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ABSTRACT 

Machine Learning Approaches to Dribble Hand-off Action Classification with SportVU NBA 

Player Coordinate Data 

by 

Dembé Koi Stephanos 

 

Recently, strategies of National Basketball Association teams have evolved with the skillsets of 

players and the emergence of advanced analytics. One of the most effective actions in dynamic 

offensive strategies in basketball is the dribble hand-off (DHO). This thesis proposes an 

architecture for a classification pipeline for detecting DHOs in an accurate and automated 

manner. This pipeline consists of a combination of player tracking data and event labels, a rule 

set to identify candidate actions, manually reviewing game recordings to label the candidates, 

and embedding player trajectories into hexbin cell paths before passing the completed training 

set to the classification models. This resulting training set is examined using the information gain 

from extracted and engineered features and the effectiveness of various machine learning 

algorithms. Finally, we provide a comprehensive accuracy evaluation of the classification 

models to compare various machine learning algorithms and highlight their subtle differences in 

this problem domain. 
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Chapter 1. Introduction 

A recent application of machine learning is the study of strategies and patterns in major 

sports. Since 2012, when SportVU first started capturing player location data during National 

Basketball Association (NBA) games, there have been myriad pursuits to parse this raw data and 

extract meaningful features about players and the game itself. Professional basketball is a fast-

paced, complex system that is continuously evolving, making high-level features challenging to 

obtain. As a result, most work identifying and analyzing individual plays or actions within a 

game is still performed by humans watching game tape. Several insightful approaches have been 

attempted to remedy this using modern machine learning tools like support vector machine 

(SVM) classifiers, neural networks, and clustering algorithms to automate these time-consuming 

tasks [1]–[6].  

Many of these approaches seek to limit the problem domain by focusing on a particular 

play or aspect of the game, but a coherent end-to-end system that parses raw data and provides 

AI-driven recommendations has yet to be fully realized. This thesis will examine and critique 

some of the more effective approaches to pattern mining NBA player movement data, focusing 

primarily on the most researched play action in literature: the pick-and-roll. This thesis then 

proposes and evaluates an architecture for a classification pipeline for detecting a different 

action: the dribble hand-off. 

1.1 Basketball Strategy 

Basketball is a team sport in which two teams of five active players compete in timed 

possessions to amass as many points as possible by scoring, or getting the basketball into their 

goal, a circular rim positioned ten feet in the air with a glass backboard. Several restrictions are 

placed on players, who must dribble (bounce) the ball when moving and may not leave the 
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bounds of the rectangular court. In the NBA, games involve as many as fifteen players per team, 

with twenty-four second possessions spanning over four, twelve-minute quarters. Traditionally, a 

variety of plays are performed in sequence with the objective of creating valuable scoring 

opportunities. Recently, these strategies have significantly evolved from long-scripted plays to 

read-and-react offenses, in which a variety of independent actions are performed by players who 

then read the defensive response and react accordingly.  

1.2 Key Terms 

First, there are a few key terms for that must be defined. Perhaps most importantly are 

two already used in this thesis: play and action. For the purposes of this thesis, a play is defined 

as a strategic and intentional sequence of actions taken out by cooperating offensive players in an 

effort to create the space required for a valuable scoring attempt. An action is defined as a 

discrete interaction between two or more offensive players and their corresponding defenders. 

Since only one player may be in possession of the ball at a given time, many of these plays and 

actions involve what is called a screen, in which an offensive player positions themselves firmly 

between the ball-handler and a defending player, forcing that defending player to navigate 

around them, subsequently creating space for the non-screening offensive player.  

There are many versions of screens, each with several additional variants, but perhaps the 

most common is the on-ball screen. An on-ball screen occurs when an offensive player sets a 

screen for the ball-handler, and the ball-handler then guides their defender into the screen. This 

can be broken in to two stages: the approach and the execution, Figure 1 illustrates the approach 

and execution stages [6].  
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Figure 1. An Illustration of an On-ball Screen Broken into Approach and Execution Stages 

 

The on-ball screen is prominent in many plays and can even be considered a play itself, 

often referred to by one of its most common variants, the pick-n-roll. The on-ball screen is a 

favorite in the machine learning literature [1], [2], [4], [7], [8] as it is a frequently-occurring 

action with an easily identifiable set up and great variety of possible executions. 

1.3 Dribble-Hand-Off 

 To further explore the potential applications of machine learning to pattern extraction and 

classification in NBA player movements, this thesis targets a less explored action within the 

literature: the dribble hand-off (DHO). Much of the prior research into action classification has 

been focused on the on-ball screen, which similarly to the DHO requires two coordinating 

offensive players in screening and cutting roles, involves an on-ball action often implemented in 

more complex plays, and can be performed in a number of variants in which either player may 

attempt to score. As shown in Figure 2, a dribble-hand off occurs when the screening player 

(often a taller frontcourt player such as a Center or Power Forward) dribbles into a screen and the 

cutting player (often a smaller player like a Point Guard or Shooting guard) runs to meet them. 

Once the cutting player gets close enough, the screening player “drops-off” the pass and then 

seeks to become an obstacle for the opponent defending the cutting player. In this example, the 

screener and cutter and their corresponding defenders all then roll (run) towards the basket. 
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Figure 2. An Illustration of a Dribble-hand-off Broken into Approach and Execution Stages 

 

 It is interesting to note here that the execution stage in this DHO example is the same as 

that of the on-ball screen. While both can occur in a significant number of variants in both the 

approach and execution, the similarities they share in being on-ball actions means they are often 

implemented in similar situations with similar desired results.  

1.3.1 Fake Variants 

 Of the many DHO variants, there is one set that requires some additional explanation: 

fakes. In basketball and other sport strategy, fake plays or actions are often implemented by 

teams alongside more traditional variants as a way of confusing the defense and creating 

opportunity. A fake DHO has a very similar or even identical approach stage to other DHO 

strategies, but instead of completing the pass, the screening player will allow the cutter to run 

under the ball before setting up for the next action or driving to the basket themselves. Figure 3 

contains an illustration of a fake DHO that occurs with the same approach stage as the previous 

example in Figure 2. 
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Figure 3. An Illustration of a Fake Dribble Hand-off 

 

 The existence of fakes presents a unique challenge in classifying DHOs. When 

performing an on-ball screen, there are variants where the ball-handling player ‘denies’ the 

screen and instead drives in the opposite direction or the screening player ‘slips’ on the screen 

and instead of establishing position, rolls toward the basket. Both variants could be considered 

fake plays because the typical execution is being actively diverted in an intentional effort to 

confuse the defending players. The difference here is that the approach and execution stages are 

still very similar, and the key distinguishing feature of a screen being set for the ball-handler is 

satisfied. In the case of the fake dribble hand-off, the hand-off itself does not occur. This can 

make identification and classification more difficult because the intention of some actions is to 

divert from the conventional patterns. 

 Within this thesis, fake dribble hand-off actions are labeled and grouped with 

conventional DHOs but given an additional note tag identifying it as a fake. While including 

these examples likely imposes a lower ceiling on the classification capabilities of the pipeline, 

overcoming the diversity in strategic variance present in the dataset is a known challenge of this 

thesis and removing those examples would require arguing they are not dribble hand-offs, which 

cannot be justified. Ultimately, future work to create a separate classifier to identify particular 

variants, such as fakes, may be necessary. 
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1.4 Remaining Organization of Thesis 

The remainder of this thesis is organized as follows. In section 2, there is a discussion of 

the dataset and the technology used to track and collect positioning data of the ball and players 

during a game as well as a systematic and detailed review of state-of-the-art studies on the 

different types of machine learning systems applied and proposed in this domain. In section 3, an 

overview of the pipeline construction and architecture is presented, and in section 4 the results of 

that pipeline are evaluated by various machine learning models. A conclusion is drawn and 

avenues for potential cross-domain applications and future work are offered in section 5. 
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Chapter 2. Background 

2.1 NBA Player Tracking Data 

 The pipeline depends on two separate data sources, both indexed by a common event id. 

The first of these datasets contains the player tracking data for a given game, while the second 

provides event descriptions and additional information for events, such as the score, the type of 

shot taken, the players involved in the action, and the time and quarter it occurred in. These 

datasets are intended to overlap, but in practice, there are often synchronization issues resulting 

in incorrect event label assignments to coordinate data. This thesis focused on 15 games for 

which these inconsistencies were limited.  

