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ABSTRACT

Gravel Geology and Muskoxen Paleontology of a Late Pleistocene Fossil Site in Saltville, 

Virginia 

by 

Nickolas A. Brand 

Two distinct studies within the Saltville Valley of southwestern Virginia revealed insights into  

local Pleistocene geology and paleontology. A variety of analytical techniques were applied to 

gravel deposits within the paleontological site of SV-5/7 that revealed this unit is very poorly 

sorted, has a subangular matrix, and contains significant components of silt and sand in addition 

to rounded cobbles. These results suggest that rather than being deposited by fluvial processes as 

previously suggested, these gravels were likely the result of one or many debris flows. 

Additionally, the identity of fossil muskoxen from Saltville was reassessed using cranial and 

dental material. The results of the comparative anatomy of Bootherium and Ovibos specimens 

suggest that it may be possible to distinguish between fossil muskoxen genera using teeth, and to 

a lesser extent, cranial measurements. This analysis reaffirms that Bootherium is the only 

muskoxen definitively known from the Pleistocene of the Saltville Valley. 
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CHAPTER 1. INTRODUCTION 
 

Introduction 

Overview 
 

 This master’s thesis addresses two very different aspects of the prehistory of Saltville, 

Virginia. Hypotheses of the depositional environment in which a gravel layer at site SV-5/7 

formed are tested, and the identity of muskox fossils from the Saltville Valley is also assessed. 

The town of Saltville is located in southwestern Virginia (Fig. 1.) and is well known for its 

exceptional vertebrate fossils and historically important salt and gypsum deposits. Like the 

twofold nature of the town’s natural history notoriety, the research contained and detailed within 

this thesis tackles two Saltville questions, one paleontological and one geological.  

 This first chapter reviews Saltville geological and paleontological research and provides a 

historical context for the research questions proposed in later chapters. This introductory chapter 

discusses relevant sites and discoveries and helps familiarize the reader with localities that are 

referenced throughout the thesis. It also reviews basic information about the time period 

represented by these fossils and provides a brief background on paleontological and 

paleoecological research that has occurred in the valley. 

 The second chapter focuses on the geology of the gravel layer at site SV-5/7. Historically, 

this gravel has been hypothesized to be the remnants of an ancient river, though recent 

observations suggest this may not be the case. A multidisciplinary study of the properties of this 

gravel is presented, with the goal of determining the mode of deposition.  

 The third chapter focuses on the paleontology of fossil muskoxen from Saltville. 

Muskoxen are a relatively common part of the Saltville paleofauna but there is some uncertainty 

in their generic and specific relationships. The available fossil material afforded the opportunity 
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to address two separate muskoxen questions at the same time. This chapter will provide 

identifications for indeterminate muskox material from Saltville. The steps taken to address this 

question make it possible to then examine morphological differences between two co-occurring 

North American muskoxen genera, Bootherium and Ovibos.  

 

 
 

Figure 1. Hillshaded LIDAR map of the Saltville Valley. Inset shows location of Smyth County, 
Virginia. Yellow circles indicate active excavation sites (SV-5/7 and SV-10) 
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Saltville: A History of Salt and Fossils 
 

The geological legacy of Saltville, Virginia extends back two and a half centuries to 

when former president Thomas Jefferson reported salt-brine and fossil remains from the area 

around Saltville (Jefferson 1781). Workers expecting to access a supply of salt water in 1840 

created a deep shaft in the valley and discovered the first bed of rock salt in the eastern U.S. 

(Watson 1907). More wells quickly followed, and large-scale salt production began at Saltville. 

This Smyth County and Washington County town would go on to play a role in shaping the 

politics of the United States, as Saltville became a strategic target for the Union due to its salt 

production for the Confederacy during the Civil War (Whisonant 1996). Though the salt which 

gave the town its name would later be used to produce sodium hydroxide and sodium 

bicarbonate (Watson 1907), it also spurred an interest in the geologic history of the Saltville 

Valley.  

Excavation History 
 

Pleistocene fossils have been documented from Saltville, Virginia since at least the 18th 

century when Thomas Jefferson noted the occurrence in his book, Notes on the State of Virginia 

(1781). Saltville fossils were not professionally studied until the 20th century when Olaf August 

Peterson published the first paper on fossil remains from the valley (Peterson 1917). These 

remains were recovered from strata that were exposed when a well operated by Mathieson Alkali 

Works collapsed. The fossils from this recovery included Mammut, Megalonyx, and Cervalces, 

which hinted at the late Pleistocene age which would later be confirmed for valley fossil-bearing 

deposits (Peterson 1917; McDonald 2000; Schubert and Wallace 2009).  

Decades later, paleontologists from the Smithsonian National Museum of Natural History 
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worked with scientists from the Virginia Polytechnic Institute to describe Quaternary faunal and 

floral remains from Saltville (Ray et al. 1967). Additional work was performed by Jerry 

McDonald, who collaborated with Charles Bartlett Jr., to describe an extinct muskox (McDonald 

and Bartlett 1983), before publishing numerous papers on the geology and paleontology of the 

Saltville Valley (McDonald 1983; McDonald 1985a; McDonald 1985b). McDonald would also 

excavate a purported archeological locality, making a case for Pre-Clovis human activities within 

the valley (McDonald 2000). McDonald began a numbering system to designate excavation 

localities in the valley, and he applied SV-1 to the muskox locality and SV-2 to the locality he 

interpreted as archaeological (McDonald 2000; Schubert pers. comm. 2020). 

Excavations were continued by Ralph Eshelman from 1999 to 2003 for the Museum of 

the Middle Appalachians (MoMA) and he added SV-3 through SV-10 as excavation localities 

(Schubert pers. comm. 2020). Steven Wallace of East Tennessee State University (ETSU) 

continued excavation of SV-10 in 2003 and 2004 for MoMA. Blaine Schubert (ETSU) 

developed an agreement between MoMA, the town of Saltville, and ETSU so that excavated 

fossils would be curated in the ETSU Museum of Natural History collections (ETMNH). From 

2008 on, Blaine Schubert has been in charge of ETSU’s expeditions to Saltville to recover 

fossils, and he brought in Jim Mead and eventually Chris Widga (in 2016) to help lead 

excavations and research. SV-5, SV-7, and SV-10 (Fig. 2) have all been the subject of 

paleontological research in recent years, though significant changes were made to some of the 

localities. In particular, SV-5 and SV-7 were relocated and expanded by the ETSU crew under 

Blaine Schubert and have been combined into one locality now called SV-5/7 to differentiate it 

from the previous excavations. Table 1 summarizes the localities relevant to the thesis, as well as 

principal investigators responsible for excavation.  
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Table 1. Paleontological Localities Within the Saltville Valley. Includes Only Localities 
Discussed in the Text 
 

Locality Principal Investigators  

SV-1 McDonald / Bartlett 

SV-2 McDonald 

SV-5 Eshelman 

SV-7 Eshelman 

SV-10 Eshelman / Wallace / 
Schubert 

SV-5/7 Schubert / Mead / Widga 

 

 

Figure 2. Google Earth satellite image of the Saltville Valley. Locations of relevant fossil-
bearing localities are shown 
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Quaternary Fossils: Flora and Fauna 
 

Within the Saltville Valley, most paleontological materials are concentrated within two 

geologic units. Fossils are found both in a gravel layer that spans much of the bottom of the 

valley (W4), and also in overlying silty and sandy sediments (W3) (McDonald and Bartlett 1983; 

Holman and McDonald 1986; Schubert and Wallace 2009). Some fossils contained within the 

gravel deposit are highly abraded, though many also have areas that are virtually unworn 

(Silverstein 2017). In contrast, some fossils recovered from above the gravel are incredibly well 

preserved (e.g., mammoth from SV-10), with little to no abrasion damage (Schubert pers. comm. 

2020).  

Pleistocene taxa that have been recovered from excavations at Saltville localities include: 

Arctodus, Mammut, Mammuthus, Megalonyx, Cervalces, and Bootherium (Schubert and Wallace 

2009). Artifacts suggesting an early human presence have been reported as well (McDonald and 

Bartlett 1983: McDonald 2000). Vertebrate remains are primarily found in W3 and W4 and have 

been interpreted as representing a boreal fauna (Ray et al. 1967; McDonald and Bartlett 1983; 

Holman and McDonald 1986). A diverse herpetofauna containing salamanders, snakes, and 

turtles has been noted from units W2 and W3 (Holman and McDonald 1986).  These are all taxa 

that are present in the valley today and it is not known if they were contemporary with 

megafauna found in W3 and W4.  

Palynological analysis of sediment sampled from a fossil muskox cranium from Saltville 

by Ray et al. (1967) revealed that the paleoenvironment at the time of deposition was dominated 

by spruce and pine trees, but remained wet, and possibly flooded, year-round. Isotopic analyses 

of Saltville fossils have been performed by France et al. (2007) to examine megafaunal paleo-

diets. Specifically, this study examined nitrogen and carbon stable isotope values of Saltville 
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megafauna, wherein they determined that the tested individuals were eating mostly C3 plants, 

that tend to do well in cooler, wetter climates (France et al. 2007). Further isotopic research 

utilizing fossil ungulate material from Saltville suggests that the paleoenvironment during the 

time of deposition contained an open forest habitat, and that temperatures were not particularly 

variable throughout the year (Simpson 2019). A recent thesis by Gause (2020) examined both the 

late Pleistocene and modern ostracode faunas from sites in the Saltville Valley, and hypothesized 

that the standing water within the valley was not always highly saline.  
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CHAPTER 2. GENESIS OF THE SV-5/7 GRAVEL DEPOSITS 

 

Introduction 

Overview 
 

The concept for this thesis was introduced to the author when he attended a 

paleontological conference field trip to Saltville in 2017. The SV-5/7 site was visited during this 

trip, and the origin of the gravel unit was of primary interest to those working on the site. 

Collaborating with these researchers to understand this gravel unit became a primary goal of this 

thesis once work began. While previous researchers had interpreted these gravels as being 

deposited by an ancient river, paleontologists working at Saltville had seen no evidence for this 

at SV-5/7. Thus, this portion of the thesis was designed so that competing depositional models 

could be tested against each other to see which best matched the available data.  

 In order to provide the background knowledge necessary to understand the deposition of 

the SV-5/7 gravels, this chapter begins with a generalized discussion of the geology of the 

Saltville Valley. The Maccrady Formation, the most widespread bedrock formation across the 

bottom of the valley, is discussed, as are relevant Pleistocene sediment units which include the 

SV-5/7 gravels. After this section, a detailed research history of the gravels in the Saltville 

Valley is provided, with a section then focusing specifically on what is known of SV-5/7 and the 

gravels at that site. The introduction concludes with a description of potential depositional 

processes that are being tested in this thesis.  

 This review is followed by the methods section which covers how data were collected 

and analyzed, as well as a results section which relays the findings of those studies. A discussion 

section follows which details how the depositional models fit the results, how certain parts of the 
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study may be useful to continued research, and what limitations existed with this study. The most 

important results are presented in a short conclusion section which closes the chapter.  

 

Geology of the Saltville Valley 
 
 The town of Saltville is located in southwestern Virginia and is a part of the Valley and 

Ridge Province of the Appalachian Mountains. The Valley and Ridge is characterized by a series 

of unmetamorphosed, folded and faulted, Paleozoic rocks that consist largely of epicontinental 

sea deposits (Kulander and Dean 1986). These laterally extensive layers form long, northwest 

trending ridges separated by valleys that give the province its name. As a part of this province, 

the basic geologic structure of the 1.5-mile-wide Saltville Valley is that of lower Mississippian 

shales and carbonates that have been folded into a syncline. The southern slope of the valley 

contains the Saltville thrust-fault, which thrusts Cambrian rocks of the hanging wall over 

Mississippian footwall rocks (Cooper 1966).  

 Cooper (1966) conducted the most detailed mapping and descriptions of the geologic 

units of the Saltville Valley, although the groundwork for his study was laid by Butts (1933). The 

large Greendale syncline forms the floor of the Saltville Valley, and consists of the folded Lower 

Mississippian strata (Cooper 1966). The geologic formations known from Saltville Valley, in 

order from oldest to youngest, are the Parrot Formation, Price Formation, Maccrady Formation, 

Little Valley Formation, Hillsdale Limestone, Ste. Genevieve Limestone, and the Gasper 

Limestone, all of which are Mississippian in age (Cooper 1966). On the north facing slope of the 

southern ridge of the valley, the Saltville Thrust has pushed much older Cambrian rocks over the 

Mississippian Maccrady Formation and caused extensive brecciation (Cooper 1966). Cambrian 

rocks on the northern slope of the Saltville Valley, from youngest to oldest, are the Honaker 
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Dolomite, Nolichucky Formation, and the Knox Dolomite (Cooper 1966). Resting atop the units 

of the valley floor is a covering of unlithified late Pleistocene sediments (Peterson 1917; 

McDonald and Bartlett 1983; McDonald 2000). 

Of these rock units, the Maccrady Formation and the overlying Pleistocene sediments are 

the most relevant to the goals of this thesis. Geological and paleontological samples examined 

during the course of this study are contained within the Pleistocene deposits, which are underlain 

by the Maccrady Formation. Therefore, both the Maccrady Formation and the Pleistocene 

sediments are described in more detail in the following sections.  

 
The Maccrady Formation 

The Maccrady Formation is of particular interest to this study because it underlies 

Pleistocene sediments which have been the focus of recent geological and paleontological 

research. The Maccrady is a highly variable geologic unit and has been noted as being one of the 

most locally variable formations in the entire southern Appalachian Mountains (Cooper 1966). 

Within the Saltville Valley, this formation is particularly thick, with total bed thicknesses up to 

1700 feet (Cooper 1966). The formation can be divided into 3 general units: (1) a basal 

sandstone and siltstone member, (2) a middle dolomite member, and (3) an upper, plastic shale 

member (Cooper 1966; Nelson 1973).  

The sandstone and siltstone members are defined by the presence of red or maroon 

sandstone, siltstone, and shales. The base of the Maccrady is defined as the first maroon 

sandstone unit (Nelson 1973). The dolomite member is characterized by the presence of shaly 

dolomite that contains marine fossils (Cooper 1966) and is known to contain a small amount of 

quartz (Nelson 1973). The upper member, the plastic shale member, is characterized by red and 

green colored shales, containing gypsum and salt deposits in some areas, especially in the 
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vicinity of the town of Saltville (Cooper 1966).  

Salt and gypsum deposits are only known to occur in the overturned Maccrady beds on 

the southern limb of the Greendale Syncline (Cooper 1966). The Saltville Fault thrusts Cambrian 

rocks over the Maccrady Formation, and some research suggests that the plastic nature of the 

shales may have facilitated this movement (Cooper 1966). In the Saltville area, it is the Honaker 

Dolomite that has been thrust over the Maccrady, although northeast of the town the Rome 

Formation is encountered as a poorly preserved unit (Cooper 1966). 

At SV-5/7, the site of this study, the Maccrady Formation is represented by wet, 

disintegrating, colorful red and gray clays, which are intermixed with evaporite deposits. The 

lithology of the Maccrady at SV-5/7 has yet to be described in detail. 

 
Pleistocene Sediments 

Pleistocene and Holocene sediments overlying Paleozoic rocks in the Saltville Valley 

were first described by Peterson (1917). These sediments were identified as alluvium and 

described as an upper black soil underlain by a sticky clay with a gravel pavement base which 

frequently contained fossils (Peterson 1917). Subsequent excavations would provide better 

stratigraphic resolution for the Pleistocene sediments, as multiple fossil and potential 

archaeological localities in the valley were examined in more detail (Ray et al. 1967; McDonald 

and Bartlett 1983; Holman and McDonald 1986; McDonald 2000). The culmination of these 

studies provided a synthesis of the named stratigraphic units for the sediments. The following 

unit descriptions are largely adapted from the work of McDonald (1984b and 2000).  The units 

were given designations based on their position and depositional age so that stratigraphic units 

with a “P” prefix were deposited in the Paleozoic, units with a “W” prefix have been interpreted 

as being deposited during the Wisconsin glaciation, and units with an “H” prefix were deposited 
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during the Holocene. It is important to note that all units are not necessarily of uniform 

distribution or depth throughout the valley. The following unit descriptions are based on 

observations that took place primarily at SV-1 and SV-2 (McDonald and Bartlett 1983; 

McDonald 2000), and may not be representative of the same units at other localities. 

Unit P1 is the Maccrady Formation of Mississippian age. The lithology of the unit varies 

throughout the valley, although it usually consists of steeply dipping, weathered shales which 

have been interpreted as being scoured by Pleistocene erosional processes in some places.  

Unit W4 is a gravel deposit which was interpreted as being of fluvial origin by Peterson 

(1917) and more specifically a fluvial lag gravel by McDonald (1984b) and McDonald (2000). 

This unit is known for containing abundant Quaternary fossils throughout the valley (McDonald 

and Bartlett 1983; McDonald 1984b; McDonald 2000; Schubert and Wallace 2009). 

 Unit W3 is a heterogenous unit consisting of silts, sands, and thin gravels, which has a 

characteristically sharp boundary with the underlying gravel of unit W4 (McDonald and Barlett 

1983; McDonald 1983; McDonald 2000). Vertebrate bones are found in W3, and are common at 

the base of the unit, just above the contact with the W4 gravels. Radiocarbon dates on fossils 

recovered from units W3 and W4 indicate that they were deposited during the late Pleistocene 

(McDonald 2000). Schubert and Wallace (2009) examined potential scavenging traces on 

mammoth bones recovered from W3 in the nearby SV-10 locality, identifying Canis (perhaps C. 

dirus) and another large carnivoran (most likely Arctodus) as the likely agents of modification. 

This indicates that at least some bones contained within unit W3 were available for scavenging 

or feeding at some point before burial. The bones of a fossil muskox from SV-1 were also 

recovered from W3 and were reported to have “green” breaks (smooth-edged fractures which 

usually occur only on fresh bone), which was interpreted as being potentially indicative of 
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carnivore feeding activity (McDonald and Bartlett 1983). Additionally, the bones appeared to 

contain fossilized egg cases of a flying insect, which would indicate that they were above water 

and unburied long enough for them to be cleaned of soft tissue and the eggs to be laid 

(McDonald and Bartlett 1983). In both cases, parts of animal carcasses must have been 

accessible to local scavengers for some amount of time after death, suggesting that burial of 

organic matter was not an immediate process.  

Unit W2 is a medium gray to brown and black mud, interpreted by McDonald (2000) as 

likely being deposited in lentic, or standing water conditions during the Pleistocene. This unit has 

been reported to have a thickness of up to 120 cm in some areas (McDonald 2000), and contains 

microvertebrate and plant remains (McDonald 1984b).  

Unit W1 is a thinner, organic soil deposit ranging from 6 to 15 cm, and has been 

radiocarbon-dated to the latest Pleistocene at around 10,000 14C years before present (McDonald 

1984b; McDonald 2000). In some places the boundary with W2 is sharp, and in other places it is 

disturbed and less well-defined (McDonald 2000).  

Unit H2 is a medium gray lentic mud with darker blotches and streaks. It is differentiated 

from W1 by a sharp boundary and varies in thickness from a little over half a meter to nearly two 

meters (McDonald 2000). Almost no plant or animal remains are recovered from this unit 

(McDonald 1984b). 

Unit H1 is the most recent sedimentary deposit in the valley and is the historic surface 

(McDonald 1984b; McDonald 2000). Thickness of this unit varies from 0.1 to 1.0 m. Mechanical 

removal of over-burden and historic land-use activities have removed this unit from parts of the 

valley and it is no longer present at all paleontological localities within the valley.  
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Research History and Hypotheses of Saltville Gravel Deposition 
 

The first geologic description of Pleistocene gravels in the Saltville Valley was prepared 

by O. A. Peterson in 1917, when he visited a fossil site exposed by a salt mine well collapse. The 

gravel layer at this locality was identified as potentially Pleistocene in age based on embedded 

fossils of Mammut, Megalonyx, and Cervalces (Peterson 1917). Described as “a pavement of 

coarse gravel, pebbles and cobble-stones, some of considerable size...” (Peterson, 1917 p. 470-

471), the deposit was interpreted as having been left by a river of substantial size based on the 

similarity of the gravels to those seen in streambeds (Peterson 1917). This river was believed to 

have picked up and redeposited the fossils that had been discovered at the well site.  

Decades later the hypothesis that the Saltville Valley gravels were fluvially deposited was 

expanded upon and supported by a description of sediments from the site of a fossil muskox 

skeleton discovery (McDonald and Bartlett 1983). McDonald and Bartlett (1983) interpreted the 

gravels from this muskox locality (later named SV-1) as being from an active stream of at least 

moderate size. This interpretation was based on rounded rock clasts in the gravel, which formed 

a tightly fitting pavement. Additionally, it was noted that many of the bones that had been found 

as inclusions in the gravel layer displayed different degrees of abrasion (McDonald and Bartlett 

1983), which is consistent with Peterson’s interpretation of fluvially reworked deposits. These 

authors named this hypothesized ancient river the Saltville River, and it was proposed to have 

been a tributary of the North Fork of the Holston River (McDonald and Bartlett 1983), which 

runs through the Saltville Valley today.  

Continued work by McDonald (2000) examined the gravel layer in a locality to the west 

of the muskox locality. This was designated the SV-2 locality and was reported to contain late 

Pleistocene archaeological materials. During the study of this locality, the gravels of the valley 
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floor were given the unit designation W4 (McDonald 1984a; Holman and McDonald 1986). 

Present at SV-1, SV-2, and other localities throughout the valley, the gravels were interpreted as 

being fluvial lag gravels (McDonald and Bartlett 1983; McDonald 2000), although no 

explanation was given as to how this conclusion was reached aside from a quote in a field trip 

guide to Saltville… “... its distribution and composition suggest that it is primarily of fluvial 

origin” (McDonald 1984b, p. 17). The ancient Saltville River was hypothesized to originate in 

the southwest of the valley and flow into the North Fork of the Holston River until 13,500 years 

before present when it was pirated by McHenry Creek (McDonald and Bartlett 1983; McDonald 

2000). This piracy event was hypothesized as an explanation for the loss of the ancient Saltville 

River and subsequent deposition of colluvium at site SV-2 (McDonald 2000) because stream 

piracy is relatively common in the modern valley (McDonald and Bartlett 1983).   

