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ABSTRACT

The Food Truck Problem, Supply Chain and Extensions of the Newsvendor Problem

by

Dennis Lartey Quayesam

Inventory control is important to ensuring sufficient quantities of items are available to

meet demands of customers. The Newsvendor problem is a model used in Operations

Research to determine optimal inventory levels for fulfilling future demands. Our

study extends the newsvendor problem to a food truck problem. We used simulation

to show that the food truck does not reduce to a newsvendor problem if demand

depends on exogenous factors such temperature, time etc. We formulate the food

truck problem as a multi-product multi-period linear program and found the dual for

a single item. We use Discrete Event Simulation to solve the stochastic version of the

dual and found the optimal order to maximize the food vendors profit.

2



Copyright 2021 by Dennis Lartey Quayesam

All Rights Reserved

3



ACKNOWLEDGMENTS

I would like to express my heartfelt gratitude to my advisor Dr. Jeff Knisley. I

would like to thank him for his dedication, inspiration, patience and guidance through

out my study. I would also like to thank Dr. Michele Joyner and Dr. Robert Price

for accepting to be members of my thesis committee and their valuable suggestions. I

would also like to express my appreciation to all faculty members in the Department

of Mathematics and Statistics at ETSU for sharing their knowledge.

4



TABLE OF CONTENTS

ABSTRACT . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2

ACKNOWLEDGMENTS . . . . . . . . . . . . . . . . . . . . . . . . . . . 4

LIST OF TABLES . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7

LIST OF FIGURES . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8

1 INTRODUCTION AND BACKGROUND . . . . . . . . . . . . . . . 9

1.1 Classic Single Product Newsvendor Problems . . . . . . . . . 11

1.2 Extensions of Newsvendor Problems . . . . . . . . . . . . . . . 14

1.3 Stochastic Demand and Connection to Supply Chains . . . . . 19

1.4 A New Extension – The Food Truck Problem . . . . . . . . . 20

2 STOCHASTIC LINEAR PROGRAMMING . . . . . . . . . . . . . . 23

2.1 Probability and Randomness . . . . . . . . . . . . . . . . . . . 23

2.1.1 Linear Programming Theorems . . . . . . . . . . . . 27

2.2 Theoretical Solutions . . . . . . . . . . . . . . . . . . . . . . . 28

2.2.1 Discrete Demand . . . . . . . . . . . . . . . . . . . . 28

2.2.2 Continuous Demand . . . . . . . . . . . . . . . . . . 30

2.3 Approach 1 to Stochastic Linear Programs . . . . . . . . . . . 32

2.4 Approach 2 to Stochastic Linear Programs . . . . . . . . . . . 34

2.5 Approach 3 to Stochastic Linear Programs . . . . . . . . . . . 35

3 THE FOOD TRUCK PROBLEM . . . . . . . . . . . . . . . . . . . . 37

3.1 Derivation and Explanation of all the Deterministic Variations 37

3.2 Reduction to Classical Newsvendor . . . . . . . . . . . . . . . 37

3.2.1 Reduction to Classical Newsvendor – Simulation . . 38

5



3.3 Simulation of the Full Food Truck Problem . . . . . . . . . . . 42

3.4 Theoretically Solvable Variation of the Food Truck Problem . 44

3.5 Interpretation and Implementation of the Dual Program . . . 49

4 FUTURE DIRECTIONS . . . . . . . . . . . . . . . . . . . . . . . . . 52

BIBLIOGRAPHY . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 53

APPENDICES . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 59

A Discrete Event Simulation – SimPy Code . . . . . . . . . . . . . . . 59

A.1 Reduction to the Classical Newsvendor Problem . . . . . . . 59

A.2 Full Simulation of the Food Truck Problem with Mid-week

Reorder . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 61

A.3 Simulation of Demands of the Food Truck Problem with Mid-

week Order . . . . . . . . . . . . . . . . . . . . . . . . . . . . 65

VITA . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 67

6



LIST OF TABLES

1 Samples From Parameter Sweeps . . . . . . . . . . . . . . . . . . . . 42

2 Demand Dependent on Time and Independent Demand . . . . . . . . 43

7



LIST OF FIGURES

1 Order quantity equal to demand . . . . . . . . . . . . . . . . . . . . . 12

2 Means of demands across this range of demands . . . . . . . . . . . . 40

3 Order quantity and expected cost . . . . . . . . . . . . . . . . . . . . 41

8



1 INTRODUCTION AND BACKGROUND

Inventory management is a key contributing factor to the profitability and sus-

tainability of modern business. Inventory control ensures sufficient quantity of items

are available to meet future demands of customers. The newsvendor problem is one

of the classical problems in inventory management [35]. A newsvendor purchases

newspapers in bulk each morning with the intention of selling them during the day.

On some days, the newsvendor sells the entire order of papers, while on other days,

not all are sold. The newsvendor must decide how many papers to buy to meet future

demands [11]. There is a cost per newspaper remaining if he orders too much or a

cost per missed sale if he orders too few. A generic setting of this problem is when a

decision maker has a single opportunity to decide how much of a single item to order

for a single selling period [33]. The newsvendor model is used as a decision tool for

the difficult task of filling inventories given uncertain demand [11] and is considered

one of the most celebrated models in Operations Research [21].

In nearly all inventory stocking situations, the demand of the customers varies

from day to day due to many factors. Some of the factors are price, taste, the number

and price of substitute goods, the number and price of complementary goods, income,

distribution of income and expectation of future price changes [40]. The newspaper

vendor may, for example, have high demands on days when the paper’s headlines are

interesting and low demands on days when it snows or rains. Ordering too many

papers on a day when demand is low incurs a loss. Papers unsold at the end of the

day are salvaged at a revenue per item below the cost. Subsequently, ordering too

few when future demand is high incurs loss because the newsvendor has to turn away
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a customer for not having a paper to sell. The newsvendor’s objective is the best

(optimal) decision he must make to order the appropriate number of newspapers in

a given day to maximize profit.

This is a decision many businesses face. In the late 1800’s, as financial transactions

began to become increasingly complex, the actions of money managers, bankers, and

related others became increasingly mysterious. The newsvendor problem was ironi-

cally developed in the financial arena by experts to explain to clients how maximizing

profit is equivalent to minimizing cost [15].

The newsvendor problem is applied to many real situations across different indus-

tries as a decision tool. The model applies to seasonal or perishable products such

as fashion apparel, Valentine’s day flowers, Christmas trees and cards where retailers

must order before a selling season to meet demands [20]. It is used also in the man-

ufacturing industry to predict the optimal quantity of an item to produce to meet

future demands of customers [32]. The retail of perishable goods such as bread [16],

diary foods and agricultural produce are also framed as newsvendor problems. Ac-

cording to Arikan [2], it also has wide application in service industries such as airlines,

hotel rooms, trains and theater seats when the key decision is capacity. In health, it is

used to propose a vaccination policy to lower attack rate and vaccine production cost

[46]. It can also be used to find the optimal order quantity of immunization vaccines

with a short expiration date in a single period. It is used in financial planning to

allocate funds, in raising capital for firms on the stock exchange, in insurance and

many more [30, 43].
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1.1 Classic Single Product Newsvendor Problems

The classical Newsvendor problems deal with a situation faced by a retailer who

has a single procurement opportunity to order a single product to be sold to customers

during a single sale period. The unit of profit lost because a retailer ordered too few

resulting in stockout of inventory to meet customers demand is known as underage

cost. The cost lost because a retailer ordered too much exceeding actual customer

demand (resulting in excess un-used inventory) is known as overage cost.

We introduce the newsvendor problem as an inventory model described in [39].

Given the formulation of the model, we introduce the following notation:

• Order Quantity (Q): This is the decision variable of a certain product to satisfy

demand. We also use x to denote order quantity in some contexts.

• Demand (D): A variable that is defined by the demand distribution.

• Unit Cost (c): This is the unit cost of producing or purchasing each unit.

• Unit Price (p): This is the unit price at which a product is sold during the sale

period.

• Holding Cost (h): This is the holding cost per unit at the end of the sale period.

• Backorder Cost (b): This is the backorder cost per unit of unmet demand.