2.1.1 SportVU 

In 2012, the NBA began tracking player movements during games by installing a total of 

six cameras that capture the location of all ten players on the court, as well as the ball and three 

referees, twenty-five times per second. This data was publicly available through the 2015-2016 

season and inspired a great deal of interest among the sport’s analytic community, eventually 

making its way to machine learning experts [9]. The data itself is collected in a JSON object, 

typically around 600 MB in size, containing a variety of defining information such as the teams 

and players involved, the date and location of the game and the coordinates of the players broken 

up by quarter and event. Figure 4 illustrates a detailed breakdown of the JSON object [6]. 
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Figure 4. Overview of SportVU JSON Containing Data for a Single Game Capture  

 

An event occurs when one team takes possession of the ball and ends either when they 

score, a foul or turnover is committed or in other unique circumstances, such as clock 

malfunction. Since the raw positional data of the players does not paint a full picture, this dataset 

is often combined with other event-specific data, such as the type of shot taken or other play-

specific details that allow for a more cohesive view of on-court behaviors. Many techniques are 

used to abstract this low-level data, and most of these include the embedding of the coordinates 

into vectors or trajectory images that represent a player’s full range of motion over the course of 

a given possession.  

2.1.2 Event Labels 

 To provide additional context and higher-level descriptions to the raw coordinate data, 

event labels are loaded and associated with the SportVU events by their corresponding event 
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numbers. These event labels were originally created by researchers in (Saini & Evans, 2017) and 

a summary of them can be found in Table 1. 

Table 1. An Overview and Description of the Various Event Labels in the Dataset 

Column Name Description 

EVENTMSGACTIONTYPE type of action (enum) 

EVENTMSGTYPE further breakdown of action (enum) 

EVENTNUM event number/order in game 

GAME_ID NBA game id 

HOMEDESCRIPTION raw textual description of event for home team action 

NEUTRALDESCRIPTION raw textual description of event if neutral action 

VISITORDESCRIPTION raw textual description of event for away team action 

PERIOD current period 

SCORE game score 

SCOREMARGIN difference of game score (home - away) 

WCTIMESTRING real world time 

PCTIMESTRING time left in quarter 

PLAYER1_ID NBA player id for player 1 (in play-by-play description) 

PLAYER1_NAME player 1 name 

PLAYER1_TEAM_ABBREVIATION team abbreviation for player 1 

PLAYER1_TEAM_CITY team city for player 1 

PLAYER1_TEAM_ID team id for player 1 

PLAYER1_TEAM_NICKNAME team nickname for player 1 

PLAYER2_ID NBA player id for player 2 (in play-by-play description) 

PLAYER2_NAME player 2 name 

PLAYER2_TEAM_ABBREVIATION team abbreviation for player 2 

PLAYER2_TEAM_CITY team city for player 2 

PLAYER2_TEAM_ID team id for player 2 

PLAYER2_TEAM_NICKNAME team nickname for player 2 

PLAYER3_ID NBA player id for player 3 (in play-by-play description) 

PLAYER3_NAME player 3 name 

PLAYER3_TEAM_ABBREVIATION team abbreviation for player 3 

PLAYER3_TEAM_CITY team city for player 3 

PLAYER3_TEAM_ID team id for player 3 

PLAYER3_TEAM_NICKNAME team nickname for player 3 

 

 These event labels not only associate game actions with the players involved and the 

resulting scores, they also contain high-level action type designations. These designations can be 

used to filter out the many events that do not contain data of interest, for example, at the 
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beginning and end of quarters or when a player substitutes into the game. There were some 

inconsistencies between the available event labels and SportVU datasets, which requires note. 

This resulted in incorrect and inconsistent event labeling, which led to unexpected and 

undesirable results. While, initially, some efforts were taken in this thesis to correct these issues, 

there were enough games without problematic synchronization to build the training and testing 

sets. It was ultimately deemed out of the scope of this thesis to address this issue further. 

2.2 Related Works 

In this section are two broad categories to review significant research published on 

machine learning-based NBA analytics: supervised (classification) approaches and 

unsupervised (including clustering) approaches. A broad taxonomy of these approaches is found 

in Figure 5. 

Figure 5. Taxonomy of Machine Learning Approaches Applied in the Domain  

 

In the case of supervised machine learning, a human researcher chooses an event (e.g., 

an action) that occurs in the data, and then a classification model is built to automatically find 

all occurrences of that event in the dataset. Unsupervised machine learning, on the other hand, 

examines the naturally occurring patterns within the data, and analyzes these patterns and their 
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frequencies to potentially reveal new knowledge, groupings, or strategies in the data. While 

these approaches are different, they are often used together to identify actions and examine 

general patterns. The key points of each publication are discussed in the following subsections. 

2.2.1 Supervised Learning 

Supervised learning infers a function from labeled training data to create knowledge 

structures that support the process of classifying new instances into a set of predefined classes 

[11]. The input for this type of learning algorithms is a collection of sample instances that are 

pre-classified (labeled) into a predefined set of classes. The output of this process is a 

classification model that is constructed by analyzing the training data and producing an inferred 

function that can determine the class (label) for unseen instances with a reasonable accuracy. 

There are two key steps in supervised learning:  

• Training: Analyzes the training data (labeled instances) and constructs a classification 

model 

• Testing: Uses the constructed (trained) model to classify new instances and reports the 

accuracy 

There are various supervised learning algorithms that differ in their approaches to 

analyzing, inferring, and generalizing knowledge from the labeled training data to construct the 

classification model.  

Due to their top-down nature, supervised learning efforts in NBA analytics are often 

focused on identifying and labeling certain events in the dataset. In the case of the on-ball 

screen, research works formulate and utilize a set of rules configured around the distances and 

durations of time that coordinating offensive players and the ball spend in proximity to each 
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other. Approaches that use a sliding window to extract features of a certain event are frequently 

employed to ensure the capturing of all actions, as it is very difficult to specify the point in a 

given possession at which an action has started [12]. Using a sliding window, the screen 

moment can be specified by identifying the moment right before the players begin moving again 

[2].  

Yu and Chung [6] propose an SVM binary classifier to automatically identify on-ball 

screens. First, they propose an algorithm to identify event candidates that may contain on-ball 

screens. This algorithm uses a set of rules that are devised manually to extract on-ball screen 

candidates and filter out other events. These candidates are then analyzed manually (by humans) 

to determine and label each as on-ball screen or otherwise. Once the labeled dataset (actions and 

their labels) is created, the set is split into two parts: a training set and a testing set. This split is 

often a 9:1, where 90% of the data is used for training and 10% is used for testing. The SVM 

binary classifier was trained using four distance- and speed-based player features. After the 

training phase, the testing set was fed to the classifier to evaluate its performance in identifying 

on-ball screens, and it achieved a recall of 90.46%.  

McQueen and Guttag [2] propose an approach that utilizes a set of rules to identify 

actions. The data are segmented into periods of time around these actions. Using this approach, 

they extracted 30 continuous features from each action. Once extracted, these features were 

discretized into five binary features based on quintiles. This resulted in a 150-dimensional 

feature vector for every action. The data were then labeled and split into approximately 51.9% 

training and 48.1% validation sets. Then, an SVM linear classifier was constructed using the 

training data. This process was repeated 3,200 times using different splits of data. The classifier 

achieved a recall of 82% and precision of 80%.  
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McIntyre et al. [1] use a more robust dataset consisting of 270,823 ball screens. The 

labeled dataset was split into 70% training and 30% testing sets. Four classifiers were trained to 

identify four different types of ball screens, achieving a recall of 83% and precision of 78% in 

identifying the type of on-ball screens where the defender stays between the ball handler and the 

screener.  

An approach proposed by Kates [12] uses the SportVU data to detect six different plays, 

where each play has 20 labeled instances at minimum. The approach trained six SVM classifiers 

(one for each play type) using 8:2 stratified data split. The classifiers predicted the plays with a 

collective accuracy of 72.6% and an F-score of 72.7%.  

Artificial Neural Network (ANN) is a learning algorithm that is based on a set of 

connected nodes. Each connection between two nodes communicates a signal to the destination 

node. This signal is a real number and the output of each node is calculated by a nonlinear 

function that aggregates the node’s inputs in a process that is loosely based on the biological 

neural networks in the human brain. Wang and Zemel [5] use variants of neural networks to 

automatically classify play sequences into eleven selected play classes (or offense strategies). 

Recurrent Neural Network (RNN) achieved the highest accuracy, with a top-three accuracy of 

80%, in classifying ninety-five unlabeled sequences (approximately 6% of the data) into eleven 

possible play classes. As expected, the simple neural networks achieved a lower top-three 

accuracy (77%) when compared with RNN. This is due to the ability of RNN to better handle 

and learn from sequential data of variable length as it accumulates change over time.  