While the Saltville River hypothesis is prominent in the literature, other hypotheses for 

the origin of the gravel unit in the Saltville Valley should also be considered. A study of the 

contact between the valley gravel layer and the underlying Maccrady Formation found that it was 

not always conformable and was in some cases irregular (Ray et al. 1967). Ray et al. (1967) 

suggested that the large fossils preserved just above the gravels could not have been transported 

by the same forces that moved the lithologic clasts without being broken and, therefore the 

fossils must have arrived sometime after the layers overlying the gravel had already been 

deposited. In this model, animals walked out over the “muck”, before becoming mired in the wet 

silts and clays (Ray et al. 1967). This process was also invoked to explain the gravel layer, with 

transported clasts supposedly sinking through the mud and silt to rest atop the Maccrady 

Formation. The presence of frail and thin bivalve shells within the layers immediately above the 

gravel is potentially problematic for this model, although it was assumed that this meant 
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conditions must have been “exceedingly fluid,” (Ray et al. 1967, p. 613), with no geological 

mechanism for this condition provided. 

The SV-5/7 Site 
 

Currently exposed sediments at SV-5/7 (Fig. 3) only include three of the named units 

found within the valley. The basal layer at SV-5/7 is interpreted as a red to gray shale member of 

the Paleozoic Maccrady Formation, due to the color of the rock, as well as the Maccrady 

Formation’s position as the Saltville Valley floor. The presence of evaporites observed 

intermixed with the clays also point towards this layer being the Maccrady Formation (Schubert 

pers. comm. 2020). This basal layer has been designated as unit P1, and according to McDonald 

(2000), it has been scoured by Pleistocene depositional processes in some locations.  

Above this is a gravel unit consisting of large rock clasts and fossils in a fine matrix. This 

has been designated as unit W4 and is a primary focus of this thesis. This unit was hypothesized 

to be fluvial in origin when first described (Peterson 1917), an interpretation that has been widely 

applied across the valley (McDonald and Bartlett 1983; Holman and McDonald 1986; McDonald 

2000). At SV-1, these gravels have been reported as being up to 15 cm thick, though the 

presence of this gravel unit and its thickness varies across the valley (McDonald 2000). 
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Figure 3. Aerial sitemap of SV-5/7. Locations of the five sampling locations are shown 
 

The gravel unit is overlain by finer-grained sediments also dating to the late Pleistocene. 

These have been interpreted as belonging to McDonald’s W3 unit, which consists of a mixture of 

silt and sand layers, and occasional finer grained gravel deposits (McDonald 2000), although this 

last component has not been observed by subsequent excavators (Schubert pers. comm. 2020). 

At site SV-1, the W3 layer reached a maximum thickness of 15 cm (McDonald 2000). Vertebrate 

megafauna remains are frequently found in this layer and much of the fossil material excavated 

from SV-5/7 is from the lowermost portion of layer W3 or the upper part of the W4 gravel layer. 

Recovered fossils from SV-5/7 by ETSU include but are not limited to Arctodus, Mammuthus, 

Mammut, Cervalces, Rangifer, and bivalve shells (Schubert pers. comm. 2020).  

27



While one valley-scale geological description has been published (Cooper 1966), and 

some smaller site-specific descriptions exist (Peterson 1917; McDonald and Bartlett 1983; 

McDonald 2000), no detailed sedimentological analysis of the gravel unit at SV-5/7 has been 

previously reported.  

The SV-5/7 Gravel Unit 
 

The SV-5/7 gravel unit occurs in the same stratigraphic position as fluvial gravels noted 

across the Saltville Valley at other fossil sites, in that it is a gravel layer of variable thickness 

which is overlain by finer grained sedimentary units, and directly underlain by the Maccrady 

Formation. Because of this, it is likely it is the local equivalent of the valley wide W4 unit. While 

these W4 gravel layers have been repeatedly interpreted as being of fluvial origin, this 

interpretation has not been subjected to quantitative sedimentological analyses. McDonald 

(2000) noted that some of the gravels from the SV-2 locality were imbricated, though these were 

not figured. Continued excavation of the SV-5/7 locality over many years has opened a large 

window to the surface of the gravel unit and no imbrication has been observed. This led 

researchers to question whether the fluvial origin for these deposits is viable and to consider if 

other depositional hypotheses may have better explanatory power for the SV-5/7 gravel unit. 

Since fossils from Saltville were first described, researchers have noted variable 

preservation and taphonomic histories. Some are abraded to the point of being unidentifiable, 

while others are relatively pristine (Peterson 1917). These taphonomic differences could be the 

result of a fluvial depositional environment where fossils go through cycles of deposition, 

reworking, and redeposition (Peterson 1917). Some of the fossils recovered from the gravel layer 

appear to show signs of fluvial taphonomic processes such as abrasion (Silverstein 2017). 
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Carbonate concretions commonly form around the Saltville fossils, which may insulate some 

bone areas from abrasion while exposing others (Silverstein 2017). 

 Because the gravel unit is important for understanding the age and taphonomic history of 

SV-5/7, correctly identifying its depositional origin is of the utmost importance for site 

interpretation. Given the lack of evidence for a fluvial origin, the lack of imbrication within the 

SV5/7 gravel unit, and its unsorted appearance, quantitative sedimentological analyses of the 

gravels was undertaken in order to assess the validity of the assumed fluvial depositional model. 

The results of gravel grain size distribution analyses and evaluation of clast sphericity and 

rounding serve as a framework to begin assessing the depositional processes that resulted in the 

SV-5/7 gravels. Once this basic data is acquired, it can be compared to other potential 

depositional models such as a braided river, a meandering river, and debris flow events. 

Potential Facies Models for the SV-5/7 Gravels 
  
 Within this study, three primary depositional facies models are considered as candidates 

for the deposition of the SV-5/7 gravels. These three models (braided river, meandering river, 

and debris flow) were chosen because they are well represented in the literature, and 

identification of the deposits they leave behind is relatively straightforward. While other 

depositional processes could be responsible for the gravel deposition, these facies models have 

either been previously proposed for the gravel units within the valley or seemed to fit the earliest 

data and observations of current researchers working at SV-5/7. 

 Fluvial regime is determined largely by energy (Pettijohn 1975). Generally, it is possible 

to characterize lower energy and higher energy streams of two different types. Braided rivers 

represent high energy systems, while meandering rivers tend to represent a lower energy 

environment. The braided river is a fluvial endmember facies characterized by high energy, 
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which can transport large clast sizes (Miall 1977; Collinson 1978). Within mountainous regions, 

this type of river typically occurs on steeper gradients and is often associated with alluvial fans 

and other areas where vegetation is unable to stabilize slopes against erosional forces (Pettijohn 

1975). The primary characteristics of a proximal braided river are their namesake low sinuosity 

and multiple channels, high and variable discharge levels, and a consistently coarse-grained 

bedload (Smith 1970; Miall 1977). Generally, the presence of alternating massive gravel layers, 

stratified gravels, and either laminated or crossbedded sands are considered indicators of a 

braided river environment (Miall 1977; Bryant 1983). Of particular importance are sedimentary 

structures such as crossbeds, lamination, ripple marks, and imbrication, as these ordered 

structures indicate an environment with at least occasionally consistent flow (Miall 1977; 

Lancaster et al. 2010). Recognition of alternating gravel and sand facies, created by multiple 

channels moving laterally within a valley, are also very important for identifying braided river 

deposits. During periods of high stream discharge coarser gravels are laid down as longitudinal 

bars, channel lags, or channel fills in areas where the carrying capacity is high (Miall 1977). 

Sandy sediments are abundant, and frequently infill the void spaces between large clasts in 

gravel deposits. The sandiest horizons are typically considered to represent sandbars, minor 

channel or scour hollows, and flood deposits (Pettijohn 1975; Miall 1977). Silt and clay horizons 

are rare within braided river deposits and represent only a small portion of total sediment volume 

(Pettijohn 1975; Miall 1977). Because energy tends to be higher in this depositional environment 

and reworking of recently deposited sediments is so common, silt particles are usually unable to 

settle, and are only present as mud drapes and channel fills within inert channels during times of 

flooding (Miall 1977; Hein 1984).  Overall, braided river deposits tend to be dominated mostly 

by coarse gravel and sand layers, when closest to their source, and dominated by alternating 
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layers of massive or stratified sands and gravel lags as a result of the high energy, highly 

variable, environment in which they form. While particle size analysis of braided rivers is an 

uncommon practice, some research suggests a distinct lack of silt and clay in the high energy 

upstream reaches of rivers (Kodama 1994).  If a braided fluvial system were responsible for the 

deposition of the SV-5/7 gravel unit, the expected stratigraphy of the gravels would be that of 

alternating imbricated gravels with stratified, crossbedded sand horizons, and very little silt or 

clay.  

A meandering river is the other fluvial endmember under consideration, and generally 

reflects a lower stream gradient, and therefore lower energy, than that of a braided stream (Smith 

1970; Pettijohn 1975). These rivers exhibit a higher sinuosity than their counterpart and tend to 

deposit a wider variety of grain sizes (Collinson 1978). Whereas the primary identifier for 

braided river deposits is the abundance of sandy channel fills and pebbly/gravely lags and a lack 

of silts and clays, meandering river deposits are defined by cyclical fining upwards sequences 

(Smith 1970; Pettijohn 1975). These fining upwards sequences are the result of a more orderly 

shifting of channel location caused by downstream meander migration, in contrast to the frequent 

channel shifting of a braided river. The highest energy environment represented in a meandering 

river is the channel floor, which deposits conglomerates, gravels, or coarse sands, scouring into 

an erosional surface (Pettijohn 1975). The intermediate energy environment within the 

meandering river deposits cross-bedded sands overlain by rippled sands and silts and is 

interpreted as having been deposited on the point bar of the river (Pettijohn 1975). The 

uppermost portion of the cycle is representative of overbank deposition, which occurs primarily 

when flood events bring water to higher levels which overflow existing banks (Hicken 1993). In 

this zone, silts and clay are deposited farther away from the channel on the river’s floodplain 
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(Pettijohn 1975). The thickness of these layers varies greatly from deposit to deposit, with single 

cycles ranging from 3 to 20 meters in total thickness, though in a single cycle the order from 

bottom to top is always coarse conglomerate/sand, crossbedded sand, rippled sands and- silts, 

and finally overbank silts and clay (Smith 1970; Pettijohn 1975). Thus, if a meandering river 

were responsible for the deposition of the SV-5/7 gravels, we would expect to observe a well-

defined, fining upwards sequence from coarse gravels to sands and silts and clays.  

The third depositional environment to be considered is a debris flow, or mass flow 

deposit. Debris flows are defined as the mass movement of sediments as a viscous fluid and are 

triggered by the addition of enough water to cause the fine-grained sediment (sand and mud) 

fraction to create a high-density fluid that can suspend or float, large clasts as they flow downhill 

(Blackwelder 1928; Prothero and Schwab 1996; Costa 1994; Scott and Yuyi 2004). Nearly all 

particle sizes, including massive boulders, can be transported by debris flows, and speeds of up 

to 10 meters per second are possible, making them dangerous events (Scott and Yuyi 2004). 

Because of this unusual mode of transport, grain sizes are not sorted as they are in fluvial 

deposits. Debris flow events deposits are typically poorly sorted (Prothero and Schwab 1996; 

Costa 1994), unstratified (Costa 1994; Scott and Yuy, 2004), have angular grains due to their 

short transport times (Lancaster 2010), and are characterized by a matrix which usually supports 

the larger clasts (Scott and Yuyi 2004; Lancaster et al. 2010). Scott and Yuyi (2004) list four 

identifying characteristics of debris flows in the field: (a) a fine-grained, muddy matrix 

surrounding the large clasts, (b) bimodal grain size histograms, (c), poor sorting with a large 

range of sediment sizes, and (d) having a massive/unstratified lithology. Importantly, the grain 

size histogram of debris flow deposits tends to be bimodal, trimodal, or polymodal. (Needham 

and Stuart-Smith 1987; Blair and McPherson 1992; Saula et al. 2002). Thus, if the SV-5/7 
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gravels are representative of debris flow deposition, we would expect the presence of very poorly 

sorted sediments containing clasts sizes of cobbles and larger, that have a large proportion of 

finer grain sizes as matrix. 

While this study will focus exclusively on these three facies models, it should be noted 

that these are not the only modes of deposition that could potentially have resulted in the SV-5/7 

gravels. Hypothesis testing in this study, while targeted, is by no means exhaustive, and even if 

one model fits the data well it does not rule out other untested modes of deposition. Additionally, 

it is possible that a combination of these models was responsible for the SV-5/7 gravels. For 

example, debris flow deposits have been known to rework fluvial deposits and vice versa 

(Lancaster et al. 2010), and thus it is possible that two or more of these depositional regimes 

could have acted on the examined sediments over time.  

In order to distinguish these three depositional models from one another, a varied and 

multidisciplinary approach was used. First, the gravel was sampled via digging, and the 

stratigraphy of sample areas within SV-5/7 was recorded. The stratigraphy allows for direct 

comparison with the three facies models and is likely to be informative given the major 

differences between the facies models. Particle size analysis is an essential step in determining 

the depositional environment. In combination with the stratigraphy, this method can potentially 

distinguish between facies on the basis of grain size histograms. This analysis aids in 

distinguishing between depositional environments, as sorting is a key component in identifying 

some of the facies models. Roundness of sand and finer materials was documented in thin 

section. These data correlate with transport distance and further assist in the determination of the 

depositional environments, in conjunction with other data. Long axis clast orientation on large 

clasts (> 5cm) was collected in the field. Analysis of these data will help assess flow direction. 
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This will aid in comparison between facies models and inform the direction of future research. 

Lithology of gravel clasts was determined by response to HCl acid and physical observations. 

Lithology of fine-grained samples was determined by loss on ignition of organics and carbonate 

minerals in bulk sediment samples. No prior lithological research has been conducted on the SV-

5/7 sediments, and while this only serves as a general analysis, it may have implications for the 

provenance, and thus possible history of the gravels. 

 

 Methods  
 

Sample Collection, Stratigraphy, and Preparation 
 

Rock hammers were used to sample the gravel layer in five locations at SV-5/7. Care was 

taken to remove large gravel clasts intact. With one exception (described below) the entire 

thickness of the gravel layer was sampled at each collection location, and the stratigraphy of each 

site was measured and recorded. Sample weights (Tab. 2) range from 6503 g to 12,113 g (in 

initial mass). All five wet samples were collected and stored in heavy duty ziplock bags until 

processing could begin. Prior to processing, small portions of the bulk samples were set aside for 

later analyses and were not included in analyses presented in this thesis. These samples were all 

given the designation of NMC, which stands for Nick/Mick Collection (Referencing collection 

by Nickolas Brand and Michael Whitelaw), followed by an identifying number so that the first 

sample is NMC-1, the second NMC-2, and so on.   

 Samples were allowed to air-dry, then oven dried at 50° C. Once dry, the samples were 

weighed on a digital scale. The volume of the bulk samples required multiple individual weight 

measurements to be summed in order to calculate the total weight for each sample. After 
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weighing, the samples were picked by hand to identify clasts over 1 cm in diameter, which were 

removed and stored separately from the fine fraction. Large clasts were washed with deionized 

water and brushed clean. The residual sediment was recovered and returned to the fine-grained 

fraction. Once dried, the large clasts were weighed individually.  

 

Table 2. Gravel Samples Mass and Thickness. Initial Dry Mass of Collected Samples, and the 

Thickness of the Gravel Layer for Each Sample Collection Site. Reported Mass Does Not 

Include the Un-Used Subsamples. *Represents Thickness From Top of Upper Gravel Layer to 

Bottom of Lower Gravel Layer, Including Sand and Clay Layers in Between.  

Sample Number Initial Mass (g) Gravel Thickness (cm) * 

NMC-1 8647 10 

NMC-2 10859 31 

NMC-3 10625 >40 

NMC-4 7538 12 

NMC-5 5609 9 

 

Particle Size Analysis - Dry and Wet Sieving 
 
 After allowing the sediments to settle and dry, 10-15% of the remaining fine-grained 

fraction was subsampled for particle size analysis. Coarse-grained (> 2 mm) material was 

separated using a combination of wet and dry sieving. Fine-grained (2 mm and below) material 

was separated by wet sieving. The stickiness of the clays within the samples made dry screening 

impractical for separation of smaller material. The samples were screened one size class at a time 

in 5-gallon buckets partially filled with deionized water.  
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Fine-grained samples were wet-screened using 8-inch diameter nested sieves held 

directly on the surface of the water and agitated by hand. This resulted in the smaller grains 

collecting in the bottom of the bucket where they could be recovered and used in the next finest-

screen sieve. Sediments adhering to the side of the bucket were scraped off or removed with a 

deionized water squirt bottle until the sample bucket was completely clean and could be used to 

repeat the next step. 

 Recorded sieve sizes include: 128+ mm (-7 ɸ), 64 mm (-6 ɸ), 32 mm (-5 ɸ), 16 mm (-4 

ɸ), 8 mm (-3 ɸ), 4 mm (-2 ɸ), 2 mm (-1 ɸ), 1 mm (0 ɸ), 0.500 mm (1 ɸ), 0.250 mm (2 ɸ), 0.125 

mm (3 ɸ), and 0.063 mm (4 ɸ). Clast sizes well above 128 mm were noted in the field but were 

not collected. Sieving times were greater for the smaller fractions because the clays flocculated 

and clogged the mesh. In these instances, the sediment would either need to be scooped carefully 

away from the center of the mesh to allow for water to re-enter the sieve, or split into smaller, 

sievable portions to be processed. After sieving of the fine-grained fraction was completed, the 

sieved fractions were transferred to 50 mL tubes and centrifuged at 3000 rpm for 15 minutes. 

This ensured that water could be decanted to allow for air drying with minimal loss of sediment. 

These samples were dried at 50° C under vacuum.  

 The mud particles too small to be sieved easily (silt and clay), were allowed to settle and 

dry, and were not further separated for this study. This remaining fine fraction retained moisture 

for weeks even after standing water was removed, and the delicate use of a hair dryer on low 

heat and power at a distance (so as to not send particles airborne) was required to complete the 

drying process, as the COVID-19 pandemic rendered laboratory ovens temporarily unavailable. 

Once dried, the fine fraction was weighed on a digital scale. 
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 The weights of each size fraction for each subsample were recorded in a Microsoft Excel 

spreadsheet. The final recorded weight for all coarse-grained material was subtracted from the 

total weight of each sample in order to determine the total weight of fine material. The weight 

percentage for each size class of the fine-grained material was multiplied by the total weight of 

fine material to estimate the total weight of each fine-grained size class for each sample. Charts 

showing the cumulative weight, in percent of each particle size fraction, were created in 

Microsoft Excel, along with histograms showing the proportion of each grain size fraction for all 

five samples.  

Lithologic Description 
 
 After sieving was complete, each size fraction (excluding silt and clay fractions) was 

analyzed to assess rough lithology, for all five samples. Dilute hydrochloric acid was used to test 

for the presence of carbonate, and if there was little to no effervescing, the clast was scratched 

(or many fine-grained clasts were crushed) and acid treatment was performed again to test for the 

presence of acid resistant grains, specifically. Where possible, clasts were identified by lithology 

(carbonate, sandstone, siltstone, shale, etc.), and notes were compared across the samples to 

determine the consistency of lithologies across location and grain size.  

 

Thin Section Analysis and Roundness 
 

Thin sections of the fine-grained fraction of each gravel sample were created for analysis. 

Subsamples (~1 cm3) were randomly selected from the bulk samples and placed into small 

plastic containers. The containers were then filled with epoxy resin (Epson 30-minute slow cure 

epoxy) and swirled with mixing sticks to create a random distribution of grains. The resin was 
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allowed to cure for 2 hours before being removed from the plastic containers with the use of a 

saw. 

 An Ingram model 65C saw/grinder was used to make thin sections close to finished 

thickness. Thin sections were finished by hand on a glass grinding plate with 80/220/500 grit and 

checked by using the petrographic properties of quartz grains as a relative control for standard 

thickness. Two thin sections were prepared for each sample, for a total of 10 thin sections. 

Roundness of individual sediment grains (angular to well-rounded) was recorded 

following Pettijohn (1975) using a petrographic microscope. Random slide transects were 

performed and roundness recorded for each grain in the transect until 100 grains from each slide 

had been characterized. This resulted in 200 grains per sample. Any grains large enough for 

roundness to be characterized were included. 

Sediment Sorting 
 
 An initial estimate of sediment sorting was carried out by visual examination of each 

gravel sample in the field. In the lab, after sediments were weighed, these visual estimates were 

compared to the grain size fraction distribution of the sieved fractions. The Inclusive Graphic 

Standard Deviation of the cumulative weight formula, “StdDev = ((ɸ84% - ɸ16%) / 4) + ((ɸ95% 

- ɸ5%) / 6.6)) )” from Folk (1980) was used to calculate the relative sorting of each sample. A 

standard deviation within a range of values indicates a level of sorting as seen in Table 4.  
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Table 3. Sorting Calculation Values. Calculated Sorting Standard Deviation Values and Their 

Associated Sorting Levels. (After Folk, 1980.) 

Calculated Value Indicated Sorting 

Below 0.35ɸ Very well sorted 

Between 0.35 ɸ and 0.50 ɸ Well sorted 

Between 0.50 ɸ and 0.71 ɸ Moderately well sorted 

Between 0.71 ɸ and 1.0 ɸ Moderately sorted 

Between 1.0 ɸ and 2.0 ɸ Poorly sorted 

Between 2.0 ɸ and 3.0 ɸ Very poorly sorted 

Over 4.0ɸ Extremely poorly sorted 
 

Orientation of Gravel Clasts 
 
 During the 2019 paleontological field season, the orientations of in situ clasts from the 

exposed SV-5/7 gravel surface were measured to assess preferred orientation. The orientation of 

the long axis of each grain was determined as an azimuth using a Brunton compass. Within a 2-

meter square area the orientation of every grain visibly larger than 5 cm in any dimension was 

measured until a sample size of 50 long axis orientations had been collected. Although the small 

sample size precludes rigorous estimates of orientation, it is adequate for field analysis of grain 

orientation (Karatson et al. 2002).  

