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ABSTRACT

Performance Comparison of Multiple Imputation Methods for Quantitative

Variables for Small and Large Data with Differing Variability

by

VINCENT ONYAME

Missing data continues to be one of the main problems in data analysis as it reduces

sample representativeness and consequently, causes biased estimates. Multiple im-

putation methods have been established as an effective method of handling missing

data. In this study, we examined multiple imputation methods for quantitative vari-

ables on twelve data sets with varied sizes and variability that were pseudo generated

from an original data. The multiple imputation methods examined are the predictive

mean matching, Bayesian linear regression and linear regression, non-Bayesian in the

MICE (Multiple Imputation Chain Equation) package in the statistical software, R.

The parameter estimates generated from the linear regression on the imputed data

were compared to the closest parameter estimates from the complete data across all

twelve data sets.
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1 INTRODUCTION

Decision making is of one the spines of our existence and cuts across every facet

of our lives. It relies on information, which comes collectively as data. It is worthy

to note that data, which have been used one way or the other in decision making

since the creation of earth has gained more prominence in the 21st Century. It has

inevitably been the pivot on which many institutions, both private and government

decisions are based on. The rapid growth in the field of information technology has

also contributed to the demand for data in making informed decisions. This has led

to many publications on the impact of data in various fields. In fact, in May 2017,

the economist.com published an article titled “The world’s most valuable resource

is no longer oil, but data”. The article explained that, data has dislodged oil as

the most profitable resource on earth as the likes Facebook, Apple, Microsoft, and

Amazon, which are the largest profitable companies in the world all being driven by

data. However, most data used for analysis in real-life are incomplete. An incomplete

data is called missing data and it occurs when some portions of the data are empty.

Missing data arises due to many factors such as when an interviewer forgets to ask

some questions during the interview process, when respondents do not answer some

questions they perceive as personal, or unintentional data entry error. Missing data is

a major problem nearly every researcher faces and it negatively impacts the outcome

of the results. When an incomplete data is analyzed, it reduces the level of sample

representativeness and creates unbiased estimates, consequently leading to incorrect

inferences. Handling missing data is important as many statistical software used for

23



data analysis assume complete data even when the data is incomplete.

1.1 Proposed Work

In this study, we examined multiple imputation methods of handling missing data

for quantitative variables. The study specifically, will apply the Predictive Mean

Matching, Bayesian linear regression and linear regression non-Bayesian methods on

incomplete small and large data sets with differing variability, and then compared to

the complete data set determine the best imputation method.

1.2 Overview of Thesis

Chapter 2 describes the missing data mechanisms and introduces basic vocabulary.

Chapter 3 describes the traditional methods of handling missing data along with

modern methods.In Chapter 4, explanation is given on multiple imputation methods

for quantitative variables. Chapter 5 describes the methodology. Chapter 6 describes

our results. Chapter 8 concludes the thesis.
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2 MISSING DATA MECHANISMS

Missing data manifests in two patterns. They are the monotone and non-monotone

(or general). Monotone pattern occurs if for example the variables Yj are ordered such

that when Yj is missing, then all variables Yk with k > j is also missing. An exam-

ple is shown in table 1. An example of this can occur in longitudinal studies with

drop-outs. If the pattern is not monotone, it is called non-monotone or general. An

example is shown in table 2 where observation A3 is called the latent variable because

it is has empty data due to missingness [5].

Table 1: An Example of Monotone Missing Data Pattern

Observation A1 A2 A3

1 a11 a21 a31
2 a21 a22
3 a31
4 a41
5 a51

Table 2: An Example of Non-monotone Missing Data Pattern

Observation A1 A2 A3

1 a11 a21
2 a21
3 a23
4 a41
5 a51

Missing data is divided into three types according to Rubin (1976) namely, miss-
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ing completely at random (MCAR), missing at random (MAR) and missing not at

random (MNAR). He explained that MCAR occurs when we suppose that missing

data exist on a particular variable Y and the probability of missing data on Y is not

related to the value of Y itself or to the rest of the values in the data set. For MCAR,

we label the observed Y values (Yobs) and the missing Y values (Ymiss). We define

R as the missing data indicator variable where 0 is missing and 1 is observed. The

probability of finding a missing value on Y per MCAR is P (R|ε) where ε describes the

existing relationship between R and the data. Graham (2009) added that, analyses

on MCAR data results in unbiased estimates but are rather limited to loss of statisti-

cal power. An example of MCAR is when during a survey, a respondent accidentally

skipped one or more of the questions.

Missing at random (MAR) is a less stringent assumption than MCAR. In this

case, the data on the variable Y will be MAR if the probability of missing data on

Y is not related to the value of Y after controlling other variables in the analysis.

Its probability distribution is defined as P (Ymiss|Y,X) = P (Ymiss|X) where X is the

observed values and Y is the missing values. Here, the missing value Y depends on

the observed X. An example of MAR is when people that are highly education fail

to reveal their income compared to those that are not.

Missing not random (MNAR) is the common type of missing data among the three

mechanisms. [8]. It occurs when the probability of missingness depends on the un-

observed data. This means the probability of missingness is rather related to the

missing values itself. The probability distribution is stated as P (R|Yobs, Ymiss), ε).
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The parameters are defined as R for missing data indicator, Yobs for observed Y val-

ues, Ymiss for missing Y values and ε describing the relationship between R and the

data. An example is when people with terminal illness drop out of a study.

The three missing data mechanisms are further classified into ignorable and non-

ignorable. MNAR is called non-ignorable because when dealing with it, you have

to include any information about the missing data while MCAR and MAR are both

considered ignorable because when dealing with them, you are not required to include

any information about the missing data [11].
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3 HANDLING MISSING DATA

Various techniques have been applied in handling missing data. These techniques

require the application of special methods to get desired accurate results. The meth-

ods are broken into two categories: traditional and modern.

3.1 Traditional Method

Several traditional methods have been applied in solving problems associated with

missing data. We shall look at a few of these methods. In complete case analysis

(CCA), the missing data are deleted from the variable and thereby making the data

complete for analysis. It is easy to work with since statistical packages assumes com-

plete data. Allison (2001) adds that, CCA is easy to work with since no special

computation methods are required. If the data are MCAR, the reduction of sample is

the random sub-sample of the original sample. That is, for any parameter of interest

in the analysis, if the estimates are unbiased for the complete data set (with no miss-

ing data), then they will also be unbiased for the incomplete data set. Graham (2009)

also noted that some loss of statistical power will occur after deletion because of the

unused partial data. In some cases, this loss of power can be massive, making this

method not the best choice. He also argued that, if the loss of cases due to missing

data is small (e.g., less than about 5%), biases and loss of power are both likely to

be inconsequential [8].

Pairwise deletion works by calculating the correlation for any pair of variables
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using the available data. The paired data are compared and the cases are deleted

whether missing or not. Graham (2009) explained that each correlation is estimated

based on the cases having data for both variables but had issues with this method as

different correlations (and variance estimates) are based on different subsets of cases.

While the pairwise deletion is simple to use, it requires the data to be MCAR [8].

The arithmetic mean imputation replaces the missing values with the computed

mean of that variable. This approach is limited in usage when outliers exist in the

data set since the estimated mean will biased toward the outliers.

In hot deck imputation, one withdraws values from the observed values and uses

the values to replace the values that are missing. After the values are drawn from

the observed variable, a replacement is effected to enable the observed datum to be

selected fairly to substitute the missing values. One huge drawback to this approach

is that since values are drawn from the observed variable to replace the missing values,

it may lead to variability in the variable with complete values being underestimated

and will as a result lead to narrow intervals [12].

3.2 Modern Methods of Handling Missing Data

Traditional methods of handling missing data have several limitations, which con-

sequently affects the true outcome of results. Due to this, researchers have developed

more efficient ways of handling missing data. The modern methods are broken into

two approaches: joint modeling (JM) and fully conditional specification (FCS). These

approaches are superior to the traditional methods since they produce unbiased esti-
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mates for missing data that are both MAR and MCAR.

3.2.1 Joint Modeling

The joint modeling (JM) approach to handling missing data requires that the miss-

ing data must be multivariate and thus follow a multivariate distribution. Thus, the

JM works more efficiently if the missing data are multivariate normally distributed.

JM is used to solve missing data on longitudinal and time-to-event data and provides

appropriate estimate of treatment effects.[9]. After these assumptions are met, the

Markov chain Monte Carlo (MCMC) or maximum likelihood estimation (MLE) tech-

niques are employed to solve the missingness in the data. With JM, the probability

distribution is found under MCMC and the parameters are estimated for the posterior

probabilities. Schafer (1997) adds that if we repeatedly simulate steps of the chain, it

simulates draws from the distribution of interest [13]. With the maximum likelihood

estimation (MLE), parameter estimates of the JM can be based on the observed data

[7].

3.2.2 Fully Conditional Specification

Most real-world missing data are not multivariate normal and so another approach

is needed to deal with combating missing data. The fully conditional specification

(FCS) also known as the multiple imputation chain equation (MICE) was first devel-

oped by Rubin (1977) as a method for handling missing data that does not require the

assumption of multivariate normal (Rubin, 1977, 1978). Figure 1 illustrates the three

stages of multiple imputation. The first stage called the imputation stage involves
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the replacement of missing values with estimated values to create complete data. It is

repeated m number of times to create m complete data. The next stage is the analysis

stage where each of the m complete data in stage one is analyzed with a statistical

method of interest. The final stage is called the pooling stage. The pooling combines

the results analyzed in stage two to obtain a single point estimate. Multiple impu-

tations are repeated random draws from the predictive distribution of the missing

values. More precisely, multiple imputations are drawn from a posterior predictive

distribution of the missing data conditional on the observed data [4]. Allison (2001)

also adds that through multiple imputation (MI), one is able to solve the problems

associated with single imputation by introducing another form of error based on the

variation in the parameter that have been estimated across the imputation, which is

called “between imputation error”. It works by replacing each missing item with two

or more (m > 1) acceptable values, representing a distribution of possibilities [3].

Figure 1: Illustration of the MICE procedure
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4 MULTIPLE IMPUTATION FOR QUANTITATIVE VARIABLES

Multiple imputation can be used for different types of data. The focus of this

thesis is on quantitative variables. There are several approaches to handling missing

data for quantitative variables. They are the predictive mean matching (PMM),

Bayesian linear regression, and linear regression non-Bayesian.

4.1 Predictive Mean Matching (PMM)

Normally, it is statistically appropriate to transform data that is not normally

distributed before performing any analysis on it but transformations do not always

work. Transformations will possibly not achieve near-normality, and even if normality

is achieved, bivariate relations may be affected after imputation if normality is as-

sumed. Von Hippel (2013) cautions that the application of techniques used in making

distributions of skewed variables closer to normality (e.g., censoring, transformation,

truncation) may make matters worse. He argues that censoring which occurs when we

round a disallowed value to the closest allowed value and truncation which happens

when we redraw a disallowed value until it is within the allowed range can alter both

the mean and variability in the data [15]. Stef Buuren (2012) also noted that even

though the examples of Von Hippel are extreme to some extent, they do underline

the fact that the attempt to use certain methods to achieve normality are limited by

what they can do [14]. Allison (2015) explained that PMM was originally used under

conditions such as when single variable has missing data and even more generally,

when the missing data has a pattern that is monotone. He also adds that PMM is
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mostly used for the reason that it produces real values as it naturally takes values

from individuals that were studied. However, he cautioned that PMM is weakened by

the fact that no mathematical theory exists to justify it usage even though it works

well, which is also true of MICE methods more generally. As a result, we have to

rely on Monte Carlo simulations, yet we know that no simulation can study all the

possibilities. The PMM approach is widely used now because of its inclusion in the

MICE software [2].

The PMM works by first regressing the variable that has missing values on the vari-

ables without missing values to get predicted values. If all the variables have missing

values, the PMM method will use the observed data to regress the target variable

with missing value on covariate complete variables. An example is assuming we have

a bivariate data where Y denotes the variable with missing values and X denotes the

variables with complete values. The missing values will be predicted based regression

model

Ŷi = β0 + β1Xi (1)

where Ŷi is the predicted Y value for a given Xi value, β0 is the estimated intercept,

and β1 is the estimated slope. During the regression process, we add random vari-

ation to the values predicted in other to maintain the distribution of the data that

was imputed [10].

Our new equation after the addition of random variation to the values estimated is

Ŷi = β0 + β1Xi + δµ (2)
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where δ is the root mean squared error and µ is a random draw from a standard

normal distribution. The next step is to use the equation 2 to create values for the

variables that has missing values. After creating the values, k number of cases are

identified from the observed values that has its predicted values close to the predicted

value for case with missing data. The PMM is in the MICE package in R with default

value of m=5. One of the close cases identified is selected through simple random

sampling and an observed value is then assigned to serve as a replacement for the

missing value for that case [2]. We then repeat the entire process until we have

convergence after which the whole process is repeated m times in other to produce m

complete data sets. We pick each of the m complete data sets and then fits a linear

regression model get m different estimates. We finally calculate the mean of the m

parameters to get one single point estimate(s) [10]. A major importance of using the

PMM is that only qualified values are imputed since we used the observed values in

computing the missing values.

4.2 Bayesian Linear Regression

Bayesian linear regression model works by filling the missing values using Bayesian

linear regression. The Bayesian linear regression has two main steps: expectation

maximization (EM) algorithm and data augmentation (DA). The expectation max-

imization (EM) notably uses an iterative method to find the maximum likelihood

estimates. The EM step works by obtaining the mean, variance and covariance from

the complete data to estimate the missing values in the incomplete data. The es-

timates are then added to the missing data to create a complete data. The EM
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process is repeated to obtain a new set of values for mean, variance and covariance

which are then use to estimate the new missing data points. Finally, the EM and

DA process is repeated until we reach convergence. C. K. Enders (2010) proved the

EM mathematically by using a bivariate analysis where X and Y represent complete

and incomplete data sets, respectively. This he proved based on the observed dataset

that the maximum likelihood estimates for the mean and covariance is

µ̂Y =
∑ Y

N
,

δ̂2Y =
1

N
(
∑

Y 2 −
∑
Y 2

N
), and

δ̂XY =
1

N
(
∑

XY −
∑
X

∑
Y

N
),

where N is the number of observed cases.