A current limitation of this practice is that researchers are responsible for creating the 

labeled dataset. While this is likely okay for more explicit play-actions like the on-ball screen, it 

introduces a level of bias, is less suited for more subtle or nuanced actions, and would be better 
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performed by a domain expert [6] These supervised learning approaches work well for the base 

tasks of identification and classification and are thus an excellent first step toward a more robust 

pipeline capable of providing real analytic insights. Despite the high accuracy, an on-ball screen 

dataset alone cannot provide much insight into the problem domain. This is where unsupervised 

approaches can be more effective and provide more insightful analysis. These approaches can 

take the refined data produced by the supervised approach as inputs and produce interesting, 

novel insights into the patterns and strategies present in the player movement, narrowing those 

patterns to specific variations in both the approach and execution of the on-ball screens 

identified by the supervised approach.  

2.2.2 Unsupervised Learning 

Unsupervised learning (or clustering) is a type of machine learning that allows a model 

to work with minimal or no human supervision by finding the natural clusters (groups) in the 

data using heuristics without reference to outcomes labeled by humans [13].  

Clustering focuses on finding patterns in the data and then creates groups of instances 

with similar properties. This similarity is calculated by a distance function, such as Euclidean 

distance. Depending on the approach, these clusters can be exclusive, in which instances belong 

to only one cluster, or they can be overlapping, where an instance could belong to more than 

one cluster. Another type of clustering is probabilistic clustering, where there is a certain 

probability that an instance belongs to a cluster. Hierarchical clusters occur when there are 

parent clusters at the top level, and each of these parent clusters is further refined to smaller, 

more specific clusters [14]. There are three types of clustering methods:  

• K-means algorithm: Forms clusters in numeric domains, grouping instances into 

exclusive (disjoint) clusters. Figure 6 shows the pseudocode of K-means clustering [15].  
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• Incremental clustering: Creates a hierarchical grouping of instances.  

• Probability-based methods: Assign an instance to a cluster based on a probability score 

for membership. 

Figure 6. K-means Clustering Algorithm 

 

Unsupervised learning is becoming increasingly popular among sports scientists. 

Research works that utilize unsupervised learning methods are geared more towards pattern 

extraction and strategy analysis than supervised efforts are.  

Nistala and Guttag [3] and Nistala [16] utilize cluster analysis to assign similar attacking 

movements into groups, such as movements along sidelines, run along the baseline, and other 

attack movements. First, they constructed 3 million trajectory images from NBA player tracking 

data collected by the STATS SportVU player tracking system [9] They then utilized a numerical 

abstraction algorithm for player movements and ran the K-means clustering algorithm on the 3 

million trajectory images to group similar trajectories together. The algorithm grouped the 
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attacking player movements into 20 clusters. Manual evaluation of these clusters (by selecting 

case studies from each one) showed that deep learning can be used to interpret patterns of 

basketball attack movements.  

Brooks [7] proposes an approach utilizing unsupervised machine learning to characterize 

patterns of play for NBA teams on offense. First, the approach builds an image for each player’s 

movement on offense to give a starting point for comparing player movements across different 

possessions. They then utilized the k-means clustering algorithm using the Python package 

scikit-learn [17] to cluster 60,000 instances of possessions. The number of clusters was set to k = 

30, as it represented the “knee” in the response curve between k and the average within-cluster 

distance. This process produced thirty clusters each containing around 2,000 instances. The thirty 

resulting clusters were evaluated manually (using human judgement) by checking the top ten 

instances that are closest to the center of the cluster. This evaluation confirmed that instances in 

the same cluster had similar patterns of movement for the players and the ball. Each cluster was 

then given a description that describes the movement pattern (or play) of its instances.  

Table 2 shows a sample of five clusters with their descriptions [7]. 

Table 2. Resulting Play-groups Using Cluster Analysis 

Cluster Description 

1 On-ball screen, pass screener or far side corner 

2 Screen to the right of the top of the key, pass to the right corner 

3 On-ball screen on right elbow, drive or pass to the center 

4 Left side post-up 

5 Pick-and-roll at the top of the key 
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Lutz et al. [18] propose an approach that uses statistics such as field goals and assists to 

cluster similar players into 10 categories. Franks et al. [19] utilize non-negative matrix 

factorization (NMF) to cluster defensive players based on the locations of field goals.  

Sampaio et al. [20] cluster players with similar features, such as attacking, defense, and 

passing statistics. Sampaio et al. [21] and Teramoto et al. [22] apply dimensionality reduction 

techniques, such as principal components analysis (PCA), in basketball. Figure 7 shows a 

pseudo code for PCA [15].  

Figure 7. Principal Component Analysis Algorithm  

 

2.3 Classification Models 

 In this thesis, several machine learning models were constructed and fit to the training set 

to evaluate its effectiveness. These machine learning algorithms were selected as a sample to 

represent a variety of other similar approaches and can be broken into two groups: supervised 

classification models and deep learning neural networks. This thesis evaluated the Scikit-learn 

implementations of support vector machine, decision tree, Gaussian Naïve Bayes, and multi-
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layer perceptron classifiers as well as a Keras/TensorFlow multi-layer neural network. 

Additional descriptions and explanations of each classifier can be found below. 

2.3.1 Support Vector Machine 

 Support vector machine (SVM) is one of the more powerful and frequently-implemented 

classification models in the machine learning literature and a favorite of other NBA action 

classification pipelines. One such pipeline using SVM to classify on-ball screens was optimized 

to reach a sensitivity of 95% for on-ball screens [6]. This thesis uses the Scikit-learn SVC model, 

which is a widely used implementation of the SVM algorithm.  

 SVM is a linear model capable of tackling classification and regression problems and 

functions by calculating a hyperplane to separate a dataset. Other linear classifiers operate in a 

similar manner but do not account for how close their estimations are to the data instances and, 

as a result, often perform poorly on unseen data. SVM seeks to remedy this problem by choosing 

a separating line that maximizes the margin on either side of the predictive line, resulting in the 

optimal hyperplane [23]. An illustration of an SVM hyperplane is provided in Figure 8 [24]. As 

datasets grow more complicated and feature sets grow, SVM implements more involved kernel 

functions to evaluate the similarity of samples and construct more fine-tuned predictive curves. 
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Figure 8. Illustration of the SVM Optimal Hyperplane with a Linear Dataset  

 

 Considering its prevalence in the literature, SVM is a clear choice for evaluating the 

predictive capabilities of the thesis dataset. Its similarity to other linear classifiers, such as linear 

regression, also provides insight into how similar algorithms might perform. 

2.3.2 Decision Tree 

 A decision tree (DT) is another powerful machine learning algorithm that, in the vein of 

SVM, is capable of both classification and regression [25]. They can be combined to form more 

complex and powerful random forests, but the core concept is simple enough to visualize. Figure 

9 contains a basic decision tree representing the candidate algorithm. 
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Figure 9. Simplified Decision Tree for the DHO Candidate Algorithm 

 

 At its core, a DT contains a tree-like model of choices and consequences that filter down 

to conclusive nodes. In the example above, there are two nodes that represent tests on the data, 

colored in purple. The tree is traversed by passing or failing each test and proceeding in the 

corresponding direction down the tree. In this simplistic case, there are at most two decision 

nodes to visit and only one valid path that results in a positive labeling. This thesis uses the 

Scikit-learn decision tree classifier and is fitted on the generated feature vectors, resulting in a far 

more complex tree. 

In these more complicated cases, trees can grow very large and contain a significant 

number of nodes, but, due to their generally being approximately balanced, traversing the tree for 

a prediction only requires O(log2(m)) steps, where m is the height of the tree [26]. This is 

because many decision tree algorithms construct the tree by finding splits for the data that will 

reduce impurity, recursively adding splits until no more suitable options are found, resulting in a 

more or less binary tree structure. Decision trees are prone to overfitting. As a result, they require 

regularization to produce consistent models. Decision tree was chosen as a classifier for this 
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thesis because of its prevalence in the literature and as a representative of other tree-based 

learning models. 

2.3.3 Gaussian Naïve Bayes 

 Naïve Bayes classification models are a family of probabilistic classifiers whose core 

unifying feature is that they treat all values of the feature vector independently, assuming zero 

correlation between them. Gaussian builds upon this by further assuming that the instances of the 

various potential classifications are distributed normally. It then takes each value from the 

feature vector and compares the z-score distance between that point and the class-mean for the 

different potential classifications [27]. Evaluating the overall proximity of each sample to the 

class means provides the probabilistic class designation. An example of this can be found in 

Figure 10 [28]: 

Figure 10. Classifying Sample Using Naïve Bayes and Gaussian Distributions  

 

 Here, two classes (purple and green) both have their normalized distributions plotted. The 

sample X  has its z-score distance calculated from the average of the class distributions and is 

found to be more similar to class green and will be classified as such. 
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2.3.4 Multilayer Perceptron Neural Network 

 A multilayer perceptron (MLP) is a feedforward artificial neural network that uses 

backpropagation learning and is adept at classification, recognition, and prediction. It consists of 

three layer types: input, output, and hidden [26]. Each layer of the neural network is fully 

connected to the perceptrons (nodes) in the following layer. An illustration of these layers can be 

found in Figure 11 [29].  