 Because each clast could have the long axis oriented in either direction (180 degrees 

apart), an opposing orientation was calculated for each measurement as is standard in long axis 

orientation analyses. A rose diagram of this dataset was created using the freeware program 

GeoRose 0.5.1 (Yong Technology Inc. 2014; http://www.yongtechnology.com/georose/), in 

order to quickly assess the potential for preferred orientation. Visually, there is a preferred 
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orientation, however these data were further subjected to statistical analyses in order to quantify 

the presence or absence of a preferred orientation within the gravels.  

 A variety of tests are available to statistically test for the presence of a preferred 

orientation within a circular dataset. The standard for assessing orientation preference in circular 

data within paleontological and geological analyses is the Rayleigh test, and has been utilized 

consistently for decades across both disciplines (Hein 1984; Karatson et al. 2002; Domingo et al. 

2017). The underlying assumptions of the Rayleigh test are that the data are not diametrically 

bilateral, and that they are assumed to be unimodal (Landler et al. 2019). Because the Saltville 

gravel resulted in a bilateral (peaks 180 degrees apart) and strongly polymodal (3 or more peaks) 

distribution of orientation, the Rayleigh test is inappropriate for this dataset. Therefore, other 

tests are required if the possibility of preferential orientation is to be quantitatively assessed.  

 Other tests that can be used to assess uniformity within circular data are the Pycke test, 

and the Hermans-Rasson test. Recent, robust, statistical analyses have been performed that have 

illustrated the utility of the Hermans-Rasson test when attempting to assess uniformity within a 

multimodal sample (Landler et al. 2019), and thus this test is most appropriate for the current 

analysis. The Pycke test is another tool that was developed to address the weaknesses of the 

Rayleigh test in properly analyzing multimodal samples (Pycke 2010). When compared to the 

new Hermans-Rasson test, trials suggested that the Pycke test performed similarly, although it 

tended to have greater power with larger sample sizes (Landler et al. 2019). This power appears 

to have come with the trade-off of being less powerful compared to the new Hermans-Rasson 

test if the data were not concentrated tightly around the modes (Landler et al. 2019). For 

comparative purposes, the Rayleigh test was performed, but only the results of the Hermans-
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Rasson tests and the Pycke test will be treated as accurate and informative if discrepancies arise 

between the results. 

All tests were run using RStudio and the R package “circular,” (Agostinelli and Lund 

2017) which handles circular statistics. This package included a built-in function for the 

Rayleigh test. R code provided in supplemental data by Landler and colleagues (2019) was used 

to craft and execute the Pycke, and Hermans-Rasson tests. 

Loss on Ignition 
 
 As a method for determining the volume of siliciclastics relative to organic and carbonate 

content of the fine-grained (2 mm and smaller) fraction of the sediments, weight loss on ignition 

(LOI) was used. This method is often used in paleolimnological studies to estimate the 

percentage of organic carbon and inorganic carbonate within a sediment sample (Heiri et al. 

2001; Wang et al. 2010). 

 A small (~1.5 mg) subsample was collected from the fine-grained (2 mm and smaller) 

fraction of each gravel sample, homogenized in a crucible, and weighed prior to processing. An 

oven was heated to 500 C°, and the crucibles were placed inside for one hour. The crucibles were 

then removed, and the specimens allowed to cool to room temperature before being weighed to 

determine how much organic carbon had been burned away (% ORG). The oven was then heated 

to 900° C and the crucibles were once again placed inside for one hour. Then samples were 

allowed to cool to room temperature before being weighed in order to determine the percentage 

by weight of inorganic carbonate (% CO3) that had been removed by heating.     
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Results 
 

Sample Collection, Stratigraphy, and Preparation 
  
 The gravel unit at SV-5/7 was examined both on the surface and in cross section in the 

five collection sites designated NMC-1 through NMC-5. Gravel deposits at most of the sampling 

locations were determined to be dominantly clast supported, although some areas appeared to be 

matrix supported. No vertical grading was observed nor did there appear to be any dominant 

clast orientation. For all but one location, where samples were collected, the gravel unit was 

unstratified throughout its entire thickness (Fig. 4). Stratification was only apparent in NMC-2. 

Vertical contacts, where present, were measured from the gravel surface.  

 The gravel at NMC-1 was 10 cm thick. Surface gravels and matrix were gray while the 

layers beneath had a matrix with clouds of reddish and gray colors. No internal structure was 

observed during collection. The total weight of collected sediment for NMC-1 was 8.97 kg. 

NMC-2 was excavated to a depth of 31 cm. This collection site displayed stratification, 

where the uppermost gravels rested atop a thin sand layer, a set of red and gray bedded clays, and 

then another gravel layer with notably angular clasts. As in NMC-1, the surface of the gravels 

was a dark gray color, while the gravels beneath were embedded within a reddish and gray 

matrix. The NMC-2 sample weighed a total of 12.11 kg.  

The NMC-3 collection site was dug >40 cm deep but did not encounter the Maccrady 

Formation. The gravel here was visually sandier in some areas than seen in NMC-1 and NMC-2. 

The gravels at the surface and uppermost section of the sample site tended to be larger, while the 

gravels immediately below were smaller (but still poorly sorted). The contact between the gravel 

units was sharp suggesting that the layers may represent separate horizons, rather than a single 
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heterogeneous one. The gravel matrix appeared mostly grayish, with little to none of the red 

coloration seen at depth in the other sites. The total bulk weight of sample NMC-3 was 11.85 kg.  

At NMC-4, the gravels were similar to those seen at the surface of the other NMC sample 

sites. These gravels were 12 cm thick and rested atop at least 14 cm of red clay interpreted to 

represent the Maccrady Formation. A bulk sample of 8.70 kg was collected from this site.  

Site NMC-5 was located 12 centimeters southeast of a large boulder resting on the top of 

the SV-5/7 gravels. At this site the gravel was 9 cm thick, and underlain by a layer of sand and 

clays for at least another 23 cm. The Maccrady was not reached here, but a 6.50 kg bulk sample 

of the gravels was collected for study.  

All samples had large amounts of gravel present, and all remained sticky and extremely 

difficult to separate by either dry or wet sieving methods. Therefore, a subsample of the bulk 

sample was selected to permit quicker screening.  Future work may benefit from the use of 

chemical disaggregation. As sample processing began NMC-1, NMC-2, and NMC-3 were all a 

gray color, while NMC-4 was a darker gray with reddish-brown areas, and NMC-5 was a lighter 

gray than the other samples. When processing finished, the silt and clay fractions for NMC-1, 

NMC-2, and NMC-4 were all dark gray. The NMC-3 clays and silts ended processing with a 

reddish-brown color, while the NMC-5 clays and silts were a light gray color. The final colors 

may have been produced by oxidation, as the wet sieving process required specimens to remain 

wet or in water for large amounts of time. Unfortunately, Munsell color charts were not available 

during field collecting and early processing. Future work may benefit from a more quantitative 

analysis of sediment color.  
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Figure 4. Stratigraphic columns for each NMC sample. Thickness of uppermost gravel layers 
may vary due to history of repeated excavations and removal of pond scum via spraying 

Particle Size Analysis - Wet Sieving 

 When sieving was complete, the percentage by weight of specific phi size ranges were 

collected for each subsample. The ranges were < ɸ -1 (pebbles and larger grains), ɸ0 (very 

coarse sand), ɸ1 (coarse sand), ɸ2 (medium sand), ɸ3 (fine sand), ɸ4 (very fine sand), and > ɸ5 

(silt and clay). The sediment fractions by weight (and total weight) are reported in Table 4. When 

interpreting the histograms, any local maximum where the bin was higher than the bins to either 

side was treated as a peak. If two adjacent bins were both taller than the surrounding bins, they 

are treated as one peak.  

NMC-1 NMC-3

NMC-4 NMC-5

NMC-2

Maccrady Fm.

Maccrady Fm.

Maccrady Fm.

10 cm

Unstratified 
Gravel

Sand
Shale

Sandy 
ClaySilt
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 By weight, NMC-1 was 65 % gravel, 10 % sand, and 25 % silt and clay (Fig. 5). Very 

coarse sand made up nearly the entirety of the sand fraction, accounting for 9.0 % of the total 

sample weight, and 86.5 % of the sample’s sand weight. Compared to the other samples, NMC-1 

had the highest percentage of gravel, and the lowest total percentage of sand. The histogram for 

NMC-1 shows a trimodal distribution with peaks at the -7 ɸ/-6 ɸ (cobble), 0 ɸ (very coarse 

sand), and 5+ ɸ (silt and clay) sizes.  

 

   

Figure 5. Histogram of grain size frequency by percentage of weight for NMC-1 
 
 

 The NMC-2 subsample contained 53 % gravel, 32 % sand and 15 % silt and clay (Fig. 6).  

The contribution to weight of the very coarse grains was less in this sample than in NMC-1, 

while the smaller sand sizes were well represented in the subsample. The histogram for NMC-2 

was strongly trimodal with peaks at -7 ɸ (cobbles), 0 ɸ (very coarse sand), and 5+ ɸ (silt and 

clay) sizes.  
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Figure 6. Histogram of grain size frequency by percentage of weight for NMC-2 
 

 NMC-3 consisted of 50 % gravel, 35 % sand, and 15 % silt and clay (Fig. 7). Within the 

sand fractions, very coarse sand was much more abundant while medium sand was less abundant 

than the other sand particle sizes. Compared to other samples, this sample contained the most 

sand (35 % of total weight) by a large margin and was the only sample where a sand size 

(specifically very coarse sand) fraction was the single most dominant clast size by weight. These 

measurements are in agreement with the field observations that recognized a high sand content in 

NMC-3. The histogram for NMC-3 displayed a polymodal distribution with peaks at the -6 ɸ 

(cobble), -3 ɸ (medium pebble), 0 ɸ (very coarse sand), and 5+ ɸ (clay and silt) sizes.  
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Figure 7. Histogram of grain size frequency by percentage of weight for NMC-3 
 

 NMC-4 contained 55 % gravel, 35 % sand, and 10 % silt and clay by weight (Fig. 8). The 

sand fraction of this sample was the second largest by percentage of all samples and contained by 

far the largest percentage of fine sand (27.1 % of sample sand weight). Additionally, NMC-4 

contained the lowest percentage of silt and clay of all five samples. The histogram for NMC-4 

was polymodal with 4 peaks at -6 ɸ (cobbles), -3 ɸ (pebbles), 0 ɸ (very coarse sand), and 5+ ɸ 

(silt and clay) sizes. 
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Figure 8. Histogram of grain size frequency by percentage of weight for NMC-4 
 

 By weight, NMC-5 was 46 % gravel, 24 % sand, and 30 % silt and clay (Fig. 9). The 

sands were dominated by the very coarse sand fraction (88.7 % of sand sized grains by weight). 

Compared to the other samples, NMC-5 has the highest proportion of silt and clay, as well as the 

smallest percentage of gravels. The histogram for NMC-5 was strongly trimodal with peaks at -6 

ɸ (cobbles), 0 ɸ (very coarse sand), and 5+ ɸ (clay and silt) sizes.  
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Figure 9. Histogram of grain size frequency by percentage of weight for NMC-5 

Histogram of grain size frequency by percentage of weight for NMC-5 

 While the samples were quite varied, there are multiple trends that can be observed in the 

grain size distribution data. The most readily apparent pattern is the heterogeneity of the NMC 

samples. Ranges of percentage by weight vary by up to 19% for the gravel sized fractions, 25% 

for the sand sized fraction, and 19% for the silt and clay sized fraction. NMC-1, 2, 3, and 4 had 

an overall higher percentage of sand than silt and clay, and NMC-1 and 5 had a higher overall 

percentage of silt and clay than sand. NMC-3 contained the largest proportion, by far, of very 

coarse sand (0 ɸ), and NMC-4 contained a similarly disproportionate amount of fine sand (-3 ɸ) 

when compared to the other samples. Given that each sample was collected only a few meters 

away from each other, there is high variation in the grain size composition across the relatively 

small SV-5/7 study area. 

 Commonalities across the samples were also noted. The most common grain size 

category by weight was gravel (larger than sand) for all 5 samples. Additionally, the histograms 

for all samples showed peaks at the 0 ɸ (very coarse sand) and 5+ ɸ (silt and clay) grain sizes. 
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Peaks were present at either -6 ɸ or -7 ɸ in all samples, though this trend was noticeably less 

pronounced in NMC-3. All histograms showed a bimodal, trimodal or polymodal (NMC-4 has 4 

peaks) distribution, though the relative strength of the peaks varied significantly across samples. 

These patterns indicate a large amount of grain size variation across short lateral distances in the 

SV-5/7 gravel. This variation is unlikely to be due to sampling different horizons, as all NMC 

samples were collected from similar elevations. 
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Table 4. Percentage of Grain Size by Weight for Each Subsample. Total Weight of Sediments 

Listed in Parentheses  

Phi Size 
& 

Category 

ɸ-7 
(Cobbles) 

ɸ-6 
(Cobbles) 

ɸ-5 
(Very 
Coarse 
Pebbles) 

ɸ-4 
(Coarse 
Pebbles) 

ɸ-3 
(Medium 
Pebbles) 

ɸ-2 (Fine 
Pebbles) 

ɸ-1 
(Very 
Fine 
Pebbles) 

ɸ0 (Very 
Coarse 
Sand) 

ɸ1 
(Coarse 
Sand) 

ɸ2 
(Medium 
Sand) 

ɸ3 
(Fine 
Sand) 

ɸ4 
(Very 
Fine 
Sand) 

ɸ5 (Silt 
and 
Clay) 

Metric 
Size 128 mm 64 mm 32 mm 16 mm 8 mm 4 mm 2 mm 1 mm 0.5 mm 0.25 mm 0.125 

mm 
0.063 
mm 

Smaller 
than 

0.063 
mm 

NMC-1 24.3 % 
(2101 g) 

24.5 % 
(2117 g) 

4.30% 
(368 g) 

1.10% 
(945 g) 

4.00% 
(343 g) 

2.90% 
(249 g) 

4.00% 
(347 g) 

9.00% 
(779 g) 

0.20% 
(19 g) 

0.30% 
(28 g) 

0.70% 
(58 g) 

0.20% 
(16 g) 

24.59% 
(2126 g) 

NMC-2 24.70% 
(2677 g) 

9.80% 
(1066 g) 

4.90% 
(534 g) 

2.20% 
(240 g) 

4.40% 
(479 g) 

3.00% 
(324 g) 

4.40% 
(478 g) 

19.80% 
(2148 g) 

2.50% 
(276 g) 

2.10% 
(229 g) 

3.80% 
(415 g) 

3.70% 
(401 

g) 

14.70% 
(1592 g) 

NMC-3 6.70% 
(713 g) 

9.80% 
(1046 g) 

6.80% 
(718 g) 

3.50% 
(373 % 

9.60% 
(1025 g) 

5.70% 
(602 g) 

7.80% 
(829 g) 

27.40% 
(2911 g) 

2.30% 
(248 g) 

0.20% 
(21 g) 

1.70% 
(176 g) 

3.30% 
(345 

g) 

15.20% 
(1618 g) 

NMC-4 7.30% 
(551 g) 

22.60% 
(1703 g) 

9.20% 
(691 g) 

2.40% 
(181 g) 

6.40% 
(482 g) 

3.10% 
(232 g) 

3.90% 
(295 g) 

16.80% 
(1266 g) 

1.80% 
(139 g) 

1.50% 
(111 g) 

9.40% 
(706 g) 

5.10% 
(383 

g) 

10.60% 
(798 g) 

NMC-5 15.40% 
(864 g) 

17.00% 
(954 g) 

2.00% 
(113 g) 

1.00% 
(53 g) 

1.60% 
(91 g) 

2.50% 
(141 g) 

6.90% 
(385 g) 

21.20% 
(1189 g) 

1.00% 
(54 g) 

0.70% 
(38 g) 

0.60% 
(35 g) 

0.40% 
(24 g) 

29.70% 
(1668 g) 
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Lithology 
  
 Within NMC-1, the -7 ɸ, -6 ɸ, and -5 ɸ grain sizes were dominated by rocks of a dark 

gray color, which did not readily react to dilute hydrochloric acid unless deeply scratched, which 

identified them as acid resistant carbonate clasts. Concretions present in these size classes 

effervesced vigorously when exposed to HCl, as did lighter gray colored carbonate clasts and 

thus are interpreted to be limestone. The -4 ɸ, -3 ɸ, -2 ɸ, and -1 ɸ grain sizes all contained  clasts 

(possibly siltstone) that did not react when treated with acid, in addition to carbonate clasts. The 

0 ɸ to 4 ɸ size fractions had both clastic and carbonate clasts present, although as grain size 

decreased, a larger percentage of clasts reacted, and with increasing vigor. The silt and clay size 

fraction effervesced slightly when exposed to HCl.  

NMC-2 was dominated by carbonate clasts in almost all of the grain size classes. The 

larger sized (-7 ɸ and -6 ɸ), concretion fragments effervesced readily when exposed to HCl, as 

did some carbonate clasts. Some carbonate cobbles displayed an iron sulfide coating (possible 

marcasite or pyrite), and this coating was determined to be surficial when some of these clasts 

were broken open. Many of the acid resistant carbonate clasts within the -6 ɸ size contained 

crisscrossing veins of a white mineral. The acid resistant carbonate clasts were generally more 

abundant in the sizes from -7 ɸ to -4 ɸ, and the lighter colored and more readily reactive 

limestone clasts were more abundant in sizes -3 ɸ and smaller. Dark colored fossil bone 

fragments (unidentifiable) were found in both the -3 ɸ mm and -2 ɸ size samples but were 

limited to one specimen in each. The 0 ɸ size group and below contained some reddish rock 

clasts that effervesced strongly when exposed to hydrochloric acid, as well as the dolomite and 

limestone clasts. All of the NMC-2 sand particles effervesced vigorously when exposed to HCl 
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acid (and thus must be carbonates), although the silt and clay sized fraction reacted only slightly 

to the HCl.  

NMC-3 had larger size groups dominated primarily by carbonate, with acid resistant 

carbonate being less abundant throughout the -7 ɸ to the 1 ɸ sizes. The -4 ɸ sample contained a 

carbonate clast which bore a brachiopod fossil, and the -3 ɸ sample contained a fossil bone 

fragment. The -2 ɸ sample, while being carbonate, also contained at least a few very fine-grained 

clastic rock fragments with well-defined flat surfaces, which are interpreted as being shale clasts. 

The -1 ɸ and 0 ɸ sizes contained a few siltstone clasts as well. The 1 ɸ and smaller sizes 

contained reddish grains that reacted strongly to hydrochloric acid. This red lithology comprised 

about 1/10, 1/3 and 1/4, and 1/2 of grains at the 1 ɸ, 2 ɸ, 3 ɸ, and 4 ɸ size classes respectively. 

The silt and clay fraction reacted moderately to the HCl but noticeably more than the silts and 

clays in samples NMC-1 and NMC-2.  

NMC-4 was similar to NMC-3 in displaying a pattern of effervescent carbonate as the 

most common lithology, and acid resistant carbonate as the next largest constituent throughout 

most of the class groups (-7 ɸ to -1 ɸ). A minority of shale clasts were observed within the -3 ɸ 

mm and -1 ɸ sizes only, while a fossil bone fragment was present within the -2 ɸ mm size class. -

1 ɸ, 0 ɸ, and 1 ɸ mm size classes displayed the reddish clasts, though most abundantly in the 0 ɸ 

fraction. As with NMC-3, these reddish clasts reacted strongly to hydrochloric acid. 

Additionally, the 1 ɸ fraction contained Pleistocene fossil shell fragments. The 2 ɸ and smaller 

size classes all were light gray in color with only minor red areas present. When exposed to HCl, 

the silt and clay fraction of NMC-4 reacted vigorously, as the sample was notably more reactive 

than samples NMC-1, NMC-2, and NMC-3.  
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NMC-5 was dominated by acid-resistant carbonate within the larger size classes. At -7 ɸ 

only veined resistant carbonate clasts were present, and their clasts were more common than the 

reactive carbonate grains in the -6 ɸ to -4 ɸ fractions (where veins were also observed in the 

resistant carbonate). From -3 ɸ and smaller, reactive carbonate became the most common clast 

lithology, with resistant carbonate making up the rest of most of the samples where lithology 

could be determined. The -1 ɸ fraction contained a small amount of shale clasts. Interestingly, 

the 1 ɸ to silt and clay fractions all bore a tan color rather than the strong red or gray color 

present in the other samples. All size classes reacted strongly to the hydrochloric acid, including 

the silts and clays.  

Despite the observed textural differences between the samples, the lithology of the 

gravels was somewhat consistent across samples. Acid resistant carbonate tended to be more 

prevalent in larger clast sizes (and to be covered in iron sulfide within the -7 ɸ sample), and 

reactive carbonate to be more prevalent within the smaller fractions. While all samples were 

dominated by carbonate lithologies at most, if not all, sizes, shale and siltstone clasts could also 

be present, and possessed no apparent pattern of distribution other than being more common in 

smaller (-3 ɸ and below) size fractions. Color and reactivity to hydrochloric acid varied greatly 

within the fine-grained (2 mm and smaller) fractions. Similar to the particle size analysis, these 

results suggest a strongly heterogeneous deposit and help to underscore the variability of these 

gravel deposits within the excavation pit.  

Thin Sections and Roundness 

Opaque and translucent grains were both present in the finished thin sections, with the 

former being more common in all. Previous studies have reported chert within gravels in the 

Saltville Valley (McDonald and Bartlett 1983; McDonald 2000), and it is possible that fragments 
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of chert are present as some of the opaque grains observed in the thin sections. Many of the non-

opaque grains were pleochroic, meaning that they changed colors as the slide was rotated. Based 

on the lithologic analysis opaque grains likely represent shale, pyrite, or opaque silicate clasts.  