Suppose that a retailer has to decide an order quantity Q of a certain product to

satisfy demand D. If the demand is more than the order quantity, then a backorder

cost b is incurred. If the demand is less the order quantity, then a holding cost h is
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incurred and similar to [39], the total cost is

C(Q,D) = cQ+ b[D −Q]+ + h[Q−D]+

where [·]+ = max [·, 0]. The objective is to minimize the total cost function, which

can also be written in the form

C(Q,D) = cQ+


h(Q−D) if D < Q

b(D −Q) if D > Q

If the demand D is deterministic and if Q∗ denotes the argmin of the cost for fixed

D, then Q∗ = D is the optimal order as as shown in Figure 1.

Figure 1: Order quantity equal to demand

In reality, the retailer places an order before the beginning of the sale period and

the demand D is uncertain or random. If historical sales show trends in demands,
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then the demand D may be forecast by forecasting techniques such as moving average,

exponential smoothing or time series analysis. In some cases, the demand is assumed

to have a specific distribution whose parameters can be estimated [17, 21]. However,

in an experimental study, the optimal solution is not necessarily improved even when

the demand distribution is assumed to be known by the subjects [6]. Demand distri-

bution estimates in practical situations are often volatile and subject to errors [36].

Demand estimation cannot be done accurately where the history of actual demand

observed is insufficient. Demand data is not available for newly introduced products

to trace demand patterns [18]. Therefore, the distribution of uncertain demand may

be difficult to identify and may change over time.

If demand is random and discrete with probability distribution Pr(D), then the

expected cost is

E[C(Q,D)] =
∞∑
D=0

C(Q,D) Pr(D)

which is equivalent to

E[C(Q,D)] = cQ+

Q−1∑
D=0

h(Q−D)+ Pr(D) +
∞∑

D=Q

b(D −Q)+ Pr(D)

According to [11], “in some situations, a discrete distribution function provides the

best representation of demand, whereas in other situations a continuous distribution

function works best”. The discrete random demand is often approximated to be a

continuous random variable because when a discrete demand is used, the resulting

expressions and optimal order quantity may become more difficult to solve analytically

[20]. If f(D) is the probability density function of the continuous random demand
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D, then the expected cost function is

E[C(Q,D)] =

∫ ∞
D=−∞

C(Q,D)f(D)dD

Since D ≥ 0, the cost function for the continuous case is equivalent to

E[C(Q,D)] = cQ+

∫ Q

D=0

h(Q−D)+f(D)dD +

∫ ∞
D=Q

b(D −Q)+f(D)dD

The goal of the newsvendor problem is either to maximize the expected profit or

to minimize the expected cost. The profit function P of a retailer who decides to

order quantity Q to satisfy demand D is

P (Q,D) =


(p− c)D − c(Q−D) if D < Q

(p− c)Q if D > Q

The expected profit maximization is equivalent to the expected cost minimization

because the optimal order quantity Q∗ is

Q∗ = argmax P (Q,D) = argmin C(Q,D)

Therefore, without loss of generality, we use loss minimization as the objective func-

tion throughout this thesis.

1.2 Extensions of Newsvendor Problems

In the larger context of operations research, extensions of the newsvendor problem

have been developed to model a large variety of important real life problems. The

multi-product newsvendor model is one of the extensions of the classical newsven-

dor problem and was first studied by Hadley and Whitin [19]. The multi-product
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newsvendor problem is framed as a retailer who has to order inventories of several

products at the beginning of a sale period and sell each product at a distinct fixed

price [12]. Unsold products after the sale period become worthless and are there-

fore discounted or discarded [41]. The retailer has to determine the optimal order

quantities for all the different products that will minimize the expected cost.

Following the same notations in the classical newsvendor problem, let n be the

total number of product such that i = 1, 2, ..., n. The expected cost minimization for

a discrete demand of products is

n∑
i=1

E[C(Qi, Di)] =
n∑
i=1

(
ciQi +

Qi−1∑
Di=0

hi(Qi −Di)
+ Pr(Di) +

∞∑
Di=Qi

bi(Di −Qi)
+ Pr(Di)

)

and the expected cost minimization for a continuous demand is

n∑
i=1

E[C(Qi, Di)] =
n∑
i=1

(
ciQi +

∫ Qi

Di=0

hi(Qi −Di)
+f(Di)dDi +

∫ ∞
Di=Qi

bi(Di −Qi)
+f(Di)dDi

)
In the multi-product newsvendor problem some studies suggest quadratic program-

ming and a notable example can be found in [1]. A Langrangian method is also

proposed in a related study [48].

Extensions to the classical newsvendor problem can be classified into 11 categories

in terms of new assumptions and constraints [26]. Many seasonal products in certain

cases of retail businesses are sold across multiple periods [44]. Some portion of unsold

products from previous periods are stored and sold in later periods. The amount of

inventory carried over into the next period is also random due to the fluctuations in

demand. This type of newsvendor problem is called a multi-period problem. In a

single product multi-period and multi-product multi-period problems, the retailer’s

goal is to determine a sequence of order quantities that minimizes the expected cost.
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The multi-product newsvendor and multi-period newsvendor problems can be

formulated as linear programming problems or mixed integer programming problems.

A linear programming problem is a problem of minimizing or maximizing a linear

function in the presence of a set of linear equality or inequality constraints [5]. The

standard form of every linear program is [34]

min cTx

s.t Ax = b

x ≥ 0

where c ∈ Rn, b ∈ Rm, A ∈ Rm×n and x ∈ Rn is the vector of n decision variables

to be determined. According to Bertsimas [7], the linear programs version of the

multi-product remains tractable if integrality constraints are imposed on the orders.

The primal is the original linear programming problem, but for each primal there

is an associated linear programming problem which is called the dual. Every linear

program has its associated dual. The dual program for the standard linear program

described above is

max bTy

s.t ATy ≤ c

y ≥ 0

Dual programs are important in linear programming for the interpretation and

implementation of sensitivity analysis [20]. The idea of duality is useful in modeling

since it provides economic interpretations of solutions to linear programs [28]. Some-
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times management wants to know the effect on the optimal solutions if conditions

cause small changes in parameters. In certain applications, getting the solution to

the dual is faster compared to the solution to the primal [13]. Duality theorems have

shown that the solution to the dual is equal to the solution to the primal if the opti-

mal solution exists in both the primal and dual linear programs and the duality gap

is zero.

Turning away a customer because a firm has run out of stock causes damages for

any business. In this era of online sales, customers will simply go to different stores to

find what they are looking for in a situation where their regular store is out of stock.

These customers may switch to buying from the new store that always has what

the customer needs [10]. This situation is not different from offline stores. Excess

inventory is often not a problem but lost sales can be a big problem [11]. Businesses

therefore want to avoid lost sales and thus will not allow the inventory to drop below

what is required for that sale period. Extra inventory held to protect against stock-

out is known as the safety stock. Maintaining safety stock involves re-ordering within

multiple periods. The decision maker observes the state of demand and based on

that, chooses the order quantity.

In the multi-period newsvendor problem, if the demands for each period are de-

terministic or known, then the expected profit occurs where the sum of the order

quantities for each distinct period is equal to the demands of those period respec-

tively. The optimal order quantities are complicated by one period extending to

multiple periods in the sale horizon of the products since the next period ordering

quantity is determined from previous period unsold products. The system operates

17



continuously with random demands for each period. Suppose Di (i = 1, 2, ..., n) are

demands for each specific period. Then the vendor has to reorder Qj (j = 1, 2, ..., k),

to satisfy demands at all times of the sale period and minimize the total expected

cost at the end.

In the multi-period description, a sequence of decisions must be made with each

decision affecting future decisions. This form of recursion is a principal property of

Dynamic Programming. Richard Bellman invented the name Dynamic programming

at RAND Corporation [14] and showed how the principle of mathematical induction

is applied to solve multi-stage decision problems under uncertainty. Dynamic pro-

gramming divides such problems into similar overlapping sub-problems so that their

results can be re-used.

The multi-period newsvendor problems are dynamic programs because the ex-

cess inventory overlaps in subsequent sale periods. The dynamic problem of keeping

inventories above safety stock is quite involved and its complex nature has to be

decomposed into a sequence of simpler problems. Introducing certain assumptions,

the overall order quantity can be found by solving each period at a time sequentially

until all the sale periods are included. Dynamic programs tends to be immensely

difficult to solve in general and are often NP [45]. This motivates us to introduce a

generalization of newsvendor problem that does not require dynamic programs but

still incorporates multiple periods.