Figure 11. A Depiction of a Three-layer Dual-input/Dual-output Artificial Neural Network  

 

 

 Here, two inputs representing different descriptive features are fed into the input layer. 

Each perceptron in the neural network uses a nonlinear activation function and independently 

assesses the features it receives from the previous layer to determine its own weighting system to 

describe how the feature data should be interpreted for optimal classification. The output of each 

node from a non-input layer of perceptrons is then combined with a bias node whose input is 1 

(to ensure a constant is passed to the next layer), at which point the backpropagation algorithm 

[30] conducts a first-order gradient descent search in the weight space for the optimal weights to 

minimize the error rate [31]. Such a construction allows for what is referred to as deep learning, 
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where through a set of feedforward layers and backpropagation, feature weights are iteratively 

engineered, and interpretations of these values are difficult or even impossible for researchers to 

explain. As a result, neural networks like this that are used for classification and regression are 

something of a “black box” whose hyperparameters can be optimally configured but whose 

actual feature weighting need not be understood to be analyzed. 

This thesis compares two different implementations of multilayer perceptron neural 

networks. The first MLP classifier is the last in this thesis to be implemented by the Scikit-learn 

library and was chosen to be representative of other simple neural networks as well as to be a 

comparison point for the second, more complex deep learning Keras/TensorFlow learning 

model. Keras is a high-level deep learning API that implements TensorFlow under the hood for 

the actual construction of the neurons and network [32]. TensorFlow is a multi-layered deep 

learning model much like the Scikit-learn MLP classifier but is constructed on a much lower 

level [33]. The Keras API allows for faster configuration of these TensorFlow neural networks, 

allowing quick configuration of deep learning frameworks and automatic validation testing. 

Keras/TensorFlow was chosen for this thesis due to its significant use in both literature and 

industry. 

2.4 Challenges and Opportunities 

Since 2005, many NBA video analytic research works have been proposed that have 

motivated and impacted the domain. This section contains a summary of the key challenges 

identified in the literature and highlights proposed solutions and directions for future research. 

The challenges and proposed direction are broken into three categories: (1) feature engineering 

and extraction, (2) deeper information discovery of actions, and (3) effective video content 

preprocessing and noise filtration. 
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2.4.1 Feature Engineering and Extraction  

Machine learning solutions developed for traditional video- and image-based processing 

are not effective to provide NBA analytics using NBA video tapes. The main reason for this is 

that traditional video-based solutions aim to detect the variations of three main features: shape, 

color, and position. However, solutions for video-based NBA analytics aim to process videos by 

detecting multiple human actions executed simultaneously. Such data may have extremely 

similar instances in terms of shape, color, and position. However, effective features are 

generated by successfully detecting various player actions. A promising approach to address this 

challenge is to generate robust and more comprehensive features that analyze the context of 

human movement dynamics. Extracting and utilizing multiple detailed metrics and labels from 

videos is more appropriate than applying a single description [34]. 

2.4.2 Deeper Information Discovery of Actions 

 In NBA basketball, the same play can be executed in multiple variations. This means 

that the use of traditional metrics and distance functions (e.g., Euclidean distance) is not 

sufficient to simultaneously recognize similar plays and differentiate between different ones. Li 

et al. [35] showed that processing video frames within only a small temporal region is not 

effective for recognizing actions in videos. Moreover, they discovered that long-range dynamic 

information and deep features are essential for the discrimination of complex activities with 

shared sub-actions. This is a promising approach to adopt in NBA action and play recognition 

as it provides more detailed metrics that allow for more accurate similarity and dissimilarity 

estimations for actions and plays.   
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2.4.3 Effective Video Preprocessing and Noise Filtration 

The nature of the data in this domain is unbalanced such that most of the game might not 

have any plays or actions of interest being executed. For example, Yu [6] discovered that only 

two minutes of on-ball screens (each taking about 1.3 seconds) occur in the entire forty-eight 

minutes of a standard game. This imbalance between events of interest and other events results in 

a ratio of approximately 4% relevant data. Without innovative and effective filtering of irrelevant 

data, the difficulty in identifying events of interest will continue to increase. 

Algorithms that utilize rules designed manually by sport experts remain the sole method 

of filtering irrelevant content. Figure 12 shows an example of a rule that finds the ball handler (if 

any) [6]. If the algorithm returns NULL, then the frame can be discarded as no action (or play) is 

executed without the ball. Sampaio et al. [21] and Teramoto et al. [22] proposed using Principle 

Component Analysis (PCA) for data reduction. Also, Nistala and Guttag [3] propose using 

Convolutional Neural Network (CNN) to represent (approximate) the data in an abstract manner, 

which not only reduces the size of the data but also allows for more relaxed movement 

comparisons among actions and plays.   

Figure 12. Finding the Ball-handler Algorithm  
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2.4.4 Annotation Scalability 

Another challenge in this domain is the difficulty of obtaining a larger number of labeled 

events. This is because an annotator needs to watch a tape to judge when a certain play begins 

and ends and to classify what the play was. In addition to being a time- and labor-consuming 

approach, the beginning and end times of a certain action or play could be debatable, which 

impacts the effectiveness of machine learning approaches.  

Despite the many research works and proposed solutions for action and play recognition 

in NBA data, many problems remain due to the complexity of recognizing and differentiating 

between actions and sub-actions of basketball plays. It is challenging to develop a unified 

framework with a machine learning pipeline that can filter, abstract, and label actions and plays 

in an accurate manner. Engineered features that consider contextual information about advantage 

creation, such as space created, defensive switches, and other player skillsets, are needed to train 

more accurate models. Additionally, utilizing and tailoring deep features to distill complex 

actions and strategies into sub-actions and sub-strategies is important for comparing actions with 

more accurate measures (i.e., fine-grain distance functions), such that those types of complex 

questions regarding on-ball screens can be answered. A unified framework would consist of a 

pipeline of supervised learning techniques to classify the on-ball screen dataset, a neural network 

and clustering approach to group the various approach and execution pairings present in that 

dataset, and a quality evaluation tool that takes into account features of advantage creation, such 

as space created or defensive switches favoring the offensive players’ skillsets. 
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Chapter 3. Design and Implementation 

3.1 Approach Design and Architecture 

 The pipeline presented in this thesis was designed to take in positional data and event 

labels representing the on-court actions over the course of a particular NBA game and produce a 

training set and model capable of classifying particular action instances. Although the focus of 

this thesis is on the DHO, and the end point for this pipeline is a trained classification model, the 

pipeline was designed in such a way that it can be adapted to support various play-actions and 

facilitate additional pattern mining or quality evaluation modules on the resulting dataset from 

the trained classification model. 

To accomplish this, a sequence of preprocessing steps to combine and filter noise from 

the datasets were performed. The relevant games, players, teams, events, and moments are then 

serialized and stored in a relational database. To account for the variant nature of NBA actions, 

the pipeline implements a candidate algorithm to cast a wide net and collect as many action 

instances from the raw data as possible. These candidates are then reviewed manually by 

watching live game recordings. The positions of the screener, cutter and ball are then encoded at 

points of interest using hexbin maps and are included with the other extracted and engineered 

features. Once the features are complete, the resulting dataset can be split and used for model 

training and testing. A visualization of this process is found in Figure 13. Following is a more 

detailed description of each phase of the pipeline. 
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Figure 13. The Dribble-hand-off Classification Pipeline 

 

3.1.1 Preprocessing 

 In the preprocessing stage, the two datasets (SportVU & Event Labels) are loaded in from 

their respective JSON and .csv files and combined by event id. Data for the teams and players 

involved in the game, such as the names and positions of players and the team cities and 

abbreviations, is then extracted and used to create the corresponding database entities for reuse.  

Once the descriptive data is extracted and the datasets are combined, the events are 

narrowed to only those related to a successful or failed scoring attempt, a personal foul, or a 

turnover. This is because many of the events contain no corresponding positional data or because 

those events do not contain moments of interest in which a DHO or other action might occur. 

Examples include the events marking the start and end of a quarter and those corresponding to 

free throw attempts. Once this step is completed, the other non-pertinent data columns are 

removed, and event ids are generated so they can be stored in the relational database. 