 Results of the roundness analysis are reported in Table 5 and Figure 10 below. For most 

of the samples, subangular and subrounded grains are the most common, while well rounded 

grains were either absent or poorly represented within the sample. 

 

Table 5. Roundness in Thin Section by Subsample. Percentage of Each Roundness Class 

Encountered in Two Thin Sections Created from Each Sample (N= 200). Total Number of 

Grains in Parentheses. Percentage Rounded Up to the Nearest Whole Percent. 

 

 
NMC-1 
Total 

Count (%) 

NMC-2 
Total Count 

(%) 

NMC-3 
Total Count 

(%) 

NMC-4 
Total Count 

(%) 

NMC-5 
Total Count 

(%) 

Angular 44 (22%) 51 (26%) 58 (29%) 39 (20%) 33 (17%) 

Subangular 75 (38%) 78 (39%) 77 (39%) 87 (44%) 100 (50%) 

Subrounded 45 (23%) 55 (28%) 56 (28%) 64 (32%) 64 (32%) 

Rounded 32 (16%) 15 (8%) 8 (4%) 9 (5%) 3 (2%) 

Well Rounded 4 (2%) 1 (1%) 1 (1%) 1 (1%) 0 (0%) 

Count 

Summary 200 (101%) 200 (102%) 200 (101%) 200 (102%) 200 (101%) 
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Because only grain sizes smaller than -1 ɸ (2 mm and smaller) were included, the 

following discussions of roundness pertain only to this fraction, and do not represent the 

roundness of clasts larger than -1 ɸ. The grain roundness classes for NMC-1 were dominated by 

subangular grains (38%), with angular, subrounded, and rounded grains also being common, 

though the latter to a lesser extent. Well-rounded grains were present, but in small numbers. 

Compared to the other samples, NMC-1 had a much higher count of rounded and well-rounded 

grains. 

NMC-2 was dominated by the subangular grain class (39%). Angular, subangular, and 

subrounded grains were all present in percentages greater than 25%. NMC-2 had a slightly 

higher representation of angular grains than NMC-1. 

 NMC-3 displayed a grain roundness class distribution similar to NMC-2, with subangular 

grains representing the mode. Angular and subrounded grains were present in high percentages, 

while rounded and well-rounded grains made up <5% of the clasts.  

NMC-4 was consistent with the other samples in having subangular clasts as the mode, 

and an abundance of angular and subrounded grains. Rounded and well-rounded grains were 

present in small percentages.  

NMC-5 was characterized by having half of the grains identified as subangular (50%). 

Subrounded grains were the next abundant clast type, angular grains being a somewhat distant 

third. Rounded grains were present in small numbers, and no well-rounded grains were observed 

in the sample.  

Subangular grains were the most common roundness class across all samples, accounting 

for 38-50 % of the grain population. Well-rounded grains were rare, and only NMC-1 

contained >10% of rounded plus well-rounded grains. While not analyzed in the same detail as 
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the matrix grains, the large gravel clasts (-5 ɸ and larger) tended to be either rounded or well 

rounded.  

 

 

Figure 10. Cumulative percent chart for roundness classes. Percentage of each roundness class for 

thin sections of each sample  

Sorting Calculation 
 
 Sorting was estimated in the field, by visual inspection, to be poorly sorted to very poorly 

sorted for all five samples, using the standard sorting visual comparator published by Longiaru 

(1987). The measured weights for each grain size category were used to create cumulative 

weight curves for each sub-sample (Figs. 11-15). In order to mathematically calculate the sorting 

of the sediments, the inclusive graphic standard deviation (Folk 1980) was calculated for each 

sample and these values are reported in Table 6. It is important to note that because a limited 

number of phi sizes were used by binning all silt and clay grains, that the actual values for all 

samples skew more poorly sorted than suggested.  
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Table 6. Inclusive Graphic Standard Deviation Results for All Samples 

Sample 

Inclusive Graphic 

Standard Deviation 

NMC-1 4.42 ɸ 

NMC-2 4.16 ɸ 

NMC-3 3.91 ɸ 

NMC-4 3.66 ɸ 

NMC-5 4.16 ɸ 

 

 

Using the cumulative percent curve for NMC-1 resulted in a value of 4.42 ɸ. This 

corresponds to extremely poor sorting of the gravels in this sample. The curves for NMC-2 and 

NMC-5 resulted in a value of 4.16 ɸ, which is also indicative of extremely poor sorting of 

sediments. The curves for NMC-3 and NMC-4 resulted in calculated values of 3.91 ɸ and 3.66 ɸ, 

respectively, which indicate a very poor sorting for the gravels. Though the level of sorting 

varied slightly between samples, all samples displayed characteristics of an unsorted grain 

population.  
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Figure 11. Cumulative percentage curve of weight for NMC-1. Phi sizes > 5 are grouped 

together 

 

 

Figure 12. Cumulative percentage curve of weight for NMC-2. Phi sizes > 5 are grouped 

together 
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Figure 13. Cumulative percentage curve of weight for NMC-3. Phi sizes > 5 are grouped 

together 

 

 

Figure 14. Cumulative percentage curve of weight for NMC-4. Phi sizes > 5 are grouped 

together 
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Figure 15. Cumulative percentage curve of weight for NMC-5. Phi sizes > 5 are grouped 

together 

Orientation of Gravel Clasts 
 
 The 50 measured orientations of the gravel clasts are reported in Table 7. The mirrored 

version of this dataset is plotted on a rose diagram with a bin size of 10°. These initial results 

suggest that there may be at least some directionality (Fig. 16), though almost every bin had at 

least one grain fall within its bounds. The two strongest peaks are at 120°-°130/300°-310°, while 

subpeaks are present in multiple bins. These orientation data are certainly multimodal, and this 

was taken into consideration when attempting to statistically determine if there was a preferred 

orientation within the measured clasts. Importantly, while a sample size of 50 is sufficient to 

assess whether there is a preferred orientation of clasts, it is insufficient to determine orientation 

strength (Karatson et al. 2002).  
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Table 7. Gravel Clast Orientation Measurements. Lists the Collected Orientation Measurements 

from Clasts Exposed at the Surface of the Gravel Unit in SV-5/7. Only Grains with a Long Axis 

Greater Than 5 cm Were Measured.  

Record ID Trend (o) Record ID Trend (o) Record ID Trend (o) 

1 59 18 162 35 279 

2 93 19 105 36 130 

3 56 20 172 37 339 

4 136 21 184 38 305 

5 126 22 274 39 31 

6 318 23 120 40 85 

7 44 24 110 41 156 

8 55 25 227 42 122 

9 114 26 322 43 154 

10 64 27 229 44 131 

11 147 28 262 45 129 

12 135 29 302 46 7 

13 151 30 272 47 304 

14 61 31 151 48 274 

15 149 32 209 49 93 

16 82 33 116 50 129 

17 193 34 145   
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Figure 16. Rose diagram illustrating mirrored orientation data of SV-5/7 gravel clasts. Recorded 

clasts were greater than 5 cm in their longest dimension, and collected from the same, small area 

 

 To improve the interpretive rigor of the rose diagram, statistical analyses were used to 

assess directionality within the collected dataset. Tests performed include the new Hermans-

Rasson test from Landler and colleagues (2019), the original Hermans-Rasson test, the Rayleigh 
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test, and the Pycke test. Each test was used to evaluate both the SV-5/7 dataset collected for this 

study, as well as a constructed, perfectly evenly distributed dataset (Table 8).  

 The Rayleigh test failed to reject the null hypothesis of uniformly distributed circular data 

in both the perfectly even and SV-5/7 datasets. This result is not entirely surprising, given the 

previously noted difficulty of this test handling multimodal datasets.  

 Both the new and original Hermans-Rasson tests failed to reject the null hypothesis of 

uniform data distribution for the perfectly even dataset but did reject this null hypothesis for the 

SV-5/7 dataset with p-values of 0.0006 and 0.0001 respectively. The Pycke test returned similar 

results, with a failure to reject the null hypothesis of uniformly distributed circular data in the 

perfectly even dataset, and a rejection of this null hypothesis in the SV-5/7 dataset. Both 

Hermans-Rasson tests returned smaller p values, though this may be due to the smaller sample 

size rendering the Pycke test less powerful, or due to there being less concentration of the 

orientations around the modal orientations.  

Given the demonstration of successful analyses of multimodal data from these tests, the 

results of these tests are accepted. The orientation dataset that was collected from the center of 

SV-5/7 for this study is not uniformly distributed and does display at least some preferred 

orientation. This preferred orientation appears to be 130/310°. 
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Table 8. Gravel Orientation Statistical Tests. P-Values from Statistical Tests Performed on the 

Clast Orientation Dataset. Significant Test Results are Indicated With the (Reject Null) Label. 

Test Even Dataset 
p-value SV-5/7 Dataset p-value 

Hermans-Rasson 
(New) Test 1 0.0006 (Reject null) 

Hermans-Rasson 
(Original) Test 1 0.0001 (Reject null) 

Rayleigh Test 0.9811 0.5775 

Pycke Test 1 0.0058 (Reject null) 
  

Loss on Ignition 
 

The small (1.5 mg) subsample collected from the fine-grained (sand and smaller) fraction 

of the gravel samples were subjected to loss on ignition (LOI) analysis. Loss on ignition results 

(Table 9) were mostly consistent across the samples. After 60 minutes at 500°C, NMC-1 lost 

1.45% total weight, NMC-2 lost 2.88% total weight, NMC-3 lost 3.58% total weight, NMC-4 

lost 2.39% total weight, and NMC-5 lost 3.17% total weight. Thus, the samples averaged around 

2.69% ORG within the fine-grained fraction of the gravels. After the 900°C treatment for 60 

minutes, each sample lost a significantly higher percentage of total weight. NMC-1 lost 10.66%, 

NMC-2 lost 9.61%, NMC-3 lost 9.90%, NMC-4 lost 12.13%, and NMC-5 lost 27.18%.  

The average for samples 1-4 is a loss of 10.58% carbonate content per sample. NMC-5 

lost more than twice this percentage of carbonate, which could possibly indicate a sampling bias. 

Alternatively, this could be an accurate representation of NMC-5 having a much higher 

carbonate content within the fine grain sediments, as other tests have demonstrated a high degree 

of heterogeneity between grain sizes. It is interesting however, that NMC-5 contained the highest 
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overall percentage of silt and clay sized grains, and the lowest overall percentage of gravels. 

According to the lithologic analyses, it appears that carbonate is more abundant in the larger 

grain sizes, and so this anomalous value may be an indication that further analysis of lithology is 

needed in future studies.  

 

Table 9. Loss On Ignition Analysis Results 
 

Sample Initial Mass % Org 
(Organic Mass) 

% CaCO3 
(Inorganic Carbon) 

NMC-1 136.3 mg 1.45% (1.98 mg) 10.66% (24.53 mg) 

NMC-2 112.22 mg 2.88% (3.23 mg) 9.61% (10.78 mg) 

NMC-3 95.71 mg 3.58% (3.43 mg) 9.90% (9.48 mg) 

NMC-4 113.89 mg 2.39% (2.72 mg) 12.13% (13.82 mg) 

NMC-5 88.09 mg 3.17% (2.79 mg) 27.18% (23.94 mg) 
 

 

Discussion 
 

Debris Flow Origin of the SV-5/7 Gravels 
 
 Although research occurring in the Saltville Valley in the last few decades has assigned a 

fluvial origin for the W4 gravel layer (McDonald and Bartlett 1983; Holman and McDonald 

1986; McDonald 2000), there have since been indications that the gravels at SV-5/7 may not be 

consistent with a model of fluvial deposition. Prior excavations at the locality have yielded no 

evidence of imbrication within the gravels (Schubert pers. comm. 2020), and field observations 

during this study similarly found no instance of imbrication. Given the importance of imbrication 

in identifying alluvial gravel deposits (Prothero and Schwab 1996; Yagashita 1997; Schlunegger 
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and Garefalakis 2018), this lack of such a crucial structure over such a relatively large area 

within the SV-5/7 locality is what lead to the re-evaluation of the fluvial hypothesis by those 

working at the locality.  This was the impetus for the geologic portion of this thesis. 

 In particular, the results of the particle size analysis offer support for a debris flow 

hypothesis, while arguing against a strictly fluvial deposition. The trimodal/polymodal patterns 

in all samples suggest a significant silt and clay component within those samples. Silt and clay 

sized grains are known to represent a small percentage of the deposits within braided river 

deposits (Pettijohn 1975; Miall 1977). Fluvial gravels tend to be clast supported (the gravel clasts 

were deposited by themselves, and then filled in with smaller grained particles afterwards) (Miall 

1977), and the SV-5/7 sediments share this feature. Despite this similarity, numerous examples 

of clast supported debris flow deposits have been reported (Costa 1994; Blair and McPherson 

1998; Sohn et al. 1999; Church and Jacob 2020), and the presence of a clast supported deposit 

does not rule out a debris flow origin. The problem with a fluvial interpretation then is not the 

presence of matrix, but the makeup of this matrix. While braided river systems can produce 

thick, cobble layers when located close to an alluvial fan source, these deposits still retain an 

abundance of sand sized grains within the matrix, and a minimal amount of silt and clay. While 

there are hills relatively close to the north and northeast of SV-5/7 it is not in close proximity to a 

large alluvial fan. Despite this, the shale and carbonate rich Paleozoic rocks that form the valley 

and underlie portions of it (and would likely have been exposed when the SV-5/7 gravels were 

deposited) would provide ample source material for a matrix of the lithologies observed. Thus, 

the large percentage of silt and clay within the matrix of these gravels is strong evidence against 

a braided river deposition. 

 Additional support for the debris flow model is provided by the results of the sorting 
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calculations. The field observation of poor sorting was confirmed, and even surpassed by the 

quantitative results which also indicate that the samples are either very poorly sorted or 

extremely poorly sorted. This extremely poor level of sorting is evidence against the fluvial and 

for the debris flow model. Very poor sorting of a massive gravel may be the best identifier of a 

debris flow deposit (Scott and Yuyi 2002; Lancaster et al. 2010), and fluvial deposits are known 

to have more sorted gravels (Lancaster et al. 2010).  

The stratigraphy of the sample locations generally revealed a massive, unstratified gravel 

until the Maccrady Formation was reached. NMC-3 may have contained two separate horizons, 

although the only indicator of this was a difference in the largest grain sizes and, given that no 

gravel horizons were seen in the other samples, it seems most plausible that this represents 

meter-scale spatial variability in the heterogenous gravel deposit. NMC-2 was the only sample 

where there was more than one gravel layer, where two massive gravel layers were separated by 

a narrow horizon of red and gray bedded clays. The layered nature of this clay horizon suggests 

that it was not simply a case of a clay lens within the gravels. A possible explanation for this 

horizon could be that there were multiple debris flow events over time, and that it is simply 

reworked fine sediment that accumulated on top of an older gravel surface before it was covered 

over but not completely destroyed by a second pulse or additional debris flow. Alternatively, the 

surfaces of debris flow deposits are not always low relief (Karatson 2002), and it is possible that 

small clay layers accumulated and were sheltered from the scouring and reworking of later debris 

flow events.  

Results of the particle size analysis and sorting calculations strongly support a debris 

flow as the depositional model for the gravels. Field observations and sorting calculations 

resulting from the grain size analysis indicate that all samples are very poorly sorted to extremely 
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poorly sorted. In addition to being more poorly sorted than fluvial gravels, all gravel samples 

contained significant portions of silt and clay sized material. The relatively high percentage of 

muds and bimodal to polymodal grain size distribution more strongly support a debris flow 

origin over a fluvial one. 

In summary, the most likely origin for the SV-5/7 gravel unit is one or more debris flow 

events. Debris flows have been documented in the Blue Ridge (Wieczorek et al. 2004), and the 

Valley and Ridge regions (Eaton et al. 2003) of the Appalachian Mountains, so the acceptance of 

this model for the SV-5/7 gravels would not invoke a novel occurrence of this depositional mode 

in the region.  

While not a common occurrence, fossils have been described from debris flow deposits 

(Rogers 2005; Domingo et al. 2017), so finding fossils on the surface of and embedded in the 

gravel deposit does not preclude a debris flow origin. They may simply be additional 

sedimentary clasts, albeit exotic ones, incorporated into debris flow sediments. Though it may 

initially seem at odds with a mass flow event, the smooth pavement of pebbles over deeper 

gravel deposits could be the result of reworking of the original debris flow deposit. This could 

also explain how so many fossils with abrasion damage (Silverstein 2017) came to rest on the 

same gravel surface. Debris flow deposits are often reworked by other debris flows (Costa 1994), 

and debris flows can also rework material from fluvial deposits (Lancaster et al. 2010). Thus, it 

is also possible that the larger, more rounded cobbles and fossils within the uppermost layer of 

the gravels had been deposited by a stream or river before being reincorporated into the debris 

flow and floated with the rest of the larger clasts.  

The fluvial model of the Saltville River was tested using two end-member river facies 

models against a debris flow facies model. Ultimately, the meandering river hypothesis and 
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braided river hypothesis do not adequately explain the results of this study. Conversely, the 

debris flow is more consistent with the results, though more extensive excavations and 

descriptions will be needed to further test this hypothesis. Based on these data, the proposed 

Saltville River (McDonald and Bartlett 1983; McDonald 2000) does not seem to have been 

responsible for depositing the gravels at SV-5/7, and that hypothesis may need to be re-examined 

throughout the valley. 

 

Orientation and Transport History of Gravel Clasts 

While not supporting any of the tested hypotheses over the other, results of the 

orientation analysis offer additional insight into the transport history of the SV-5/7 gravels. Both 

meandering river and braided river deposits are known to contain gravel clasts which are 

oriented with flow, even within massive gravel units (Miall 1977). While a random orientation is 

frequently observed with debris flow deposits, it is also common to observe a preferred clast 

orientation parallel to flow, as this position is the least resistant to flow (Karatson et al. 2002). 

Given that the other data support debris flow deposition rather than braided or meandering 

fluvial deposition, it seems sufficient to comment only on the implications of the preferred 

orientation for the debris flow model. If this preferred NW/SE clast orientation is both an 

accurate representation of the gravels as a whole, and also represents a flow driven pattern rather 

than a random one (as is supported by the results of the statistical tests), then the data support 

either a northwest or southeast flow direction for the debris flow event. Given the nearby slope, it 

seems likely that the flow direction was towards the southeast, although this hypothesis will need 

to be tested more rigorously. In order to further assess this potential flow direction, a thorough, 

more widespread analysis of gravel clast trends should be undertaken.  
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The results of the roundness data are harder to interpret without first embarking on a 

detailed analysis of valley-wide lithology and potential source rocks. While this is beyond the 

scope of this thesis chapter, roundness observations may inform the direction of subsequent 

provenance analyses. Overall, the low roundness of the matrix points to a short transportation 

history, although it is important to note that fluvial rounding of fine-grained silicate clasts is an 

extremely slow process, even at the scale of hundreds of kilometers (Russell and Taylor 1937; 

Pettijohn et al. 1973; Pettijohn et al. 1975). Despite this, larger clasts can be rounded quickly, 

and rivers in the Appalachian Mountains have been known to round down pebbles (especially 

carbonate clasts) in as little as a couple of miles (Whitelaw pers. comm. 2020). Although small 

grains were more angular, the larger clasts tended to be rounded. This trend is consistent with 

experimental and observational studies suggesting larger grains become rounded at a greater rate 

than small grains (Pettijohn et al. 1973; Pettijohn 1975), and thus does not preclude (nor 

confirm) the gravel clasts and matrix having been transported a similar distance.  

Results of the orientation data may offer insights into the transport history of the gravels, 

however. As figured by McDonald (2000), the hypothesized Saltville River would have flowed 

east-northeast through the valley. The orientation data recovered in this study suggest instead, a 

flow direction of either northwest or southeast for the SV-5/7 gravels. SV-5/7 is close (a little 

over a couple hundred meters) to a major hillside (Fig. 1), with an opening in this hillside 

directly northeast. It is possible that this may be a direct source for this material given the 

proximity and direction to the site, although this will certainly require additional analyses to test. 

While these results will hopefully prompt other projects, they are difficult to interpret 

without applying data from other areas of the valley, and caution should be exercised when 

trying to reconstruct transport distance and depositional history of clasts from a limited dataset.  
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Study Limitations and Future Directions 
 

Future efforts to characterize the origin of the SV-5/7 gravel would benefit from a 

spatially widespread excavation program that is focused on acquiring cross-sectional data on the 

gravel deposits in multiple locations throughout the valley. Specifically, comparisons to the 

gravels reported by McDonald and Bartlett (1983) and McDonald (2000) may be beneficial to 

researchers studying Quaternary paleontology or geology at Saltville. Describing transects of 

these units, as well as larger studies of clast orientation seem like clear next steps. 

Another major objective in determining the depositional history would be determining 

the provenance of the matrix grains as well as the large clasts. The analysis of sediment 

provenance is beyond the scope of this thesis. However, determining the source areas for this 

gravel deposit should be a high priority for future geologic investigations. Previous work has 

suggested that some chert and sandstone clasts from the SV-1 gravels could have been sourced 

from Stonemill Creek and McHenry Creek (McDonald 1984b). While not strictly necessary to 

test the depositional models of the site, determining the provenance of these sediments would 

necessarily have implications for the types of depositional processes that could have deposited 

them, and will increase the robustness of future assessments. Source rocks from far away are less 

likely to represent debris flows deposits than fluvially transported grains, for instance, and being 

able to source a specific unit to the sediments may assist in determining flow direction or 

properties if the debris flow origin continues to be supported by future data. 