The estimates for the mean and covariance is used to build a regression model with

the formulas shown below:

β̂1 =
δ̂XY

δ̂2X
,

β̂0 = µ̂Y − β̂1µ̂X ,

δ̂Y |X = δ̂2Y − β̂2
1δ̂

2
X

Ŷi = β0 + β1Xi [6]

The next step is the data augmentation, which uses the population mean, vari-

ance and covariance from the EM stage to estimate the missing values. Assume

the data for the analysis is represented as K = (Kmiss, Kobs) for missing and ob-

served data, respectively. The DA works first by using the current parameter es-

timate obtained from the EM stage to simulate the missing data. This process is
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known as the imputation step. The imputation step is the first of the two steps

Bayesian linear regression model. For example, assuming the current parameter val-

ues and imputed data are (µ(i),
∑(i), K(i)) with iterations (i = 0, 1, 2, . . .) and

(K(obs), Kj(miss)) as the observed and missing values of the jth case of the data, re-

spectively, then the imputations for the missing values are done independently by

simulating K
(i+1)
j (MIS) ∼ p(Kj(miss)|(Kj(obs), µ

(t),
∑(t)). The other step is the poste-

riors Step (P-Step) where the parameters are estimated from the data imputed. The

parameters (µ(i+1),
∑(i+1)) are taken from the corresponding conditional posterior

distributions (µ,
∑
|K(i+1)). We then repeat the two steps until convergence, thereby

generating imputed values and parameter estimates that are Markov Chain. Unlike

the PMM method, Bayesian linear regression methods are supported mathematically

using Bayes’ theorem [2].

4.3 Linear Regression, Non-Bayesian

In linear regression non-Bayesian, linear regression is use in the imputation of

missing values. It fits a regression model on the observed data, by regressing variables

with missing data on the variables with no missing data. Finally, the spread on the

fitted line is use in predicting the missing values [5]. The linear regression, non-

Bayesian is limited in practice as it does not incorporate sample uncertainty which

occurs when the potential variation in point estimates arises due to the fact that the

estimates are dependent on the population sample. This causes the linear regression

non-Bayesian, method to underestimate the variability in values imputed for small

sample sizes since it does not take into account the variability from the estimates of
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the regression coefficients. Because of this shortfall, the linear regression non-Bayesian

works for large sample size data that follow a normal distribution [5].
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5 METHODOLOGY

5.1 Data Source and Description

The Combined Cycle Power Plant data set was used for this study. It was taken

from the Machine Learning Repository of the University of California Irvine. The

data can be accessed from the link: http://archive.ics.uci.edu/ml/datasets/ Com-

bined+Cycle+Power+Plant. The combined cycle power plant (CCPP), is an electri-

cal power plant, that uses gas and steam turbine to produce together up to 50 percent

more electricity from the same fuel than a traditional simple-cycle plant. The CCPP

uses waste heat from the gas turbine to increase efficiency and electrical output. More

on how the CCPP operates can be accessed from https://www.gepower.com/resources/

knowledge-base/ombined-cycle-power-plant-how-it-works [Online; accessed January

22, 2021].

The dataset have 9568 observations that was collected in a 6 years period from

2006 to 2011. The predictor variables are the average ambient temperature (AT),

ambient pressure (AP), relative humidity (RH) and exhaust vacuum (V) with energy

output (EP) as the response variable. The ambient temperature (AT) values ranges

from 1.81°C to 37.11°C on average whiles the ambient pressure (AP) ranges from

992.89 to 1033.30 millibar. The relative humidity (RH), exhaust vacuum (V) and net

hourly electrical energy output (EP) ranges between 25.56% to 100.16%, 25.36-81.56

cm Hg and 420.26-495.76 MW respectively. In this study, the mean and variance

from the normal distribution of the CCPP data set was used on the CCPP data

set to generate a pseudo data set in the following sizes 500, 150, 50 and 15 while
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preserving the correlation structure. We simulated these datasets to preserve the

correlation structure since there was strong correlation with the response variable

and each predictor variable. This was achieved using the rnorm multi() function in

R. The rnorm multi() function in R enabled us to preserve the correlation structure

while randomly generating multiple samples of the datasets to cater for different

levels of variability. Each dataset generated have variability that are small, regular

and large. The regular variability is the variability based on the CCPP dataset for

each variable. The small variability was calculated by halving the regular variability

from the CCPP dataset. The large variability was also achieved by doubling the

regular variability from the CCPP dataset. A total of twelve datasets were generated

with each of the four sizes having the three levels of variability i.e. small, regular and

large.

5.2 ANALYSIS OF COMPLETE DATASET

The twelve complete datasets obtained are used to fit multiple linear regression

with AT, AP, RH and V as the predictor variables and EP as the response variable.

The estimated regression model based on the four predictors will be in form

ÊP = β̂0 + β̂1V + β̂2AP + β̂3RH + β̂4AT (3)

5.2.1 Model Building with 15 Observations

The multiple regression model for the complete dataset with 15 observations and

small, regular and large variability indicates that all the predictor variables are needed
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in the models in the presence of other predictors at 5% level of significance except

AP. These hypotheses tests were conducted using the standard t-test. However, the

predictor variable AP will not be dropped from each of the three models as its presence

does not affect the significance of these models in the presence of the other predictors.

A formal test to determine the normality of the residuals for the three datasets was

performed using the Shapiro Wilk’s test, with the outcomes all indicating the three

datasets being normally distributed at 5% level of significance. The global F-test on

each of the three models also shows that all the predictors are significant in predicting

the net hourly electrical energy output (EP) as shown in table 6. The estimates for

the three models are displayed in tables 3, 4 and 5. The residual plots for the three

models showed random patterns which indicates that the assumption of constant

variance is met. The residual plots for the three models are displayed in figures 2,

3 and 4. Tables 7, 8 and 9 show that the variance inflation factor (VIF) values are

all less than 10, which indicates that the is no multicollinearity issue for any of the

3 models. We also determined how good each of the three models can predict the

net hourly electrical energy output (EP) by comparing the predicted residual sum of

squares (PRESS) to the sum of squares error (SSE). A relatively closer PRESS value

to the SSE value indicates a good model predictability. For each model, the PRESS

statistic was much larger than the SSE and thus the model lacks good predictive

ability as shown in table 10.
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Table 3: The Estimated Regression Coefficients for Data Size of 15 with Small Vari-

ability. The p-value is given in parentheses

Parameter β0 β1 β2 β3 β4

Estimates 1027.6769 -0.6062 -0.4182 -0.4703 -4.1245
Test Statistic 2.020 (0.0709) -2.342 (0.0412) -0.852 (0.4142) -2.254 (0.0478) -6.352 (0.0000)

Table 4: The Estimated Regression Coefficients for Data Size of 15 with Regular

Variability. The p-value is given in parentheses

Parameter β0 β1 β2 β3 β4

Estimates 84.8587 -0.5175 0.4320 -0.1782 -1.3774
Test Statistic 0.421 (0.0709) -3.775 (0.0036) 2.194 (0.0529) -2.694 (0.0225) -5.438 (0.0002)

Table 5: The Estimated Regression Coefficients for Data Size of 15 with Large Vari-

ability. The p-value is given in parentheses

Parameter β0 β1 β2 β3 β4

Estimates 728.5205 -0.1328 -0.2283 -0.1523 -1.3031
Test Statistic 6.651 (0.0000) -2.491 (0.0319) -2.194 (0.0530) -2.389 (0.0380) -6.877 (0.0000)

Table 6: Global F-test for the three Datasets of Size 15

Data Small Regular Large

F- Statistic 54.74 37.91 121.41
P-Value 9.187e-07 5.159e-06 6.457e-07

Figure 2: Residual plots for each of the three Models of Size 15
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Table 7: VIF Values for the Model with 15 Observations and Small Variability

Variable V AP RH AT

VIF Value 3.106691 2.514250 1.062133 3.952052

Table 8: VIF Values for the Model with 15 Observations and Regular Variability

Variable V AP RH AT

VIF Value 1.325952 2.372849 1.413368 1.762973

Table 9: VIF Values for the Model with 15 Observations and Large Variability

Variable V AP RH AT

VIF Value 1.457617 6.986152 4.938358 1.7459683

Table 10: PRESS Statistic and SSE Values of the three Datasets of Size 15

Data Small Regular Large

PRESS Statistic 477.8445 270.8041 477.8444
SSE 174.29 110.69 121.41

5.2.2 Model Building with 50 Observations

The multiple regression model for the complete dataset with 50 observations and

a small, regular and large variabilities indicates that all the predictor variables are

needed in the models in the presence of other predictors at 5% level of significance.

These hypotheses tests were conducted using the standard t-test. A formal test to
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determine the normality of the residuals for the three datasets was performed using

the Shapiro Wilk’s test, with the outcomes all indicating the three datasets being

normally distributed at 5% level of significance. The global F-test on each of the

three models also shows that all the predictors are significant in predicting the net

hourly electrical energy output (EP) as shown in table 14. The estimates for the three

models are displayed in tables 11, 12 and 13. The residual plots for the three models

showed random patterns which indicates that the assumption of constant variance is

met. The residual plots for the three models are displayed in figure 3. Tables 15,

16 and 17 shows that the variance inflation factor (VIF) values are all less than 10,

which indicates that the is no multicollinearity issue for any of the 3 models. We also

determined how good each of the three models can predict the net hourly electrical

energy output (EP) by comparing the predicted residual sum of squares (PRESS) to

the sum of squares error (SSE). A relatively closer PRESS value to the SSE value

indicates a good model predictability. For each model, the PRESS statistic was much

larger than the SSE and thus the model lacks good predictive ability as shown in

table 18.

Table 11: The estimated regression coefficients for data size of 50 with Small Vari-

ability. The p-value is given in parentheses

Parameter β0 β1 β2 β3 β4

Values 8.4695 -0.6974 0.5644 -0.2583 -3.5111
Test Statistic 0.035 (0.9724) -3.661 (0.0006) 2.363 (0.0225) -9.039 (0.0000) -2.567 (0.0136)

43



Table 12: he Estimated Regression Coefficients for Data Size of 50 with Regular

Variability. The p-value is given in parentheses

Parameter β0 β1 β2 β3 β4

Values 192.38014 -0.21791 0.31357 -0.10298 -1.85033
Test Statistic 1.816 (0.0763) -3.016 (0.0043) 3.045 (0.0039) -2.356 (0.0231) -11.427 (0.0000)

Table 13: The Estimated Regression Coefficients for Data Size of 50 with Large

Lariability. The p-value is given in parentheses

Parameter β0 β1 β2 β3 β4

Values 301.49747 -0.10142 0.18132 -0.10129 -0.94705
Test Statistic 4.983 (0.0000) -2.505 (0.0159) 3.079 (0.0035) -3.827 (0.0004) -12.130 (0.0000)

Table 14: Global F-test for the three Datasets of Size 50

Data Small Regular Large

F- Statistic 189.9 319.4 235.2
P-Values 2.2e-16 2.2e-16 2.2e-16

Figure 3: Residual plots for each of the three Models of Size 50
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Table 15: VIF Values for the Model with 50 Observations and Small Variability

Variable V AP RH AT

VIF Value 3.856440 5.299007 1.349373 1.478244

Table 16: VIF Values for the Model with 50 Observations and Regular Variability

Variable V AP RH AT

VIF Value 4.395035 1.618554 1.702938 6.468061

Table 17: VIF Values for the Model with 50 Observations and Large Variability

Variable V AP RH AT

VIF Value 3.486297 1.337938 1.633406 4.825843

Table 18: PRESS Statistic and SSE Values of the three Datasets of Size 50

Data Small Regular Large

PRESS Statistic 1073.37 671.2846 873.3458
SSE 827.5 516.8 691.0

5.2.3 Model Building with 150 Observations

The multiple regression model for the complete dataset with 150 observations and

a small, regular and large variabilities indicates that all the predictor variables are

needed in the models in the presence of other predictors at 5% level of significance.

These hypotheses tests were conducted using the standard t-test. A formal test to
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determine the normality of the residuals for the three datasets was performed using

the Shapiro Wilk’s test, with the outcomes all indicating the three datasets being

normally distributed at 5% level of significance. The Global F-test on each of the

three models also shows that all the predictors are significant in predicting the net

hourly electrical energy output (EP) as shown in table 22. The estimates for the

three models are displayed in table 19, table 20 and table 21. The residual plots

for the three models showed random patterns which indicates that the assumption

of constant variance is met. The residual plots for the three models are displayed in

figure 4. Tables 22, 23 and 24 shows that the variance inflation factor (VIF) values

are all less than 10, which indicates that the is no multicollinearity issue for any of

the 3 models. We also determined how good each of the three models can predict the

net hourly electrical energy output (EP) by comparing the predicted residual sum of

squares (PRESS) to the sum of squares error (SSE). A relatively closer PRESS value

to the SSE value indicates a good model predictability. For each model, the PRESS

statistic was closer to the SSE and thus the models have good predictive ability as

shown in table 26.

Table 19: The Estimated Regression Coefficients for Data Size of 150 with Small

Variability. The p-value is given in parentheses

Parameter β0 β1 β2 β3 β4

Values 243.31570 -0.52660 0.32615 -0.23567 -3.75328
Test Statistic 1.719 (0.0876) -4.768 (0.0000) 2.382 (0.0185) -3.772 (0.0002) -16.382 (0.0000)
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Table 20: The Estimated Regression Coefficients for Data Size of 150 with Regular

Variability. The p-value is given in parentheses

Parameter β0 β1 β2 β3 β4

Values 402.66101 -0.10295 0.08033 -0.06217 -0.99031
Test Statistic 9.737 (0.0000) -3.454 (0.0007) 1.998 (0.0476) -3.571 (0.0005) -16.140 (0.0000)

Table 21: The Estimated Regression Coefficients for Data Size of 150 with Large

Variability. The p-value is given in parentheses

Parameter β0 β1 β2 β3 β4

Values 301.49747 -0.10142 0.18132 -0.10129 -0.94705
Test Statistic 4.983 (0.0000) -2.505 (0.0159) 3.079 (0.0035) -3.827 (0.0004) -12.130 (0.0000)

Table 22: Global F-test for the three Datasets of Size 150

Data Small Regular Large

F- Statistic 1556 539.1 391.9
P-Values 2.2e-16 2.2e-16 2.2e-16

Figure 4: Residual plots for each of the three Models of Size 150
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Table 23: VIF Values for the Model with 150 Observations and Small Variability

Variable V AP RH AT

VIF Value 3.856440 5.299007 1.349373 1.478244

Table 24: VIF Values for the Model with 150 Observations and Regular Variability

Variable V AP RH AT

VIF Value 4.395035 1.618554 1.702938 6.468061

Table 25: VIF Values for the Model with 150 Observations and Large Variability

Variable V AP RH AT

VIF Value 3.486297 1.337938 1.633406 4.825843

Table 26: PRESS Statistic and SSE Values of the three Datasets of Size 150

Data Small Regular Large

PRESS Statistic 1073.37 671.2846 873.3458
SSE 827.5 516.8 691.0

5.2.4 Model Building with 500 Observations

The multiple regression model for the complete dataset with 500 observations and

a small, regular and large variabilities indicates that all the predictor variables are

needed in the models in the presence of other predictors at 5% level of significance.