In this study, we use simulation to approximate a system or operation that evolves

over time. A simulation is developed to answer specific questions and also to see what

happens when the objects interact with each other. According to Holden [23], there
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are many options when it comes to running simulations.

A Discrete Event Simulation is used to model a real world system that can be

decomposed into a set of logically separate processes that evolve through time [4].

Aside from its elegant formulation, Discrete Event simulation is widely used compared

to other operational research techniques because of its flexibility and ability to deal

with variability and uncertainty in complex systems [9]. It basically models systems

as a network of queues with changes in activities in each state of the system at discrete

points in time.

1.3 Stochastic Demand and Connection to Supply Chains

A supply chain consists of a network of manufacturers who process raw materials

into finished products and transport them to warehouses, distribution centers and

retail outlets to be sold to customers. The supply chain involves not only the flow

of material from the supplier to the customers but also the exchange of funds and

information at different stages. Efficiency in supply chain coordination requires proper

management of goods and services across all the various stages.

Inventory management is the control of inventory levels at different locations in

the supply chain and the management of operations of products and services. For

example, consider a supply chain that has only two firms – a supplier and a retailer.

The retailer is modeled as newsvendor problem [47], and therefore supply chains with

trivial networks are considered to be newsvendor problems.

Inventory management problems are often regarded as newsvendor problems, and

correspondingly, the newsvendor problem is considered a fundamental concept in the
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study of supply chains management. In the real world, the operation of supply chains

is complex with lots of uncertainties such as demand uncertainty, cost uncertainty

and supply uncertainty. These parameters are random over time but the stochastic

demand is arguably the most critical.

Order quantities for each cycle in a supply chain are decided before demand is

observed at the end of each sale cycle. The average of past demands may not predict

the future demand of a given product. Predicting how many to order so as to minimize

cost and not allowing inventory levels to drop below safety stock levels over multiple

periods is a pivotal problem in supply chain management.

1.4 A New Extension – The Food Truck Problem

As already mentioned, our discussion to this point motivates us to introduce a

generalization of the newsvendor problem that does not require dynamic programs

but still incorporates multiple periods. Our generalization is based on the scenario

of a food truck such as those found around a university campus. This generalization

also can incorporate demand which does not have a fixed distribution.

A food truck is a licensed vehicle stationed at a temporary location from which

food is sold. In recent years, it is gaining popularity around the world. The food

truck business has its own peculiar set of problems due to laws and regulations that

differ for each city, county and state.

A generic food truck problem is when the owner of the food truck must purchase

Q units of a food product to sell from a given location in order to meet a daily demand

of Di for that week or period. Suppose a unit of the product cost c dollars and there
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is a holding cost h dollars for each item in excess demand for that day. Also, suppose

that the truck holds at most k items of the food product and there is a backorder cost

b = c + r dollars where r dollars is the cost per item of a trip to get more supplies

during the week.

The demand Di on day i is possibly dependent on the other days and on exoge-

nous factors which are not accounted for in the daily demand distributions such as

temperature, how much at the beginning of each week including backorder should be

ordered in order not to only guarantee an adequate supply each day but also minimize

the weekly cost of food product supply?

The food truck problem is not necessarily only related to the food truck business

but to all those problems that share the characteristics of how a food trucks operates.

A special case of this kind of problem is where a sandwich shop located on a college

campus site orders sandwiches at a cost of c dollars each and sells them for p dollars

each. The shop is likely to sell more on days when there are many classes – and

thus many students on campus – as compared to days with fewer classes. How many

should the shop owner order for the week so that it won’t stockout and still minimize

total cost? Demand distribution in this case depends on several variables apart from

the number of classes on each day. At some universities, most college students go

home on Fridays for the weekend and return either on a Sunday or Monday, thereby

demand distribution may be dependent on a particular day.

Another special case of the food truck problem is the ice cream vendor. Suppose

a vendor orders ice cream at cost c dollars per unit and sells it at p dollars per unit.

Suppose also that the vendor is located at one of the dormitories of a state university
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or at an office complex. On a hot day, the vendor is likely to sell more and on a cold

day, the vendor is likely to sell less. Thus the question is as follows: If demand is

uncertain and known to vary with temperature throughout the day, then how many

should the ice cream vendor order so that he/she meets customers demands at all

times and still minimizes cost? The ice cream vendor cannot predict order quantity

independent of a weather forecast if the demand distribution is dependent on the

temperature.

The food truck problem and its special cases described above are difficult to solve

and analytically intractable. The presence of exogenous variables further complicates

them. Formulating a model to determine how many the vendor should order before

the beginning of the multiple period, when to reorder and how many to reorder at any

time of the day is not easy to develop. Our goal is to identify special cases which can

be solved via well-established stochastic linear programming methods. We develop a

simulation to answer specific questions such as what conditions or constraints should

be included so that the food truck problems become solvable in a multi-period case.

The Simpy package written in Python [31] is used to simulate the food truck

problem and the ice-cream problem as a discrete-event simulation. The newsvendor

model and the simulation results can be used as decision tools for the vendors to pre-

dict optimal order quantity for the week while factoring in the presence of exogenous

variables.
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2 STOCHASTIC LINEAR PROGRAMMING

We first introduce the concepts of probability and randomness in order to under-

stand stochastic linear programming.

2.1 Probability and Randomness

Probability allows us to quantify the variability in the outcome of an experiment

whose exact outcome cannot be predicted with certainty [25]. The theory of prob-

ability helps to construct mathematical models for random outcomes and to make

inference. To understand our methods used to solve the food truck problem, we first

introduce definitions from probability theory.

Definition 2.0 Let S denote a sample space and A be the set of events. If P is a

real-valued function defined on A, then P is a probability measure if it satisfies

1. P (A) ≥ 0

2. P (S) = 1

3. If Ai is a sequence of events in A and Am ∩ An = φ for all m 6= n, then

P

(
∞⋃
i=1

Ai

)
=
∞∑
i=1

P (Ai)

Definition 2.1 A random variable X is a discrete random variable if its space is

either finite or countable.

A probability function tells us how the probability is distributed over the set of events

in A [22].
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Definition 2.2 The probability mass function (pmf) of a discrete random variable X

is

pX(x) = Pr(X = x), for x ∈ X

For any value x, the probability mass function of a discrete random variable X

satisfies [22],

1. 0 ≤ Pr(x) ≤ 1

2.
∑
x

Pr(x) = 1

Definition 2.3 A random variable X is said to be a continuous random variable if

its cumulative distribution function FX(x) is a continuous function for all x ∈ R.

Definition 2.4 The cumulative distribution function for a random variable X is

denoted as F (x) and its defined as

F (x) = Pr(X ≤ x)

The probability that X takes on the value less than or equal x is denoted FX(x) and

it is called the cumulative probability distribution of X. The derivative of F (x) – if

it exists – is the probability fX density function of X. It satisfies the following

1. fX(x) ≥ 0

2.
∫∞
−∞ fX(x)dx = 1

3. P (a ≤ X ≤ b) =
∫ b
a
fX(x)dx
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The cumulative distribution for a discrete random variable X with probability func-

tion Pr(x) is of the form

F (x) = Pr(X ≤ x) =
x∑

j=−∞

Pr(xj)

A continuous random variable X with probability density function f(x) is of the form

F (x) = Pr(X ≤ x) =

∫ x

−∞
f(t)dt

It follows from the fundamental Theorem of Calculus that if F (x) is the cumulative

density of a continuous random variable of X, then

d

dx
FX(x) = fX(x)

whenever the derivative exists [25, 29].

The cumulative distribution function FX(x) is non-decreasing, which means that

for all a and b, if a < b, then F (a) ≤ F (b) [22]. The probability that a random

variable takes on a value from a to b is

Pr(a ≤ X ≤ b) =

∫ b

a

f(t)dt = FX(b)− FX(a)

Definition 2.5 The expected value of a random variable X is the mean or average of

the probability distribution and its define as. If X is a discrete random variable with

probability function Pr(x), then

E(X) =
∑
x

xPr(x)

provided E(| X |) <∞.