 Such a project utilizing similar and more advanced methods could identify source areas 

for the sediments, and thus further inform us as to the path, distance and nature of the 

depositional events responsible for the SV-5/7 gravels. Additionally, it might prove fruitful to 

investigate other areas in the valley with reported fluvial gravels, in order to see if they match the 
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patterns seen at SV-5/7 or are truly different. Moreover, while the presence of the Saltville Fault 

was briefly mentioned in this chapter, it was not analyzed in detail. This feature seems like an 

obvious candidate for future explorations of source rock material of the SV-5/7 and the rest of 

the Saltville Valley gravels.  

Conclusions 
 

 Overall, these results provide evidence for a massive gravel deposit that is poorly sorted, 

has a primarily subangular fine-grained matrix, and displays a bimodal to polymodal grain size 

distribution. The most abundant clast sizes within the bulk samples by weight are cobbles, coarse 

sand, and silt/clay. Silt and sand contributed a large component to the bulk sample. The 

traditional fluvial interpretation of deposition by the “Saltville River” for the W4 layer within the 

Saltville Valley is not supported at the SV-5/7 site. These data instead suggest a debris flow 

model of deposition at SV-5/7. Debris flows are well documented in the Appalachians, 

especially on steep slopes after rainfall events, and so the presence of a debris flow at SV-5/7 and 

within the Saltville Valley does not seem surprising. 
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CHAPTER 3. IDENTIFICATION AND ANATOMY OF FOSSIL MUSKOXEN 

 
Introduction 

 

Overview 
 

In order to diversify this thesis and incorporate a vertebrate paleontology component, 

unanswered questions about the Saltville paleofauna were explored. Of particular interest to the 

author was the presence of bovid fossil material from Saltville that had been identified as 

indeterminate muskoxen. Because the material had not yet been identified to the genus level, 

generic identification of Saltville muskoxen became a goal of this thesis. The identification of 

most fossil muskoxen focuses on horncores and crania, and many of the Saltville ovibovine 

specimens are isolated teeth or postcrania, in addition to some cranial material. Differential 

diagnosis of potential muskoxen genera and subsequent identification of Saltville muskoxen 

remains was a primary objective of this project.  

 In order to provide a framework to accomplish that goal this chapter begins with a 

review of muskox taxonomy and phylogeny. Next, the fossil muskoxen of North America are 

discussed, followed by a discussion of the muskox material collected from Saltville. This review 

is followed by the methods and materials of this comparative study which, in turn, is followed by 

the accompanying results and discussion. Potential future directions and a summary of the 

comparative study concludes this chapter.  

The Ovibovini – Muskoxen 
 

While the extant tundra muskox (Ovibos moschatus) is now understood to be closely 

related to goats and sheep, most researchers prior to the modern evolutionary synthesis 
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considered them to be most closely grouped with “oxen” or cattle (Harlan 1825; DeKay 1828; 

Leidy 1852), evident by the species having been originally described as Bos moschatus by 

Zimmerman (1780). Blaineville (1816) erected the genus Ovibos to differentiate it from cattle, 

although some authors continued to refer to the muskox as Bos mochatus (DeKay 1828; Allen 

1913). Upon naming the muskox, Blainville noted that the animal had more in common with 

sheep than with oxen (Blainville 1816), although some of the characters he used to do so (e.g., 

the presence of only two mammaries, and the lack of a muffle or naked portion of the muzzle) 

have been declared erroneous (Allen 1913). The prevailing belief that the muskox was a type of 

cow was so strong that Owen (1856) attempted to name it as a species of cape buffalo, Bubalus. 

Despite this, some authors continued to push for the position as close to sheep, or at least 

intermediate between sheep and cattle citing osteological characters to support this. Dawkins 

(1867) noted the tapering of the facial portion of the skull, prominent orbital protrusion, 

“verticality of the facial plate of the maxillary,” shape of the basisphenoid, occipito-parietal 

suture, and multiple dental characters as evidence for a closer association with sheep than with 

Bos. In his 1913 examination of muskoxen skull and horn ontogeny, which remains the most 

extensive published record of muskoxen skull and tooth morphology, Allen argued that many of 

these features were present in bison, and therefore Dawkins must be mistaken (Allen 1913). 

The concept of a distinct muskox group (rather than inclusion within Bos) was developed 

when the similarity between the extant muskox (Ovibos) and the extant takin (Budorcas) was 

noted by Gray (1872), wherein the group “Ovibovidae” was proposed. Interestingly, the same 

name was also proposed later in Gill (1872), and the name is occasionally attributed thus. In 

Gray’s publication, which appears to have been published first, these taxa were linked as 

morphologically similar to the family Antelopidae based on sharing the characters “Nose ovine, 
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covered with hair, without any or only a rudimentary muffle.” While many of the characteristics 

of the Ovibovidae used to group the muskox and takin were soft tissue, skull characters were 

also noted. These included a large nasal opening, short intermaxillaries that don’t reach the 

nasals, the lack of a suborbital fissure or fossa, and well-developed molars with supplementary 

lobe (Gray 1872). The closeness of Budorcas to Ovibos became a controversial issue, with 

publications supporting (Matschie 1898) the Ovibos-Budorcas connection, and others 

vehemently rejecting it (Lönnberg 1900; Knotterus-Meyer 1907), or even openly mocking and 

questioning the methodology behind the conclusion (Allen 1913).  

Genetic analyses in the 20th and 21st century proved useful for resolving these 

controversies and reversed the trend in muskoxen taxonomy and phylogenetic systematics. 

Multiple genetic studies using different techniques suggested that Ovibos and Budorcas do not 

form a monophyletic clade (Groves and Shields 1996; Groves and Shields 1997; Hassanin et al. 

1998). Additionally, the morphological observations of Blainville (1816) and Dawkins (1867) 

would be supported as mounting genetic evidence positioned Ovibos within the goat and sheep 

subfamily clade of Caprinae, as a sister group to the gorals Naemorhedus and the serows 

Capricornis (Groves and Shields 1997; Hassanin et al. 1998; Hassanin et al. 2009; Shi et al. 

2016). Moreover, the group formed by these three genera have been assigned the rank of subtribe 

and the accompanying name of Ovibovina (Hassanin et al. 2009), which is the nomenclature 

used for this study.  

Despite the tribe originally being defined by Ovibos and Budorcas, it is now generally 

accepted that the group of muskoxen that form a clade containing Ovibos, but to the exclusion of 

Naemorhedus and Capricornis, is called Ovibovini (Cregut-Bonnoure and Dimitrijevic 2006; Shi 

et al. 2014; Lazaridis et al. 2017). It should be noted that despite being named as a tribe, this 
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grouping no longer retains this rank, and thus may need to be renamed to better conform with 

taxonomic conventions. Given that the rank of tribe is now occupied by Caprini, and the subtribe 

is occupied by Caprina (Hassanin et al. 2009), the group of animals forming a monophyletic 

clade with Ovibos to the exclusion of Capricornis and Naemorhedus cannot rank as a tribe or 

subtribe. Ovibovini as used in the literature clearly refers to a group that is meant to be a rank 

below the subtribe of Ovibovina and would thus be an infratribe. For sake of clarity, the 

traditional name of the “tribe” Ovibovini is used herein, although it should be noted that the 

current taxonomic classification for the group is inadequate. 

Despite the clarity that genetic evidence has given us about the relationship of the 

muskox within Bovidae, there are many fossils of interest which exceed an age in which aDNA 

is currently able to be extracted. Collectively referred to as the “late Miocene ovibovine like 

bovids,” these various genera from across Eurasia (Tsaidamotherium, Parumiatherium, 

Shaanxispira, Palaeoreas, Criotherium, etc.) are tentatively referred to as belonging to 

Ovibovini, though it is acknowledged that these may just be convergent forms. Many have 

spiraling horns such as those seen in Shaanxispira or Parurmatherium (Solounias 1981; Shi et al. 

2014), or strange horn-core complexes with no known analogs (Shi 2013). Despite enigmatic 

origins, these fossil forms share important characteristics with Ovibos that have been used to 

erect a suite of traits that encompass characters of Ovibovini. These include: (a) short occipital 

condyles that are more deeply attached to the skull, (b) accessory surfaces on the lateral surfaces 

of the occipital condyles, (c) thickening of the basicranium, (d) rugosity/exostosis of the horn 

core plate, (e) semi-hypsodont premolars and molars, (f) robust cervical vertebrae, and (g) a 

stronger attachment of the atlas and cranium (Bohlin 1935; Geraads and Spassov 2008; Shi 2013; 

Shi et al. 2014). Potentially informative is that these characters are all focused on the area of 
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articulation of the atlas and cranium and are widely considered to be likely related to combat 

behavior (Geraads and Spassov 2008; Shi et al 2013). It is known that cervical vertebrae 

characteristics can be correlated with intraspecific combat behavior in artiodactyls (Vander 

Linden and Dumont 2019). Some other ruminants who engage in ramming behavior similar to 

muskoxen (such as Syncerus and Connochaetes) do not possess these same characteristics 

(Geraads and Spassov 2008) and thus it is possible, yet unproven, that these characters may serve 

as useful indicators of the ovibovine clade.  

North American Fossil Muskoxen 
 

Ovibovine fossils are found across the northern hemisphere in Asia, Europe and North 

America (McDonald and Bartlett 1983; Martinez-Navarro et al. 2012). The first known fossil of 

a North American ovibovine was recovered from Big Bone Lick, Kentucky, in the form of a 

partial cranium consisting of the occipital region, horncores, frontals and partial orbits (Wistar 

1818). Though the specimen would later be identified as the helmeted muskox Bootherium 

(Leidy 1852), it initially proved to be of enigmatic origin. Comparisons to the genus Bos were 

made immediately, though Wistar noted major morphological distinctions such as the closeness 

of the horns to the orbits, and distance of horns from the ‘occipital surface,” as well as the 

prominent convexity of the cranium in the horn attachment. This latter character was recognized 

as occurring in goats, sheep and deer, and it was noticed that the horns were not deciduous like 

those of deer (Wistar 1818), and that author suggested the animal must be “closely allied to the 

bison”. This publication did not reference comparisons with modern muskoxen. Subsequent 

work by Richard Harlan would provide a taxonomic name to the cranium, creating Bos 

bombifrons (Harlan 1825). The cranium was contrasted with that of Bison listing many clear 
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differences, and the presence of isolated teeth resembling those of Bos, albeit more robust, 

prompted assignment to the genus Bos when describing the specimen (Harlan 1825).  

A second cranium, from New Madrid, Missouri, was examined in 1828, and was 

recognized as being most similar to a modern muskox (DeKay 1828). Important characters 

indicating this similarity were horns that are both flattened and curved and horncores that are 

parallel to each other and not set at an angle. The presence of a large depression separating the 

horns, which DeKay believed to be a natural appearance and not simply a completely degraded 

frontal, as well as different proportions in the pterygoid region, excluded the specimen from 

being assigned to Ovibos moschatus (DeKay 1828). The specimen was provisionally given the 

name Bos pallasii, and noted as clearly being allied to the extant muskox, but probably distinct 

(DeKay 1828). Joseph Leidy would go on to describe the genus Bootherium in 1852 based on 

characteristics that he felt differentiated it from both Bos and Ovibos. These included: (a) the 

frontal forming prominent processes which give rise to the horn cores, (b) horn cores positioned 

posteriorly and superiorly to the orbits, but well anterior to the inion, (c) horns curve downwards 

and do not recurve dorsally as seen in Ovibos and (d) the presence of well-developed lachrymal 

depressions (Leidy 1852a). While still considered to be a type of ox, and thus allied to bison and 

cattle, Leidy noted that “The genus [Bootherium] occupies a position intermediate to Bos and 

Ovis” (Leidy 1852b p. 12). The genus was split into two species, Bootherium cavifrons (bearing 

a rough exostosis-like process between the horns), and Bootherium bombifrons (bearing a 

smooth surface between the horns) (Leidy 1852a).  

Unfortunately, many of these characteristics would later be realized to be shared with 

Ovibos, and thus the diagnosis for the genus was not actually diagnostic (McDonald and Ray 

1989). The lack of truly diagnostic characters differentiating Bootherium from Ovibos (aside 
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from the latter having horncores that do not meet over the midline of the cranium), as well as a 

failure to adequately understand the anatomy of Ovibos for comparison, would lead to years of 

confusion. Ovibos and Bootherium were sometimes synonymized based on minimal material and 

unverified assumptions (Richardson 1952), and sometimes split despite the support of erroneous 

characteristics (Leidy 1854). New species of Ovibos (Rhoads 1897; Richardson 1952) and 

entirely new genera (Osgood 1905a; Gidley 1906) were erected while trying to wrestle with the 

variation present in a relatively limited fossil sample.  

A major development in North American fossil muskoxen taxonomy was Osgood’s 

(1905a) description of Scaphoceras. This genus name was found to be preoccupied and changed 

to Symbos shortly after by Osgood (1905b). The holotype cranium was mostly complete, and is 

missing only the nasals, one lateral half of the premaxilla, the right premolars and first molar, 

and left 1st molar. Symbos was defined by: (a) horn cores smaller than Ovibos that are less 

compressed at the base and more divergent at the tips, (b) the skull displaying heavy exostosis 

between the horn cores deepest in the medial plane, and with an anterior rim, (c) orbits that 

protrude laterally less than in Ovibos (d) the facial portion of the skull being almost as wide as 

the cranial portion, (e) a basioccipital without a tall median ridge, and (f) large and broad teeth 

with a quadrate m1 and m2 (Osgood 1905a). This specimen was identified with the new species 

Symbos tyrelli, while the Leidy holotype was assigned to Symbos cavifrons on the basis of the 

former being smaller than the latter, with smaller horncores, a deeper but less extensive exostosis 

and a more shallow braincase area (Osgood 1905a). Another genus of Pleistocene North 

American muskox was erected from a partial cranium by Gidley (1906) called Liops, though this 

name was invalid and was eventually replaced by Gidleya (Cossmann 1907). A new species of 

Symbos (S. australis) would also be named from six isolated teeth and non-associated postcrania, 
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although the main character difference was total size (Brown 1908; McDonald and Ray 1989). 

Throughout the 1900s, several new genera and species of North American muskoxen were 

erected based on fragmentary cranial and dental remains with minor variations present between 

them (McDonald and Ray 1989). The species Bootherium nivicolens (Hay 1915), Symbos 

promptus (Hay 1920), Symbos convexifrons (Barbour 1934), Ovibos giganteus (Frick 1937), and 

Bootherium brazosis (Hesse 1942) were all erected from either partial crania with horncore, or 

isolated teeth. Because these species were erected on poor material upon features that are now 

known to be highly variable within the modern muskox Ovibos, there was little consensus over 

which names were valid, which should be synonymized, and based upon which characters 

(McDonald and Ray 1989). 

A hypothesis that had been previously posed but not well received by late 19th century 

and early 20th century researchers was resurrected by Hibbard and Hinds (1960), when they 

suggested that Symbos was the male woodland muskox (one of the common names attributed to 

the Bootherium/Symbos group), while Bootherium was the female form. The authors pointed to 

the fact that all known Symbos described in the literature were believed to be male individuals 

and found that scenario unlikely (Hibbard and Hinds 1960). Subsequent opinions varied from 

keeping Symbos and Bootherium split (Harington 1961), to agreement with synonomy 

(Harington 1977; Nelson and Madsen 1987), and even the hypothesis that only some Bootherium 

species were female Symbos (Semken et al. 1964). Discussion and comparison would eventually 

lead to McDonald and Ray’s (1989) publication wherein the genera Bootherium, Symbos, and 

Gidleya (the remaining “valid” names of the time) and their species were examined in detail. 

Characters including lacrimal fossa depth, horncore morphology, and absolute size were 
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examined, as well as the purportedly important character of Osgood (1905a), the degree of 

flexion between the basioccipital and basisphenoid (McDonald and Ray 1989).  

Lacrimal fossa depth was found to be highly variable between individuals, but the fossa 

tended to be both more defined and larger in Symbos when compared to Bootherium (McDonald 

and Ray 1989). Differences in horn core morphology between the two taxa were attributed to 

sexual dimorphism of a higher degree than exhibited in Ovibos, and it was noted that greater 

sexual dimorphism in horn cores was present in some Pleistocene taxa when compared to their 

Holocene relatives (McDonald and Ray 1989).  Differences in absolute size of Symbos and 

Bootherium were compared with those seen in male and female Ovibos, and it was concluded 

that the proportional differences were within the realm of modern muskoxen sexual dimorphism 

for the fossil forms (McDonald and Ray 1989). The angle of flexion between the planes of the 

basioccipital and basisphenoid had been noted to be potentially significant by Osgood in 1905. 

McDonald and Ray tested this by measuring these angles in individuals of both woodland 

muskox and female and male Ovibos. Their results suggested that the angles were correlated 

with age and sex in modern muskox, and that these trends were congruent with Symbos being the 

male form of Bootherium (McDonald and Ray 1989). In addition to laying out a strong and 

consistent case for synonymizing the genera into Bootherium, the authors suggested that 

continuous variation observed within the genus served as evidence that there should only be one 

species of North American woodland muskox, B. bombifrons (McDonald and Ray 1989). 

Subsequent publications have largely accepted this conclusion (Richards and McDonald 1991; 

Guthrie 1992).  

 Additional North American muskoxen that are worth noting include Euceratherium, 

Soergelia, and Praeovibos (Kurtén and Anderson 1980). Euceratherium’s known distribution is 
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limited to the western United States (Kurténn and Anderson 1980; Feranec 2009), and their horn 

cores are characteristically large and forward-curving (Stoval 1937; Kurtén and Anderson 1980). 

Soergelia is known from sites in Eurasia and North America (Stock and Furlong 1927; 

Kolfschoten and Vervoort-Kerkhoff 1999; Cregut-Bonnoure and Dimitrijevic 2006), and are 

characterized by a size even larger than that of Euceratherium (Kurtén and Anderson 1980) and 

a diagnostic “open v” horn core shape (Guthrie 1992). Given their large size and distinct horn 

morphology, both Euceratherium and Soergelia are easily distinguished from Bootherium and 

Ovibos if reported from cranial material, especially that of the posterior crania and horn sheath 

attachment area. The presence of either genera at Saltville would invoke significant range 

extension and their inclusion within the Saltville paleofauna seems unlikely at this time.  

Praeovibos is another genus of Pleistocene muskox, that like Soergelia, was primarily 

distributed in Europe and Asia (Mol and Reumer 1999). Additionally, specimens have been 

recovered from North America, but are limited to Alaska (Mol and Reumer 1999; Campos et al. 

2010). This ovibovine is differentiated from the morphologically similar Ovibos through the 

former’s larger size and less flattened horncore bases (Mol and Reumer 1999; Gentry 2000). 

Recent genetic analysis of North American muskoxen genera resulted in a phylogenetic tree 

which placed the four successfully sampled Praeovibos entirely within the diversity observed in 

ancient Ovibos (Campos et al. 2010). Because of these results and the lack of definitive 

characteristics distinguishing the two genera, the authors concluded that Praeovibos may be an 

earlier, more generalized morphotype of Ovibos (Campos et al. 2010). Due to the combination of 

recent doubt of the genus’ validity and the exclusively Beringian distribution within North 

America, it seems extremely unlikely that Praeovibos would be present within the Saltville 

paleofauna.  
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The advent of ancient DNA analysis techniques has been somewhat unsuccessful for 

revealing relationships between Pleistocene fossil muskoxen. The aforementioned examination 

of four of the five “valid” Pleistocene muskox genera (Ovibos, Bootherium, Euceratherium, and 

Praeovibos) resulted in a phylogeny that supported a close association between Praeovibos and 

Ovibos where the former fell completely within the diversity of the latter, with the authors 

interpreting this as good reason to conclude that Praeovibos is actually just a more ancient 

morphotype of Ovibos (Campos et al. 2010). This interpretation is bolstered by the known lack 

of genetic diversity of modern Ovibos (Groves and Shields 1997; MacPhee and Greenwood, 

2007). Additionally, the aDNA and protein analyses of Campos and colleagues (2010) supported 

a clade where Bootherium and Euceratherium were more closely related to each other than other 

muskox taxa. This was not supported by a subsequent study of Bootherium and Ovibos complete 

mitochondrial genomes by West (2016), who recovered the two taxa as sister groups, though 

notably did not include other fossil muskoxen in the analysis. A follow up mitochondrial genome 

analysis tested seven Bootherium/Symbos samples and one Euceratherium sample against other 

Caprini species and once again recovered Bootherium and Ovibos as sister taxa (Bover et al. 

2018). Importantly, the analyses of Bover and colleagues (2018) demonstrated a strong 

molecular similarity between Bootherium and Symbos and agreed with their synonomization into 

Bootherium. Although this analysis resulted in maximum support for an Ovibos and Bootherium 

clade, the Euceratherium sample failed to produce aDNA, and could not be analyzed (Bover et 

al. 2018). The authors tested the Euceratherium sequence fragment from the Campos et al. 

(2010) study, and found it to fall within their own Bootherium diversity with only one nucleotide 

difference between the 78 base pairs (Bover et al, 2018). This was interpreted to mean that the 

identity of the 2010 Euceratherium sample (which came from a coprolite) was in question, as it 

84



was plausible that this could have been a misidentified Bootherium coprolite (Bover et al. 2018). 

While attempts to use molecular analyses to inform relationships between the ovibovines have 

met with both success and failure, a larger and more comprehensive sample of muskoxen ancient 

DNA must be collected and analyzed to improve phylogenetic resolution. 