These hypotheses tests were conducted using the standard t-test. A formal test to
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determine the normality for the three datasets with 50 observations were performed

using the Shapiro Wilk’s test, with the outcomes all indicating the three datasets

being normally distributed at 5% level of significance. The global F-test on each of

the three models also shows that all the predictors are significant in predicting the

net hourly electrical energy output (EP) as shown in table 30. The estimates for

the three models are displayed in tables 27, 28 and 29 below. The residual plots for

the three models showed random patterns which indicates that the assumption of

constant variance is met. The residual plots for the three models are displayed in

figure 5. Tables 31, 31 and 33 shows that the variance inflation factor (VIF) values

are all less than 10, which indicates that the is no multicollinearity issue for any of

the 3 models. We also determined how good each of the three models can predict the

net hourly electrical energy output (EP) by comparing the predicted residual sum of

squares (PRESS) to the sum of squares error (SSE). A relatively closer PRESS value

to the SSE value indicates a good model predictability. For each model, the PRESS

statistic was closer to the SSE and thus the models have good predictive ability as

shown in table 34.

Table 27: The Estimated Regression Coefficients for Data Size of 500 with Small

Variability. The p-value is given in parentheses

Parameter β0 β1 β2 β3 β4

Values 2388.06821 - 0.50340 0.18840 - 0.28470 -3.88987
Test Statistic 4.412 (0.0000) -8.111 (0.0000) 2.208 (0.0277) -7.206 (0.0000) -29.626 (0.0000)
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Table 28: The Estimated Regression Coefficients for Data Size of 500 with Regular

Variability. The p-value is given in parentheses

Parameter β0 β1 β2 β3 β4

Values 425.71258 -0.20880 0.09110 -0.16635 -2.0358
Test Statistic 10.462 (0.0000) -6.500 (0.0000) 2.309 (0.0214) -8.637 (0.0000) -30.431 (0.0000)

Table 29: The Estimated Regression Coefficients for Data Size of 500 with Large

Variability. The p-value is given in parentheses

Parameter β0 β1 β2 β3 β4

Values 301.49747 -0.10142 0.18132 -0.10129 -0.94705
Test Statistic 9.737 (0.0000) -3.454 (0.0007) 1.998 (0.0476) -3.571 (0.0005) -16.140 (0.0000)

Table 30: Global F-test for the three Datasets of Size 500

Data Small Regular Large

F- Statistic 1468 1645 1417
P-Values 2.2e-16 2.2e-16 2.2e-16
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Figure 5: Residual plots for each of the three Models of Size 500

Table 31: VIF Values for the Model with 500 Observations and Small Variability

Variable V AP RH AT

VIF Value 3.242313 1.480283 1.788695 5.230153

Table 32: VIF Values for the Model with 500 observations and Regular Variability

Variable V AP RH AT

VIF Value 4.049733 1.387367 1.582342 5.796745

Table 33: VIF Values for the Model with 500 Observations and Large Variability

Variable V AP RH AT

VIF Value 3.542432 1.489708 1.977970 5.937348
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Table 34: PRESS Statistic and SSE Values of the three Datasets of Size 500

Data Small Regular Large

PRESS Statistic 10667.8114 10807.240 3599.276
SSE 10453.000 10588.000 3339.200

5.3 Relative Efficiency

The relative efficiency (RE) describes the best multiple imputation procedure that

produces the most accurate result. It depends on the amount of missing information

and the number of imputations performed. Relative efficiency (RE) is computed

with 50 imputations since we have high amount of missing information that requires

appropriate estimation of standard error. It is calculated as

RE =
1

1 + λ
m

(4)

where λ is the fraction of missing information (FMI) and m the number of imputations

[11]. Table 35 shows that as the relative efficiency increases across all the fraction of

missing information, then the number of imputation increases.
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Table 35: The Relative Efficiency for Different Levels of m and FMI

m\FMI 10% 20% 30% 40 % 50%

1 0.9091 0.8333 0.7692 0.7143 0.6667
2 0.9524 0.9091 0.8696 0.8333 0.8000
3 0.9677 0.9375 0.9091 0.8824 0.8571
5 0.9804 0.9615 0.9434 0.9259 0.9091
10 0.9901 0.9804 0.9709 0.9615 0.9524
15 0.9934 0.9868 0.9804 0.9740 0.9677
20 0.9950 0.9901 0.9852 0.9804 0.9756
25 0.9961 0.9920 0.9881 0.9840 0.9801
30 0.9967 0.9934 0.9901 0.9868 0.9836
40 0.9975 0.9950 0.9926 0.9901 0.9877
50 0.9980 0.9960 0.9940 0.9921 0.9901

5.4 Imputation Implementation

The main objective of this study is to assess the best multiple imputation method

for quantitative variables in different sizes with varied variability. Using a function

in R, we create different percentage of missingness for all the complete datasets ex-

cept the 15 observation data in the proportions of 10%, 20%, 30%, 40% and 50%.

The missingness was achieved by first removing 10% of each of the 50, 150 and 500

complete data set. The 20% missingness was done by removing another 10% on the

previous 10% removed, and it was continued in that order until 50% of the data was

removed randomly. The percentage of missingness for the 15-observation data was

generated in the proportions of 10%, 20%, 30%. We applied each of the three multiple

imputation methods, PMM, Bayesian linear regression, and Linear regression, non-

Bayesian on each of the 60 missing data sets. The imputations were entered 50 times

at each stage of the imputation. i.e. for each imputation stage, m=50 at each cycle
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of imputation. This process was then simulated for 1000 iterations to enable us to

better estimate the true coefficient values. For each of the 50 imputed data sets, the

linear regression models described in sections 5.2 – 5.5 was fitted and the coefficients

of the model where then pooled together and stored. Performing 50 imputations will

reduce the sample variability in the dataset since each estimate stored is computed

based on the mean of 50 estimates. Paul Allison (2012) adds that performing more

than one imputation on a missing data provides important information to compute

standard error estimates that will correctly reflect the uncertainty around the missing

value. This process was repeated for 1000 iterations. The mean, for each of the 1000

coefficients for each variable, was computed and compared to each of the coefficients

from the model of the complete data sets found in sections 5.2 – 5.5. The best method

to impute the missing data for a specific percentage of missingness is the one that

produces the mean from the imputed data, closest to the corresponding coefficient

from the complete data. To evaluate the mean estimate that is closer to the true

mean estimate from the complete data, we compute the percentage deviation index

(PDI). The PDI measures how far the mean of the estimated regression coefficient

from the imputed data is away from the estimates from the complete data. The PDI

is calculated as

PDI =
Orig. regres. coefficient - Mean of estimated regres. coefficient

Orig. regres. coefficient
∗ 100.

To determine the statistical significant difference between the original coefficients

of the estimated parameters and the mean of the estimated regression coefficients,

one-sample t-tests were employed.
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6 RESULTS

The multiple imputed data sets for each of the four datasets simulated are analyzed

separately using regression models established in 5.1. We evaluate the performance of

the three imputations models (PMM, Bayesian linear regression, and linear regression

non-Bayesian) with the results obtained from the regression analysis.

6.1 Analysis of the 15 Sample Size Dataset

Regression analysis was performed on the imputed data sets to obtain the mean,

and the results are compared to corresponding coefficients from the complete data.

For sample size 15 data, we generated the fraction of missing information(FMI) of

imputed values up to 30%. This is because, the imputed values at 40% and 50%

missingness for all three datasets of sample szie 15 were linearly dependent with the

response variable in the data. This occurs since when imputing missing values with

higher percentage of missingness, already imputed values are reused in the imputa-

tion process to complete the imputed data. The mean of the estimated regression

coefficients decreases as the fraction of missing information(FMI) increases from 10%

to 30%. This is the same across the three imputation models; PMM, Bayesian linear

regression, and linear regression non-Bayesian models as shown in tables 36, 39, 42,

45, 48, 51, 54, 57 and 60. Also, across all the three imputation models, the estimated

mean of the regression coefficient from β1 to β4, using the imputed data, decreases

as the percentage of missingness decreases from 10% to 30%, as shown in tables 36,

39, 42, 45, 48, 51, 54, 57 and 60. This is the same for datasets of sample sizes 15
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with regular and large variability. The closest values to the mean of the parameter

estimates for complete data are at 10% level of missingness for all the three data

set of size 15. This means, smaller data sets having few missing values will have its

imputed data closer to the actual values of a complete data. The estimates from the

imputed data satisfies the normality assumption by the central limit theorem (CLT)

since the number of each estimates is fifty based on based the number imputations

done. Tables 38, 41, 44, 47, 50, 53, 56, 59 and 62 show the p-values from the one

sample t-test, which tested if there was difference in estimated mean coefficient and

the coefficient from the completed data set. All the p-values are less than α = 0.05

indicating that all differences are significant.

Table 36: Estimated Means of the Regression Coefficients from the PMM Model at

each Percentage of Missingness for Sample Size 15 and Small Variability

FMI \Est Parameter β̂0 β̂1 β̂2 β̂3 β̂4

10% 210.5527 -0.5975 0.3859 -0.6542 -3.4079

20% -200.1169 -0.5167 0.7878 -0.6525 -3.5007
30% -1538.0591 -0.9516 2.0163 0.4970 -1.8224

Actual Parameter 1027.6769 -0.6062 -0.4182 -0.4703 -4.1245
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Table 37: PDI of the Regression Coefficients of PMM Model for 15 Observations and

Small Variability

FMI \Est Parameter β̂0 β̂1 β̂2 β̂3 β̂4 Mean

10% 0.7951 0.0144 1.9228 -0.3910 0.1737 0.503

20% 1.1947 0.1476 2.8838 -0.3874 0.1512 0.79797
30% 2.4966 -0.5698 5.8214 2.0568 0.5582 0.2047
Mean 1.4954 -0.1359 3.5426 0.4261 0.2943 0.2052

Table 38: P-values for One-sample t-test for each Estimated Regression Coefficient

of PMM Model for 15 Observations and Small Variability

FMI \Estimated Parameter β̂0 β̂1 β̂2 β̂3 β̂4

10% 0.00000 0.00000 0.00000 0.00000 0.00000

20% 0.00000 0.00000 0.00000 0.00000 0.00000
30% 0.00000 0.00000 0.00000 0.00000 0.00000

Table 39: Estimated Means of the Regression Coefficients from the Bayesian Linear

Regression Model at each Percentage of Missingness for Sample Size 15 and Small

Variability

FMI \Est Parameter β̂0 β̂1 β̂2 β̂3 β̂4

10% 365.5543 -0.6508 0.2328 -0.6005 -3.4416

20% 680.76788 -0.6199 -0.0923 -0.5260 -3.0984
30% -1552.2371 -0.8270 2.0392 0.2947 -1.8977

Actual Parameter 1027.6769 -0.6062 -0.4182 -0.4703 -4.1245
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Table 40: PDI of the Regression Coefficients of Bayesian Linear Regression Model for

15 Observations and Small Variability

FMI \Est Parameter β̂0 β̂1 β̂2 β̂3 β̂4 Mean

10% 0.6443 -0.0736 1.5567 -0.2768 0.1656 0.4032

20% 0.3376 -0.0226 0.7793 -0.1184 0.2488 0.2449
30% 2.5104 -0.3642 5.8761 1.6266 0.5399 2.0377
Mean 1.1641 -0.1534 2.7373 0.4104 0.3181 0.8953

Table 41: P-values for One-sample t-test for each Estimated Regression Coefficient

of Bayesian Linear Regression Model for 15 Observations and Small Variability

FMI \Estimated Parameter β̂0 β̂1 β̂2 β̂3 β̂4

10% 0.00000 0.00000 0.00000 0.00000 0.00000

20% 0.00000 0.00000 0.00000 0.00000 0.00000
30% 0.00000 0.00000 0.00000 0.00000 0.00000

Table 42: Estimated Means of the Regression Coefficients from the Linear Regression,

non-Bayesian Model at each Percentage of Missingness for Sample Size 15 and Small

Variability

FMI \Est Parameter β̂0 β̂1 β̂2 β̂3 β̂4

10% 1075.1848 -1.2417 -0.4591 -0.4302 -2.7220

20% 712.9075 -0.4752 -0.1021 -0.7863 -3.66074
30% -934.6284 -1.0406 1.4321 0.4871 -2.1064

Actual Parameter 1027.6769 -0.6062 -0.4182 -0.4703 -4.1245
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Table 43: PDI of the Regression Coefficients of the Linear Regression, non-Bayesian

Model for 15 Observations and Small Variability

FMI \Est Parameter β̂0 β̂1 β̂2 β̂3 β̂4 Mean

10% -0.0462 -1.0483 -0.0978 0.0853 0.3400 -0.1534

20% 0.3063 0.2161 0.7559 -0.6719 0.1124 0.1437
30% 1.9095 -0.7166 4.4244 2.0357 0.4893 1.6284
Mean 0.7232 -0.5162 0.8217 0.4830 0.3139 0.3651

Table 44: P-values for One-sample t-test for each Estimated Regression Coefficient

of Linear Regression, non-Bayesian Model for 15 Observations and Small Variability

FMI \Estimated Parameter β̂0 β̂1 β̂2 β̂3 β̂4

10% 0.00000 0.00000 0.00000 0.00000 0.00000

20% 0.00000 0.00000 0.00000 0.00000 0.00000
30% 0.00000 0.00000 0.00000 0.00000 0.00000

Table 45: Estimated Means of the Regression Coefficients from the PMM Model at

each Percentage of Missingness for Sample Size 15 and Regular Variability

FMI \Est Parameter β̂0 β̂1 β̂2 β̂3 β̂4

10% 194.7044 -0.6064 0.3198 -0.0932 -1.2668

20% 71.4044 -0.7164 0.4373 -0.0542 -0.8849
30% -110.4624 -0.6300 0.6120 0.0257 -1.1855

Actual Parameter 84.85872 -0.51753 0.43203 -0.17829 -1.3774
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Table 46: PDI of the Regression Coefficients of PMM Model for 15 Observations and

Regular Variability

FMI \Est Parameter β̂0 β̂1 β̂2 β̂3 β̂4 Mean

10% -1.2945 -0.1718 0.2598 0.4770 0.0803 -0.1298

20% 0.1585 -0.3843 -0.0122 0.6958 0.3576 0.1631
30% 2.301 -0.2174 -0.4166 1.1442 0.1393 0.59017
Mean 0.3885 -0.2578 -0.0563 0.7723 0.1924 0.2078