If X is a continuous random variable with probability density function f(x), then

E(X) =

∫ ∞
−∞

xf(x)dx
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provided
∫∞
−∞ | x | f(x) <∞.

According to Larsen [29], E(X) is said to exist if the the integral in Definition 2.5

absolutely converges.

Theorem 2.1 The expected value of a function g of a discrete random variable X

with probability distribution Pr(x) for any real valued function g(x) is

E[g(X)] =
∑
x

g(x) Pr(x)

provided
∑
x

| g(x) | Pr(x) <∞.

In the case of continuous random variable X with probability density function f(x),

E[g(X)] =

∫ ∞
−∞

g(x)f(x)dx

provided
∫∞
−∞ | g(x) | f(x)dx <∞

Definition 2.6 A discrete random variable X is said to have a Poisson distribution

if

Pr(x) =
λx

x!
e−λ , x = 0, 1, 2, ...

where λ > 0 is the mean number events in an interval of time, ∆t.

The Poisson distribution provides a good model of random events that occur infre-

quently in a fixed interval of time, space or any other dimension [42].

Definition 2.7 A random variable X is said to have a exponential distribution if

f(x) =
1

θ
e

−x
θ , 0 < x <∞

where θ > 0 is the scale parameter.

The time interval between consecutive occurring events is an important random vari-

able in some situations [29]. The waiting time from the occurrence of any one event
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until the occurrence of the next event have an exponential distribution occurring ac-

cording to a Poisson distribution [37]. If λ is the mean number of customers arriving

during a time interval ∆t, and θ is the mean waiting time for the next customer to

arrive, then θ = ∆t
λ

. The exponential distribution can also stated as

f(x) = β e−βx , 0 < x <∞

where β = 1
θ
.

2.1.1 Linear Programming Theorems

Theorem 2.2 Strong Duality : If x and yT are feasible for the primal and dual

problems respectively, then

yT b = cTx

If either the primal or the dual has a finite optimal solution, then so does the other

and the corresponding objective function values are equal.

Theorem 2.3 Complementary slackness: Let x and yT be feasible for the primal and

its dual respectively of the standard program and let ε be the slack variable of the dual.

Then x and yT are optimal if and only if for each j = 1, ..., n, the following hold:

1. If xj > 0, then εj = 0

2. If εj > 0, then xj = 0

Complementary slackness theorem is useful because it helps to interpret dual problems

and dual variables.
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2.2 Theoretical Solutions

2.2.1 Discrete Demand

Suppose Qi are the order quantities and Di are the demands for each day. Suppose

also that the demand Di for each day follows a discrete probability function such as

the Poisson distribution. The cost of each item for a particular day of the week is

C(Qi, Di) = ciQi +


bi(Di −Qi) if Di > Qi

hi(Qi −Di) if Di < Qi

Since Qi takes on integer values, the discrete demand Di is defined in terms of the

probability mass function (pmf). The expected cost on the ith day is

E[C(Qi, Di)] =
∞∑

Di=0

C(Qi, Di) Pr(Di)

which explicitly is given by

E[C(Qi, Di)] =
∞∑

Di=0

ciQi +


bi(Di −Qi) if Di > Qi

hi(Qi −Di) if Di < Qi

Pr(Di)

This in turn simplifies to

E[C(Qi, Di)] = ciQi +

Qi−1∑
Di=0

hi(Qi −Di)
+ Pr(Di) +

∞∑
Di=Qi

bi(Di −Qi)
+ Pr(Di)

The expected holding cost is

ciQi +

Qi−1∑
Di=0

hi(Qi −Di)
+ Pr(Di)

and the expected back-order cost is

ciQi +
∞∑

Di=Qi

bi(Di −Qi)
+ Pr(Di)
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Similar to the first order condition for profit maximization for quantity (Q∗) in Eco-

nomics where marginal revenue is equal to marginal cost, the optimal order quantity

(Q∗i ) for the item on ith day can be determined at the point where the expected cost

for Q and Q+ 1 are equal.

For Qi, recall that the expected cost is

E[C(Qi, Di)] = ciQi +

Qi−1∑
Di=0

hi(Qi −Di)
+ Pr(Di) +

∞∑
Di=Qi

bi(Di −Qi)
+ Pr(Di) (1)

For each additional quantity Qi + 1, the cost of each item on ith day is

C(Qi + 1, Di) = ci(Qi + 1) +


bi(Di − (Qi + 1)) if Di > Qi + 1

hi((Qi + 1)−Di) if Di < Qi + 1

The expected cost for each additional quantity Qi + 1 in the discrete case is

E[C(Qi + 1, Di)] =
∞∑
Di=0

ci(Qi + 1) +


bi(Di −Qi − 1)+

hi(Qi + 1−Di)
+

Pr(Di)

which simplifies to

E[C(Qi+1, Di)] = ci(Qi+1)+

Qi∑
Di=0

hi(Qi+1−Di)
+ Pr(Di)+

∞∑
Di=Qi+1

bi(Di−Qi)
+ Pr(Di)

(2)

For optimal order Q∗i ,

E[C(Qi, Di)] = E[C(Qi + 1, Di)]

which implies equation (1) = equation (2). This simplifies to

ci + hi

Qi∑
Di=0

Pr(Di)− bi
∞∑

Di=Qi+1

Pr(Di) = 0 (3)
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By definition 2.4, the cumulative distribution function F (Qi) satisfies

1− F (Qi) =
∞∑

Di=Qi+1

Pr(Di)

which combined with Equation(3) yields

ci + hiF (Qi)− bi(1− F (Qi)) = 0

ci + hiF (Qi)− bi + biF (Qi) = 0

(bi + hi)F (Qi) = bi − ci

which results in our desired result of

F (Q∗i ) =
bi − ci
bi + hi

(4)

2.2.2 Continuous Demand

Suppose Qi takes on continuous values and the demand Di is also continuous with

pdf of f . The expectation of continuous distribution by Theorem 2.1 is

E[C(Qi, Di)] =

∫ ∞
−∞

C(Qi, Di)f(D)dD

Since Qi ≥ 0

E[C(Qi, Di)] =

∫ ∞
0

ciQi +


bi(Di −Qi) if Di > Qi

hi(Qi −Di) if Di < Qi

 f(D)dD

E[C(Qi, Di)] = ciQi +

[∫ Qi

0

hi(Qi −Di)
+f(D)dD +

∫ ∞
Qi

bi(Di −Qi)
+f(D)dD

]
The expected holding cost is

ciQi +

∫ Qi

Di=0

hi(Qi −Di)
+f(D)dD
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and the expected backorder cost is

ciQi +

∫ ∞
Di=Qi

bi(Di −Qi)
+f(D)dD)

We can write the expected cost as

E[C(Qi, Di)] = ciQi + hiQi

∫ Qi

Di=0

f(D)dD − hi
∫ Qi

Di=0

Dif(D)dD

+ bi

∫ ∞
Di=Qi

Dif(D)dD − biQi

∫ ∞
Di=Qi

f(D)dD

The distribution function satisfies

1− F (Qi) =

∫ ∞
Qi

f(D)dD

We define the mean demand as

µi =

∫ ∞
0

Dif(D)dD

and let define the partial expectation of demand to be

H(Qi) =

∫ Qi

0

Dif(D)dD

It follows that

E[C(Qi, Di)] = ciQi + [hiQiF (Qi)− hiH(Qi) + bi(µi −H(Qi)− biQi(1− F (Qi))]

E[C(Qi, Di)] = ciQi + [hiQiF (Qi)− hiH(Qi) + biµi − biH(Qi)− biQi + biQiF (Qi)]

E[C(Qi, Di)] = ciQi + hiQiF (Qi) + biQiF (Qi)− hiH(Qi)− biH(Qi) + biµi − biQi

E[C(Qi, Di)] = ciQi + (hi + bi)QiF (Qi)− (hi + bi)H(Qi) + bi(µi −Qi)

E[C(Qi, Di)] = ciQi + (hi + bi)(QiF (Qi)−H(Qi)) + bi(µi −Qi)
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Note that F ′(Qi) = f(Qi) and by Leibniz rule in Calculus H ′(Qi) = Qif(Qi). The

derivative of the expected cost with respect to Qi is

E ′[C(Qi, Di)] = ci + (hi + bi)(QiF
′(Qi) + F (Qi)−H ′(Qi)− bi

which we differentiate and set to 0 to solve for Q∗i . Solving and simplifying leads to

ci + (hi + bi)(Q
∗
i f(Q∗i ) + F (Q∗i )−Q∗i f(Q∗i ))− bi = 0

ci + (bi + hi)(F (Q∗i ))− bi = 0

(bi + hi)(F (Q∗i )) = bi − ci

which again produces our desired results of

F (Q∗i ) =
bi − ci
bi + hi

(5)

The right hand side of equation(4) and equation(5) is called the critical fractile and

is the probability that the order quantity satisfies the demand in the likelihood of

overage or underage. If the demand distribution is known, the optimal order quantity

is

Q∗i = F−1

(
bi − ci
bi + hi

)
This means that, order a quantity of Q∗ for the ith day to minimize the expected cost.