The Saltville Muskoxen 
 
 Fossil remains of muskoxen from Saltville have been reported in the literature since 

1967, when Ray and colleagues (1967) published on a pair of muskox crania, one attributed to 

Bootherium and one to Symbos. In 1980, associated postcranial material attributed to at least one 

Pleistocene ovibovine was recovered from SV-1, and included much of the axial skeleton, a 

scapula, and fragments of the limb elements (McDonald and Bartlett 1983). The material was 

well preserved, but the scarcity of published muskoxen postcranial descriptions limited the 

identification of the material to ovibovine, based on the wide spacing of alar foramina, and the 

ventral ridge on the caudal margins of the articular surfaces of the vertebrae (McDonald and 

Bartlett 1983). The authors noted that the fossils were likely either Symbos or Bootherium 

(McDonald and Bartlett 1983) due to their previous identification in the Saltville paleofaunal 

community, although it was noted that the atlas was missing the surfaces that articulate with the 

accessory condyles seen in at least one Ovibos (McDonald and Bartlett 1983). Skeletal elements 

of USNM-M-261802, the male modern Ovibos which was used for comparison, were reported as 

smaller and less robust than those of the fossil specimen (McDonald and Bartlett 1983). Despite 

the larger size of the fossil specimen, it was noted that the vertebral foramina were proportionally 

and sometimes absolutely smaller than those in the Ovibos USNM-M-261802 (McDonald and 

Bartlett 1983).  
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 Fossil muskoxen from Saltville are curated at a number of museums. The United States 

National Museum of Natural History (USNM) paleobiology collection houses material from 

Saltville, including two partial crania and at least two isolated teeth representing muskoxen 

material. The Virginia Museum of Natural History (VMNH) collection also contains fossil 

ovibovine material collected from Saltville, including an abundance of isolated teeth, a partial 

cranium, and the material recovered by McDonald and Bartlett (1983). The East Tennessee 

Museum of Natural History (ETMNH) collections contains Saltville specimens tentatively 

identified as “musk ox?” or ovibovine. This includes isolated postcrania, an isolated tooth 

(ETMNH 19793), and an associated series of 3 cheek teeth (ETMNH 15423). Due to the 

fragmentary or isolated nature of most of the muskox material from Saltville, generic 

identification is currently unclear. 

While Euceratherium and Soergelia are not known from the eastern United States, both 

Bootherium and Ovibos have been recovered as fossils. Despite a broad overlap in the 

geographical range of the two genera in North America, Ovibos does not extend as far into the 

southern or southeastern United States (Nelson and Madsen 1978; McDonald and Davis 1989). 

Importantly, Ovibos is currently, and has in the past been associated with areas of perennially 

frozen ground (i.e., permafrost) during the Wisconsin glaciation (McDonald and Davis 1989). 

The traditional interpretation of the environmental conditions of the Saltville fossil sites is that of 

a periglacial environment with boreal forests or spruce parklands in the lowlands where the 

fossils are found, and alpine environments at the higher elevations (Ray et al. 1967; Delcourt and 

Delcourt 1988). Recent studies have suggested that, at times, the alpine permafrost may have 

extended far down into the Southern Appalachians and the Saltville sites (French and Millar 

2014), and that periglacial conditions are supported for this area, and north for the Appalachian 
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Mountains (Clark and Ciolkosz 1988, Nelson et al. 2007). Given this association, Ovibos 

becomes a reasonable potential candidate for the identification of Saltville muskoxen specimens.  

While indeterminate ovibovine fossils have been recovered from Nashville, Tennessee 

(Guilday 1977), the southernmost confirmed Ovibos materials are currently far to the northwest 

of Saltville. While unfigured and undescribed teeth attributed to Ovibos sp. have been reported 

from Big Bone Lick State Park in northern Kentucky (Schultz et al. 1963), the southernmost, 

well-documented occurrence of Ovibos is a partial cranium from Hamilton County, Ohio 

(McDonald and Davis 1989). The Nashville muskox occurrence references the First American 

Bank Cave locality, with a publication that identifies a lone phalanx as “Musk Ox? — 

Ovibovini?” (Guilday 1977).  

 While ovibovine material from Saltville is curated in a number museums, many of the 

fossils are postcrania or isolated teeth and have thus been only tentatively identified and remain 

undescribed and unpublished. There is a major deficit of postcranial skeletal anatomy of extinct 

and extant ovibovines in the scientific literature, although descriptions of fragmentary cranial 

material are relatively common. This study focuses on the cranial and dental anatomy of muskox 

remains, with the goal of refining differential diagnoses of isolated Bootherium and Ovibos 

elements. If that goal is achieved, then assessing the identification of ovibovine material from 

Saltville should be possible. 

Methods 
 

Eight modern Ovibos skulls (crania and associated mandibles) were analyzed along with 

eight extinct muskox partial crania, and ten specimens that were isolated teeth or fragmentary 

mandibles with teeth were measured. Additionally, 12 previously measured and published fossil 

teeth from Richards and McDonald (1991) were incorporated into the dataset, as well as digital 
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measurements of 10 figured muskox skulls (nine fossil and one modern) from the literature. The 

full dataset thus consists of measurements of eight modern Ovibos crania, 18 fossil muskox 

crania, 22 isolated fossil teeth, and a partial fossil mandible with four teeth 

 Modern Ovibos specimens from the USNM mammalogy collections were chosen to 

reflect specimen completeness and biological and morphological diversity within the sample 

population. Four males, three females, and one specimen of unknown sex were selected for 

measurement. All but one specimen retained horn sheaths, and specimens represent a variety of 

adult ages based on tooth wear. Additionally, specimens of different sizes were selected to better 

reflect size-related morphological changes. 

 Extinct muskoxen identified as Bootherium, Symbos, and ovibovine indet. were selected 

for analysis based on availability of material. Specimens from the USNM, VMNH and ETMNH 

were examined. To avoid possible complications due to ontogeny, juvenile specimens were 

avoided when collecting measurements from physical specimens and from specimens reported in 

the literature. These specimens included eight partial crania, one partial palate, a partial left 

mandible, and multiple isolated teeth. Measured specimens from Richards and McDonald (1991) 

were incorporated into the dataset as well, which consisted of two partial crania and twelve teeth. 

Measurements reflect the goal of recovering as much overlapping morphological 

information as possible between complete modern skulls and fragmentary fossil remains. Linear 

measurements were collected using both a small and large set of Fowler digital calipers, as 

appropriate for the distance being measured. Angular measurements were collected using a Cen-

Tech goniometer. All measurements (Table 4.1) were replicated twice and averaged for analysis. 

The primary source of measurements for this analysis was von den Driesch (1976) with the 

majority of measurements from the Bos cranial measurements section. This was the source for 
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listed measurements unless specified otherwise. These were preferred over the Ovis/Capra 

measurements due to the convergent nature and similar size of Ovibos and Bos skulls, and the 

similarity of the positions of the horns on the skull. Other measurements were created as needed 

with the goal of capturing potentially significant data, including linear distances and angles. 

Where appropriate, left and right-side measurements were collected separately.  

The measurements denoted as digital were collected using the Linux distribution of 

imageJ image analysis software, ImageJ 1.53c (Schneider et al. 2012). A digital scale was set 

using a photographic scale included in the photograph, and then distances were measured by 

plotting a line and measuring its distance based on the scale. While the scale was set below the 

plane of features being measured, these measurements themselves were on the same plane and 

were examined exclusively as ratios with each other. Thus, while the raw measurements 

themselves may be slightly inaccurate, the unitless ratios should remain an accurate 

representation of anatomical trends. Measurements are detailed in Table 10 and illustrated in 

Figs. 17, 18, 19, 20 and 21. The measurements are listed along with the exact definition of the 

measurement.  
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Table 10. Muskoxen Measurements. Names and Descriptions of Measurements Provided.  

1 Distance from prosthion (anteriormost tip of nasal bone) to 
akrokranion (posteriormost point on the vertex of the cranium). 

2 Distance from prosthion to posteriormost extent of occipital 
condyle. 

3 Distance from prosthion to the basion (anterior-most margin of the 
foramen magnum). 

4 Distance from the premolare (median point of line connecting the 
anteriormost points of the premolar alveoli) to the basion. 

7 From the nasion (median point of the nasal/frontal suture) to the 
prosthion. 

16 Distance from infraorbitale (most posterior point of infraorbital 
foramen) to prosthion. Measured both left and right. 

20 Total length of cheektooth (premolars and molars) row. Measured 
both left and right. 

21 Total length of molars row, from anterior alveoli to posterior alveoli. 
Measured both left and right. 

22 Total length of premolars row, from the anterior alveoli to the 
posterior alveoli. Measured both left and right. 

25 Greatest mastoid breadth. Measured from otion to otion. 
26 Greatest breadth of the occipital condyles, including ovibovine 

accessory surface. 
26A 
New 

measurement 

Greatest breadth of standard articular surface only of occipital 
condyles (does not include ovibovine accessory surfaces). 

27 Greatest breadth at the bases of the paraoccipital processes. 
28 Greatest breadth of the foramen magnum. 
31 Least breadth between the horn sheaths in Ovibos. Least breadth 

between the horn cores in extinct ovibovines. 
32 Minimum breadth of postorbital constriction. 
33* Least breadth across the dorsal surface of the orbit. 

33A** Breadth across midpoint of ventral surface of orbit. 
34 Breadth immediately anterior to orbits. 
35 Breadth across the facial tuberosities. 

37G*** Greatest breadth across the premaxillae. 
38 Greatest breadth across palate, measured from the labial surfaces of 

the toothrows. 
42 Breadth between tips of the hornsheaths in Ovibos, and between the 

horncore tips in extinct ovibovines. 
43 Maximum lateral breadth between horncores. 
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45 Dorso-ventral height of the horn sheath at base of horn for Ovibos. 
Dorso-ventral height of horn core at the base of horn for extinct 

muskoxen. 

46 Maximum antero-posterior breadth of horn sheath at the base of the 
horn in Ovibos. Maximum antero-posterior breadth of the horn core 

at the base of the horn in extinct muskoxen. 
Angle 1 (From 
McDonald and 

Ray, 1989) 

The angle of flexion between the basioccipital and basisphenoid. 

Angle 2 The angle formed by the intersection of the planes of the parietals 
and the occipital of the skull. Measured at the midline of the vertex 

of the skull. 
Occlusal 

Breadth (OB) 
The maximum breadth across the tooth (from labial to lingual 

surface) at the occlusal margin of the crown. 
Occlusal 

Length (OL) 
The maximum length of the tooth (from the anterior surface to 

posterior surface) at the occlusal margin of the crown. 
Midcrown 

Breadth (BB 
The maximum breadth across the tooth (from labial surface to 
lingual surface), at the basalmost available portion of tooth. 

Midcrown 
Length (BL) 

The maximum length of the tooth (from anterior face to posterior 
face), at the basalmost available portion of tooth. 

Crown Height 
(CH) 

The maximum height of the crown of the tooth, measured when the 
root was accessible. 

Mandibular 
Height (MH) 

The maximum height of the crown from the surface of the maxilla 
or mandible, measured when the tooth is in place in the jaw, and the 

root is inaccessible. 
Posterior 

Orbital Breadth 
(New 

Measurment) 

Breadth between the lateral most margins of the posterior edge of 
the protrusion of the orbits, measured from dorsal view. 

Posterior Skull 
Length 
(New 

Measurement) 

Distance from the midpoint of the “Orbital Breadth Index,” to the 
occipital crest, measured from dorsal view. 

*Measurement 33 Presented Here is a Different Measurement from von den Driesch’s (1976)

measurement 33 

**Measurement is a Newly Proposed Measurement for Use with Muskoxen Crania 

***Measurement 37G is the Same as 38 for Ovis from von den Driesch (1976) 
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Figure 17. Collected measurements, dorsal view. USNM 291029 

  

Figure 18. Collected measurements, ventral view. USNM 291029 
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Figure 19. Collected measurements, left lateral view. USNM 399993 

 

Figure 20. Collected measurements, posterior view. USNM 291029 
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Figure 21. Digital measurements from photographed and published skulls. The horizontal black 

line represents the Posterior Margin of the Orbits Breadth measurement. The vertical gray line 

represents the Posterior Skull Length measurement. USNM 291029, dorsal view 

 

 Measurements were scatterplotted in Microsoft Excel. Combinations of Ovibos and 

Bootherium measurements were plotted against each other with the goal of determining whether 

the measurements could be used to tell the genera apart. The mean and standard deviation were 

calculated in Microsoft Excel for promising measurements that were compared. Two sample F-

tests were performed for selected measurements to compare the variances between the fossil 

sample and the Ovibos sample. If the variances were equal, a homoscedastic two samples T-test 

was performed, and if variances were unequal between the two samples a heteroscedastic two 

samples T-test was utilized.  
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Table 11. Muskox Specimen List. Specimens Included in Analysis, With Source of Measurements and Comments. Cranial Specimens 

from Nelson and Madsen (1987), McDonald and Ray (1989), and Richards and McDonald (1991). Identifications Here are Based on 

the Labels in Collections or Referenced Literature 

 
 

Specimen Prior 
Identification 

Group Sex Locality Data Source Comments 

USNM 291202 Ovibos m. wardi Modern Ovibos Male Cornwallis, NW 
Territories, Canada 

This Study Skull 

USNM 291025 Ovibos 
moschatus 

Modern Ovibos Female Prince Patrick Island, 
NW Territories, Canada 

This Study Skull 

USNM 291029 Ovibos m. wardi Modern Ovibos Female Prince Patrick Island, 
NW Territories, Canada 

This Study Skull 

USNM 256969 Ovibos 
moschatus 

Modern Ovibos Female Locality Unknown This Study Skull 

USNM 252504 Ovibos m. wardi Modern Ovibos Male Locality Unknown This Study Skull 

USNM 275099 Ovibos m. wardi Modern Ovibos Male Devon Island, NW 
Territories, Canada 

This Study Skull 

USNM 108722 Ovibos m. 
moschatus 

Modern Ovibos Male Hudson Bay, NW 
Territories, Canada 

This Study Skull 

USNM 399993 Ovibos m. wardi Modern Ovibos Female Franklin District, NW 
Territories, Canada 

This Study Skull 
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USNM V 13696 Symbos cavifrons Fossil unknown Sex 
Unknown 

American Falls, Idaho, 
United States 

This Study Isolated palate 
with teeth 

USNM V 8574 Bootherium 
bombifrons 

Fossil Male Male Union Township, 
Indiana, United States 

This Study Partial male 
cranium 

USNM V 2556 Symbos tyrelli Fossil Bootherium Male Klondike River, 
Dawson Area, Yukon, 
Canada 

This Study Partial male 
cranium 

USNM V 23488 Bootherium 
sargenti 

Fossil Bootherium Female Mooreland Swamp, 
Grand Rapids, 
Michigan, United 
States 

This Study Partial 
cranium, cast, 
Bootherium 
sargenti 
holotype 

USNM V 
372807 

Symbos cavifrons Fossil Bootherium Male Alaska, United States This Study Male partial 
cranium 

USNM V 
215066 

Bootherium 
bombifrons 

Fossil Bootherium Female Big Bone Lick, 
Kentucky, United 
States 

This Study Partial 
cranium, cast, 
Bootherium 
bombifrons 
holotype 

USNM V 23577 Symbos cavifrons Fossil Bootherium Male Saltville, Virginia, 
United States 

This Study Partial male 
cranium 

USNM V 23264 Bootherium Fossil Bootherium Female Saltville, Virginia, 
United States 

This Study Female partial 
cranium 

USNM V 
437774 

Bootherium 
bombifrons 

Fossil unknown Sex 
Unknown 

New Bern, North 
Carolina, United States 

This Study Isolated m3 
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USNM V 
533996 

Bootherium Fossil unknown Sex 
Unknown 

Horry County, South 
Carolina, United States 

This Study Isolated M3 

USNM V 23787 Symbos sp. Fossil unknown Sex 
Unknown 

In Ocean, 40 miles NE 
of Cape Charles, 
Virginia, United States 

This Study Partial 
mandible with 
p4-m3 

USNM V 
636245 

Unknown Fossil unknown Sex 
Unknown 

Saltville, Virginia, 
United States 

This Study (Voucher 
Specimen) 
Isolated M2 

ETMNH 15423 Ovibovine indet. Fossil unknown Sex 
Unknown 

Saltville, Virginia, 
United States 

This Study Isolated P4-M2 

King Leo LP4 Bootherium Fossil unknown Sex 
Unknown 

King Leo Pit Cave, 
Harrison County, 
Indiana, United States 

Richards and 
McDonald, 1991 

Associated 
with other teeth 

King Leo RP4A Bootherium Fossil unknown Sex 
Unknown 

King Leo Pit Cave, 
Harrison County, 
Indiana, United States 

Richards and 
McDonald, 1991 

Associated 
with other teeth 

King Leo RP4B Bootherium Fossil unknown Sex 
Unknown 

King Leo Pit Cave, 
Harrison County, 
Indiana, United States 

Richards and 
McDonald, 1991 

Associated 
with other teeth 

King Leo RM2 Bootherium Fossil unknown Sex 
Unknown 

King Leo Pit Cave, 
Harrison County, 
Indiana, United States 

Richards and 
McDonald, 1991 

Associated 
with other teeth 

King Leo RM3 Bootherium Fossil unknown Sex 
Unknown 

King Leo Pit Cave, 
Harrison County, 
Indiana, United States 

Richards and 
McDonald, 1991 

Associated 
with other teeth 
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King Leo Lp2 Bootherium Fossil unknown Sex 
Unknown 

King Leo Pit Cave, 
Harrison County, 
Indiana, United States 

Richards and 
McDonald, 1991 

Associated 
with other teeth 

King Leo Rp2 Bootherium Fossil unknown Sex 
Unknown 

King Leo Pit Cave, 
Harrison County, 
Indiana, United States 

Richards and 
McDonald, 1991 

Associated 
with other teeth 

King Leo Lp3 Bootherium Fossil unknown Sex 
Unknown 

King Leo Pit Cave, 
Harrison County, 
Indiana, United States 

Richards and 
McDonald, 1991 

Associated 
with other teeth 

King Leo Lm1 Bootherium Fossil unknown Sex 
Unknown 

King Leo Pit Cave, 
Harrison County, 
Indiana, United States 

Richards and 
McDonald, 1991 

Associated 
with other teeth 

King Leo Lm2 Bootherium Fossil unknown Sex 
Unknown 

King Leo Pit Cave, 
Harrison County, 
Indiana, United States 

Richards and 
McDonald, 1991 

Associated 
with other teeth 

King Leo Rm2 Bootherium Fossil unknown Sex 
Unknown 

King Leo Pit Cave, 
Harrison County, 
Indiana, United States 

Richards and 
McDonald, 1991 

Associated 
with other teeth 

King Leo Rm3 Bootherium sp. Fossil unknown Sex 
Unknown 

King Leo Pit Cave, 
Harrison County, 
Indiana, United States 

Richards and 
McDonald, 1991 

Associated 
with other teeth 

INSM 71.3.70 Bootherium sp. Fossil Bootherium Male Silver Creek Sand and 
Gravel Quarry, 
Clarksville, Indiana, 
United States 

Richards and 
McDonald, 1991 

Partial cranium 

“MSP” Bootherium sp. Fossil Bootherium Male Madison County, Richards and Partial cranium 
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Bootherium Indiana, United States McDonald, 1991 

AMNH F:AM 
A-204-4254 

Symbos sp. Fossil Bootherium Male Little Eldorado Creek, 
Alaska, United States 

McDonald and 
Ray, 1989 

Partial cranium 

UUVP 8540 Symbos cavifrons Fossil Bootherium Male Unknown Nelson and 
Madsen, 1987 

Cranium 

USNM 2555 Scaphoceros Fossil Bootherium Male Bonanza Creek, Yukon, 
Canada 

McDonald and 
Ray, 1989 

Cranium 

USNM 2324 Bootherium 
nivicolens 

Fossil Bootherium Female Escholtz Bay, Alaska, 
United States 

McDonald and 
Ray, 1989 

Partial cranium 

USNM 347315 Bootherium Fossil Bootherium Female Oregon Inlet, Dare 
County, North 
Carolina, United States 

McDonald and 
Ray, 1989 

Partial cranium 

AMNH F:AM 
33124 

Symbos cavifrons Fossil Bootherium Male Upper Cleary Creek, 
Alaska, United States 

McDonald and 
Ray, 1989 

Cranium 

AK Fish and 
Game Skull 

Ovibos Fossil Ovibos Male Unknown Nelson and 
Madsen, 1987 

Partial cranium 

USNM 291028 Ovibos Modern Ovibos Male Prince Patrick Island, 
NW Territories, Canada 

McDonald and 
Ray, 1989 

Cranium 
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Results 

Cranial Measurements 
 

Comparison of cranial characteristics was limited by the large number of fragmentary 

skulls available during the data collection process, which reflects the usual state of preservation 

of fossil muskox crania. Fortuitously, many of the fragmentary remains did have some 

overlapping, commonly preserved characters, including the foramen magnum, occipital condyles 

and the accessory surfaces of the occipital condyles. Unfortunately, these characters did not 

generally prove useful in differentiating the muskox genera with the collected measurements. 

When the measurements were plotted against each other in scatterplots, the result was often two 

loose groupings that overlapped with each other to varying degrees.  

All specimens examined had enough of the horn core region present to determine an 

identification based on the work of McDonald and Ray (1989). When possible, their 

identifications of specimens were used, and the identifications of other specimens were 

reassessed. Based on horn core morphology of the specimens, one fossil muskox (Alaska Fish 

and Game Skull) was attributed to Ovibos in agreement with the source for that specimen 

(Nelson and Madsen 1987). All other fossil skulls and partial crania in this analysis were 

determined to belong to the genus Bootherium. The full specimen list can be found in Table 11. 

Means and sample sizes for select cranial measurements are provided in Table 12. 

Definitive separation between Ovibos and Bootherium crania was achieved by plotting 

the breadth across the occipital condyles (26) against the minimum breadth of the postorbital 

constriction (32) (Fig. 22). This resulted in a clear pattern of two linear groupings. The minimum 

breadth of the postorbital constriction was similar between genera, with the Bootherium range 

completely encompassing the range seen in modern Ovibos. F-test results (Table 13) suggested 
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that the measurements had equal variances. The difference then, is present in larger Bootherium 

occipital condyle breadth.  This was supported by the T test results confirming a difference in 

means between the occipital condyle breadth of the two groups (p = .0002), but not the 

postorbital constriction (p = .9313). Due to the difference in occipital condyles breadth, 

comparisons using this character are deemed useful for potentially distinguishing between 

Ovibos and fossil muskoxen like Bootherium. Similar, but less-striking results were achieved 

when comparing the breadth of the occipital condyles against foramen magnum breadth. Other 

comparisons of width measurements against width measurements (not including the occipital 

condyle breadth) resulted in mostly overlapping clusters. 

