. Kostikov, “A Formal Model of Polish Nouns’ Inflection”, In Radio Electronics,

Computer Science, Control, 2015. pp. 18-21.

[36] Wiktionary Contributors, “Indeks: Polski – Części ciała,”, 2010. [Online]. Available:

https://pl.wiktionary.org/wiki/Indeks:Polski_-_Cz%C4%99%C5%9Bci_cia%C5%82a

[37] Wikipedia Contributors, “List of building types,” 2021. [Online]. Available:

https://en.wikipedia.org/wiki/List_of_building_types

[38] Wikipedia Contributors, “Kategoria: Tańce,” 2015. [Online]. Available:

https://pl.wikipedia.org/wiki/Kategoria:Ta%C5%84ce

[39] Wiktionary Contributors, “Indeks: Polski – Owoce,” 2020. [Online]. Available:

https://pl.wiktionary.org/wiki/Indeks:Polski_-_Owoce

[40] Wikipedia Contributors, “Owoce jadalne.” 2020. [Online]. Available:

https://pl.wikipedia.org/wiki/Owoce_jadalne

[41] Wikipedia Contributors, “Kategoria: Środki transport.” 2013. [Online]. Available:

https://pl.wikipedia.org/wiki/Kategoria:%C5%9Arodki_transportu

[42] Wikipedia Contributors, “Kategoria:Jednostki miar i wag.” 2013. [Online]. Available:

https://pl.wikipedia.org/wiki/Kategoria:Jednostki_miar_i_wag

[43] “Encyklopedia przypraw.” (n.d.) [Online]. Available:

http://www.przyprawowy.pl/encyklopedia-przypraw.html

[44] Wikipedia Contributors, “Kategoria: Przyprawy,” 2017. [Online]. Available:

https://pl.wikipedia.org/wiki/Kategoria:Przyprawy

[45] Wikipedia Contributors, “Kategoria: Warzywa,” 2021. [Online]. Available:

https://pl.wikipedia.org/wiki/Kategoria:Warzywa

[46] Wiktionary Contributors, “Indeks: Polski – Warzywa,” 2020. [Online]. Available:

https://pl.wiktionary.org/wiki/Indeks:Polski_-_Warzywa

[47] O. Swan, N. H. Reimer, B. L. Wolfe, “Lektorek.org,” 2021. [Online]. Available:

https://lektorek.org/polish/

[48] J. Nivre, M.-C. de Marneffe, F. Ginter, Y. Goldberg, J. Hajic, C. D. Manning, R.

McDonald, S. Petrov, S. Pyysalo, N. Silveira, R. Tsarfaty, and D. Zeman, “Universal

Dependencies v1: A multilingual treebank collection,” in Proceedings of the Tenth

International Conference on Language Resources and Evaluation (LREC’16). Portorož,

86

Slovenia: European Language Resources Association (ELRA), May 2016, pp. 1659–

1666. [Online]. Available: https://www.aclweb.org/anthology/L16- 1262

[49] Spacy, Explosion, “lemmatizer.py,” Github, 2021. [Online]. Available:

https://github.com/explosion/spaCy/blob/master/spacy/pipeline/lemmatizer.py

[50] A. Przepiórkowski A. Buczyński, J. Wilk, “The National Corpus of Polish Cheatsheet”,

2011. [Online]. Available: http://nkjp.pl/poliqarp/help/en.html

[51] M. Wolinski and W. Kieraś, “The on-line version of grammatical dictionary of Polish,”

in Proceedings of the Tenth International Conference on Language Resources and

Evaluation (LREC’16). Portorož, Slovenia: European Language Resources Association.

Portorož, Slovenia: Association (ELRA), May 2016, pp. 2589–2594. [Online].

Available: https://www.aclweb.org/anthology/L16-1412

87

VITA

JACOB HOYOS

Education: Master of Science in Computer Science, Applied Computer

 Science, East Tennessee State University, 2019-2021

Bachelor of Science in Computing, Computer Science, East

 Tennessee State University, 2015-2019

Summer Language Institute, Pittsburgh, PA, 2017-2020

 Public Schools, Alcoa, Tennessee, 2011-2015

Professional Experience: Graduate Teaching Assistant, East Tennessee State University,

 Department of Computing

 Johnson City, Tennessee, 2019-2021

 APS Assistant, East Tennessee State University,

 Department of Computing

 Johnson City, Tennessee, 2015-2019

 IT Contractor, Alcoa City Schools,

 Alcoa, Tennessee, 2015-2016

Honors and Awards: Outstanding Graduate Student in Computing Award, 2021

 Outstanding Senior in Computing Award, 2020

 Upsilon Pi Epsilon Inductee, 2019

 Foreign Language and Studies Scholarship, 2018

 Dean’s List 2015-2021

	PLPrepare: A Grammar Checker for Challenging Cases
	Recommended Citation

	tmp.1618984499.pdf.NFtyW