Table 47: P-values for One-sample t-test for each Estimated Regression Coefficient

of PMM Model for 15 Observations and Regular Variability

FMI \Est Parameter β̂0 β̂1 β̂2 β̂3 β̂4

10% 0.00000 0.00000 0.00000 0.00000 0.00000

20% 0.00000 0.00000 0.00000 0.00000 0.00000
30% 0.00000 0.00000 0.00000 0.00000 0.00000

Table 48: Estimated Means of the Regression Coefficients from the the Bayesian

Linear Regression Model at each Percentage of Missingness for Sample Size 15 and

Regular variability

FMI \Est Parameter β̂0 β̂1 β̂2 β̂3 β̂4

10% 150.1618 -0.5531 0.49041 -0.0737 -1.15087

20% -14.4925 -0.6714 0.5180 -0.0561 -0.8038
30% -212.3770 -0.6508 0.7152 -0.0446 -0.9529

Actual Parameter 84.85872 -0.51753 0.43203 -0.17829 -1.3774

60



Table 49: PDI of the Regression Coefficients of Bayesian Linear Regression Model for

15 Observations and Regular Variability

FMI \Est Parameter β̂0 β̂1 β̂2 β̂3 β̂4 Mean

10% -0.7696 -0.0687 -0.1351 0.5864 0.1645 -0.0445

20% 1.1708 -0.2973 -0.1990 0.6852 0.4164 0.3552
30% 3.5027 -0.2575 -0.6554 0.7497 0.3082 0.7295
Mean 1.3013 -0.2078 -0.3298 0.6737 0.2963 0.4348

Table 50: P-values for One-sample t-test for each Estimated Regression Coefficient

of Bayesian Linear Regression Model for 15 Observations and Regular Variability

FMI \Est Parameter β̂0 β̂1 β̂2 β̂3 β̂4

10% 0.00000 0.00000 0.00000 0.00000 0.00000

20% 0.00000 0.00000 0.00000 0.00000 0.00000
30% 0.00000 0.00000 0.00000 0.00000 0.00000

Table 51: Estimated Means of the Regression Coefficients from the Linear Regression,

non-Bayesian Model at each Percentage of Missingness for Sample Size 15 and Regular

Variability

FMI \Est Parameter β̂0 β̂1 β̂2 β̂3 β̂4

10% 175.6555 -0.6037 0.3382 -0.0900 -1.2601

20% 23.1083 -0.6285 0.4783 -0.0383 -0.8502
30% -423.3290 -0.4390 0.9267 -0.0904 -1.5304

Actual Parameter 84.85872 -0.51753 0.43203 -0.17829 -1.3774
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Table 52: PDI of the Regression Coefficients of Linear Regression, non-Bayesian

Model for 15 Observations and Regular Variability

FMI \Est Parameter β̂0 β̂1 β̂2 β̂3 β̂4 Mean

10% -1.0700 -0.1665 0.2172 0.4949 0.4600 -0.01288

20% 0.7277 -0.2144 -0.1071 0.7851 -0.0685 0.22456
30% 5.9886 0.1517 -1.1450 0.4927 0.4905 1.1957
Mean 1.8821 -0.0764 -0.3449 0.5909 0.294 0.4691

Table 53: P-values for One-sample t-test for each Estimated Regression Coefficient

of Linear Regression, non-Bayesian Model for 15 Observations and regular variability

FMI \Estimated Parameter β̂0 β̂1 β̂2 β̂3 β̂4

10% 0.00000 0.00000 0.00000 0.00000 0.00000

20% 0.00000 0.00000 0.00000 0.00000 0.00000
30% 0.00000 0.00000 0.00000 0.00000 0.00000

Table 54: Estimated Means of the Regression Coefficients from the PMM Model at

each Percentage of Missingness for Sample Size 15 and Large Variability

FMI \Est Parameter β̂0 β̂1 β̂2 β̂3 β̂4

10% 460.7451 -0.1234 0.0304 -0.1265 -1.2185

20% 278.7648 -0.1613 0.2019 -0.0668 -1.0091
30% -85.3102 -0.2612 0.5855 -0.1099 -1.5341

Actual Parameter 728.5205 -0.13285 -0.2283 -0.17829 -1.3030
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Table 55: PDI of the Regression Coefficients of PMM Model for 15 Observations and

Large Variability

FMI \Est Parameter β̂0 β̂1 β̂2 β̂3 β̂4 Mean

10% 0.3676 0.0711 1.1332 0.1694 0.0649 0.36124

20% 0.6174 -0.2142 1.8844 0.5614 0.2256 0.61492
30% 1.1171 -0.9661 3.5646 0.2784 -0.1774 0.7633
Mean 0.7007 -0.3697 2.1940 0.3364 0.0377 0.5798

Table 56: P-values for One-sample t-test for each Estimated Regression Coefficient

of PMM Model for 15 Observations and Large Variability

FMI \Est Parameter β̂0 β̂1 β̂2 β̂3 β̂4

10% 0.00000 0.00000 0.00000 0.00000 0.00000

20% 0.00000 0.00000 0.00000 0.00000 0.00000
30% 0.00000 0.00000 0.00000 0.00000 0.00000

Table 57: Estimated Means of the Regression Coefficients from the Bayesian Linear

Regression Model at each Percentage of Missingness for Sample Size 15 and Large

Variability

FMI \Est Parameter β̂0 β̂1 β̂2 β̂3 β̂4

% 19.5999 -0.5767 0.49041 -0.1092 -1.1508

20% 127.0950 -0.2997 0.3806 -0.15407 -1.5451
30% 53.0344 -0.1873 0.4399 -0.0482 -1.5641

Actual Parameter 728.5205 -0.13285 -0.2283 -0.17829 -1.3030
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Table 58: PDI of the Regression Coefficients of Bayesian Linear Regression Model for

15 Observations and Large Variability

FMI \Est Parameter β̂0 β̂1 β̂2 β̂3 β̂4 Mean

10% -0.9731 -3.3410 3.1481 0.0808 0.4600 0.1836

20% 0.8255 -1.2559 2.6671 0.3870 -0.0685 0.5134
30% 0.9272 -0.4099 2.9269 0.0081 0.4905 0.6076
Mean 0.9086 -1.6689 2.9140 0.1586 0.294 0.4348

Table 59: P-values for One-sample t-test for each Estimated Regression Coefficient

of Bayesian Linear Regression Model for 15 Observations and Large Variability

FMI \Est Parameter β̂0 β̂1 β̂2 β̂3 β̂4

10% 0.00000 0.00000 0.00000 0.00000 0.00000

20% 0.00000 0.00000 0.00000 0.00000 0.00000
30% 0.00000 0.00000 0.00000 0.00000 0.00000

Table 60: Estimated Means of the Regression Coefficients from the Linear Regression,

non-Bayesian Model at each Percentage of Missingness for Sample Size 15 and Large

Variability

FMI \Est Parameter β̂0 β̂1 β̂2 β̂3 β̂4

10% 505.9966 -0.1043 -0.0107 -0.1554 -1.3173

20% 139.6584 -0.2830 0.3695 -0.1808 -1.5632
30% -20.4359 -0.26803 0.5259 -0.14154 -1.6559

Actual Parameter 728.5205 -0.13285 -0.2283 -0.17829 -1.3030
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Table 61: PDI of the Regression Coefficients of Linear Regression, non-Bayesian

Model for 15 Observations and Large Variability

FMI \Est Parameter β̂0 β̂1 β̂2 β̂3 β̂4 Mean

10% -0.9880 -3.2514 0.7766 0.0808 0.4600 0.1836

20% 0.8083 -1.1302 0.5201 0.3870 -0.0685 0.5134
30% 1.0281 -1.0175 1.1686 0.0081 0.4905 0.6076
Mean 0.9414 -1.7997 0.8217 0.1586 0.294 0.4348

Table 62: P-values for One-sample t-test for each Estimated Regression Coefficient

of Linear Regression, non-Bayesian Model for 15 Observations and Large Variability

FMI \Est Parameter β̂0 β̂1 β̂2 β̂3 β̂4

10% 0.00000 0.00000 0.00000 0.00000 0.00000

20% 0.00000 0.00000 0.00000 0.00000 0.00000
30% 0.00000 0.00000 0.00000 0.00000 0.00000

6.2 Analysis of Sample Size 50 and Small Variability Data

Using the imputed data, the mean of the estimated regression coefficients for β0 are

relatively far away from its corresponding mean estimates of the complete data across

all the three imputation models as evident in tables 63, 66 and 69. However, the rest

of the mean estimates of the regression coefficients have their closest values to their

corresponding mean estimates of the complete data at 10% level of missingness for all

the three imputation models. All the estimates decrease at 20% level of missingness

and then increases at 30% level of missingness before decreasing at 50% level of

missingness for all the three imputation models as shown in tables 63, 66 and 69.
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The PDI for the Bayesian linear regression model is the lowest among the three

methods as shown in tables 64, 67 and 70. This shows the Bayesian Linear regression

imputation model works best for this type of data. The estimates from the imputed

data satisfies the normality assumption by the central limit theorem (CLT) since the

number of each estimates is fifty based on based the number imputations done. Tables

65, 68 and 71 shows the p-values from the one sample t-test, which tested if there

was difference in estimated mean coefficient and the coefficient from the completed

data set. All the p-values are less than α = 0.05 indicating that all differences are

significant.

Table 63: Estimated Means of the Regression Coefficients from the PMM Model at

each Percentage of Missingness for Sample Size 50 and Small Variability

FMI \Est Parameter β̂0 β̂1 β̂2 β̂3 β̂4

10% -21.6705 -0.9519 0.588 -0.146 -2.949

20% -340.9283 -0.8573 0.8898 -0.15188 -2.8721
30% -285.9567 -1.1201 0.8458 -0.0995 -2.4497
40% -79.1101 -1.0136 0.6343 -0.0368 -2.6053

50% -366.3245 -0.2734 0.9073 0.0678 -2.1516
Actual Parameter 8.4695 -0.6974 0.5644 -0.2583 -3.5111
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Table 64: PDI of the Regression Coefficients of PMM Model for 50 Observations and

Small Variability

FMI \Est Parameter β̂0 β̂1 β̂2 β̂3 β̂4 Mean

10% 3.5586 0.2425 -0.0517 0.25087 0.1600 0.8320

20% 41.2536 0.0265 -0.5483 0.76035 0.1819 8.33488
30% 34.7631 -0.1274 -0.0983 0.42315 0.3022 7.0525
40% 10.3405 0.2792 0.39174 0.54742 0.2579 2.3633
50% 44.2521 -0.0469 -0.2888 1.16027 0.3872 9.0927
Mean 26.8336 0.0748 -0.1191 0.6284 0.2578 5.5351

Table 65: P-values for One-sample t-test for each Estimated Regression Coefficient

of PMM Model for 50 Observations and Small Variability

FMI \Est Parameter β̂0 β̂1 β̂2 β̂3 β̂4

10% 0.00000 0.00000 0.00000 0.00000 0.00000

20% 0.00000 0.00000 0.00000 0.00000 0.00000
30% 0.00000 0.00000 0.00000 0.00000 0.00000
40% 0.00000 0.00000 0.00000 0.00000 0.00000
50% 0.00000 0.00000 0.00000 0.00000 0.00000

67



Table 66: Estimated Means of the Regression Coefficients from the Bayesian Linear

Regression Model at each Percentage of Missingness for Sample Size 50 and Small

Variability

FMI \Est Parameter β̂0 β̂1 β̂2 β̂3 β̂4

10% -25.375 -0.8966 0.5932 -0.1730 -3.0643

20% -332.2087 -0.8123 0.8778 -0.0613 -2.7636
30% 37.5640 -0.6137 0.5147 -0.1672 -2.9887
40% 240.4518 -0.4645 0.3052 -0.1186 -3.1087

50% -136.2795 -0.7417 0.6652 0.0299 -2.3248
Actual Parameter 8.4695 -0.6974 0.5644 -0.2583 -3.5111

Table 67: PDI of the Regression coefficients of Bayesian Linear Regression model for

50 Observations and Small Variability

FMI \Est Parameter β̂0 β̂1 β̂2 β̂3 β̂4 Mean

10% 3.9960 -0.2856 -0.0510 0.3302 0.1272 0.8233

20% 40.2241 -0.1647 -0.5552 0.7626 0.2128 8.0959
30% -3.4352 0.1200 0.0880 0.3526 0.1487 -0.54515
40% -27.3903 0.3339 0.4592 0.5408 0.1146 -5.1883
50% 17.0906 -0.0635 -0.1785 1.1157 0.3378 3.6604
Mean 6.0970 -0.0119 -0.0475 0.6204 0.1882 1.374
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Table 68: P-values for One-sample t-test for each Estimated Regression Coefficient

of Bayesian Linear Regression Model for 50 Observations and Small Variability

FMI \Est Parameter β̂0 β̂1 β̂2 β̂3 β̂4

10% 0.00000 0.00000 0.00000 0.00000 0.00000

20% 0.00000 0.00000 0.00000 0.00000 0.00000
30% 0.00000 0.00000 0.00000 0.00000 0.00000
40% 0.00000 0.00000 0.00000 0.00000 0.00000
50% 0.00000 0.00000 0.00000 0.00000 0.00000

Table 69: Estimated Means of the Regression Coefficients from the Linear Regression,

non-Bayesian Model at each Percentage of Missingness for Sample Size 50 and Small

Variability

FMI \Est Parameter β̂0 β̂1 β̂2 β̂3 β̂4

10% -23.6007 -0.8665 0.5936 -0.1935 -3.1765

20% -328.4321 -0.7159 0.8739 -0.0619 -3.0159
30% -66.2566 -0.7863 0.6199 -0.1490 -2.7351
40% 203.0107 -0.5027 0.3433 -0.1169 -3.0630

50% -202.2604 -0.73014 0.7274 0.0414 -2.2438
Actual Parameter 8.4695 -0.6974 0.5644 -0.2583 -3.5111
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Table 70: PDI of the Regression Coefficients of Linear Regression, non-Bayesian

Model for 50 Observations and Small Variability

FMI \Est Parameter β̂0 β̂1 β̂2 β̂3 β̂4 Mean

10% 3.7865 -0.8665 0.0517 0.2508 0.0952 0.66354

20% 39.7782 -0.7159 -0.5483 0.7603 0.1410 7.8830
30% 8.8229 -0.7863 -0.0983 0.4231 0.2210 1.71648
40% -22.9696 -0.5027 0.3917 0.5474 0.1276 -4.4811
50% 24.8810 -0.7301 -0.2888 1.1602 0.3609 5.0766
Mean 10.8598 -0.7203 -0.0984 0.6283 0.1891 2.1717

Table 71: P-values for One-sample t-test for each Estimated Regression Coefficient

of Linear Regression, non-Bayesian Model for 50 Observations and Small Variability

FMI \Est Parameter β̂0 β̂1 β̂2 β̂3 β̂4

10% 0.00000 0.00000 0.00000 0.00000 0.00000

20% 0.00000 0.00000 0.00000 0.00000 0.00000
30% 0.00000 0.00000 0.00000 0.00000 0.00000
40% 0.00000 0.00000 0.00000 0.00000 0.00000
50% 0.00000 0.00000 0.00000 0.00000 0.00000

6.3 Analysis of Sample Size 50 and Regular Variability Data

Using the imputed data, the mean of the estimated regression coefficients closest

to the actual parameter occurs at 20% and 30% level of missingness for β0 while for

β2and β4 it decreases as the percentage of missingness increases from 10% to 20%

then it increases for 40% and decreases at 50%. The β1 and β2 have the closest

value to their corresponding means from the complete data at 20% and 50% level of

missingness respectively. This is shown in tables 72, 75 and 78 for all three imputation
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methods. The PDI for the linear regression, non-Bayesian model method has mean

of -0.2018, which is the lowest among the three methods as shown in tables 73, 76

and 79. This shows the linear regression, non-Bayesian model imputation method

is the best for this type of data. The estimates from the imputed data satisfies the

normality assumption by the central limit theorem (CLT) since the number of each

estimates is fifty based on based the number imputations done. Tables 74, 77 and 80

shows the p-values from the one sample t-test, which tested if there was difference in

estimated mean coefficient and the coefficient from the completed data set. All the

p-values are less than α = 0.05 indicating that all differences are significant.