 

Figure 22. Comparison of measurements 26 and 32. Occipital condyle breadth (26) and postorbital 

constriction breadth (32) for modern Ovibos and fossil muskoxen previously identified as 

Bootherium 

 
There is probably some significance to the data suggesting that the postorbital 

constriction in Bootherium is roughly the same width as seen in Ovibos. Although measurements 

were possible on extinct muskoxen missing their horn sheaths, it was more difficult to acquire 
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with calipers on modern Ovibos that retained horn sheaths. This was due to the manner in which 

the horn sheath spreads out over the skull in the modern muskox (as well as the more immediate 

downward path of the horns), thus making it difficult to position the calipers closely around the 

postorbital constriction. While it seems the current attempt to replicate this measurement in 

modern muskox specimens was flawed, these data were still recorded for specimens where it 

could be measured, obstructions preventing measurement on only two males. Because of the 

inaccurate nature of this measurement, another, more universal alternative to distinguish the 

crania of Bootherium and Ovibos was sought. 

The similarity in the breadth of the posterior portion of the skull between Bootherium and 

Ovibos (proxy being postorbital constriction) warranted investigation into the claims that Ovibos 

orbits projected farther than those of Bootherium (Osgood 1905a). An index of orbital protrusion 

was created by measuring the breadth across the posterior margin of the lateral edge of the orbit, 

and then measuring the distance from the midline of that breadth to the posteriormost portion of 

the cranium to create a ratio. While not ideal as a proxy for skull width due to the character 

potentially being so variable on its own, this measurement and the subsequent posterior skull 

length measurement, were easily taken on a variety of modern and fossil muskox skulls from the 

literature using imageJ software.  

Both measurements, and their ratio of posterior orbital breadth/posterior skull length were 

subjected to F-test and t-tests. The breadth across the orbits were supported as having equal 

variance, but a significant difference between the means between Ovibos and the fossil 

specimens was supported (p = .0005). An F-test supported the hypothesis of unequal variance 

between groups in posterior skull length (p = .0453), although the t-test resulted in no support for 

differences between the two groups (p = .8536). When the ratio was analyzed a difference in 
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variances was not supported, while a difference between the means of the two groups was 

strongly supported (p = .0000).  

 

Table 12. Cranial Measurement Means and Sample Sizes. Comparison of Select Ovibos and 

Fossil Muskox Cranial Measurements with Means and Standard Deviations.  

Measurement Ovibos Mean 
(Std Dev) 

Ovibos 
Sample Size 

Fossil Mean 
(Std Dev) 

Fossil 
Sample Size 

Posterior Orbital Breadth 257.16 (42.00) 

10 

200.57 
(26.25) 

13 
Posterior Skull Length 168.98 (39.44) 171.56 

(21.39) 
Cranial Ratio 1.55 (0.21) 1.17 (0.13) 

Postorbital Constriction 
Breadth (32) 120.18 (11.00) 6 120.91 

(18.24) 9 

Occipital Condyle Breadth 
(26) 114.48 (11.94) 8 144.48 

(10.39) 7 

 

Table 13. Cranial Measurement Statistical Test Results. Statistical Test Values for Cranial 

Comparisons of Ovibos and Fossil Sample Groups. Bolded Results Indicate Statistical 

Significance. 

Measurement F-test (Probability) T-test (Probability) 
Posterior Orbital 

Breadth 
0.1209 0.0005 

Posterior Skull Length 0.0453 0.8536 
Cranial Ratio 0.1217 0.0000 

Postorbital 
Constriction Breadth 

(32) 
0.2804 0.9313 

Occipital Condyle 
Breadth (26) 0.7500 0.0002 
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These analyses demonstrate proportional differences between the skulls of Ovibos and 

the Bootherium examined here. It has previously been claimed (Osgood 1905a) without 

statistical support that the orbits of Ovibos protrude more than those of Bootherium, and these 

results confirm that observation. Unequal variances between the two samples were not supported 

(p = .1217), while a difference in the means between the two groups was supported (p = .0000). 

The median of the Bootherium group lies entirely outside of the range of the Ovibos group (Fig. 

23), while the median of the Ovibos group lies entirely outside the range of the Bootherium 

group. This suggests a real difference in the distribution of the groups and supports the 

observation that the values of the cranial elongation ratio are different between the genera.  

 

 

Figure 23. Comparison of cranial elongation ratio. Posterior margin of orbits breadth / posterior 
skull length for both Ovibos and Bootherium in this study 
 

Comparison of the posterior skull length measurement to the occipital condyle breadth 

was also performed. Because it has long been demonstrated that occipital condyle width is well 

correlated with body mass in mammals (Martin 1980), this measurement may provide a better 
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alternative for cranial width than the breadth at the posterior margin of the orbits. As mentioned 

earlier, the posterior skull length was found to have a different level of variance in the modern 

and fossil groups, but not a significant difference between the means. The occipital condyle 

breadth was not supported as having a different level of variance between the groups but was 

supported as having a statistically significant difference in the means (p = 0.0002). These data 

support the notion that Bootherium had a greater breadth across the occipital condyles, but not 

necessarily greater length of the posterior portion of the cranium. This comparison suggests that 

Bootherium is a larger animal than Ovibos based on the larger occipital condyle breadth (Martin 

1980) of the former, although a small sample of Bootherium crania with preserved occipital 

condyles impacts the confidence of this assessment.  

A comparison between male and female skulls of the genera (Fig. 24) revealed no 

absolute trends. In both muskox genera, males tended to have longer posterior portions of the 

skull than females. This was apparent in Ovibos, though this genus also had a smaller female 

sample size. In both cases however, there were large females whose posterior portions of the 

skull were almost as long as those of the largest males. A larger sample size may be needed to 

assess the level of variation and patterns of this measurement between the sexes of both 

muskoxen, but the conservative interpretation is that posterior skull length is not correlated with 

sex in either genus. If present, horn sheath or horn core morphology can be used to distinguish 

female from male in adult muskoxen. Male Ovibos and Bootherium each have thicker, larger 

horns whose medial margins are closer together than in females, or fuse medially in the case of 

the latter, in the center of the skull (Allen 1913; McDonald and Ray 1989).  
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Figure 24. Comparison of posterior margin of orbits breadth and posterior skull length. 
Comparison of posterior margin of orbits breadth and the posterior skull length for both male and 
female modern Ovibos and Bootherium (=Symbos) in this study 
 
 

 
Figure 25. Comparison of occipital condyle breadth and posterior skull length. Comparison of 
occipital condyle breadth (26) and posterior skull length for modern Ovibos and fossil muskoxen 
in this study 
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Tooth Measurements 
 

Tooth measurements proved to be provisionally useful in distinguishing between the 

muskox teeth, and thus more useful for identification than the cranial measurements that were 

collected. When comparing molars, fossil teeth were proportionally wider than modern Ovibos 

teeth when basal length (BL) was plotted against basal breadth (BB). This trend was apparent in 

all molars to some degree and includes both upper and lower molars. Though this trend is 

consistent within the dataset (Tables 14 and 15), the number of modern comparative Ovibos 

individuals is still low, and it is possible that this sample may not accurately reflect the 

morphological variation present in Ovibos teeth. Moreover, it is possible that the addition of 

more fossil teeth would cause disruptions in these patterns if added teeth represented taxa new to 

the analysis, or if the current sample of fossil muskox teeth does not adequately capture the total 

variability of represented taxa.  

 A small sample of premolars previously measured and identified as Bootherium 

bombifrons were available for comparison, from the King Leo Pit Cave (Harrison County, 

Indiana) sample of Richards and McDonald (1991). When the basal lengths of the teeth were 

plotted against the basal breadth, there was no proportional difference supported between 

Bootherium and Ovibos premolars. However, the upper fourth premolar, and the lower second, 

third, and fourth premolars of these Bootherium all plotted as distinct from Ovibos in size, as 

they were much larger in the former. Separation was less pronounced in the upper fourth 

premolar than in the lower teeth, but all plotted Bootherium premolars seemed to follow the trend 

of being roughly the same proportions, but larger in overall size. The upper second and third 

premolars of Bootherium were not readily available during the process of data collection, and 

thus are not compared to those of Ovibos.  
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Table 14. Dental Measurement Means and Sample Sizes. Comparison of Ovibos and Fossil 

Muskox Dental Measurements with Means and Standard Deviations.  

Tooth Measurement Modern Ovibos 
Mean (Std Dev) 

Modern 
Ovibos 

Sample Size 

Fossil Unknown 
Mean (Std Dev) 

Fossil 
Unknown 

Sample Size 

M1 
Length 19.03 (2.40) 

16 
22.54 (3.18) 

2 Breadth 20.21 (1.00) 25.90 (3.07) 
B/L Ratio 1.08 (0.14) 1.14 (0.01) 

M2 

Length 27.32 (3.81) 

16 

30.04 (1.17) 

4 Breadth 20.74 (2.09) 29.41 (1.39) 

B/L Ratio 0.78 (0.16) 0.98 (0.08) 

M3 
Length 33.66 (1.37) 

16 
39.20 (2.59) 

4 Breadth 18.13 (1.93) 29.65 (4.27) 
B/L Ratio 0.54 (0.06) 0.76 (0.12) 

m1 
Length 21.47 (1.30) 

16 
25.69 (0.72) 

2 Breadth 15.36 (0.74) 19.70 (2.54) 
B/L Ratio 0.72 (0.05) 0.77 (0.12) 

m2 
Length 25.86 (1.30) 

16 
28.66 (3.57) 

3 Breadth 16.65 (1.03) 23.33 (1.00) 
B/L Ratio 0.65 (0.06) 0.82 (0.13) 

m3 
Length 39.34 (1.96) 

16 
48.16 (4.25) 

3 Breadth 15.38 (1.43) 21.51 (0.43) 
B/L Ratio 0.39 (0.03) 0.45 (0.03) 

 

 There was a clear proportional separation in the M1 group (Fig. 26) between the 

unknown fossil sample and Ovibos sample, with greater breadth in the unknown specimens 

compared to Ovibos specimens. While both fossil specimens were longer than even the longest 

Ovibos tooth, they were only slightly so, and a larger sample size might reveal length overlap. A 

breadth overlap between the groups would require a significant change in the proportions of any 

additional fossil muskox M1s relative to length and seems unlikely. While the means of both the 

length and breadth of the two groups were determined to be significantly different, the ratio of 
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breadth/length was not. Despite this, there is a clear separation between these groups in terms of 

breadth, and it seems unlikely that either of these fossil M1s represent fossil Ovibos, based on 

this dataset.  

 

Table 15. Dental Measurement Statistical Test Results. Statistical Test Values for Dental 

Comparisons of Ovibos and Fossil Sample Groups. Bolded Results Indicate Statistical 

Significance. 

Measurement F-test Value 
(Probability) T-test (Probability) 

M1 Length 0.166 0.007 
M1 Breadth 0.711 0.000 

M1 B/L Ratio 0.083 0.587 

M2 Length 0.076 0.182 

M2 Breadth 0.545 0.000 

M2 B/L Ratio 0.300 0.023 

M3 Length 0.078 0.000 
M3 Breadth 0.029 0.010 

M3 B/L Ratio 0.049 0.031 
m1 Length 0.819 0.000 
m1 Breadth 0.008 0.249 

m1 B/L Ratio 0.047 0.665 
m2 Length 0.011 0.306 
m2 Breadth 0.821 0.000 

m2 B/L Ratio 0.065 0.001 
m3 Length 0.052 0.000 
m3 Breadth 0.169 0.000 

m3 B/L Ratio 0.857 0.018 
 

 

 

109



 

Figure 26. Basal length vs breadth of M1s. Specimens represent modern Ovibos and fossil 

muskox M1s in this study 

 

 Within the M2 group (Fig. 27), separation between the fossils and modern Ovibos was 

once again clear. While there was no overlap between the breadths of the groups, the lengths did 

overlap. The lengths of the fossil teeth tended to be clustered around the maximum lengths of the 

Ovibos teeth, the Ovibos teeth were negatively skewed so that outliers tended to be shorter, and 

the bulk of the specimens tended to be towards the longer end of their range. Because the two 

groups overlapped well in length but not at all in breadth, it seems unlikely that these fossil teeth 

represent Ovibos. While the means of the lengths of the two groups were not significantly 

different, both the breadths and the ratio of breadth/length were, further supporting this 

distinction between Ovibos and sampled fossil muskoxen.  
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Figure 27. Basal length vs breadth of M2s. Specimens represent modern Ovibos and fossil 

muskox M2s in this study 

 

 For the M3 group, separation was still apparent when graphed, albeit less clearly so than 

in the first or second upper molars (Fig. 28). While the breadth of the fossil muskox and Ovibos 

samples once again did not overlap at all, there was a slight overlap in length. The length of the 

fossil muskoxen teeth tended to be longer than in the Ovibos teeth, and both the differences in 

length and breadth of the two groups were statistically significant. While this would at first seem 

to simply suggest a larger size for the fossil muskoxen teeth, the ratio of breadth/length was also 

significantly different, with the fossil forms being consistently broader for their size than the 

Ovibos teeth. This represents an interesting dichotomy between the graphic separation being less 

distinct than in the M1 or M2 samples, but the statistical separation being more robust due to 

significant differences in length, breadth and the ratio between them. Given this evidence, it is 

inappropriate to assign any of the fossil muskoxen teeth to Ovibos.  
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Figure 28. Basal length vs breadth of M3s. Specimens represent modern Ovibos and fossil 

muskox M3s in this study 

 

 Within the m1 group (Fig. 29), there was graphic separation between both the lengths and 

the breadths of Ovibos and the fossil muskoxen sample. The breadth separation was noticeably 

smaller than in other tooth groups, although the length separation was readily apparent. 

Statistically, a separation was not well defined. While the difference between means of the 

lengths of the two groups was significant, this was not the case for breadth or the breadth/length 

ratio. This was the only sample where variances between the length, breadth, and breadth/length 

ratio were all unequal, which could have impacted statistical analysis of these samples. Of 

particular interest in comparing these samples is the less broad fossil tooth, which was reported 

as a Bootherium Lm1 by Richards and McDonald (1991). Given its closeness in breadth and 

position to the regression line for the Ovibos teeth, it is possible that this could represent a fossil 

Ovibos tooth, though this hypothesis would necessitate a much greater dataset to be tested. 
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Figure 29. Basal length vs breadth of m1s. Specimens represent modern Ovibos and fossil 

muskox m1s in this study 

 

 For the m2 group (Fig. 30), there was a clear graphical separation of the extant Ovibos 

and sampled fossil muskox teeth. While there was no overlap between the breadths of the 

groups, there was overlap between the lengths. Interestingly, the m2 sample of fossil muskoxen 

teeth appear to show similar variability in length to that of the Ovibos m2s, with a large overlap 

between the ranges of the groups. Following the graphical trend, there was no statistical support 

for a difference in means between the lengths of the two groups, but both breadth and the 

breadth/length ratio were significantly different.  
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Figure 30. Basal length vs breadth of m2s. Specimens represent modern Ovibos and fossil 

muskox m2s in this study 

 

 Within the m3 group (Fig. 31), there was a strong graphical distinction between both the 

lengths and breadths of the teeth between the two groups. There was no overlap between the 

lengths or breadths of either group, and the results of the Student’s t tests supported the means of 

length, but not breadth as being different between the fossil and Ovibos teeth. While it might at 

first just appear to be a size relationship where the fossil teeth are bigger, this is not supported by 

the significant difference in ratios between the two groups, with the fossil teeth tending to be 

wider proportionally than the Ovibos m3s. 
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Figure 31. Basal length vs breadth of m3s. Specimens represent modern Ovibos and fossil 

muskox m3s in this study 

 

Given that Bootherium and Ovibos are the only muskoxen genera known from the 

southeastern United States, and that almost all of the fossil teeth (with one exception addressed 

below) appear to be from two distinct groupings, it is most parsimonious to suggest that the 

fossil muskox teeth represent Bootherium. These analyses suggest that it is possible to 

differentiate isolated molars of Bootherium and modern Ovibos independent of size. Most groups 

of molars (all except M1 and m1) suggested that Bootherium had a greater raw and proportional 

breadth than Ovibos. While length was sometimes statistically supported as longer, this was not 

always the case, and when length was supported as different between the fossil and Ovibos, the 

ratio of breadth/length was also found to be different. The results of the lower first molars did not 

support this trend, though the reason for this will be explored below. As a general rule however, 

these results indicate that each molar of the fossil sample tends to be either as long or longer than 
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the longest in Ovibos and is also both absolutely and proportionally wider than the same tooth in 

Ovibos. 

Of course, this examination is not without weaknesses. This is a relatively small dataset 

and will need to be augmented with additional modern Ovibos and fossil muskoxen teeth. 

Additionally, most of the fossil teeth are being assigned to Bootherium based on this being the 

most likely candidate based on known distributions and material, but that necessarily limits the 

geographic scope in which these trends may be useful for identification. Caution should be used 

when applying this dataset to identify fossil musk ox teeth in locations where there is the 

potential for presence of other fossil ovibovines, which were not included in this dataset (notably 

Euceratherium and Soergelia).  

Discussion 
 
 
Identification of Fossil Muskoxen from Saltville and the Eastern US 
 
 When examining the trends differentiating the modern Ovibos and unknown fossil 

muskoxen teeth, potential identification must be carefully considered. As mentioned previously, 

there are five ovibovine genera known to have occurred in North America. Praeovibos, Ovibos, 

Soergelia, Euceratherium and Bootherium. 

Praeovibos appears unlikely to occur at Saltville but cannot fully be excluded as a 

potential identification. Although this genus is known to have inhabited a wider variety of 

habitats than modern Ovibos (Mol and Reumer 1999), including woodland habitats that may 

have been similar to Saltville, their range is thus far limited exclusively to the Beringian portion 

of the continent.  Thus, their presence at Saltville would invoke a major range extension for 

Praeovibos. While this is not out of the realm of possibility, it seems an unlikely outcome given 
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how well the Pleistocene fauna of North America has been documented. Therefore, this genus is 

not considered a likely candidate for the fossil unknown teeth but should not be ruled out 

entirely. 

While the range of Ovibos is thus far limited to being slightly north of Saltville 

(McDonald and Davis 1989), there is some evidence that the conditions they favor may have 

been present as far south in the Appalachians as Saltville, although the precise timing of these 

permafrost occurrences are unknown (Clark and Ciolkosz 1988, Nelson et al. 2007; French and 

Millar 2014). Given this combination of features it seems plausible that Ovibos could be found at 

Saltville, and therefore it should be considered as a potential identification for unknown fossil 

remains.  

Euceratherium is a large ovibovine that has not been reported from Saltville, Virginia, or 

eastern North America. While the forward curving horns of this genus would be difficult to 

confuse with Praeovibos, Ovibos, or Bootherium, their range within North America is thus far 

strictly limited to southwestern North America (Campos et al. 2010). Thus, their potential 

occurrence in the Saltville paleofauna seems unlikely because the extensive Pleistocene fossil 

record of eastern North America lacks this taxon. 

Soergelia is another large ovibovine with characteristic horn morphology. The horncores 

of this genus are known to open in a v-shaped pattern and, like Euceratherium, curve forwards 

(Kurtén and Anderson 1980; Cregut-Bonnoure and Dimitrijevic 2006). While specimens have 

been reported from the Yukon, Texas, and Kansas, they are not common and there are no reports 

east of Kansas. Additionally, while the range extension required to place Soergelia at Saltville is 

not as large as required for Praeovibos or Euceratherium, it is important to note that within 

North America Soergelia has only been found in Irvingtonian aged deposits and may have gone 
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extinct long before the latest Pleistocene Saltville fauna (Eschelman and Hager 1984). Thus, it 

seems unlikely to be present at Saltville unless extraordinary evidence for its occurrence is 

found.  

Unlike the other ovibovines considered, Bootherium has already been confirmed to be 

present in the Saltville paleofauna. These records are clear and unambiguous, and represent 

individuals of both sexes (Ray et al. 1967; McDonald and Ray 1989). Thus, they are a plausible 

identification for unknown fossil ovibovine remains from Saltville.  

Cranial identification for ovibovines is heavily researched, and the advances in this area 

by McDonald and Ray (1989) have allowed for straightforward identification of North American 

ovibovines, provided that the horncore region or the occipital region of the skull are present. All 

skulls observed from Saltville within this thesis are confirmed to belong to Bootherium 

bombifrons based on horn core and frontal region morphology. Fossil ovibovine crania from 

Saltville examined in this study include USNM 23577 and USNM 2326, both of which are 

partial crania containing the horncore region. USNM 23577 represents a male of the species 

based on the deep exostosis and horn core morphology, and the USNM 23264 represents a 

female based on the smooth frontal surface and horncores that project strongly laterally prior to 

curving ventrally.  

  While it is straightforward to differentiate crania of different muskoxen genera if the 

horncores are included, other taxon-specific anatomical features are less defined for the 

ovibovine group. Isolated teeth from across the United States have been attributed to Bootherium 

(some of which are included in this study), but few quantitative analyses of these dentitions have 

taken place. Unfortunately, no examples of teeth directly measured by this study were associated 

with diagnostic cranial material. Thus, while the crania used were easily identifiable to genus, 
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any fossil ovibovine teeth were necessarily treated as fossil unknown specimens. While fossil 

unknown ovibovine specimens from Saltville and the eastern United States seem most likely to 

be Bootherium, it is assumed within this study that Bootherium teeth will cluster together into 

one group, and not form multiple groups. Based on specimen observations made prior to data 

collection, as well as Osgood’s (1905a) initial description of the Bootherium teeth, it was 

hypothesized that teeth attributable to this genus may group as proportionally broader than the 

teeth of Ovibos.  

With one possible exception, this was the trend observed in the fossil unknown sample. 

All of the fossil unknown specimens were teeth, or multiple teeth with an associated dentary. 

These results showed a consistent and clear trend of these fossil ovibovines clustering into a 

single group of differing breadth, separate from Ovibos. The analyses returned statistical support 

for a difference in breadths between the modern Ovibos and fossil ovibovines for M1, M2, M3, 

m2 and m3, suggesting that the teeth included in the fossil ovibovine sample did not belong to 

Ovibos.  