2.3 Approach 1 to Stochastic Linear Programs

A stochastic program is a class of optimization problems where either some or all

the parameters of the problem are random at the time a decision is made [39]. In the

two-stage stochastic programming model, a decision is made at the first stage before
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the realization of a random event. A recourse action is taken after the realization

at the second stage to correct the action taken in the first stage. The two-stage

stochastic linear program in a standard form is [38]

Min cTx+ Eξ[Q(x, ξ)]

s.t Ax = b

x ≥ 0

where Q(x, ξ) is the second-stage’s optimal value

Min qTy

s.t T (ξ)x+W (ξ)y = h(ξ)

y ≥ 0

The expectation of Q(x, ξ) in the objective function of the first stage is taken with

respect to the probability distribution of the random vector ξ = (h, q,W, T ). If the

random vector ξ has finitely many realizations, then the possible outcomes that are

observed are called scenarios [38]. If we have K scenarios with specific probability

distributions p1, p2, ..., pK then the expectation of Q(x, ξ) in the first stage is

E[Q(x, ξ)] =
K∑
k=1

Q(x, ξ)pk

If we have a random array ξk = (hk, qk, Tk,Wk) each with a probability pk, then the

two-stage stochastic linear program becomes

Min cTx+
K∑
k=1

(qk)
Tykpk
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s.t Ax = b

Tkx+Wkyk = hk

x ≥ 0, yk ≥ 0, k = 1, 2, ..., K

which can be solved via standard techniques and algorithms in linear programming.

2.4 Approach 2 to Stochastic Linear Programs

Stochastic programs are convex but often do not have differentiability [8]. Con-

sequently, the objective function can be difficult to calculate or even write in closed

form. The Sample Average Approximation (SAA) is an approach that uses Monte

Carlo simulation to solve stochastic problems. According to [8], Monte Carlo sim-

ulation seems to be a natural choice for use in stochastic programs because of its

applicability to higher dimensional problems.

A Sample Average Approximation begins with a random sample s1, s2, ..., sN from

the possible realizations of the random vector ξ. Each sample is independently and

identically distributed, and thus has an equal probability of occurrence compared

to the other samples. The expectation function E[Q(x, ξ)] is approximated by the

sample average

E[Q(x, ξ)] =
1

N

N∑
k=1

Q(x, sk)

In terms of the Monte Carlo estimate, the two-stage stochastic problem becomes a

deterministic equivalent in a form

Min cTx+
1

N

N∑
k=1

Q(x, sk)

s.t Ax = b
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Tkx+Wkyk = hk

x ≥ 0, yk ≥ 0, k = 1, 2, ..., K

The SAA guarantees a near optimal solution of the true problem as the sample size

increases which follows from the theorem of strong Law of Large Numbers [27].

2.5 Approach 3 to Stochastic Linear Programs

Machine Learning methods are able to process large data sets and provide good

estimates to many forecasting problems in the real world [24]. Companies in this era

monitor demands of their products at the various sales point and the outcomes are

used in decision making. Suppose demands data D1, D2, ..., Dn are available and they

are dependent on exogenous variables or features Z1, Z2, ..., Zn respectively. Such

features may include temperature, location, day of the week, time that predicts the

demands and so on.

It follows from the Sample Average Approximation that, a good estimate of the

vendor’s expected cost is minimizing the average of the samples of the cost.

min
Qi

1

n

n∑
i=1

ciQi + Coi [Qi −Di]
+ + Cui [Di −Qi]

+

Suppose that the order quantity depends on the features and some parameters. Let

Qi = ZT
i β where ZT

i is the transpose of Zi and β represents a vector of parameters.

The objective function of the vendor after substitution of Qi is

min
β

1

n

n∑
i=1

ciZ
T
i β + Coi [Z

T
i β −Di]

+ + Cui [Di − ZT
i β]+

A regularization term is added to the cost function to avoid over-fitting, typically the

Lk norm of the vector parameter. The choice of Lk norm is based on a belief of the
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number of features involve in predicting the demand [3]. We add Lk regularization

and the model becomes

min
β

1

n

n∑
i=1

ciZ
T
i β + Coi [Z

T
i β −Di]

+ + Cui [Di − ZT
i β]+ + λ || β ||k

where λ ≥ 0 is called a tuning or regularization parameter.

If Si = ZT
i β−Di and ti = Di−ZT

i β, then machine learning model is transformed

into a linear programming problem

min
β

1

n

n∑
i=1

ciZ
T
i β + CoiSi + Cuiti + λ || β ||k

s.t Si + ZT
i β ≥ Di

ZT
i β − ti ≤ Di

Si ≥ 0, ti ≥ 0

The solution to the Linear Program is

β∗ = argmin
1

n

n∑
i=1

ciZ
T
i β + CoiSi + Cuiti + λ || β ||k

The optimal order quantity given features ZT
i is

Q∗i = ZT
i β
∗

The decision rule depends upon the most recent data available, therefore Q∗i = ZT
newβ

∗
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3 THE FOOD TRUCK PROBLEM

In this thesis, the food truck problem is an extension of the newsvendor problem,

one that we model with Discrete event simulation.

3.1 Derivation and Explanation of all the Deterministic Variations

Our goal is to estimate the order quantities that minimizes the cost in the food

truck problem for multiple periods. The owner of a food truck must purchase Qij

units each of M food products to sell from a given location on campus in order to meet

a daily demand of Dij units of the jth product for that week, where i = 1, 2, 3, 4, 5

corresponds to Monday through Friday. Suppose a unit of the jth food product costs

cj dollars and suppose that there is a holding cost hj for each item in excess of the

demand for that day. Also, suppose that the truck holds at most K items of the food

product and that there is a backorder cost for the jth product, bj = cj + rj where

rj is the cost per item of a trip to get more supplies of the jth product during the

week. If the demand Dij on day i is possibly dependent on the other days and on

exogenous factors not accounted for in the daily distributions, how much should be

ordered each week (at the beginning and including the backorder) in order to not

only guarantee an adequate supply each day, but also to minimize the weekly cost of

the food products supply?

3.2 Reduction to Classical Newsvendor

The food truck problem described above has characteristics of the newsvendor

problem. Similar to the newsvendor, the food vendor has to make initial order decision
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once before the week starts. The demand is random since he does not know exact

number of people who may purchase the food products. The food vendor incurs a

cost to preserve the food product if he orders too much. The unsold food products

for a particular day are carried over to next days. The food vendor also incurs a

cost if he orders too few because of missed sales. If the food truck is so large that

capacity is not an issue, then the food vendor may order the food products once

per week on a fixed day before sale begins. Also if the demands for each day are

independent and identically distributed, then the food truck problem reduces to the

classical newsvendor problem with multiple periods.

3.2.1 Reduction to Classical Newsvendor – Simulation

We first demonstrate that the Food Truck problem can be reduced to a classical

newsvendor. Consider a single food product which has the following parameters fixed

for the week:

• c = 3 for cost of each food item.

• p = 1 for profit for each food item.

• h = 0.5 for holding cost per unit.

• b = 4 for backorder cost per unit.