Finally, to complete the preprocessing steps, several higher-level features are extracted 

from a combination of positional data and event labeling to enable our candidate algorithm to 
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detect potential DHO actions. First, it must be determined which team is in possession of the ball 

for each given event. The raw coordinate data often extends well before and after the event in 

question, even overlapping neighboring events. This makes it difficult to tell which sections of 

the coordinate data ought to be ignored for a given event. Once possession has been determined, 

directionality can be established by looking to see which basket each team is attempting to score 

on (this then flips during the second half of play). When the possession and directionality have 

been confirmed, the moments for the event can be extracted from the raw data, assigned an id, 

and added to the database. 

Throughout the preprocessing and subsequent processes, there were several cases where 

inconsistencies that could not be reconciled were discovered. An example of this is when a 

tracking camera switches identifications or loses a player entirely, resulting in players jumping 

wildly between two different locations. Other discrepancy cases where the clock suddenly 

reverts or becomes constant during play or even suddenly becomes a series of “NaN” values 

make it impossible to confirm based upon the raw data what exactly happened during the event. 

Considering the dataset is publicly available and from 2016, this thesis assumes that many of 

these inconsistency issues in the raw data collection have been addressed and are therefore of 

little academic interest to the machine learning applications present in this pipeline. Thus, odd 

events containing egregious raw data inconsistencies were removed from consideration.  

3.1.2 Candidate Algorithm 

 Upon completion of the preprocessing stage, the focus shifts to identifying potential 

DHO candidates within the event data. To train the models, a collection of both positive and 

negative action examples must be gathered. This is not a trivial task, as it requires identifying, 

recognizing, and evaluating a series of different in-game states to determine the nature of the 



40 

 

possession and player actions. The candidate algorithm is designed to parse the preprocessed 

data and return a list of potential actions it has identified that might be instances of DHOs. This 

stage is discussed in more detail in section 3.2. 

3.1.3 Manual (Human) Labeling 

 To manually label the candidates identified by the candidate algorithm, live broadcast 

recordings of the 15 games were obtained. Each game was then examined from start to finish, 

looking for example of DHOs, marking all the candidates as negative or positive and recording 

any actions missed by the candidate algorithm. The most commonly missed examples were 

atypical actions in which an unusually long pass occurred. In other cases, the screener extended 

the ball far past themselves, so the pipeline no longer registered them as being in possession of 

the ball, since the player tracking does not extend to limbs. An overview of the labeled data set 

can be found in  section 3.2.3. 

3.1.4 Hexbin Mapping 

 One challenge in pattern mining and extraction is overcoming the specificity of the data 

to identify more general trends. When using coordinate data and trajectories as precise as those 

contained in the SportVU dataset, similar actions may appear more distinctive than they are. In 

examining patterns in on-ball screen actions, many attempts have been made to abstract details 

from the coordinate data to better detect trends, often involving convolutional neural networks. 

These algorithms take in images of the players movements plotted onto a basketball court and 

produce fuzzy images that remove the precision of the data without compromising the 

representation.  

 This thesis seeks to produce a similar form of precision abstraction to efficiently train 

machine learning classifiers by using hexbin mappings of player trajectories instead of a CNN. 
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These plots are essentially hexagonal trajectory cell paths that embed the movements of a player 

or the ball in a series of hexagons color-weighted by time spent in that cell. Using these hexagon 

cell indices as opposed to extremely precise coordinates preserves the high-level patterns present 

in the data while abstracting away the details of the trajectory path. This process is discussed in 

more depth in a later section 3.3.  

3.1.5 Feature Generating 

 Effectively training a classification model requires a descriptive feature vector that 

encapsulates the distinguishing aspects of a training example. Powerful classification models 

have been constructed on only a handful of engineered features. Therefore, this thesis assembles 

a selective list of fifty extracted and engineered features that seek to capture the characteristics 

and roles of the involved players’ movements, as well as aspects of the wider state of play. Once 

these features are generated for a candidate, they are assigned an id, associated with the 

corresponding candidate, and added to the relational database. An exhaustive list and further 

discussion of these generated features is contained in a later section .  

3.1.6 Model Training 

 The training models implemented in this thesis all use training and testing sets to fit the 

dataset and configure their predictions. While the specific configurations differ slightly, most 

models use an 80/20 training and testing split, and the Keras/TensorFlow model also uses a 

validation set to avoid overfitting. This is done to evaluate how each of the models performs 

when exposed to unseen data. Each classification model, especially the deep learning versions, 

can develop a prediction model from a dataset, but this is often achieved by learning specific 

trends and characteristics present in that dataset that might not scale to further examples. 
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Ensuring that model training always occurs on a disparate dataset ensures the models are 

configured to be as flexible and predictive as possible when exposed to new data. 

 The data were also normalized using min-max scaling to ensure that different scales did 

not create improper feature weights. The process of min-max normalization places all numeric 

features in a range from 0 to 1, with 0 being the min and 1 being the max. This ensures that a 

feature that typically falls between 0 and 1 is not overshadowed by a feature whose range is 

between 1-1000.  

3.1.7 Model Testing 

 Once the learning models have been constructed on the training set, the remaining testing 

set can be used to gather accuracy and performance metrics to evaluate the quality of the model 

and feature set. The skewness of positive to negative examples means the data must be split 

carefully to ensure there are enough positive cases in the testing set for proper evaluation.  

 The model is tested by using its configured predictive model to generate a set of class 

designations for the testing set. Those designations are then compared to the actual labels of 

those examples, and four metrics are collected per class: false positives, false negative, true 

positives, and true negatives. These four metrics comprise what is referred to as confusion matrix 

and are the underlying statistics for many of the standard accuracy metrics, such as precision and 

recall.  

Models that achieve higher counts of true positives and true negatives can be said to 

perform better, although there are contrasting considerations. It is often difficult to make a model 

that effectively avoids false positives and negatives. Rather, it can typically only be skewed to be 

more conservative or aggressive in its classification, resulting in either fewer or more false 
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positives respectively. In cases where a false negative is more costly, for example, a cancer 

diagnosis, a model is skewed to err on the side of caution by designating a positive class if 

unsure.  

3.2 Candidate Algorithm 

 As discussed previously, a rule-based algorithm can identify and extract basic actions 

from the complex, real-time player motion data. For example, a screen is often identified in the 

literature by calculating relative distances for all the offensive players on the court and looking 

for any pair whose relative distance is within a certain margin, often five feet. Obviously, such 

an approach is somewhat limited, because it is often the case that two players are within a five-

foot proximity of each other, but no screen occurs. They may be jockeying for rebounding 

possession, running past one another, or simply standing closely. This makes classifying any 

action, even one as simple as a screen, a complicated task that requires either a great many 

specific rules that run the risk of overfitting the data or a small set of looser rules that either 

capture too much noise or fail to identify numerous positive instances. 

Figure 14. Steps in the candidate algorithm selection process 

 

 Due to these challenges, relying only on rule-based algorithms to identify and classify 

classifying complex actions involving multiple coordinating players provides limited outcomes, 

especially in terms of precision. The candidate algorithm is therefore designed with a minimal 
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rule set intended to capture a wide training set of both positive and negative instances so that the 

actual classification can be performed by a machine learning model informed by the actions that 

pass the candidate algorithms rules.  

3.2.1 Identifying Passes 

Much like in the example from the literature attempting to classify on-ball screens, the 

first step in the dribble-hand-off classification pipeline is to identify who is in possession of the 

ball at a given time (see Figure 13). In basketball, this individual is referred to as the ball-handler 

and can be found by taking the Euclidean distance from the ball to each of the offensive players 

and choosing the player corresponding to the minimum distance. While this is not perfect and 

cannot capture certain situations, like a player fumbling a ball, it is a reasonable start given the 

constraints of the dataset. A few additional rules concerning the radius of the ball are added to 

help rule out instances where a shot is taken, or players are fighting for a rebound and no one is 

technically in possession. Finally, a distance threshold of five feet is set, and for all moments in 

which no offensive player is under that threshold, possession is marked as “N/A”. 

 From the ball-handler data, a list of all passes for a given event can be extracted by 

looking for shifts in possession. Since the moments when possession is lost and regained are 

marked and associated with a specific coordinate in the SportVU data, this data can be used to 

set the start and end locations of the pass and determine how long it took for the pass to be 

completed.  

3.2.2 Selecting Candidates 

Finally, the list of extracted passes is combined with two additional rules to eliminate 

certain types of passes, such as those that occur in the painted area closest to the basket (the 

paint) or those that originate from out of bounds. While it is not impossible to have a DHO that 
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occurs in the paint, these additional rules filter a significant amount of noise from the final 

dataset, while losing only a handful of positive instances.  