Table 72: Estimated Means of the Regression Coefficients from the PMM Model at

each Percentage of Missingness for Sample Size 50 and Regular Variability

FMI \Est Parameter β̂0 β̂1 β̂2 β̂3 β̂4

10% 53.8659 -0.5047 0.4448 0.0133 -1.2438

20% 211.325 -0.4772 0.2958 -0.0240 -1.4870
30% 172.3285 -0.5570 0.3404 -0.0786 -1.3617
40% 124.9674 -0.5559 0.38707 -0.0818 -1.3332

50% 324.4995 -0.5522 0.1917 -0.0860 -1.4180
Actual Parameter 192.3801 -0.21791 0.31357 -0.10298 -1.85033

71



Table 73: PDI of the Regression Coefficients of PMM Model for 50 observations and

Regular Variability

FMI \Est Parameter β̂0 β̂1 β̂2 β̂3 β̂4 Mean

10% 0.2909 -0.7939 -0.1656 0.7300 0.1820 0.0486

20% -0.0416 -0.9008 0.0296 0.7310 0.1774 -0.0008
30% -0.3506 -0.7590 0.2040 0.1387 0.1622 -0.1209
40% -0.1416 -1.1422 0.0729 0.0445 -0.5105 -0.3353
50% -0.6384 -1.0403 0.3989 0.5766 0.1820 -0.1042
Mean -0.17626 -0.9272 0.1079 0.4442 0.00277 -0.1025

Table 74: P-values for One-sample t-test for each Estimated Regression Coefficient

of PMM Model for 50 Observations and Regular Variability

FMI \Est Parameter β̂0 β̂1 β̂2 β̂3 β̂4

10% 0.00000 0.00000 0.00000 0.00000 0.00000

20% 0.00000 0.00000 0.00000 0.00000 0.00000
30% 0.00000 0.00000 0.00000 0.00000 0.00000
40% 0.00000 0.00000 0.00000 0.00000 0.00000
50% 0.00000 0.00000 0.00000 0.00000 0.00000

72



Table 75: Estimated Means of the Regression Coefficients from the Bayesian Linear

Regression Model at each Percentage of Missingness for Sample Size 50 and Regular

Variability

FMI \Est Parameter β̂0 β̂1 β̂2 β̂3 β̂4

10% 136.4159 -0.3909 0.3655 -0.0278 -1.5136

20% 200.3835 -0.4142 0.3043 -0.0277 -1.522
30% 259.8199 -0.3833 0.2496 -0.0887 -1.5502
40% 219.6256 -0.4668 0.2907 -0.0984 -1.5440
50% 315.1978 -0.4446 0.1885 -0.0436 -1.2510

Actual Parameter 192.3801 -0.21791 0.31357 -0.10298 -1.85033

Table 76: PDI of the Regression Coefficients of Bayesian Linear Regression Model for

50 observations and Regular Variability

FMI \Est Parameter β̂0 β̂1 β̂2 β̂3 β̂4 Mean

10% 0.2909 -0.7939 -0.1656 0.7300 0.1820 0.0486

20% -0.0416 -0.9008 0.0296 0.7310 0.1774 -0.0008
30% -0.3506 -0.7590 0.2040 0.1387 0.1622 -0.1209
40% -0.1416 -1.1422 0.0729 0.0445 -0.5105 -0.3353
50% -0.6384 -1.0403 0.3989 0.5766 0.1820 -0.1042
Mean -0.17626 -0.9272 0.1079 0.4442 0.00277 -0.1025
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Table 77: P-values for One-sample t-test for each Estimated Regression Coefficient

of Bayesian Linear Regression Model for 50 Observations and Regular Variability

FMI \Est Parameter β̂0 β̂1 β̂2 β̂3 β̂4

10% 0.00000 0.00000 0.00000 0.00000 0.00000

20% 0.00000 0.00000 0.00000 0.00000 0.00000
30% 0.00000 0.00000 0.00000 0.00000 0.00000
40% 0.00000 0.00000 0.00000 0.00000 0.00000
50% 0.00000 0.00000 0.00000 0.00000 0.00000

Table 78: Estimated Means of the Regression Coefficients from the Linear Regression,

non-Bayesian Model at each Percentage of Missingness for Sample Size 50 and Regular

Variability

FMI \Est Parameter β̂0 β̂1 β̂2 β̂3 β̂4

10% 120.4030 -0.3791 0.3819 -0.0358 -1.5419

20% 126.1197 -0.4628 0.3773 -0.0181 -1.405
30% 202.2480 -0.4161 0.308 -0.0943 -1.5288
40% 173.1805 -0.4907 0.3359 -0.0827 -1.3173

50% 313.3487 -0.36178 0.1917 -0.0833 -1.3706
Actual Parameter 192.38014 -0.21791 0.31357 -0.10298 -1.85033

74



Table 79: PDI of the Regression Coefficients of Linear Regression, non-Bayesian

Model for 50 Observations and Regular Variability

FMI \Est Parameter β̂0 β̂1 β̂2 β̂3 β̂4 Mean

10% 0.3741 -12.6588 -0.2179 0.6524 0.1667 -2.3367

20% 0.3444 -0.0234 -0.2032 0.8242 0.2407 0.2365
30% -0.0513 1.6048 0.0178 0.0843 0.1738 0.3658
40% 0.0998 1.5562 -0.0712 0.1969 0.2881 0.4139
50% -0.6288 1.3456 0.3887 0.1911 0.2593 0.3112
Mean 0.02764 -1.6351 -0.0171 0.3398 0.22572 -0.2018

Table 80: P-values for One-sample t-test for each Estimated Regression Coefficient of

Linear Regression, non-Bayesian Model for 50 Observations and Regular Variability

FMI \Est Parameter β̂0 β̂1 β̂2 β̂3 β̂4

10% 0.00000 0.00000 0.00000 0.00000 0.00000

20% 0.00000 0.00000 0.00000 0.00000 0.00000
30% 0.00000 0.00000 0.00000 0.00000 0.00000
40% 0.00000 0.00000 0.00000 0.00000 0.00000
50% 0.00000 0.00000 0.00000 0.00000 0.00000

6.4 Analysis of Sample Size 50 and Large Variability Data

The mean of the estimated regression coefficients for the PMM model have the

closest values to the complete data at 10% level missingness apart from β4 whiles the

Bayesian linear regression has the closest value to the complete data at 20% level of

missingness as shown in tables 81 and 84, respectively. The linear regression, non-

Bayesian model interestingly has its closest value to the complete data at 50% level of
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missingness, which is shown in table 87. The PDI for the Bayesian linear regression

and linear regression, non-Bayesian are close and lower than the PDI of the PMM

model as evident in tables 82, 85 and 88. This shows both imputation models can

be used for this type of data. The estimates from the imputed data satisfies the

normality assumption by the central limit theorem (CLT) since the number of each

estimates is fifty based on based the number imputations done. Tables 83, 86 and 89

shows the p-values from the one sample t-test, which tested if there was difference in

estimated mean coefficient and the coefficient from the completed data set. All the

p-values are less than α = 0.05 indicating that all differences are significant.

Table 81: Estimated Means of the Regression Coefficients from the PMM Model at

each Percentage of Missingness for Sample Size 50 and Large Variability

FMI \Est Parameter β̂0 β̂1 β̂2 β̂3 β̂4

10% 283.3466 -0.1831 -0.1831 0.0110 0.5473

20% 346.4983 -0.1521 0.2698 -0.0474 -0.7190
30% 221.6233 -0.2727 0.2536 -0.0041 -0.5577
40% 245.1259 -0.2918 0.2293 0.0145 -0.5216

50% 244.1290 -0.2483 0.2284 0.0109 -0.5393
Actual Parameter 301.49747 -0.10142 0.18132 -0.10129 -0.94705
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Table 82: PDI of the Regression Coefficients of PMM Model for 50 Observations and

Large Variability

FMI \Est Parameter β̂0 β̂1 β̂2 β̂3 β̂4 Mean

10% 0.0602 -0.8054 -0.0385 1.1086 1.5779 0.38056

20% -0.1493 -0.4997 -0.4880 0.5320 0.2408 -0.07284
30% 0.2649 -1.6888 -0.3986 0.9595 0.4111 -0.09038
40% 0.1870 -1.8771 -0.2646 1.1432 0.4492 -0.0724
50% 0.1903 -1.4482 -0.2597 1.1076 0.4305 0.0041
Mean 0.11062 -1.2638 -0.2898 0.97018 0.6219 0.0298

Table 83: P-values for One-sample t-test for each Estimated Regression Coefficient

of PMM Model for 50 Observations and Large Variability

FMI \Est Parameter β̂0 β̂1 β̂2 β̂3 β̂4

10% 0.00000 0.00000 0.00000 0.00000 0.00000

20% 0.00000 0.00000 0.00000 0.00000 0.00000
30% 0.00000 0.00000 0.00000 0.00000 0.00000
40% 0.00000 0.00000 0.00000 0.00000 0.00000
50% 0.00000 0.00000 0.00000 0.00000 0.00000
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Table 84: Estimated Means of the Regression Coefficients from the Bayesian Linear

Regression Model at each Percentage of Missingness for Sample Size 50 and Large

Variability

FMI \Est Parameter β̂0 β̂1 β̂2 β̂3 β̂4

10% 221.2642 -0.1574 0.2580 -0.0817 -0.7653

20% 281.3053 -0.2527 0.2238 -0.0829 -1.5395
30% 223.5400 -0.24441 0.2514 -0.0168 -1.6057
40% 261.0283 -0.2415 0.2115 0.0093 -0.5284

50% 227.3895 -0.1782 0.2412 0.0109 -0.5393
Actual Parameter 301.49747 -0.10142 0.18132 -0.10129 -0.94705

Table 85: PDI of the Regression Coefficients of Bayesian Linear Regression Model for

50 Observations and Large Variability

FMI \Est Parameter β̂0 β̂1 β̂2 β̂3 β̂4 Mean

10% 0.2661 -0.5520 -0.4229 0.1934 0.1919 -0.0647

20% 0.0670 -1.4916 -0.2343 0.1816 -0.6256 -0.4205
30% 0.2586 -1.4099 -0.3865 0.8341 -0.6955 -0.2798
40% 0.1342 -1.3812 -0.1664 1.0918 0.4421 0.0241
50% 0.2458 -0.7570 -0.3302 -0.3302 0.4520 0.1377
Mean 0.1943 -1.1183 -0.3081 0.6758 -0.0470 -0.1206
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Table 86: P-values for One-sample t-test for each Estimated Regression Coefficient

of Bayesian Linear Regression Model for 50 Observations and Large Variability

FMI \Est Parameter β̂0 β̂1 β̂2 β̂3 β̂4

10% 0.00000 0.00000 0.00000 0.00000 0.00000

20% 0.00000 0.00000 0.00000 0.00000 0.00000
30% 0.00000 0.00000 0.00000 0.00000 0.00000
40% 0.00000 0.00000 0.00000 0.00000 0.00000
50% 0.00000 0.00000 0.00000 0.00000 0.00000

Table 87: Estimated Means of the Regression Coefficients from the Linear Regression,

non-Bayesian Model at each Percentage of Missingness for Sample Size 50 and Large

Variability

FMI \Est Parameter β̂0 β̂1 β̂2 β̂3 β̂4

10% 231.3800 -0.1474 0.2489 -0.09049 -0.7928

20% 214.6902 -0.1499 0.2626 -0.0227 -0.6059
30% 216.3324 -0.2222 0.2586 -0.1201 -1.8037
40% 328.8503 -0.2242 0.40481 -0.0076 -0.5849

50% 192.3801 -0.2179 0.3135 -0.00232 -1.8503
Actual Parameter 301.49747 -0.10142 0.18132 -0.10129 -0.94705

79



Table 88: PDI of the Regression Coefficients of Linear Regression, non-Bayesian

Model for 50 Observations and Large Variability

FMI \Est Parameter β̂0 β̂1 β̂2 β̂3 β̂4 Mean

10% 0.2326 -0.4534 -0.3727 0.1066 0.1629 -0.0648

20% 0.2879 -0.4780 -0.4483 0.7759 0.3602 0.0995
30% 0.2825 -1.1909 -0.4262 -0.1857 -0.9045 -0.4849
40% -0.0907 -1.2106 -1.2326 0.9250 0.3824 -0.2453
50% 0.3619 -1.1485 -0.7290 0.9771 0.953 0.0829
Mean 0.2148 -0.89628 -0.64176 0.51978 0.1908 -0.1225

Table 89: P-values for One-sample t-test for each Estimated Regression Coefficient

of Linear Regression, non-Bayesian Model for 50 Observations and Large Variability

FMI \Est Parameter β̂0 β̂1 β̂2 β̂3 β̂4

10% 0.00000 0.00000 0.00000 0.00000 0.00000

20% 0.00000 0.00000 0.00000 0.00000 0.00000
30% 0.00000 0.00000 0.00000 0.00000 0.00000
40% 0.00000 0.00000 0.00000 0.00000 0.00000
50% 0.00000 0.00000 0.00000 0.00000 0.00000

6.5 Analysis of Sample Size 150 and Small Variability Data

The mean of the estimated regression coefficients for the three methods have the

closest values to the complete data at 50% level of missingness as shown in tables 90,

93 and 96. In general, the mean of the estimated regression coefficients decreases as

the percentage of missingness increase for all the three methods as evident in tables

90, 93 and 96. The PDI for the Bayesian linear regression and linear regression, non-
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Bayesian are close and lower than the PDI of the PMM model as shown in tables 91,

92 and 93. This shows both imputation models can be used for this type of data. The

estimates from the imputed data satisfies the normality assumption by the central

limit theorem (CLT) since the number of each estimates is fifty based on based the

number imputations done. Tables 92,95 and 98 shows the p-values from the one

sample t-test, which tested if there was difference in estimated mean coefficient and

the coefficient from the completed data set. All the p-values are less than α = 0.05

indicating that all differences are significant.