• r = 1 for return trip cost per item.
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If demands for each day of the week are independently and identically distributed,

then the total demand for the week is

DT = D1 +D2 +D3 +D4 +D5

If the optimal order to meet each independent day’s demand is Q∗1, Q
∗
2, ..., Q

∗
5 respec-

tively, then the optimal order quantity for the week is

Q∗T = Q∗1 +Q∗2 +Q∗3 +Q∗4 +Q∗5

The critical fractal is F (Q∗) = 0.2222.

We assume that customer arrival is a Poisson process and the inter-arrival rate

to purchase the food product follows an exponential distribution with θ = 1. This

implies that the time between customer arrivals has a mean of 1 minute. If the food

truck operates for 5 hours daily, then the demand follows a Poisson distribution with

mean rate λ = 300 per a day. Figure 2 shows a randomly generated data of means of

demands for 100 different samples.
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Figure 2: Means of demands across this range of demands

We constructed the cumulative distribution of the corresponding Poisson distribu-

tion for a range of 200 to 400, and then we searched for the critical fractile within this

range as described in Section 2. A theoretical optimal order for each day of Q∗i = 287

minimizes the expected total cost.

Simpy is used to model the food truck problem and the code is listed in Appendix

A.1. The model parameters are defined in a Python class and assigned attributes.

The main components of the food truck are order quantity, demand and cost. Cus-

tomer inter-arrival times are modeled by a Discrete Event Simulation. Similar to the

theoretical solution, we assume that the arrival of customers follow a Poisson process

and use the exponential distribution to generate customer inter-arrival time with a

mean θ = 1. The food truck operates for 5 hours, so the simulation time for the day

is 300. SAA approach is used to compute the expected cost for each corresponding
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order quantity from a sample size of 100. Figure 3 is a plot of the expected cost and

the order quantity.

Figure 3: Order quantity and expected cost

The results for the simulation show that the optimal order quantity for the day

yields a minimum cost when Q∗ = 287. This is similar to the results we had in the

theoretical solution.

Different parameters of cost values yields different critical fractiles. The holding

cost per unit, back order cost per unit and the cost per unit of the product are varied

over a range of values. The theoretical procedure is repeated for these different cost

parameters and the results of the order quantity are compared to that of the simula-

tion when these cost values held constant for theoretical approach and simulation.
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Table 1: Samples From Parameter Sweeps

c, h, r Critical Fractile Theoretical Q∗ Simulation Q∗

c=4, h=1, r=2 0.2857 290 290
c=4, h=0.5, r=1 0.1818 284 285
c=2, h=1, r=2 0.4000 295 295
c=3, h=2, r=2 0.2857 290 289

c=1, h=2, r=2.5 0.4545 298 298

From Table 1, we observe that the simulation result is either the same or close to

the theoretical solution over a range of parameters in the newsvendor problem and

therefore assert that the food truck problem can be reduced to a classical newsvendor

problem.

3.3 Simulation of the Full Food Truck Problem

The Food truck problem deviates from a typical newsvendor problem when we

consider certain variations. Demand of the food product depends on many features

which are not identically distributed, especially in the case of the food truck problem.

The demand distribution may be dependent on the number of classes on each day.

Intuitively, it is expected that the more classes on each day, the higher the demand.

Also, the demand may be influenced by the temperature of the day. If the temperature

is cold, many customers may prefer to stay indoors and if the temperature is high,

many customers may want to come outside. The location of the food truck is a

vital feature to consider since it affects the demand. The day of the week also tends

to affect the demand. These variations do not reduce the food truck problem to a

newsvendor problem.
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The code listed in Appendix A.2 is for a multi-period simulation of a modified

food truck problem where the vendor reorders only once in midweek. Two cases of the

simulation are conducted. We simulated a case for the modified food truck problem

when demand is independent and identically distributed (newsvendor case) and when

demand is dependent on time (not newsvendor case). A Simpy environment is created

for each day and the demands and missed sales are monitored. The optimal order

quantity for the two cases are shown in Table 2.

Table 2: Demand Dependent on Time and Independent Demand

c, h, r Critical Fractile Reorder Demand–time Q∗ Demand–No time Q∗

c=3, h=0, r=1 0.2500 200 1450 1480

c=4, h=1, r=1 0.1667 200 1420 1423

c=3, h=0,5, r=2 0.3636 500 1422 1450

c=4, h=1, r=2 0.2857 100 1420 1426

In Table 2, the simulated optimal order of the week if demand is time dependent

(not newsvendor problem) and the optimal order for the week if demand is indepen-

dent and identically distributed (newsvendor problem) for different parameters varies

when the mid-week order is held fixed for the two cases. The variability in the optimal

value indicates that the two cases are not the same. The food truck problem does not

reduce to the classical newsvendor problem in the presence of an exogenous variable

– time. The simulation results show that in the presence of exogenous variables such

as time, location, temperature and so on, the food truck problem does not reduce to

the newsvendor problem.
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3.4 Theoretically Solvable Variation of the Food Truck Problem

The Full Food Truck problem is intractable and combinatorially complex. Note

that the objective is to find both how much to order and when to reorder to minimize

the expected cost. If we fix the reorder time to a single day (Wednesday) midweek,

then it is possible to reduce the Food truck problem to a theoretically solvable problem

which does not reduce to a classical newsvendor.

Suppose the Food truck vendor orders quantity Q0j for the jth product before the

week starts and reorders quantity Q1j on mid-week. The realization of demands on

each day of the week are D1j, D2j, D3j, D4j, D5j. The goal of the vendor is how much

of the jth food product should be ordered before the week starts and how much of

product j should be ordered in midweek to minimize the expected cost for the week.

Let Coj = cj + hj be overage cost and Cuj = cj + bj be the underage cost for the jth

product. The vendor can run-out on any day or carry-over items to next days, but

the vendor only reorders on midweek.

If the vendor does not run-out on Monday, then Q0j −D1j of the jth items will be

left and carry over to Tuesday. The vendor may also run-out on Monday and there

is nothing to sell on Tuesday. Thus, cost on Monday is

cjQ0j + Coj[Q0j −D1j]
+ + Cuj[D1j −Q0j]

+

Let S1j = Q0j−D1j denote the jth food item left to sell on Tuesday. If there is nothing

to sell on Tuesday, then the vendor incurs a cost CujD2j. Thus, cost on Tuesday is

CujD2j + Coj[S1j −D2j]
+ + Cuj[D2j − S1j]

+

Let S2 = S1 −D2 denote the food item left to sell on Wednesday. If there is nothing
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left to sell on Wednesday, the vendor reorders and the cost is CujD3j + rjQ1j. The

vendor still reorders irrespective of whether there is overage or underage. Thus, cost

on Wednesday is

CujD3j + rjQ1j + Coj[S2j −D3j]
+ + rjQ1j + Cuj[D3j − S2j]

+ + rjQ1j

If the vendor sells all old stock of the jth food items and is left with the new stock

reordered, then the cost on Thursday is Coj[Q1j − D4j]
+ + Cuj[D4j − Q1j]

+. There

may be old stock of jth item which carry over in addition to the new reorder quantity.

Thus (S2j − D3j) + Q1j is the quantity to carry over into Thursday. The cost on

Thursday is

Coj[Q1j−D4j]
+ +Cuj[D4j−Q1j]

+ +Coj[(S3j +Q1j)−D4j]
+ +Cuj[D4j− (S3j +Q1j)]

+

If the vendor has Q1j to sell on Thursday and couldn’t sell all, then Q1j − D4j will

be left to sell on Friday. Let S4j = Q1j − D4j. The cost of this scenario on Friday

is Coj[S4j − D5j]
+ + Cuj[D5j − S4j]

+. If also the vendor runs-out of the jth item on

Thursday, then there is nothing to sell for that item on Friday and the cost is CujD5j.