The passes are then evaluated by how long it took for the pass to be completed. This is 

measured by looking at when the ball first leaves the possession of the passing player and the 

corresponding moment in which the ball first enters the possession of the receiving player. Any 

remaining pass that occurs within a small enough time span (typically eight moments, depending 

on the capture rate for that particular game) is nominated as a candidate. The candidate is then 

assigned an identifier and a label, and a list of identifying features is created for the manual 

labeling process before it is added to the relational database. 

3.2.3 Evaluating Selected Candidates 

Of the resulting 1811 candidates selected across the fifteen games reviewed in this thesis, 

a total of 568 were identified as positive DHO instances. A portion of the positive DHOs, ~4.6%, 

were marked as fakes, which are discussed in depth in section 1.3.1. A summary of the breakdown 

for the labeled candidates, as well as the associated source data, can be found in Table 3: 

Table 3. A Summary of the Total Entities Present Within the Training Set 

Thesis Data Overview 

Games 15 Total Candidates 1811 

Teams 18 Positive Candidates 568 

Players 241 Negative Candidates 1243 

Events 1264 Fake Candidates 26 

Ultimately, the intent of the candidate algorithm is to cast a wide net and collect as many 

action instances as possible that can later be narrowed by the trained classification model. 

Therefore, time was not spent further engineering or optimizing the rules that dictate the 
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nomination process. A total recall of ~90% was achieved during manual labeling, and this was 

deemed sufficient to train the model. Additional steps to increase recall or narrow the scope of 

candidates can be considered in future work. 

3.3 Hexbin Positional Conversion  

One challenge in identifying patterns in such a diverse dataset is overcoming the 

granularity and precision of the raw data. Each positional coordinate in the SportVU moments 

contains two floating point numbers with as many as eight trailing digits. Feeding this raw data 

into a classifier can be confusing, as two nearly identical positions may evaluate to have low 

similarity scores.  

 To abstract away some of these play/action details and capture the higher-level 

descriptive elements of players’ court positions at key moments during an action, this thesis uses 

a technique known as hexbin mapping to embed player trajectories into cell paths. Binning 

occurs by separating a continuous data into discrete sections, in this case hexagons. The raw 

coordinates are then placed into each one of these bins, and the resulting occupancy counts of 

those bins can be used to represent the original data. An example of hexbin mapping in Figure 15 

shows how this strategy can be used to convert the trajectory paths for the screener (blue), cutter 

(green) and ball (red). 
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Figure 15. Hexbin Mapping of Coordinate Data for DHO Action 

 

In this thesis, these hexagon positions are used as features in place of the raw coordinate 

data. This abstraction means that two actions that begin in nearly the same exact location will 

appear that way to the classification models. Other efforts to abstract away these specific details 

in order to identify more general patterns have been used to explore NBA strategies in the 

literature before. This is often done by creating trajectory images of the raw data and feeding 

them into a convolutional neural network and clustering those results. To the best knowledge of 

this thesis, however, this is the first attempt in research to embed player positions using hexbin 

mapping for the purpose of DHO classification.  

3.4 Feature Creation 

 A selective list of fifty features was generated for each candidate. A total of 16 of these 

features are engineered, in that they require significant manipulation or composition past the 

point of a simple calculation. The remaining thirty-four features were extracted from the raw 

dataset and may or may not have gone through one or more processing steps amounting to basic 

calculations. Once all the features were collected, they were combined with the manual label, 
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given a derived id, and stored in the relational database for use in training the classification 

models. Both the extracted and engineered features are discussed in detail below. 

The features generated were derived from two-second windows before and after the 

screen moment, defined as the moment when the coordinating offensive players are closest 

together. By distinguishing the approach and execution stages within the feature set, examples 

with vastly different executions can still be classified similarly by the classifiers. 

3.4.1 Extracted Features 

 In total, forty-two of the features used to train the classification models for this thesis 

were extracted from the combined SportVU and event labels dataset. Most of these extracted 

features required some basic processing to derive meaningful metrics from the data before being 

passed off to encoding and normalization steps. The exceptions to this are the player archetype 

and the ball radius, which is a floating point measure of the ball size on the camera that indicates 

the approximate height of the ball, where larger radius measures indicate a greater height along 

the z-axis. The ball radius is left as a floating-point value and passed along to the normalization 

process, but the player archetypes require some form of encoding because it is difficult for a 

classification model to compare string values. Encoding the player archetype designation  creates 

an enumeration which in turn can be represented by an integer and accurately utilized by the 

learning model.  

 The remaining thirty-six extracted features consist of various measures of the paths 

traveled by the cutting and screening players as well as the ball itself. First of which are the 

distances each traveled, as well as the relative distance of the players at key moments of 

considerations: the beginning of the approach stage, the pass moment, the screen moment, and 

the end of the execution stage. These are the same moments for which the engineered location 
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features discussed in the following subsections will be calculated. In addition to the distance 

measures, the average speed of the cutter, screener, and ball as well as the slope and trajectory of 

their plotted movements over the action duration are derived from the raw data. A full overview 

of these features and their descriptions can be found in Table 4 below. 

Table 4. Overview of Extracted Features (42 total) 

Feature Feature Type Feature Description 

screener archetype Enumeration Encoded string containing players’ assigned 

positions 

cutter archetype Enumeration Encoded string containing players’ assigned 

positions 

distances traveled* Float Calculated for the screener/cutter/ball  

average speeds* Float Average speed of screener/cutter/ball 

trajectory slopes* Float Slope of screener/cutter/ball trajectory  

trajectory intercepts* Float Intercept of screener/cutter/ball trajectory  

ball radiuses** Float Radius of the ball indicating relative height 

relative distances** Float Relative distance between the screener and the 

cutter from each other and from the ball 

* represents multiple features collected for the cutter/screener/ball from the approach and execution stages 

** represents multiple features collected from the start/end of the action and the screen/pass moments 

 

3.4.2 Engineered Features 

 In this thesis, a total of sixteen features required significant enough abstraction or data 

manipulation that they were considered engineered. The first of this set, the hexbin cell transform 

of the location data, has already been discussed in detail. While the other engineered features in 

this thesis would likely be found in sophisticated classification efforts for different actions, they 

have not, to the knowledge of this thesis, been used to distinguish DHO candidates.  

 These features consist of higher-level composite features that, when combined with the 

raw coordinate data and a rule-based algorithm, contribute a deeper contextual and temporal 

understanding of the on-court behaviors present in the action. The first of these measures is the 

offset into the developing play itself. This is based off of the insight that coordinated offensive 
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actions typically require time to set up, execute, and then create a scoring opportunity. This 

means such actions are less likely to occur at the very start of the possession, when the majority 

of offensive players are likely still on the far side of the court, nor at the very end of a 

possession, when players are scrambling to get up an attempt before committing a shot-clock 

violation. Similarly, all ten player locations are considered to determine how many are on the 

half of the court where the team in possession is currently trying to score. If only seven of the ten 

players are past half-court, the players are likely in a fast-break offensive situation in which each 

player is darting towards the rim or three-point line, and the potential for any type of on-ball 

action is significantly limited.  

 Finally, in addition to the duration of the pass (derived from the pass detection algorithm 

described in the candidate algorithm), the initial pass is examined to detect if it originated from 

out-of-bounds, which indicates what is referred to as an inbounds play. Inbounds play are unique 

offensive opportunities in basketball, in which players and often coaching staff are permitted to 

gather and discuss strategy ahead of the proceeding play. This opportunity for verbal 

collaboration commonly results in a higher potential for coordinate team action and, therefore, an 

increased rate of play-actions such as DHOs. Ultimately, these engineered features are calculated 

for each candidate alongside the extracted features and combined along with an id and manual 

label to create the final testing/training set. An overview of each of these engineered features can 

be found in Table 5. 
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Table 5. Overview of Engineered Features (16 total) 

Feature Feature 

Type 

Feature Description 

cutter locations* Hexbin coord. Coordinate of closest hexagon cell for cutter on the 

start/end of the action and pass/screen moments 

screener locations* Hexbin coord. Coordinate of closest hexagon cell for screener on 

the start/end of the action and pass/screen moments 

ball locations* Hexbin coord. Coordinate of closest hexagon cell for ball on the 

start/end of the action and pass/screen moments 

offset into play Integer Indicates which sixth of the play the action 

occurred in 

pass duration Integer The total amount of moments captured between the 

start and end of the pass 

players past half court Integer Count of players currently on the same side of the 

court as the occurring action 

inbounds play Boolean Indicates whether play is initiated from an out-of-

bounds pass 

* represents multiple features collected from the start/end of the action and the screen/pass moments 

 

3.5 Entity Overview 

 As discussed in previous sections, accompanying the classification pipeline is a relational 

database constructed to represent the various entities of interest and store all the data required to 

generate the features and train the machine learning models. Serializing the data as it progresses 

through the pipeline also allows for future access to occur through the database models, 

improving overall performance. Considering the vast size of the dataset, even for a 15-game 

sampling, computational complexity with large datasets is an inherent challenge in any 

developed pipeline. The overall database for this thesis alone consists of more than five million 

rows across the relational entities overviewed in Figure 16: 
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Figure 16. Entity Diagram of the Classification Pipeline Domain 
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Chapter 4. Evaluation 

4.1 Accuracy Measures 

To evaluate our approach, we use several performance metrics to investigate its accuracy 

and completeness under different settings. The most popular accuracy measures in machine 

learning and information retrieval domains are accuracy, precision, recall, and F1  score. 