Table 90: Estimated Means of the Regression Coefficients from the PMM Model at

each Percentage of Missingness for Sample Size 150 and Small Variability

FMI \Est Parameter β̂0 β̂1 β̂2 β̂3 β̂4

10% 383.9666 -0.1299 0.0967 -0.0402 -0.8830

20% 328.9693 -0.2922 0.1496 -0.0324 -0.7871
30% 339.078 -0.1396 0.1386 -0.0282 -0.7925
40% 310.7136 -0.1569 0.1645 -0.0056 -0.6930

50% 275.4081 -0.1425 0.1990 -0.0195 -0.6535
Actual Parameter 243.31570 -0.52660 0.32615 -0.23567 -3.7533
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Table 91: PDI of the Regression Coefficients of PMM Model for 150 Observations

and Small Variability

FMI \Est Parameter β̂0 β̂1 β̂2 β̂3 β̂4 Mean

10% -0.5781 0.7533 0.7035 0.8294 0.7647 0.4945

20% 0.3520 0.4451 0.5413 0.8625 0.7903 0.5982
30% -0.3936 0.7349 0.5750 0.8803 0.7889 0.5171
40% -0.2770 0.7021 0.4956 0.9762 0.8154 0.5424
50% -0.1319 0.7294 0.3899 0.9173 0.8259 0.5461
Mean -0.2057 0.6730 0.5411 0.8931 0.7970 0.5397

Table 92: P-values for One-sample t-test for each Estimated Regression Coefficient

of PMM Model for 150 Observations and Small Variability

FMI \Est Parameter β̂0 β̂1 β̂2 β̂3 β̂4

10% 0.00000 0.00000 0.00000 0.00000 0.00000

20% 0.00000 0.00000 0.00000 0.00000 0.00000
30% 0.00000 0.00000 0.00000 0.00000 0.00000
40% 0.00000 0.00000 0.00000 0.00000 0.00000
50% 0.00000 0.00000 0.00000 0.00000 0.00000
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Table 93: Estimated Means of the Regression Coefficients from the Bayesian Linear

Regression Model at each Percentage of Missingness for Sample Size 150 and Small

Variability

FMI \Est Parameter β̂0 β̂1 β̂2 β̂3 β̂4

10% 374.6431 -0.1315 0.1057 -0.03879 -0.8669

20% 302.2398 -0.1746 0.1753 -0.0263 -0.7022
30% 315.6801 -0.1527 0.1610 -0.0262 -0.7155
40% 306.9224 -0.1419 0.1679 -0.0146 -0.6823

50% 236.6761 -0.1425 0.2354 -0.0162 -0.5953
Actual Parameter 243.31570 -0.52660 0.32615 -0.23567 -3.7533

Table 94: PDI of the Regression Coefficients of Bayesian Linear Regression Model for

150 Observations and Small Variability

FMI \Est Parameter β̂0 β̂1 β̂2 β̂3 β̂4 Mean

10% -0.5397 0.7503 0.6759 0.8354 0.7690 0.4982

20% -0.2422 0.6684 0.4625 0.8884 0.8129 0.5180
30% -0.2974 0.7100 0.5064 0.8888 0.8094 0.5234
40% -0.2614 0.7305 0.4852 0.9380 0.8182 0.5421
50% 0.0273 0.7294 0.2782 0.9313 0.8414 0.5615
Mean -0.2627 0.7177 0.4816 0.8964 0.8102 0.5286
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Table 95: P-values for One-sample t-test for each Estimated Regression Coefficient

of Bayesian Linear Regression Model for 150 Observations and Small Variability

FMI \Est Parameter β̂0 β̂1 β̂2 β̂3 β̂4

10% 0.00000 0.00000 0.00000 0.00000 0.00000

20% 0.00000 0.00000 0.00000 0.00000 0.00000
30% 0.00000 0.00000 0.00000 0.00000 0.00000
40% 0.00000 0.00000 0.00000 0.00000 0.00000
50% 0.00000 0.00000 0.00000 0.00000 0.00000

Table 96: Estimated Means of the Regression Coefficients from the Linear Regression,

non-Bayesian Model at each Percentage of Missingness for Sample Size 150 and Small

Variability

FMI \Est Parameter β̂0 β̂1 β̂2 β̂3 β̂4

10% 372.4906 -0.1303 0.1076 -0.0373 -0.8668

20% 311.6313 -0.1551 70.1664 -0.0341 -0.7484
30% 324.4659 -0.14563 0.15234 -0.02980 -0.7293
40% 313.7159 -0.1519 0.1608 -0.0119 -0.6486

50% 235.7427 -0.1483 0.2364 -0.0176 -0.5852
Actual Parameter 243.31570 -0.52660 0.32615 -0.23567 -3.7533
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Table 97: PDI of the Regression Coefficients of Linear Regression, non-Bayesian

Model for 150 Observations and Small Variability

FMI \Est Parameter β̂0 β̂1 β̂2 β̂3 β̂4 Mean

10% -0.5309 7 0.7526 0.6701 0.8417 0.7691 0.5005

20% -0.2808 0.7055 0.4898 0.8553 0.8006 0.5140
30% -0.3335 0.7235 0.5329 0.8736 0.8057 0.5204
40% -0.2893 0.7115 0.5070 0.9495 0.8272 0.5411
50% 0.0311 0.7184 0.2752 0.9253 0.8441 0.5588
Mean -0.2807 0.7223 0.4950 0.8891 0.8093 0.5270

Table 98: P-values for One-sample t-test for each Estimated Regression Coefficient

of Linear Regression, non-Bayesian Model for 150 Observations and Small Variability

FMI \Est Parameter β̂0 β̂1 β̂2 β̂3 β̂4

10% 0.00000 0.00000 0.00000 0.00000 0.00000

20% 0.00000 0.00000 0.00000 0.00000 0.00000
30% 0.00000 0.00000 0.00000 0.00000 0.00000
40% 0.00000 0.00000 0.00000 0.00000 0.00000
50% 0.00000 0.00000 0.00000 0.00000 0.00000

6.6 Analysis of Sample Size 150 and Regular Variability Data

The mean of the estimated regression coefficients for the Bayesian linear regression

and linear regression, non-Bayesian methods have the closest values to the complete

data at 10% level of missingness as shown in tables 102 and 105. However, the PMM

method have most of its estimates closer to the complete data at 30% and 40% level of

missingness as shown in table 99. In general, the mean of the estimates for the PMM

model decreases as the percentage of missingness increase from 10% to 20% for β0,
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then increases at 30% level of missingness, then decreases at 40% level of missingness

and increases at 50% level of missingness with the reverse for β2 . The mean estimates

of the coefficients for β1 and β4 decreases as the percentage of missingness increase

from 10% to 50% for all the three imputation methods as shown in tables 99, 102 and

105. The mean estimates of β0 for Bayesian linear regression method in table 102

decreases at 20% level of missingness and increases at 30% before decreasing at 50%.

Also, the mean estimates of β0 for linear regression non-Bayesian method decreases

as the percentage of missingness increases from 10% to 30% and increases at 40%

level of missingness, then it decreases at 50% level of missingness as shown in table

105. The PDI for the PMM model is the lowest among the three methods at 8.04%

which indicates that the PMM model is the best for this data as shown in table 99

for PMM, table 102 for Bayesian linear regression and table 105 for linear regression

non-Bayesian model. The estimates from the imputed data satisfies the normality

assumption by the central limit theorem (CLT) since the number of each estimates is

fifty based on based the number imputations done. Tables 101, 104 and 107 shows the

p-values from the one sample t-test, which tested if there was difference in estimated

mean coefficient and the coefficient from the completed data set. All the p-values are

less than α = 0.05 indicating that all differences are significant.
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Table 99: Estimated Means of the Regression Coefficients from the PMM Model at

each Percentage of Missingness for Sample Size 150 and Regular Variability

FMI \Est Parameter β̂0 β̂1 β̂2 β̂3 β̂4

10% 322.8130 -0.3630 0.1920 -0.1180 -1.7350
20% 278.5230 -0.3905 0.2280 -0.0426 -1.5428
30% 328.6398 -0.4172 0.1768 -0.0265 -1.4350
40% 307.8475 -0.4524 0.1970 -0.0377 -1.2933
50% 331.5107 -0.4691 0.1745 -0.0507 -1.2484

Actual Parameter 354.18249 -0.29570 0.16326 -0.15987 -1.89436

Table 100: PDI of the Regression Coefficients of PMM Model for 150 Observations

and Regular Variability

FMI \Est Parameter β̂0 β̂1 β̂2 β̂3 β̂4 Mean

10% 0.0886 -0.2276 -0.1760 0.2619 0.0841 0.0062

20% 0.2136 -0.3206 -0.3965 0.7335 0.1856 0.0831
30% 0.0721 -0.4109 -0.0829 0.8342 0.2425 0.1310
40% 0.1308 -0.5299 -0.2067 0.7642 0.3173 0.0951
50% 0.0640 -0.5864 -0.0688 0.6829 0.3410 0.08654
Mean 0.1138 -0.4151 -0.1862 0.6553 0.2341 0.0804
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Table 101: P-values for One-sample t-test for each Estimated Regression Coefficient

of PMM Model for 150 Observations and Regular Variability

FMI \Est Parameter β̂0 β̂1 β̂2 β̂3 β̂4

10% 0.00000 0.00000 0.00000 0.00000 0.00000

20% 0.00000 0.00000 0.00000 0.00000 0.00000
30% 0.00000 0.00000 0.00000 0.00000 0.00000
40% 0.00000 0.00000 0.00000 0.00000 0.00000
50% 0.00000 0.00000 0.00000 0.00000 0.00000

Table 102: Estimated Means of the Regression Coefficients from the Bayesian Linear

Regression Model at each Percentage of Missingness for Sample Size 150 and Regular

Variability

FMI \Est Parameter β̂0 β̂1 β̂2 β̂3 β̂4

10% 352.2778 -0.3311 0.1626 -0.1227 -1.7856

20% 261.2722 -0.3422 0.2450 -0.0263 -1.6151
30% 278.5606 -0.4018 0.2250 -0.0329 -1.3967
40% 345.7724 -0.3989 0.1786 -0.0284 -1.3898
50% 323.1877 -0.4297 0.2354 -0.0162 -1.2192

Actual Parameter 354.18249 -0.29570 0.16326 -0.15987 -1.89436
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Table 103: PDI of the Regression Coefficients of Bayesian Linear Regression Model

for 150 Observations and Regular Variability

FMI \Est Parameter β̂0 β̂1 β̂2 β̂3 β̂4 Mean

10% 0.0054 -0.1197 0.0040 0.2325 0.0574 0.0359

20% 0.2623 -0.1573 0.5007 0.8355 0.1474 0.3177
30% 0.2135 -0.3588 -0.3782 0.7942 0.2627 0.1066
40% 0.0237 -0.3490 -0.0940 0.8224 0.2663 0.13388
50% 0.0875 -0.4532 -0.4419 0.8987 0.3564 0.0895
Mean 0.1185 -0.2876 -0.0819 0.7167 0.2180 0.1367

Table 104: P-values for One-sample t-test for each Estimated Regression Coefficient

of Bayesian Linear Regression Model for 150 Observations and Regular Variability

FMI \Est Parameter β̂0 β̂1 β̂2 β̂3 β̂4
10% 0.00000 0.00000 0.00000 0.00000 0.00000

20% 0.00000 0.00000 0.00000 0.00000 0.00000
30% 0.00000 0.00000 0.00000 0.00000 0.00000
40% 0.00000 0.00000 0.00000 0.00000 0.00000
50% 0.00000 0.00000 0.00000 0.00000 0.00000
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Table 105: Estimated Means of the Regression Coefficients from the Linear Regres-

sion, non-Bayesian Model at each Percentage of Missingness for Sample Size 150 and

Regular Variability

FMI \Est Parameter β̂0 β̂1 β̂2 β̂3 β̂4
10% 357.4404 -0.3548 0.1579 -0.1191 -1.7563
20% 291.8717 -0.3256 0.2151 -0.0633 -1.655
30% 254.0877 -0.4136 0.2495 -0.0328 -1.3835
40% 329.7442 -0.4641 0.1753 -0.0387 -1.2506
50% 286.0532 -0.1483 0.2364 -0.0176 -0.5852

Actual Parameter 354.18249 -0.29570 0.16326 -0.15987 -1.89436

Table 106: PDI of the Regression Coefficients of Linear Regression, non-Bayesian

Model for 150 Observations and Regular Variability

FMI \Est Parameter β̂0 β̂1 β̂2 β̂3 β̂4 Mean

10% -0.0092 -0.1999 0.0328 0.2550 0.0729 0.0332

20% 0.1759 -0.1011 -0.3175 0.6041 0.1264 0.1148
30% 0.2826 -0.3987 -0.5282 0.7948 0.2697 0.0702
40% 0.0690 -0.5695 -0.0737 0.7579 0.3398 0.0956
50% 0.1924 0.4985 -0.4480 0.8899 0.6911 0.3438
Mean 0.1421 -0.1541 -0.2669 0.6603 0.3000 0.1315
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Table 107: P-values for One-sample t-test for each Estimated Regression Coefficient of

Linear Regression, non-Bayesian Model for 150 Observations and Regular Variability

FMI \Est Parameter β̂0 β̂1 β̂2 β̂3 β̂4

10% 0.00000 0.00000 0.00000 0.00000 0.00000

20% 0.00000 0.00000 0.00000 0.00000 0.00000
30% 0.00000 0.00000 0.00000 0.00000 0.00000
40% 0.00000 0.00000 0.00000 0.00000 0.00000
50% 0.00000 0.00000 0.00000 0.00000 0.00000

6.7 Analysis of Sample Size 150 and Large Variability Data

The mean of the estimated regression coefficients for the smaller fraction of missing

information (FMI) at 10% have the closest values to the mean of the estimated re-

gression coefficients from the complete data across all the three imputation methods

as shown in tables 108, 111 and 114. Also, apart from the linear regression, non-

Bayesian method, the PMM and Bayesian linear regression have their lowest values

closer to the mean estimates of the complete data at 50% missingness indicating that

as the percentage of missingness increases, the less accurate these models will work

for this data. The PDI for the linear regression, non-Bayesian model is the lowest

among the three models with a mean of -0.19.57 indicating that the Bayesian linear

regression method is the best model for this data as shown in table 109, table 112 and

table 115. The estimates from the imputed data satisfies the normality assumption

by the central limit theorem (CLT) since the number of each estimates is fifty based

on based the number imputations done. Tables 110, 113 and 116 shows the p-values

from the one sample t-test, which tested if there was difference in estimated mean
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coefficient and the coefficient from the completed data set. All the p-values are less

than α = 0.05 indicating that all differences are significant.