If S5j = (S3j + Q1j) − D4j is left on Thursday and carries over to Friday, then the

cost on Friday is

CujD5j + +Coj[S4j −D5j]
+ + Cuj[D5j − S4j]

+ + Coj[S5j −D5j]
+ + Cuj[D5j − S5j]

+
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We sum the cost on each day to get the total cost for the week for the jth item

cjQ0j + Coj[Q0j −D1j]
+ + Cuj[D1j −Q0j]

+ + CujD2j + Coj[S1j −D2j]
+ + Cuj[D2j − S1j]

+

+CujD3j + rQ1j + Coj[S2j −D3j]
+ + rQ1j + Cuj[D3j − S2j]

+ + rjQ1j + Coj[Q1j −D4j]
+

+Cuj[D4j −Q1j]
+ + Coj[(S3j +Q1j)−D4j]

+ + Cuj[D4j − (S3j +Q1j)]
+ + CujD5j+

Coj[S4j −D5j]
+ + Cuj[D5j − S4j]

+ + Coj[S5j −D5j]
+ + Cuj[D5j − S5j]

+

To simplify the nonlinear expressions, we introduce Sij and tij variables and define

corresponding constraints. The total cost function is

c1Q0j + CojS1j + Cujt1j + CojS2j + Cujt2j + CojS3j + Cujt3j + CojS4j + Cujt4j

+CojS5j + Cujt5j + CojS6j + Cujt6j + CojS7j + Cujt7j + 3rjQ1j + CujD2j + CujD3j + CujD5j

where S1j = Q0j −D1j, S2j = S1j −D2j, S3j = S2j −D3j, S4j = Q1j −D4j,

S5j = (S3j + Q1j) − D4j, S6j = S4j − D5j, S7j = S5j − D5j, t1j = D1j − Q0j,

t2j = D2j−S1j, t3j = D3j−S2j, t4j = D4j−Q1j, t5j = D4j−(S3j+Q1j), t6j = D5j−S4j,

t7j = D5j − S5j.

The terms CujD2j, CujD3j, CujD5j are constants. If K is a constant and f(x) is a

function, then

argmin {K + f(x)} = argmin {f(x)}

Consequently, minimizing the total sum of the costs of M products for the various
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days is formulated as a linear program of the form

min
M∑
j=1

cjQ0j + 3rjQ1j + Coj1
TSj + Cuj1

Ttj

s.t Q0j − S1j ≤ D1j

Q1j − S4j ≤ D4j

Q1j − S3j − S6j ≤ D4j

Sij − Si+1,j ≤ Di+1,j

Q0j + t1j ≥ D1j

Q1j + S3j + t6j ≥ D4j

Sij + ti+1,j ≥ Di,j

Sij ≥ 0, tij ≥ 0, i = 1, ..., 7 and j = 1, ...,M

This is the formulation of the food truck problem for M multi-products with a mid-

week order. We are going to focus on M = 1 product and obtain the dual. The dual
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program of the Food truck linear program in a vector form is

max DT (z− v)

s.t − v1 + z6 ≤ c

−v6 − v4 + z7 + z3 ≤ 3r

v − vi+1 + z ≤ Co

v5 ≥ Co

0 ≤ z ≤ Cu

vi ≥ 0 i = 1, ..., 7

If we let u = z− v, then the dual program is equivalent to

max DTu

s.t − v1 + v6 + u6 ≤ c

v3 − v4 − v6 + v7 + u3 + u7 ≤ 3r

2v − vi+1 + u ≤ Co

v5 ≥ Co

0 ≤ u + v ≤ Cu

vi ≥ 0, ui ≥ 0 i = 1, ..., 7
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3.5 Interpretation and Implementation of the Dual Program

The dual formulated has objective to maximize the cost function with determinis-

tic demand and a vector u while the primal’s objective is the minimization of the cost

function. These two objectives are equivalent base on the theorem of strong duality.

There is a relationship between the slackness in a primal constraints and the slackness

of the associated dual variable according to complementary slackness. To maximize

the objective function in the dual, the variable u must be made large as possible.

Some of vi = 0 for u to be large, This implies that, some of the constraints in the

primal are not binding. Variations of these constraints would not change the optimal

solution.

Demand is random and therefore from the stochastic version of the dual is

max DTu+ ED[Q(u,Di)]

s.t − v1 + v6 + u6 ≤ c

v3 − v4 − v6 + v7 + u3 + u7 ≤ 3r

2v − vi+1 + u ≤ Co

v5 ≥ Co

0 ≤ u + v ≤ Cu

vi ≥ 0, ui ≥ i = 1, ..., 7
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where ED[Q(u,Di)] is the optimal value of the second stage

max qTy

s.t T (Di)u+W (Di)y = h(Di)

y ≥ 0

A decision is made at the first stage in the stochastic version of the dual on the initial

order. A recourse action is taken at the second stage. The demand is random and

has finite realization. The optimal value is approximated using SAA and thus

E[Q(u,D)] =
1

N

N∑
k=1

Q(u,D)

The result gives the sample average approximation of the demand. This implies that

to maximize the expected profit, we should order a quantity equal to the approximated

demand. We then simulate the demand in the stochastic descriptions of the dual in

the food truck problem.

The modification of the Food truck problem does not reduce to the newsvendor

problem but can be solved. We have formulated the special case of food truck problem

as a linear program and derived its dual. The Duality Theorem and the associated

Theorem on Complementary Slackness give us reason to believe that the primal and

dual are related problems. We observe that the demands Di appear in the objective

function of the dual. The constraints are deterministic. Instead of simulating the

entire process to get the solution to the food truck problem, simulating the dual only

requires simulating the demand.

Simulating the demand and using the SAA approach, we get the estimated demand
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for the particular day and the optimal quantity orders to minimize the expected cost

is equal to the simulated estimated demands.

For the special case of the food truck problem with mid-week order, the food

truck dual is created as Python class. The code listed in Appendix A.3 have random

demands which are dependent on time generated in Simpy. An environment is created

for the simulation week. The demand for each day is simulated and the demand for

the entire week is displayed as results. From the results of the dual stochastic linear

program, the optimal order quantity of the jth product that minimizes the vendor’s

expected cost is equivalent to the simulated demand for the week.
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4 FUTURE DIRECTIONS

In future analysis, a Full Food truck problem with multi-products and multi-

period should be formulated as a stochastic linear program without any modification

to help the vendor decide on how much to order initially and how much to re-order at

any given time of the day. The model should incorporate features like temperature,

time, location etc. and be extended to supply chains. Dynamic programming and

Deep learning approaches should also be considered in a data driven case of the Food

Truck Problem.
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APPENDICES

A Discrete Event Simulation – SimPy Code

A.1 Reduction to the Classical Newsvendor Problem

The code listing simulates the solution of the food truck problem reduced to a

newsvendor problem.

#!/usr/bin/env python
# coding: utf -8

import matplotlib.pyplot as plt
import numpy as np
import collections
import simpy as sim

## Defining parameters
c = 3 # cost of food item
p = 1 # profit (excess of cost) of each item
h = 0.0 # holding cost in dollars
r = 1 # return trip cost per item
b = c + r # back order cost per unit
K = 1000 # Truck Capacity

CF = (b - c)/(b+h)

from scipy.stats import poisson

= 300
NumOfSamples = 100 #Number of samples

print(poisson.rvs( ,size = NumOfSamples))

#Histogram
list = poisson.rvs( ,size = NumOfSamples)
plt.hist(list);

P_cdf = np.array( [ poisson.cdf(k, ) for k in range
(200 ,400) ] )

ind = np.searchsorted(P_cdf , CF)

Qstar = 200 + ind # Optimal order quantity (Theoretical)

## Foodtruck
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## order quantity Q
## sell items

#@dataclass
class Foodtruck(object):

def __init__(self , environment , order_quantity = 0):
## Q is the order quantity
self.Q = order_quantity
self._Q = order_quantity
self.env = environment
self.NumberSold = 0
self.MissedSales = 0

def sell_item(self , quantity = 1):
## inventory descreases by quantity
## inventory = 0 ==> generate underage cost
while True:

if( self._Q > 0 ):
self.NumberSold += quantity
self._Q -= quantity
self.MissedSales = max( -self._Q, 0)

else:
self.MissedSales += quantity

t = self.env.now
interarrival_time = np.random.exponential (1) #

1 min between sales , on average
yield self.env.timeout(interarrival_time)

def SimDay( order_quantity , verbose=False):
## Food Truck open 5 hours per day
env = sim.Environment ()
DailySimTime = 5*60 #time in minutes

## Create an instance of Food truck
vendor = Foodtruck(env , order_quantity =

order_quantity)
env.process(vendor.sell_item ())
env.run(until = env.now + DailySimTime)
return vendor

def CostCalculation(ASimulatedDay):
Q=ASimulatedDay.Q
vendorResult= ASimulatedDay
D=vendorResult.NumberSold+vendorResult.MissedSales
Underage= (D-Q) ; Overage= (Q-D)
#print(c,b,h,Underage , Overage)
Cost = c*Q + b*max(Underage ,0) + h*max(Overage ,0)
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return (Cost)

#Order Quantity of 141
ExpectedCost = np.array( [ CostCalculation(SimDay (141,

verbose = False)) for _ in range (100) ]).mean()

ExpectedCost = []
for i in range (200 ,400):

ExpectedCost.append(np.array([ CostCalculation(SimDay(i
, verbose = False)) for _ in range (100) ]).mean())

orderquantity =(range (200 ,400))

plt.plot(orderquantity , ExpectedCost);
plt.savefig("simulate")

print(orderquantity[np.argmin(ExpectedCost)])# Optimal
order quantity (Simulation)

print(Qstar) # Optimal order quantity (Theoretical)

A.2 Full Simulation of the Food Truck Problem with Mid-week Reorder

The code listing performs a simulation of two cases of the Food truck problem. One

case is when the demands are independently and identically distributed (Newsvendor)

and the other case is when demands are dependent on time. The code generates

demands using inter-arrival times and simulates the optimal order quantity for the

two cases.