Following is a presentation and explanation of each measure where true positive (TP) is the 

number of dribble hand-off candidates that are correctly classified as true. True negative (TN) is 

the number of instances that are correctly classified as false. False positive (FP) is the number of 

instances that are incorrectly classified as DHOs. False negative (FN) is the number of instances 

that are incorrectly classified as not being DHOs when, in fact, those instances were positive 

examples. 

Accuracy (A): calculates the number of correctly classified instances (negative and positive) 

over the total number of instances, using the following equation: 

A  =  
(TP  +  TN)

(TP  +  TN  +  FP  +  FN)
 

Precision (P): calculates the number of correctly detected class members by the classifier over 

the total number of correctly and incorrectly detected members using the following equation: 

𝑃 =
𝑇𝑃

𝑇𝑃 + 𝐹𝑃
 

Recall (R): calculates the number of correctly detected class members over the total number of 

class members using the following equation: 

𝑅 =
𝑇𝑃

𝑇𝑃 + 𝐹𝑁
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F1  score: provides a score that balances both the concerns of precision and recall in one measure 

using the following equation: 

𝐹1 =
2 × (𝑝𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 × 𝑟𝑒𝑐𝑎𝑙𝑙)

(𝑝𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 + 𝑟𝑒𝑐𝑎𝑙𝑙)
 

 In addition to these metrics, receiver operating characteristics (ROC) were generated for 

each of the learning models. An ROC is used to compare the false positive and true positive rates 

of a model. A completely random model with an even data distribution tasked with choosing 

between two classes can be expected to do so with approximately 50% accuracy. If plotted, this 

would result in a diagonal line at a 45-degree angle extending out from the origin. The area under 

that curve (AUC) would be 0.5, or approximately 50% of the domain space. A model that 

efficiently distinguishes between class designations, on the other hand, would perform much 

better and, in turn, have a much higher AUC. It has been found that an AUC score of closer to 1 

not only indicates a highly performant and predictive model, but that such a measure is even 

more telling than accuracy metrics [36].  

 To provide that additional context, this thesis provides an ROC graph for each of the 

classification models, as well as learning curves that indicate the overall fitness of the model as it 

exposed to an increasingly large training set. By looking at both of these graphs in combination 

with the accuracy metrics on unseen data, an overall effectiveness for these classification models 

and their similarly constructed relatives can be ascertained.  

4.1.1 Metric Collection Methodology 

In this thesis, all reported metrics were derived from many individually configured 

models in order to obtain an unbiased and representative measure of performance for each type 

of learning model presented. For each model, the training and testing splits were separated from 
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the full candidates, the model was fit on the training data, and a set of predictions were made for 

the testing data. Those predictions were then evaluated for the performance measures accuracy, 

precision, recall, and F1. The variance in class representation within the training set will result in 

different interpretations of the data resulting in different predictions. Averaging metrics across 

many different splits of the data removes the bias that may result from a single model and a 

single sample, which could significantly under- or overperform typical performance.  

4.2 Evaluating Features 

 Before examining the effectiveness of the machine learning algorithms, the features 

themselves are examined. There are many ways to evaluate features and measure their 

importance to the classification model and its accuracy. Some of these methods (principal 

component analysis, univariate feature rankings and more) have already been used in the 

literature. In this thesis, features are examined using information gain as a measure to assess not 

only which features offer the most predictive value but also how the engineered features compare 

to the extracted features. 

4.2.1 Information Gain 

 There are several metrics available to evaluate the quality of a feature set. Considering 

that the effort of this thesis is to build a classification model, information gain is an attractive  

method, as it ranks features in relation to some targeted dependent variable. Information gain is 

determined by calculating the mutual information of each variable in the feature set with respect 

to the classification based upon the entropy of those elements [37]. The resulting rankings 

indicate which features have the most predictive power within the dataset. A summary of the 

feature rankings for this thesis is found in Figure 17. 
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Figure 17. Overview of Information Gain per Feature  

  

 

 While most features have reasonable scores, and the location of the ball and cutter when 

the screen occurs stand out in particular, the most interesting takeaway here is the distribution of 

extracted and engineered features. Most of the features in this thesis are extracted and involve 

derived calculations of the movements of the players and the ball. Considering the diversity of 

the base dataset and the wide representation of actions and variants, it is reasonable that such a 

set of features would be necessary for accurate classification. The performance of the engineered 

features compared to the extracted features, however, is a strong indication of their descriptive 
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capability. Ultimately, the intention of an action classification feature set is to provide a concise 

and informative description of the data that ideally captures aspects of the larger context and 

intentions of the involved players. The propensity for information gain present in the engineered 

features of this thesis demonstrates a capability to do just that. 

It should be noted that while some features have very low or zero scores for information 

gain in this sampling, it was discovered that removing these features from the classification 

experiments resulted in lower performance in terms of recall, precision, and accuracy. This 

indicates that despite the results from the information gain algorithm, preserving those features 

provided a marginal but nonnegligible benefit. 

4.2.2 Impact of Hexbin Mapping on Model Performance  

 To determine the effectiveness of the hexbin mappings, a training set was generated with 

the raw coordinate encodings. Both sets of coordinates were sorted and encoded for ingestion by 

the classification models. The hexbin coordinate set was ~40% of the size of the raw coordinate 

set, indicating a significant reduction in precision. Because the training set a model receives has 

a large impact on its accuracy, both training sets were used to train an MLP network, and the 

results were averaged. While the raw coordinate set still performed well, it was ~1% less 

accurate with ~3-4% lower AUC. This is a significant but not substantial margin that has 

potential to increase with a larger more robust training set. It is the opinion of this thesis that 

while hexbin mapping has potential to improve a learning model’s ability to classify, the bigger 

impact is still likely to be found with image based deep learning as discussed in section 2.2.2. 

4.3 Comparing Classification Models 

 To evaluate the effectiveness of the constructed pipeline and composed feature set, the 

training data was first fit on and subsequently evaluated by three classification learning models 
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implemented by the Scikit-learn library: support vector machine, gaussian naïve bayes, and 

decision tree. SVM is a favorite among the literature for the classification of other on-ball actions 

and shows promising potential in classifying DHO candidates as well. All models in this thesis 

were configured independently and then assessed by averaging results from 10 distinct iterations 

with unique testing split to avoid placing too much stake in any individual model. As seen in 

Figure 18, SVM outperforms the other two learning models on precision, recall and F1 score.   

Figure 18. Comparing Accuracy Metrics Across Classic Classification Models 

 

These three metrics are the basis for much of our comparison, since they evaluate not 

only how accurate our model is but also how many of the positive instances in the dataset were 

identified and how much extra noise was misclassified as a part of this effort. These statistics are 

derived from the total number of correct classifications as well as false positives and negatives. 

A total breakdown of how each model performed is seen in Table 6. 
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Table 6. Confusion Matrices for Classic Classification Models 

    Negative Positive 

Decision Tree (DT) 

Negative 321 65 

Positive 55 102 

Support Vector 

Machine (SVM) 

Negative 341 51 

Positive 35 117 

Gaussian Naïve Bayes 

(GNB) 

Negative 371 15 

Positive 114 44 

 

While these indicators seem to suggest that SVM is a clear favorite for classification 

among these options, another measure of a model’s fitness, the ROC curve, offers additional 

insight into how well the model discerns between the classifications. This is important, because 

while our training set is substantial, it is still a relatively small sampling compared to the larger 

context in which thousands of games are played in the NBA in a single year. Training our 

models on a smaller sample, therefore, can result in limitations on performance. The ROC curve 

suggests the upper limit for a model’s performance given access to a larger training set [36]. 

4.3.1 Support Vector Machine 

 SVM performed quite well on the dataset, reaching an average accuracy of around 85%. 