Table 108: Estimated Means of the Regression Coefficients from the PMM Model at

each Percentage of Missingness for Sample Size 150 and Large Variability

FMI \Est Parameter β̂0 β̂1 β̂2 β̂3 β̂4

10% 383.9666 -0.1299 0.0967 -0.0402 -0.8830

20% 328.9693 -0.2922 0.1496 -0.0324 -0.7871
30% 339.078 -0.1396 0.1386 -0.0282 -0.7925
40% 310.7136 -0.1569 0.1645 -0.0056 -0.69303

50% 275.4081 -0.1425 0.1990 -0.0195 -0.6535
Actual Parameter 402.6610 -0.10295 0.0803 -0.0621 -0.9903

Table 109: PDI of the Regression Coefficients of PMM Model for 150 Observations

and Large Variability

FMI \Est Parameter β̂0 β̂1 β̂2 β̂3 β̂4 Mean

10% 0.0464 -0.2618 -0.2038 0.3534 0.1084 0.0085

20% 0.1830 -1.8383 -0.8623 0.4788 0.2052 -0.3667
30% 0.1579 -0.3560 -0.7254 0.5464 0.1997 -0.0354
40% 0.2283 -0.5240 -1.0478 0.9099 0.3002 -0.0266
50% 0.3160 -0.3842 -1.4773 0.6863 0.3401 -0.1038
Mean 0.1863 -0.5530 -0.8633 0.5950 0.2307 -0.0808
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Table 110: P-values for One-sample t-test for each Estimated Regression Coefficient

of PMM Model for 150 Observations and Large Variability

FMI \Est Parameter β̂0 β̂1 β̂2 β̂3 β̂4

10% 0.00000 0.00000 0.00000 0.00000 0.00000

20% 0.00000 0.00000 0.00000 0.00000 0.00000
30% 0.00000 0.00000 0.00000 0.00000 0.00000
40% 0.00000 0.00000 0.00000 0.00000 0.00000
50% 0.00000 0.00000 0.00000 0.00000 0.00000

Table 111: Estimated Means of the Regression Coefficients from the Bayesian Linear

Regression Model at each Percentage of Missingness for Sample Size 150 and Large

Variability

FMI \Est Parameter β̂0 β̂1 β̂2 β̂3 β̂4

10% 374.6431 -0.1315 0.1057 -0.03879 -0.8669

20% 302.2398 -0.1746 0.1753 -0.0263 -0.7022
30% 315.6801 -0.1527 0.1610 -0.0262 -0.7155
40% 306.9224 -0.1419 0.1679 -0.0146 -0.6823
50% 236.6761 -0.1425 0.2354 -0.0162 -0.5953

Actual Parameter 402.6610 -0.10295 0.0803 -0.0621 -0.9903
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Table 112: PDI of the Regression Coefficients of Bayesian Linear Regression Model

for 150 Observations and Large Variability

FMI \Est Parameter β̂0 β̂1 β̂2 β̂3 β̂4 Mean

10% 0.0696 -0.2773 -0.3158 0.3761 0.1246 -0.0045

20% 0.2494 -0.6960 -1.1822 0.5770 0.2909 -0.1522
30% 0.2160 -0.4832 -1.0042 0.5786 0.2775 -0.0830
40% 0.2378 -0.3783 -1.0901 0.7652 0.3110 -0.0308
50% 0.4122 -0.3842 -1.9304 0.7394 0.3989 -0.1528
Mean 0.2370 -0.4438 -1.1045 0.6073 0.2806 -0.0846

Table 113: P-values for One-sample t-test for each Estimated Regression Coefficient

of Bayesian Linear Regression Model for 150 Observations and Large Variability

FMI \Est Parameter β̂0 β̂1 β̂2 β̂3 β̂4

10% 0.00000 0.00000 0.00000 0.00000 0.00000

20% 0.00000 0.00000 0.00000 0.00000 0.00000
30% 0.00000 0.00000 0.00000 0.00000 0.00000
40% 0.00000 0.00000 0.00000 0.00000 0.00000
50% 0.00000 0.00000 0.00000 0.00000 0.00000
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Table 114: Estimated Means of the Regression Coefficients from the Linear Regres-

sion, non-Bayesian Model at each Percentage of Missingness for Sample Size 150 and

Large Variability

FMI \Est Parameter β̂0 β̂1 β̂2 β̂3 β̂4

10% 372.4906 -0.1303 0.1076 -0.0373 -0.8668

20% 311.6313 -0.1551 0.1664 -0.0341 -0.7484
30% 324.4659 -0.14563 0.15234 -0.0298 -0.7293
40% 313.7159 -0.1519 0.1608 -0.0119 -0.6486

50% 351.4801 -0.3718 0.1530 -0.0639 -1.3663
Actual Parameter 402.6610 -0.10295 0.0803 -0.0621 -0.9903

Table 115: PDI of the Regression Coefficients of Linear Regression, non-Bayesian

Model for 150 Observations and Large Variability

FMI \Est Parameter β̂0 β̂1 β̂2 β̂3 β̂4 Mean

10% 0.0749 -0.2657 -0.3395 0.4000 0.1247 -0.0011

20% 0.2261 -0.5066 -1.0715 0.4515 0.2443 -0.13124
30% 0.1942 -0.4143 -0.8964 0.5207 0.2636 -0.0664
40% 0.2209 -0.4755 -1.0017 0.8086 0.3451 -0.0205
50% 0.1271 -2.6115 -0.9046 -0.0278 -0.3797 -0.0205
Mean 0.1686 -0.8547 -0.8427 0.4306 0.1196 -0.1957
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Table 116: P-values for One-sample t-test for each Estimated Regression Coefficient

of Linear Regression, non-Bayesian Model for 150 Observations and Large Variability

FMI \Est Parameter β̂0 β̂1 β̂2 β̂3 β̂4

10% 0.00000 0.00000 0.00000 0.00000 0.00000

20% 0.00000 0.00000 0.00000 0.00000 0.00000
30% 0.00000 0.00000 0.00000 0.00000 0.00000
40% 0.00000 0.00000 0.00000 0.00000 0.00000
50% 0.00000 0.00000 0.00000 0.00000 0.00000

6.8 Analysis of Sample Size 500 and Small Variability Data

The mean of the estimated regression coefficients decreases as the percentage of

missing values increases across all the three imputation methods as shown in tables

117, 120 and 123. The closest value to the mean of the estimated regression coeffi-

cients from the complete data is at the 10% level of missingness across all the three

imputation methods as shown tables 117, 120 and 123. The PDI for the Bayesian

linear regression method in table 121 is the lowest among the three methods with

a mean of -0.0338, which indicates that the Bayesian linear regression model is the

best for this data. The PDI values for PMM and linear regression non-Bayesian are

displayed table 118 and table 124, respectively. The estimates are also normally dis-

tributed based on the central limit theorem. The p-values from the one sample t-test,

which tested if there was difference in estimated mean coefficient and the coefficient

from the completed data set. All the p-values are less than α = 0.05 indicating that

all differences are significant. The p-values are shown in tables 122, 125 and 128.
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Table 117: Estimated Means of the Regression Coefficients from the PMM Model at

each Percentage of Missingness for Sample Size 500 and Small Variability

FMI \Est Parameter β̂0 β̂1 β̂2 β̂3 β̂4

10% 193.677 -0.6165 0.3332 -0.1699 -3.4104

20% 143.6567 -0.6877 0.4134 -0.1313 -3.1272
30% -49.7714 -0.7116 0.5940 -0.0520 -2.8212
40% -125.3945 -0.7145 0.6580 0.0201 -2.5510

50% -175.6273 -0.7226 0.6987 0.0797 -2.2752
Actual Parameter 388.0682 - 0.5034 0.1884 - 0.2847 -3.8898

Table 118: PDI of the Regression Coefficients of PMM model for 500 Observations

and Small Variability

FMI \Est Parameter β̂0 β̂1 β̂2 β̂3 β̂4 Mean

10% 0.5009 4.2723 -0.7686 0.4032 0.1232 0.9062

20% 0.6298 4.6502 -1.1943 0.5388 0.1961 0.9641
30% 1.1283 4.7771 -2.1529 0.8174 0.2747 0.9689
40% 1.3231 4.7925 -2.4926 1.0706 0.3442 1.0075
50% 1.4526 4.8355 -2.7086 1.2799 0.4151 1.0549
Mean 1.00694 4.6655 -1.8634 0.8219 0.2706 0.9803
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Table 119: P-values for One-sample t-test for each Estimated Regression Coefficient

of PMM Model for 500 Observations and Small Variability

FMI \Est Parameter β̂0 β̂1 β̂2 β̂3 β̂4

10% 0.00000 0.00000 0.00000 0.00000 0.00000

20% 0.00000 0.00000 0.00000 0.00000 0.00000
30% 0.00000 0.00000 0.00000 0.00000 0.00000
40% 0.00000 0.00000 0.00000 0.00000 0.00000
50% 0.00000 0.00000 0.00000 0.00000 0.00000

Table 120: Estimated Means of the Regression Coefficients from the Bayesian Linear

Regression Model at each Percentage of Missingness for Sample Size 500 and Small

Variability

FMI \Est Parameter β̂0 β̂1 β̂2 β̂3 β̂4

10% 202.1656 -0.6234 0.3613 -0.1824 -3.3975

20% 102.0945 -0.6833 0.4515 -0.1117 -3.0636
30% -11.5946 -0.6889 0.5554 -0.0513 -2.8390
40% -174.0286 -0.7299 0.7040 0.0335 -2.4493
50% -182.9214 -0.7067 0.7059 0.0737 -2.3004

Actual Parameter 402.6610 -0.10295 0.0803 -0.0621 -0.9903
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Table 121: PDI of the Regression Coefficients of Bayesian Linear Regression Model

for 500 observations and Small Variability

FMI \Est Parameter β̂0 β̂1 β̂2 β̂3 β̂4 Mean

10% 0.4790 -0.2384 -0.9177 0.3593 0.1266 -0.0382

20% 0.7369 -0.3574 -1.3965 0.6077 0.2124 -0.0394
30% 1.0299 -0.3685 -1.9480 0.8198 0.2701 -0.0393
40% 1.4484 -0.4499 -2.7367 1.1177 0.3703 -0.0500
50% 1.4714 -0.4039 -2.7468 1.2589 0.4086 -0.0023
Mean 1.0331 -0.3636 -1.9491 0.8326 0.2776 -0.0338

Table 122: P-values for One-sample t-test for each Estimated Regression Coefficient

of Bayesian Linear Regression Model for 500 Observations and Small Variability

FMI \Est Parameter β̂0 β̂1 β̂2 β̂3 β̂4

10% 0.00000 0.00000 0.00000 0.00000 0.00000

20% 0.00000 0.00000 0.00000 0.00000 0.00000
30% 0.00000 0.00000 0.00000 0.00000 0.00000
40% 0.00000 0.00000 0.00000 0.00000 0.00000
50% 0.00000 0.00000 0.00000 0.00000 0.00000
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Table 123: Estimated Means of the Regression Coefficients from the Linear Regres-

sion, non-Bayesian Model at each Percentage of Missingness for Sample Size 500 and

Small Variability

FMI \Est Parameter β̂0 β̂1 β̂2 β̂3 β̂4

10% 372.4906 -0.1303 0.1076 -0.0373 -0.8668

20% 311.6313 -0.1551 70.1664 -0.0341 -0.7484
30% 324.4659 -0.14563 0.15234 -0.02980 -0.7293
40% 313.7159 -0.1519 0.1608 -0.0119 -0.6486

50% 235.7427 -0.1483 0.2364 -0.0176 -0.5852
Actual Parameter 243.31570 -0.52660 0.32615 -0.23567 -3.7533

Table 124: PDI of the Regression Coefficients of Linear Regression, non-Bayesian

Model for 500 observations and Small Variability

FMI \Est Parameter β̂0 β̂1 β̂2 β̂3 β̂4 Mean

10% 0.4089 -0.2191 -0.7818 0.3246 0.1127 -0.0309

20% 0.6644 -0.3649 -1.2511 0.6182 0.2082 -0.0250
30% 0.9552 -0.4068 -1.8052 0.7938 0.2682 -0.0389
40% 1.4131 -0.4309 -2.6699 1.0945 0.3577 -0.0471
50% 1.5911 -0.3544 -2.9973 1.1602 0.3986 -0.0403
Mean 1.0065 -0.3552 -1.9010 0.7982 0.2691 -0.0365
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Table 125: P-values for One-sample t-test for each Estimated Regression Coefficient

of Linear Regression, non-Bayesian Model for 500 Observations and Small Variability

FMI \Est Parameter β̂0 β̂1 β̂2 β̂3 β̂4

10% 0.00000 0.00000 0.00000 0.00000 0.00000

20% 0.00000 0.00000 0.00000 0.00000 0.00000
30% 0.00000 0.00000 0.00000 0.00000 0.00000
40% 0.00000 0.00000 0.00000 0.00000 0.00000
50% 0.00000 0.00000 0.00000 0.00000 0.00000

6.9 Analysis of Sample Size 500 and Regular Variability Data

The mean of the estimated regression coefficients decreases as the percentage of

missing values increases across all the three methods as shown in tables 126, 129

and 132. The closest value to the mean of the estimated regression coefficients from

the complete data is at the 10% level of missingness across all the three imputation

methods as evident in tables 126, 129 and 132. The PDI for the Bayesian linear

regression method is the lowest among the three methods with a mean of -0.1956 which

indicates that the Bayesian linear regression method is the best for this data. The

PDI values for PMM, Bayesian linear regression and linear regression non-Bayesian

are displayed in tables 127, 130 and 133. The estimates are also normally distributed

based on the central limit theorem. The p-values from the one sample t-test, which

tested if there was difference in estimated mean coefficient and the coefficient from

the completed data set. All the p-values are less than α = 0.05 indicating that all

differences are significant. This is shown in tables 128, 131 and 134.
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Table 126: Estimated Means of the Regression Coefficients from the PMM Model at

each Percentage of Missingness for Sample Size 500 and Regular Variability

FMI \Est Parameter β̂0 β̂1 β̂2 β̂3 β̂4

10% 304.5357 -0.6134 0.2624 -0.1953 -3.4904

20% 131.6377 -0.7570 0.3368 -0.1154 -3.0052
30% 146.874 -0.7808 0.4029 -0.0434 -2.7989
40% 51.05292 -0.7636 0.4906 -0.02957 -2.5413