#!/usr/bin/env python
# coding: utf -8

import matplotlib.pyplot as plt
import numpy as np
import collections
import simpy as sim
import tqdm

## Defining parameters
c = 1 # cost of food item
p = 1 # profit (excess of cost) of each item
h = 2 # holding cost in dollars
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r = 2.5 # return trip cost per item
b = c + r # back order cost per unit
K = 1000 # Truck Capacity

CF = (b - c)/(b+h)# Critical Fractile

from scipy.stats import poisson

= 300
NumOfSamples = 100 ## Number of samples

print(poisson.rvs( ,size = NumOfSamples))

Qrange = range (1400 ,1600) #range of values for optimal
order

P_cdf = np.array( [ poisson.cdf(k, ) for k in Qrange ] )
ind = np.searchsorted(P_cdf , CF)

## Foodtruck
## order quantity Q
## sell items

#@dataclass
class Foodtruck(object):

def __init__(self , environment , order_quantities):
## Q is the order quantity
self.Q1 = order_quantities [0] #First order
self.Q2 = order_quantities [1]
self.Q = order_quantities [0]
self.TotalCost = 0
self.Demand = 0
self.env = environment
self.NumberSold = 0
self.MissedSales = 0

def sell_item(self , quantity = 1):
## inventory descreases by quantity
## inventory = 0 ==> generate underage cost
while True:

if( self.Q > 0 ):
self.NumberSold += quantity
self.Q -= quantity
self.MissedSales = max( -self.Q, 0)

else:
self.MissedSales += quantity

self.Demand += 1

## time dependent demand
t = self.env.now

62



Demand = 60.0 + 20*np.sin(np.pi*(t/
DailySimTime -1/2)) ## expected demand
varies with time

interarrival_time = np.random.exponential (60/
Demand) # 1 min between sales , on average

yield self.env.timeout(interarrival_time)

def calculate_cost(self):
Overage = self.Q #Stock Remaining at end of day
Underage = self.MissedSales #Unrealized Sales
DailyCost = b*Underage + h*Overage
return DailyCost

## Food Truck open 5 hours per day
DailySimTime = 5*60 #time in minutes

def SimDay(vendor , verbose=False):
vendor.env = sim.Environment ()
vendor.MissedSales = 0
vendor.NumberSold = 0
vendor.env.process(vendor.sell_item ())
vendor.env.run(until = vendor.env.now + DailySimTime)
vendor.TotalCost += vendor.calculate_cost ()
return vendor

def SimWeek( order_quantities , verbose=False):
""" First is initial order quantity , and second is the

midweek order """
## Food Truck open 5 hours per day
env = sim.Environment ()

## Create an instance of Food truck
vendor = Foodtruck(env , order_quantities =

order_quantities)
vendor.TotalCost += c*vendor.Q1
if(verbose):

print(’Day      Q    Missed   Sold ’)
PrintString = ’ %s  %7d %7d %7d’
SimDay(vendor) #Monday
if(verbose):

print(PrintString % (’M’, vendor.Q, vendor.
MissedSales , vendor.NumberSold))

SimDay(vendor) #Tuesday
if(verbose):

print(PrintString % (’T’, vendor.Q, vendor.
MissedSales , vendor.NumberSold) )

SimDay(vendor) #Wednesday
if(verbose):
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print(PrintString % (’W’, vendor.Q, vendor.
MissedSales , vendor.NumberSold) )

vendor.Q += vendor.Q2
vendor.TotalCost += c*vendor.Q2
SimDay(vendor) #Thursday
if(verbose):

print(PrintString % (’R’, vendor.Q, vendor.
MissedSales , vendor.NumberSold) )

SimDay(vendor) #Friday
if(verbose):

print(PrintString % (’F’, vendor.Q, vendor.
MissedSales , vendor.NumberSold) )

return vendor

vendor = SimWeek ([1500 ,0] , verbose = True)#.TotalCost

print(vendor.TotalCost)

ExpectedCost = np.zeros(len(Qrange))
print("         1         2         3         4         5"

)
print("12345678901234567890123456789012345678901234567890"

)
for i in Qrange:

if( (i+1) % 50 ):
print(’.’, end=’’)

else:
print(’.’)

ExpectedCost[i-Qrange [0]] += np.array([ SimWeek ([i
-150 ,150]).TotalCost for _ in range (20)]).mean()

## rolling mean
HalfWindow = 20
RolledCost = HalfWindow*ExpectedCost[HalfWindow:-

HalfWindow ].copy()
for i in range(HalfWindow):

RolledCost += ExpectedCost[i:i-2* HalfWindow]
RolledCost += ExpectedCost[HalfWindow+i:i-HalfWindow]

RolledCost /= 3* HalfWindow
plt.plot(Qrange[HalfWindow:-HalfWindow], RolledCost );

print(Qrange[HalfWindow+np.argmin(RolledCost)])
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A.3 Simulation of Demands of the Food Truck Problem with Mid-week Order

The code listing simulates the demands of the food truck problem for each day

and displays the demands for the entire week.

#!/usr/bin/env python
# coding: utf -8

import matplotlib.pyplot as plt
import numpy as np
import collections
import simpy as sim
import tqdm

## Defining parameters
c = 3 # cost of food item
p = 1 # profit (excess of cost) of each item
h = 0.0 # holding cost in dollars
r = 1 # return trip cost per item
b = c + r # back order cost per unit
K = 1000 # Truck Capacity

CF = (b - c)/(b+h) # Critical fractile

## Foodtruck
## order quantity Q
## sell items

#@dataclass
class FoodtruckDual(object):

def __init__(self , environment):
## Q is the order quantity
self.objective = 0
self.Demand = 0
self.env = environment

def Generate_demand(self , quantity = 1):
## inventory descreases by quantity
## inventory = 0 ==> generate underage cost
while True:

self.Demand += 1

## time dependent demand
t = self.env.now
Demand = 60.0 #+ 20*np.sin(np.pi*(t/

DailySimTime -1/2)) ## expected demand
varies with time
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interarrival_time = np.random.exponential (60/
Demand) # 1 min between sales , on average

yield self.env.timeout(interarrival_time)

## Food Truck open 5 hours per day
DailySimTime = 5*60 #time in minutes

def SimDay(vendor , verbose=False):
vendor.Demand = 0
vendor.env = sim.Environment ()
vendor.env.process(vendor.Generate_demand ())
vendor.env.run(until = vendor.env.now + DailySimTime)
return vendor.Demand

def SimWeek( verbose=False):
""" First is initial order quantity , and second is the

midweek order """
## Food Truck open 5 hours per day
env = sim.Environment ()
TotalDemand = 0

## Create an instance of Food truck
vendor = FoodtruckDual(env)
TotalDemand += SimDay(vendor) #Monday
TotalDemand += SimDay(vendor) #Tuesday
TotalDemand += SimDay(vendor) #Wednesday
TotalDemand += SimDay(vendor) #Thursday
TotalDemand += SimDay(vendor) #Friday
return TotalDemand

print(SimWeek ())
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