Considering the diverse and stochastic nature of the actions and the case that a fair number of the 

variants are fakes intentionally executed to be misleading, this is a promising result. As seen in 

Figure 19, the training and validation error curves converge fairly quickly, indicating a potential 
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for overfitting that possibly requires additional training examples or a smaller learning rate. 

Perhaps most interesting is that while SVM outperformed the other two classification models in 

accuracy metrics, its AUC was less impressive. This might suggest that while early returns are 

promising for SVM, the other learning models might be more robust and better respond to a 

larger training set.  

Figure 19. Learning and ROC Curves for SVM Model 

 

4.3.2 Decision Tree 

 The decision tree classifier is not as suited to this diverse a data set. It underperforms 

compared to the other approaches and, despite attaining a comparable AUC to that of SVM, does 

not demonstrate much promise going forward for an action classification pipeline. The learning 

and ROC curves are interesting for the decision tree, as the model fits closely to the training data 

and, in fact, constructs its tree from it. As a result, training error tends to be quite low but 

converges with validation error at a lower accuracy than is desired. It is possible that in future 

work a more complex random forest could be implemented and fit on this data with better 

results, but based on the experimentation and results presented here, the DT classifier does not 

perform well at this task.  
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Figure 20. Learning and ROC Curves for DT Model 

 

4.3.3 Gaussian Naïve Bayes 

 The last of the simple supervised learning algorithms examined in this thesis, GNB, 

shows the greatest potential for discernability. Although it did not score as highly on the 

accuracy metrics as SVM did, AUC was significantly higher at 86%. The tedious task of 

manually reviewing and labeling means that obtaining the nearly two thousand candidates 

studied in this thesis alone was difficult. A fully trained pipeline would likely need to be fed 

hundreds if not thousands of times as many examples. Therefore, the AUC is a promising sign 

for GNB, as it indicates that it might be a strong choice for a larger data set. 

Figure 21. Learning and ROC Curves for GNB Model 
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4.4 Comparing Deep Learning Models 

 In addition to the three supervised learning approaches discusses above, this thesis 

implemented two neural networks to evaluate the effectiveness of deep learning on the DHO 

candidate dataset. As seen in Figure 22, neither the Scikit-learn MLP nor the Keras/TensorFlow 

algorithms significantly outperformed SVM in terms of accuracy, precision, nor recall.  

Figure 22. Comparing Accuracy Metrics Across Deep Learning Models 

 

 Both neural networks scored significantly higher on AUC, each topping 90%. This makes 

sense, as the appeal to deep learning is that the models themselves decide on how to weight and 

value features, often identifying and capitalizing on patterns that are difficult for human 

researchers to deduce after the fact. The ROC curves shown in Figure 23 indicate flexible and 

highly predictive models that have the potential for increased performance with increased data.  
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Figure 23. Comparing ROC Curves of Neural Networks 

 

 The actual training and configuration of these models is also more intensive than that of 

their simpler classification counterparts. The neural networks feed data forward through multiple 

hidden layers while backpropagating results to ensure optimal feature weighting. As a result, 

there is real risk of overfitting the model to the training set, so additional validation with unseen 

data during the training process is required to maintain the model’s adaptability. Both neural 

networks implemented Adam optimization solvers and Relu activation functions for the hidden 

layer perceptrons [38]. Figure 24 shows the learning curve for the MLP classifier, which 

illustrates how loss and validation accuracy are configured across epochs. 

Figure 24. Learning Curve for Scikit-learn MLPClassifier 
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 In an effort to avoid overfitting, the learning model will automatically stop when it 

detects that it has begun to converge, which occurs in this example at epoch 20. As the training 

set increases in size, this will likely take longer to occur, allowing for more efficient 

classification. 

 The Keras/TensorFlow MLP was also trained over epochs but required a longer time and 

more precise configuration. Keras neural networks optimize based on a variety of different 

metrics; those used in this thesis were accuracy, precision, recall, and AUC. Figure 25 shows a 

chart with the learning curve as each of these metrics converges over 120 epochs with a 

validation test size of 20%.  

Figure 25. Learning Curve for Keras Neural Network 

 

 The Keras deep learning approach struggles to balance precision and recall when 

classifying unseen data, but it produced the greatest AUC score of any considered model, 

indicating strong potential for improvement given a larger dataset. With the training set currently 

present in the thesis, preventing the Keras model from overfitting was quite difficult, which 
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resulted in many more false identifications than the MLP classifier. A summary of the average 

confusion matrices for both classifiers is found in Table 7. 

Table 7. Confusion Matrices for Deep Learning Models  

   Negative Positive 

Multi-Layer Perceptron 

(MLP) 

Negative 220 33 

Positive 26 84 

Keras Neural Network 

(Keras) 

Negative 338 35 

Positive 46 116 
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Chapter 5. Conclusion 

This thesis proposed an end-to-end approach to automatically detect dribble hand-off 

actions. First, it surveyed approaches to NBA content analysis, the types of machine learning 

algorithms used to classify and extract patterns from player movement data, the challenges with 

feature engineering and noise filtration present in these pipelines, and the current solutions 

implemented in this domain. This thesis presents a constructed pipeline capable of ingesting raw 

data and producing a classified dataset of dribble hand-off actions in a number of approach and 

execution strategies, including fakes. Finally, it assembles a large manually-labeled dataset for 

training, explores new approaches in data representation and feature engineering within NBA 

action classification, and presents three supervised and two deep learning models for evaluation.  

Ultimately, play-action detection, classification, and analysis are still in the early stages. 

While great strides have been made in assembling machine learning strategies to perform these 

tasks, the resulting work is mostly too limited to truly represent the intricate system that is a 

basketball game. By limiting the domain, it is easier to see how such an overall system might be 

assembled. Identifying and classifying basic actions is nearly a solved problem, and advances in 

deep learning show great promise for pattern mining such a complex system. It is the opinion of 

this thesis that there is a great deal of room to build out this pipeline specifically for other on-

ball actions and to eventually branch out to other less prominent strategies. Once similar 

pipelines are constructed to analyze defensive and offensive strategies present among all ten 

players on the court, it may even be possible to completely automate the tedious work currently 

performed by staff videographers and coaches.  
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5.1 Discussion of Learning Models 

 Ultimately, in evaluating the machine learning models explored in this thesis, there are 

two clear standouts. Among the simpler classification models, SVM significantly outperformed 

DT and GNB. It even narrowly edged out the MLP classifier on precision, recall and F1 score. 

The ROC curves for both of the deep learning approaches and GNB indicate that these models 

might outperform SVM given a larger, more diverse dataset. Future work to optimize the 

effectiveness of this pipeline could focus on building larger datasets, more descriptive features, 

and more narrowly targeted training examples. Considering the difficulty and novelty of the 

problem, this thesis concludes that effective and accurate classification attempts in this domain 

are an interesting but attainable challenge. 

5.2 Cross-domain Application of this Approach 

 While the application of the techniques and learning models used in this thesis is specific 

to basketball strategies implemented by NBA teams, there are opportunities for similar patterns 

to be used in other domains interested in classifying and examining patterns in trajectory data. 

For example, an airline company that has flight data from thousands of different flights in and 

out of a single international airport. Models could be configured to evaluate those flights for total 

flight time, fuel costs, or any other dependent variable of interest. To facilitate such a pipeline, 

the trajectories of those flights could be converted to hexagonal cell paths using hexbins, and the 

encoded locations and flight paths could be used abstractly to interpret higher level patterns and 

features present in the data. In fact, any domain that is interested in studying patterns of 

trajectories or in reducing the precision and dimensionality of coordinate data for comparison 

might consider a technique similar to that presented in this thesis.  
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5.3 Future Work 

 It is the belief of this thesis that the action classification pipeline presented here is only a 

starting point for additional research and analysis. The generated hexagonal cell path images can 

be passed off to an unsupervised clustering module and mined for patterns in approach and 

execution variance. The results of these actions can be taken into consideration along with the 

spatial alignment of players and the concept of court realty to provide a contextual and non-

outcome-based quality metric to compare actions [39]. The movements of defensive players and 

their strategies in defending dribble hand-offs could be plotted and explored in a similar manner. 

Other on- or off-ball actions could be added via new rules sets for the candidate algorithm and 

feature vectors for the classifiers to study different player movements. A natural language layer 

could be superimposed upon the final dataset to allow for high level querying and meta-analysis. 

As both basketball and machine learning strategies continue to develop, there will continue to be 

novel ways to interpret data, represent meaning, and train learning models. While the explicit 

contribution of this thesis is an end-to-end classification pipeline, the hope is that it provides a 

foundation for further action detection classification, pattern mining, and analytics research and 

that it inspires others in the domain to think creatively about how to embed the semantics of 

basketball into machine learning applications. 
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