50% 91.7104 -0.1425 0.4456 -0.0241 -2.3091
Actual Parameter 425.7125 -0.20880 0.09110 -0.16635 -2.0353

Table 127: PDI of the Regression Coefficients of PMM Model for 500 observations

and Regular Variability

FMI \Est Parameter β̂0 β̂1 β̂2 β̂3 β̂4 Mean

10% 0.2846 -1.9377 -1.8804 -0.1740 -0.7149 -0.8844

20% 0.6908 -2.6255 -2.6970 0.3063 -0.4765 -0.9603
30% 0.6550 -2.7395 -3.4226 0.7391 -0.3752 0.5801
40% 0.8801 -2.6571 -4.3853 0.8227 -0.2486 -1.1176
50% 0.7846 0.3175 -3.8913 0.8551 -0.1345 -0.4137
Mean 0.1604 -0.3689 1.9642 0.8489 0.2545 0.5718
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Table 128: P-values for One-sample t-test for each Estimated Regression Coefficient

of PMM Model for 500 Observations and Regular Variability

FMI \Est Parameter β̂0 β̂1 β̂2 β̂3 β̂4

10% 0.00000 0.00000 0.00000 0.00000 0.00000

20% 0.00000 0.00000 0.00000 0.00000 0.00000
30% 0.00000 0.00000 0.00000 0.00000 0.00000
40% 0.00000 0.00000 0.00000 0.00000 0.00000
50% 0.00000 0.00000 0.00000 0.00000 0.00000

Table 129: Estimated Means of the Regression Coefficients from the Bayesian Linear

Regression Model at each Percentage of Missingness for Sample Size 500 and Regular

Variability

FMI \Est Parameter β̂0 β̂1 β̂2 β̂3 β̂4

10% 313.179 -0.5904 0.2550 -0.2109 -3.5566

20% 182.0300 -0.7002 0.3711 -0.0692 -3.0926
30% 125.6478 -0.8030 0.4219 -0.0323 -2.7061
40% 40.4557 -0.1419 -0.7258 0.4982 -0.0242

50% -8.3924 -0.7853 0.5393 0.0144 -2.1426
Actual Parameter 425.7126 -0.20880 0.09110 -0.16635 -2.03538

103



Table 130: PDI of the Regression Coefficients of Bayesian Linear Regression Model

for 500 observations and Regular Variability

FMI \Est Parameter β̂0 β̂1 β̂2 β̂3 β̂4 Mean

10% 0.2643 -1.8276 -1.7991 -0.2678 -0.7475 -0.8755

20% 0.5724 -2.3534 -3.0735 0.5840 -0.5195 -0.9580
30% 0.7049 -2.8458 -3.6312 0.8058 -0.3296 -1.0591
40% 0.9050 0.3204 8.9671 3.9949 0.9881 3.0351
50% 1.0197 -2.7610 -4.9199 1.0866 -0.0527 -1.1254
Mean 0.6932 -1.8934 -0.8913 1.2407 -0.1322 -0.1965

Table 131: P-values for One-sample t-test for each Estimated Regression Coefficient

of Bayesian Linear Regression Model for 500 Observations and Regular Variability

FMI \Est Parameter β̂0 β̂1 β̂2 β̂3 β̂4

10% 0.00000 0.00000 0.00000 0.00000 0.00000

20% 0.00000 0.00000 0.00000 0.00000 0.00000
30% 0.00000 0.00000 0.00000 0.00000 0.00000
40% 0.00000 0.00000 0.00000 0.00000 0.00000
50% 0.00000 0.00000 0.00000 0.00000 0.00000

104



Table 132: Estimated Means of the Regression Coefficients from the Linear Regres-

sion, non-Bayesian Model at each Percentage of Missingness for Sample Size 500 and

Regular Variability

FMI \Estimated Parameter β̂0 β̂1 β̂2 β̂3 β̂4

10% 312.9665 -0.6244 0.2553 -0.2010 -3.4994

20% 153.0623 -0.688 0.3990 -0.0721 -3.0826
30% 181.8841 -0.7457 0.3691 -0.0680 -2.8624
40% 342.8777 -0.1519 0.1608 -0.0119 -0.6486
50% 25.6593 -0.8255 0.5085 0.0126 -2.1709

Actual Parameter 425.7126 -0.2088 0.0911 -0.16635 -2.03538

Table 133: PDI of the Regression Coefficients of Linear Regression, non-Bayesian

Model for 500 observations and Regular Variability

FMI \Est Parameter β̂0 β̂1 β̂2 β̂3 β̂4 Mean

10% 0.2648 -1.9904 -1.8024 -0.2083 -0.7194 -0.8911

20% 0.6405 -2.2950 -3.3798 0.5666 -0.5146 -0.9964
30% 0.5728 -2.5714 -3.0516 0.5912 -0.4064 -0.9730
40% 0.8993 0.2725 -0.7651 0.9285 0.6813 0.4033
50% 0.9397 -2.9535 -4.5818 1.0757 -0.0666 -1.1173
Mean 0.6634 -1.9075 -2.7161 0.5907 -0.2051 -0.7149
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Table 134: P-values for One-sample t-test for each Estimated Regression Coefficient of

Linear Regression, non-Bayesian Model for 500 Observations and Regular Variability

FMI \Est Parameter β̂0 β̂1 β̂2 β̂3 β̂4

10% 0.00000 0.00000 0.00000 0.00000 0.00000

20% 0.00000 0.00000 0.00000 0.00000 0.00000
30% 0.00000 0.00000 0.00000 0.00000 0.00000
40% 0.00000 0.00000 0.00000 0.00000 0.00000
50% 0.00000 0.00000 0.00000 0.00000 0.00000

6.10 Analysis of Sample Size 500 and Large Variability Data

The mean of the estimated regression coefficients for the smallest fraction of miss-

ing information (FMI) at 10% have the closest values to the mean of the estimated

regression coefficients from the complete data across all the three imputation methods

as shown in tables 135, 138 and 141. Also, apart from the PMM method, the Bayesian

linear regression and linear regression, non-Bayesian methods have the smallest values

closer to the mean estimate of the complete data at 50% level missingness indicating

that, as the percentage of missing values increases, the less accurate these models will

be. The PDI for the Bayesian linear regression method is the lowest among the three

imputation methods with an overall mean of 0.5610 indicating that, the Bayesian lin-

ear regression method is the best imputation method for this data. The PDI values for

PMM, Bayesian linear regression and Linear regression non-Bayesian are displayed in

tables 136, 139 and 141, respectively. The estimates are normally distributed based

on the central limit theorem. The p-values from the one sample t-test, which tested

if there was difference in estimated mean coefficient and the coefficient from the com-
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pleted data set. All the p-values are less than α = 0.05 indicating that all differences

are significant. The p-values are shown in tables 137, 140 and 143 for PMM, Bayesian

linear regression and linear regression non-Bayesian methods, respectively.

Table 135: Estimated Means of the Regression Coefficients from the PMM Model at

each Percentage of Missingness for Sample Size 500 and Large Variability

FMI \Est Parameter β̂0 β̂1 β̂2 β̂3 β̂4

10% 364.4357 -0.1721 0.1158 -0.0316 -0.7938

20% 362.4600 -0.1742 0.115 -0.0123 -0.7298
30% 339.078 -0.1396 0.1386 -0.0282 -0.7925
40% 357.3081 -0.1883 0.1175 0.0071 -0.6196

50% 350.9477 -0.1903 0.1220 0.0172 -0.5650
Actual Parameter 422.6556 -0.1263 0.0610 -0.0633 -0.9392

Table 136: PDI of the Regression Coefficients of PMM Model for 500 observations

and Large Variability

FMI \Est Parameter β̂0 β̂1 β̂2 β̂3 β̂4 Mean

10% 0.1377 -0.3626 1.9169 0.5008 0.1548 0.46952

20% 0.1424 -0.3793 1.9105 0.8057 0.2230 0.54046
30% 0.1977 -0.1053 2.0974 0.5545 0.1562 0.5801
40% 0.1546 -0.4909 1.9303 1.1122 0.3403 0.6093
50% 0.1697 -0.5067 1.9660 1.2717 0.3984 0.6598
Mean 0.1604 -0.3689 1.9642 0.8489 0.2545 0.5718

107



Table 137: P-values for One-sample t-test for each Estimated Regression Coefficient

of PMM Model for 500 Observations and Large Variability

FMI \Est Parameter β̂0 β̂1 β̂2 β̂3 β̂4

10% 0.00000 0.00000 0.00000 0.00000 0.00000

20% 0.00000 0.00000 0.00000 0.00000 0.00000
30% 0.00000 0.00000 0.00000 0.00000 0.00000
40% 0.00000 0.00000 0.00000 0.00000 0.00000
50% 0.00000 0.00000 0.00000 0.00000 0.00000

Table 138: Estimated Means of the Regression Coefficients from the Bayesian Linear

Regression Model at each Percentage of Missingness for Sample Size 500 and Large

Variability

FMI \Est Parameter β̂0 β̂1 β̂2 β̂3 β̂4

10% 372.4379 -0.1655 0.1081 -0.03879 -0.8669

20% 360.6591 -0.1644 0.1170 -0.0174 -0.7473
30% 369.539 -0.1779 0.11647 -0.0013 -0.6652
40% 359.2788 -0.1910 0.1054 0.0092 -0.6080

50% 342.3959 -0.2004 0.1303 0.0155 -0.5289
Actual Parameter 422.6556 -0.1263 0.0610 -0.0633 -0.9392
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Table 139: PDI of the Regression Coefficients of Bayesian Linear Regression Model

for 500 observations and Large Variability

FMI \Est Parameter β̂0 β̂1 β̂2 β̂3 β̂4 Mean

10% 0.1188 -0.3104 1.8559 0.3872 0.0770 0.4257

20% 0.1467 -0.3017 1.9264 0.7251 0.2043 0.5401
30% 0.1499 -0.4086 1.9216 0.9795 0.2917 0.5868
40% 0.1257 -0.5123 1.8345 1.1453 0.3526 0.5891
50% 0.1899 -0.5867 2.0317 1.2449 0.4369 0.6633
Mean 0.1462 -0.42394 1.91402 0.8964 0.2725 0.5610

Table 140: P-values for One-sample t-test for each Estimated Regression Coefficient

of Bayesian Linear Regression Model for 500 Observations and Large Variability

FMI \Est Parameter β̂0 β̂1 β̂2 β̂3 β̂4

10% 0.00000 0.00000 0.00000 0.00000 0.00000

20% 0.00000 0.00000 0.00000 0.00000 0.00000
30% 0.00000 0.00000 0.00000 0.00000 0.00000
40% 0.00000 0.00000 0.00000 0.00000 0.00000
50% 0.00000 0.00000 0.00000 0.00000 0.00000

109



Table 141: Estimated Means of the Regression Coefficients from the Linear Regres-

sion, non-Bayesian Model at each Percentage of Missingness for Sample Size 500 and

Large Variability

FMI \Est Parameter β̂0 β̂1 β̂2 β̂3 β̂4

10% 372.4906 -0.1303 0.1076 -0.0373 -0.8668

20% 363.3100 -0.1651 0.1144 -0.0166 -0.7456
30% 363.5194 -0.1792 0.1124 -0.0026 -0.6640
40% 348.8168 -0.1800 0.1257 0.005 -0.6241

50% 335.9822 -0.1831 0.1358 0.0194 -0.5465
Actual Parameter 422.6556 -0.1263 0.0610 -0.0633 -0.9392

Table 142: PDI of the Regression Coefficients of Linear Regression, non-Bayesian

Model for 500 observations and Large Variability

FMI \Est Parameter β̂0 β̂1 β̂2 β̂3 β̂4 Mean

10% 0.1404 -0.0317 1.8519 0.4107 0.0771 0.4896

20% 0.1399 -0.3072 1.9058 0.7378 0.2061 0.5364
30% 0.1747 -0.4188 1.8899 0.9589 0.2930 0.5795
40% 0.2051 -0.4252 1.9952 1.0790 0.3355 0.6379
50% 0.1404 -0.4497 2.0752 1.3065 0.4181 0.6981
Mean 0.1601 -0.32652 1.9436 0.89858 0.26596 0.5883

110



Table 143: P-values for One-sample t-test for each Estimated Regression Coefficient

of Linear Regression, non-Bayesian Model for 500 Observations and Large Variability

FMI \Est Parameter β̂0 β̂1 β̂2 β̂3 β̂4

10% 0.00000 0.00000 0.00000 0.00000 0.00000

20% 0.00000 0.00000 0.00000 0.00000 0.00000
30% 0.00000 0.00000 0.00000 0.00000 0.00000
40% 0.00000 0.00000 0.00000 0.00000 0.00000
50% 0.00000 0.00000 0.00000 0.00000 0.00000
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7 CONCLUSION AND FUTURE RESEARCH

After analyzing the performance of each of the three multiple imputation methods

on all the twelve datasets, the predictive mean matching (PMM) imputation method

works best for dataset of sample size 15 and small variability while the Bayesian

linear regression, works best for sample size 15 and regular variability. Also, the

linear regression non-Bayesian method works best for sample size 15 and regular

variability.

With the remaining nine datasets, the mean of the estimated regression coefficients

decreases as the percentage of missingness increases across all the three imputation

methods. For the sample sizes of 50 with large and regular variability, the Bayesian

linear regression and linear regression, non-Bayesian methods were proven to be the

best imputation models. Their overall percentage deviation index (PDI) was low

as compared with the other methods. The sample size of 50 with small variability

data worked best for the linear regression, non-Bayesian method. The sample sizes

of 150 and 500 have the linear regression non-Bayesian model as the best imputation

method among the three imputation methods. This affirms the study of Addo(2018)

that the linear non-Bayesian model works best for data set with large sample when

variability is not an issue since data comes from a multivariate normal distribution

[1]. Overall, the Bayesian linear regression models produced estimates that are closer

to the actual estimates of the complete data while the PMM estimates are far away

from the coefficients of the complete data. In summary, while the default multiple

imputation method in R is PMM, the Bayesian linear regression method works best
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for datasets with large sample sizes regardless of the variability in the data. For future

work, multiple imputation methods should be studied on mixed data and categorical

data with small and large sample sizes with variability to ascertain which imputation

method will work best.
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