Fossil ovibovine specimens from Saltville included ETMNH 15423 and one tooth within 

USNM V 636245. ETMNH 15423 (Table. 3.1) is an associated series of cheek teeth from P4 to 

M2. The two molar teeth plotted at similar breadths to other fossil ovibovine teeth, as broader 

than those of the modern Ovibos sampled. This was also the case for an M3 that was a part of 

USNM V 636245, which was the broadest of all M3’s sampled. Because the most plausible 

identifications for these teeth are currently Ovibos and Bootherium, and these teeth plotted 

significantly and consistently away from those of the former, these specimens most likely 

represent Bootherium. 
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While the primary target of identification in this study were fossil ovibovines from 

Saltville, this dataset also afforded the opportunity to assess the identification of ovibovine teeth 

from the King Leo Pit Cave locality in Harrison County, Indiana. Measurements of these teeth 

were published by Richards and McDonald (1991), wherein they were all identified as 

Bootherium. This study treated them as fossil unknowns due to the lack of diagnostic skull 

material associated with them. While this site is much closer to the known fossil range of Ovibos, 

and closer to the range of Soergelia, all but one of these teeth plotted with the fossil ovibovines 

rather than the modern Ovibos. Because there did not appear to be multiple groups within the 

fossil ovibovine teeth, and Bootherium is the most plausible identification for the teeth from 

Saltville, this study supports the earlier identification of most of these isolated teeth as 

Bootherium (Richards and McDonald 1991).  

However, there is one tooth from King Leo Pit Cave which appears anomalous. Richards 

and McDonald (1991) publish this tooth as a Bootherium left m1. While the breadth (17.90) of 

this fossil tooth is more than three standard deviations (stdev = 0.74) broader than the mean 

(15.36) of the modern Ovibos group, it is absolutely closer to this value than to the breadth 

(21.495) of the only other unknown fossil m1 in the sample (Fig. 32). The relationship for 

Ovibos seemed to be one of slightly increasing breadth relative to length for the m1. A tooth the 

length of this one would be within three standard deviations of the regression line for Ovibos, 

although that is not enough evidence to make a case for this tooth belonging to Ovibos rather 

than Bootherium. Two right fourth premolars assigned to Bootherium were recovered from the 

cave, meaning that there are, at minimum, two individual fossil muskoxen, if not more. 

Therefore, it is possible that the muskoxen from this cave are represented by Bootherium and 

another genus of late Pleistocene ovibovine, although a better morphological understanding of 
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Bootherium and other extinct ovibovine dentition would be needed to properly address that 

hypothesis. This is of importance, because King Leo Pit Cave would become the new southern-

most occurrence for Ovibos in the eastern United States. Thus, I advocate for the identification of 

the King Leo Pit Cave left m1 tooth to be identified as Ovibovine indet., rather than being 

retained as Bootherium.  

 

 

Figure 32. Basal length vs breadth of m1s, with focus on KLPC m1. Specimens represent 

modern Ovibos vs fossil muskoxen m1s, with the King Leo Pit Cave Lm1 from Richards and 

McDonald (1991) emphasized 

 
Morphological Differences between Ovibos and Bootherium 
 
 Because all but one of the measured teeth are considered to be Bootherium, and all of the 

analyzed crania belonged to either this genus or Ovibos, a direct comparison between the two is 

made here. These comparisons provided insights into the non-horncore differences between the 

crania and teeth of Ovibos and Bootherium and will hopefully serve as a starting point for further 
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differentiation of these and other ovibovine taxa.  

 Differences in the molars of both genera were readily apparent when the basal breadth 

and widths of teeth were compared against each other. For all molars, the teeth identified as 

Bootherium are both absolutely and proportionally broader than the teeth of Ovibos. Differences 

in the means of basal breadth between modern Ovibos and fossil groups (interpreted to represent 

only Bootherium) were supported for all teeth except for the m1s. The m1 sample size consisted 

of only 2 specimens, and one of these appeared to be anomalous when compared to the patterns 

of all other measured molars.  

 Non-horn core cranial measurements proved somewhat less useful than dental 

measurements to differentiate the groups. While fragmentary skulls are the norm when working 

with ovibovine fossils, it is common to have large parts of the posterior portion of the skull, 

namely the occipital, frontal, and orbital regions. The most distinct character between the two 

genera was occipital condyle breadth (26). In all cases this measurement was absolutely larger in 

Bootherium so that the smallest breadth across the occipital condyles measured in Bootherium 

was slightly larger than in the largest Ovibos. There was no support for differences in variances 

of the measurement between the two ovibovine genera, but the means of each were statistically 

supported as different. While not necessarily useful on its own, this trait proved a potentially 

powerful tool for differentiating the two genera when combined with other measurements. For 

example, the breadth across the postorbital constriction was similar in both groups, with no 

statistical support for a difference in distributions or means between Ovibos and Bootherium. 

When this character is compared in a scatterplot against the occipital condyle breadth however, a 

clear visual separation between Ovibos and Bootherium is observed (Fig. 3.10). 

 Another morphological difference discovered between the two genera is in the shape of 
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the posterior portion of the skull (i.e., the part of the cranium posterior to the posterior margin of 

the orbits). Two measurements were digitally collected to examine the shape of this region of the 

skull (Fig. 3.1). A straight line from the posteriormost part of each orbit must be drawn, 

connecting the two points. This distance is measured as a proxy for posterior skull width and the 

midpoint of this line on the skull noted. Another line is drawn from the midpoint of the existing 

line straight back to the posteriormost margin of the skull. This line is measured as a proxy for 

posterior skull length. When a ratio is created from these measurements (posterior skull width / 

posterior skull length) a consistent difference was seen between Ovibos and Bootherium in that 

the ratios of the former were much higher than those of the latter. This is the result of the greater 

protrusion of the orbits in Ovibos than in Bootherium, and thus may not actually represent a 

difference in the cranium itself, so much as a difference in orbital protrusion. A significant 

difference between the means of the two groups was supported by the Student’s t-test, however, 

so this comparison does appear to be capturing a real morphological difference. 

 One similarity worth highlighting is the lack of statistical support for the postorbital 

portion of the crania being longer (and thus larger) in Bootherium than in Ovibos. This suggests 

that Bootherium skulls may not be absolutely larger than that of Ovibos, as two large males and a 

large female all plotted as wider across the orbits and longer in the postorbital crania than the 

largest fossil muskoxen measured in this study. It is possible that the width of the cranium 

behind the orbits is a good indicator of overall size, but this measurement was not accessible for 

most male muskoxen crania that have been published due to the horncore in Bootherium, and the 

horn-sheaths in Ovibos covering the measurement area. Thus, other characteristics will need to 

be explored in order to aid in the identification of ovibovine cranial material lacking horncores, 

since comparison necessarily must be made against specimens containing horncores. 
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Study Limitations and Future Research 
 

All but one of the fully measured crania in this study were limited to the posterior portion 

of the skull, and thus comparison with the facial region, which has been noted as different 

between the two groups (Osgood 1905a), is not possible with this dataset. Future research should 

prioritize measuring and figuring complete or relatively complete skulls of both male and female 

Bootherium if the difference between Bootherium and Ovibos are to be better understood. 

 Another important limitation of this study is that accessible surfaces are not always 

present in both modern and fossil groups. Important measurements, such as skull breadth 

posterior to the orbits, are obscured in many modern Ovibos specimens where horn sheaths grow 

over measurement landmarks. Further, due to the presence of extensive exostoses in the males of 

both Ovibos and Bootherium, any features which may have been present on the dorsal surface of 

the skull between the orbits and the occipital crest are absent. It is possible that the lack of 

potential characters may be complicating our understanding of variation in muskoxen when 

comparing fossil male individuals to fossil females, and this must be kept in mind when 

attempting to draw conclusions within this highly sexually dimorphic group.  

 Regarding Ovibos, there is a particular complication when attempting to study the skulls 

of modern specimens for comparative purposes. Many of these specimens are curated with 

attached horn sheaths obscuring characters and measurements around the horn cores. Because 

many fossil muskoxen only retain a sheath-less horncore, this makes a direct comparison of the 

horns of the animals difficult and renders direct comparison more difficult. An important step in 

future research will be the analysis of modern Ovibos horn cores without the sheath. Because 

removing horn sheaths from specimens is not an ideal solution, CT scanning and other advanced 

imaging techniques may be needed to address horn core morphology questions moving forward.  
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Conclusions 
 
 These analyses demonstrate novel methods for separating Ovibos from non-Ovibos 

specimens in eastern North America. If previous authors are correct, and Bootherium is the only 

other eastern taxon, then Ovibos and Bootherium teeth can be distinguished without using size 

alone as a character. As a general pattern, the molars of “Bootherium” are proportionally broader 

than those of Ovibos, and the data collected and reported herein should allow others to assess 

identification of isolated muskoxen teeth. Additionally, select cranial characteristics serve to 

differentiate the two genera. Both the breadth across the occipital condyles and the newly 

proposed cranial elongation ratio have statistical support for their ability to distinguish Ovibos 

from Bootherium.  

 In addition, these analyses support previous conclusions that at least two muskoxen 

genera occurred in eastern North America during the late Pleistocene. Despite this, there is no 

current evidence that Ovibos occurred further south than the southernmost (unfigured) 

occurrence at Big Bone Lick, Kentucky or than the published occurrence within Hamilton 

County, Ohio. If indeed Bootherium is the only other ovibovine taxon in eastern North America, 

then the studied fossil material from Saltville and other sites represents this taxon.  
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Specimen Identification Measurement 1 Measurement 2 Measurement 3 Measurement 4 Measurement 7 Measurement 16 L/R Measurement 20 L/R Measurement 21 L/R Measurement 22 L/R Measurement 25 Measurement 26 Measurement 26A Measurement 27 Measurement 28 Measurement 31 Measurement 32 Measurement 33 Measurement 33A Measurement 34 Measurement 35 Measurement 37 Measurement 38 Measurement 42 Measurement 43 Measurement 46 L/R Measurement 45 L/R Posterior Protrusion of Orbit Posterior Cranial Length Cranial Elongation Ratio Angle 1 Angle 2

USNM 291202 Ovibos m. wardi 289.72 478.4 451.4 333.435 250.115 157.975 / 147.895 136.85 / 136.545 87.98 / 87.975 51.51 / 51.95 183.23 125.53 104.485 169.025 34.045 8 138.655 224.535 261.96 130.66 144.25 107.75 121.55 555.675 570.635 117.865 / 113.32 214.725 / 214.1 289.72 215.03 1.347 151 143.5

USNM 291025 Ovibos moschatus 292.305 434.75 402.86 246.665 228.76 148.7 / 147.935 135.09 / 135.855 85.65 / 85.5 56.7 / 55.7 157.39 114.245 98.005 137.265 38.295 13.195 121.165 179.505 221.105 133.875 131.36 80.52 115.025 406.145 441.82 29.71 / 25.1 91.77 / 100.62 292.305 210.79 1.387 156.5 112.5

USNM 291029 Ovibos m. wardi 210.565 430.18 401.245 298.145 221.985 147.785 / 147.115 135.85 / 135.78 84.955 / 85.03 52.055 / 55.565 153.655 111.485 99.585 136.34 37.74 9.59 124.585 176.225 216.355 109.71 124.745 79.355 111.175 469.235 508.59 31.185 / 27.645 103.21 / 94.93 210.565 121.845 1.728 152 118

USNM 256969 Ovibos moschatus 220.505 457.54 416.77 309.915 228.94 155.2 / 146.12 130.57 / 133.335 82.07 / 79.955 48.04 / 52.305 154.615 111.77 105.935 128.46 39.79 16.015 113.52 171.14 212.495 111.2 133.61 78.99 112.905 431.245 447.525 34.99 / 27.385 91.105 / 91.42 220.505 139.72 1.578 155.5 118.5

USNM 252504 Ovibos m. wardi 246.95 449.02 417.955 318.39 227.44 140.95 / 146.275 139.545 / 137.695 85.65 / 85.42 54.05 / 55.775 162.3 118.64 109.59 135.715 43.96 9.37 116.61 194.81 235.695 119.26 136.93 83.065 116.27 582.43 594.39 52.685 / 62.03 157.235 / 170.75 246.95 141.61 1.744 146.5 119.5

USNM 275099 Ovibos m. wardi 308.145 340.92 142.43 / 138.56 89.545 / 90.05 49.735 / 55.445 162.665 134.05 112.31 149.69 39.455 8.975 207.79 244.1 130.86 145.415 125.13 645.07 629.135 95.905 / 101.965 196.2 / 209.48 308.145 168.775 1.826 135 107.5

USNM 108722 Ovibos m. moschatus 297.125 434.07 389.49 310.53 219.19 121.14 / 122.905 132.785 / 131.59 86.335 / 84.72 52.375 / 48.79 182.62 95.4 117.22 149.505 34.375 10.665 193.115 236.035 150.01 137.91 86.98 111.555 295.215 321.445 101.015 / 108.115 215.13 / 211.38 297.125 239.885 1.239 139 110

USNM 399993 Ovibos m. wardi 205.485 407.74 381.555 282.35 211.05 134.7 / 134.925 136.165 / 138.37 88.69 / 86.98 57.26 / 53.37 141.005 104.685 91.46 120.8 36.445 98.405 106.535 147.815 193.095 101.35 115.315 74.9 100.69 216.145 222.08 61.055 / 57.15 205.485 138.075 1.488 151.5 119

USNM V 13696 Symbos cavifrons (=Bootherium)  / 173.665  / 109.28 69.14 / 67.745 163.195

USNM V 8574 Bootherium bombifrons 239.145 206.665 156.925 134.615 190.78 35.92 0 142.795 217.44 242.035 120.18 509.955 73.46 / 74.985 111.675 / 119.475 239.145 198.79 1.203 135.5

USNM V 2556 Symbos tyrelli =(Bootherium) 140.37 157.38 40.09 19.075 107.56 60.72 / 63.665 109.225 / 106.31 200.56 196.215 1.022 156 149

USNM V 23488 Bootherium sargenti 277.18 108.125 162.705 498.025 502.77 66.98 / 72.025 76.78 / 80.315 195.425 140.235 1.394

USNM V 372807 Symbos cavifrons (=Bootherium) 101.525 117.525 283.615 69.405 / 68.44 95.325 / 101.95 193.76 198.995 0.974 87.5

USNM V 215066 Bootherium 126.45 106.35 41.215 139.615 101.96 432.93 436.66 61.83 / 69.135 71.75 / 72.5 218.82 183.575 1.192 162 127.5

USNM V 23577 Symbos cavifrons (=Bootherium) 228.83 155.63 134.81 192.775 45.58 44.76 387.76 87.785 / 81.375 126.93 / 117.7 144.5 151.5

USNM V 23264 Bootherium 194.815 143.015 121.645 46.095 74.66 113.71 512.11 538.155 76.905 / 77.14 94.49 / 98.605 208.14 171.735 1.212 136.5

USNM V 23787 Unknown 120.705 / 

USNM V 636245-1 Unknown

INSM 71.3.70 Bootherium 216 141 152 195 39.4 150 264 554 203.85 167.325 1.218 149 117

“MSP” Bootherium Bootherium 148 46.4 140 148 128

AMNH F:AM A-20404254 Symbos (=Bootherium) 225.18 184.445 1.221

UUVP 8540 Symbos cavifrons (=Bootherium) 227.215 185.705 1.224

ANSP 994 = USNM 215066 Bos bombifrons (=Bootherium) 175.56 147.505 1.190

USNM 2555 Scaphoceros tyrrelli (=Bootherium) 217.34 162.385 1.338

USNM 2324 Bootherium niivcolens 163.78 133.17 1.230

USNM 347315 Bootherium 142.185 157.735 0.901

AMNH F:AM 33124 Symbos cavifrons (=Bootherium) 197.035 173.995 1.132

AK Fish and Game Skull Ovibos moschatus 289.145 161.17 1.794

USNM 291028 Ovibos moschatus 211.675 152.85 1.385
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Specimen Identification P2 OB L/R P3 OB L/R P4 OB L/R M1 OB L/R M2 OB L/R M3 OB L/R P2 OL L/R P3 OL L/R P4 OL L/R M1 OL L/R M2 OL L/R M3 OL L/R P2 BB L/R P3 BB L/R P4 BB L/R M1 BB L/R M2 BB L/R M3 BB L/R P2 BL L/R P3 BL L/R P4 BL L/R M1 BL L/R M2 BL L/R M3 BL L/R P2 CH L/R P3 CH L/R P4 CH L/R M1 CH L/R M2 CH L/R M3 CH L/R P2 MH L/R P3 MH L/R P4 MH L/R M1 MH L/R M2 MH L/R M3 MH L/R

USNM 291202 Ovibos m. wardi 10.73 / 10.925 14.97 / 15.22 15.37 / 18.2 18.88 / 19.1 20.375 / 20.21 17.515 / 16.685 15.095 / 16 19.305 / 18.545 20.35 / 19.66 24.725 / 22.395 30.31 / 29.895 34.245 / 35.155 12.04 / 10.95 16.695 / 16.345 18.24 / 18.57 19.46 / 19.385 21.925 / 20.9 15.74 / 16.815 14.885 / 14.355 12.645 / 13.43 14.095 / 13.39 16.19 / 16.25 28.725 / 23.295 34.275 / 35.365 18.26 / 14.285 16.045 / 15.39 17.925 / 18.955 20.205 / 19.225 20.06 / 18.6 14.955 / 16.055

USNM 291025 Ovibos moschatus 11.33 / 10.375 15.685 / 14.82 16.8 / 16.195 20.51 / 20.015 19.85 / 20.64 16.11 / 17.89 18.305 / 17.565 19.735 / 19.485 19.765 / 19.42 24.515 / 24.685 30.96 / 31.145 32.21 / 32.39 11.34 / 12.245 17.81 / 17.68 18.105 / 18.825 21.44 / 20.155 22.65 / 22.1 18.78 / 18.75 14.865 / 15.36 16.265 / 17.18 15.01 / 18.605 17.92 / 19.29 29.145 / 29.58 33.86 / 34.015 17.625 / 17.85 14.845 / 16.06 18.315 / 17.335 16.32 / 19.975 20.53 / 20.25 15.075 / 13.98

USNM 291029 Ovibos m. wardi 10.43 / 10.685 14.245 / 14.35 13.995 / 16.545 20.395 / 19.45 20.09 / 19.415 16.7 / 16.46 15.96 / 18.345 19.525 / 19.07 17.11 / 18.79 24.285 / 24.07 29.795 / 29.595 31.785 / 33.13 12.965 / 13.05 19.155 / 17.615 19.78 / 17.25 20.175 / 19.72 19.835 / 20.745 16.875 / 18.04 15.055 / 16.07 15.125 / 17.31 15.655 / 16.4 17.685 / 18.86 29.51 / 28.505 33.145 / 32.8 14.23 / 11.13 15.2 / 12.485 16.155 / 15.525 17.39 / 16.34 14.56 / 15.435 12.705 / 12.565

USNM 256969 Ovibos moschatus 10.3 / 11.035 14.775 / 16.24 16.76 / 16.405 20.645 / 19.02 21.24 / 20.755 15.525 / 18.445 17.39 / 19.64 19.06 / 18.77 20.525 / 19.78 25.95 / 20.87 28.635 / 25.68 32.355 / 31.02 11.45 / 11.435 15.805 / 15.87 17.705 / 17.505 20.24 / 19.94 19.36 / 20.775 20.855 / 20.565 14.58 / 12.335 18.065 / 17.485 13.035 / 13.315 16.13 / 16.225 20.7 / 17.01 31.69 / 32.58 16.44 / 10.885 19.655 / 20.245 20.15 / 17.255 18.895 / 12.085 16.99 / 11.365 25.93 / 20.16

USNM 252504 Ovibos m. wardi 9.535 / 9.53 14.94 / 14.205 16.505 / 16.505 19.455 / 15.4 18.48 / 19.43 14.34 / 14.9 15.29 / 13.785 18.715 / 17.5 20.095 / 20.64 21.505 / 24.77 29.96 / 28.18 31.945 / 31.155 11.85 / 12.26 15.245 / 15.04 17.165 / 18.165 20.465 / 21 20.085 / 23.775 17.905 / 19.78 13.99 / 11.615 16.275 / 18.92 16.12 / 17.53 19.405 / 23.685 27.475 / 30.535 33.695 / 34.53 11.82 / 13.05 12.405 / 19.665 15.15 / 14.34 17.675 / 17.42 17.555 / 13.97 13.4 / 11.44

USNM 275099 Ovibos m. wardi  / 10.735 14.91 / 15.165 15.9 / 17.29 17.325 / 17.93 19.845 / 20.73 18.3 / 18.68  / 15.39 18.81 / 18.435 19.99 / 18.625 23.12 / 23.07 31.075 / 30.15 33.7 / 34.07  / 11.1 16.515 / 16.71 18.945 / 19.005 21.69 / 20.985 23.285 / 23.145 20.815 / 19.215 15.81 / 13.265 14.71 / 13.07 18.03 / 18.615 29.285 / 27.275 35.66 / 36.365 15.93 / 13.405 17.68 / 16.985 15.06 / 14.48 16.655 / 14.53 13.365 / 12.195

USNM 108722 Ovibos m. moschatus 13.87 / 11.25 14.54 / 16.295 15.805 / 16.665 19.96 / 19.195 19.085 / 18.97 18.24 / 17.955 13.48 / 15.53 16.97 / 17.78 17.685 / 19.165 26.48 / 25.82 28.63 / 29.765 31.525 / 30.845 11.67 / 13.27 15.58 / 15.79 16.495 / 16.3 21.49 / 20.42 19.75 / 19.325 17.92 / 18.235 12.63 / 14.29 16.185 / 14.605 14.87 / 14.535 20.53 / 21.095 26.88 / 28.18 33.16 / 32.78 12.37 / 17.275 13.17 / 18.585 16.025 / 18.765 19.84 / 19.19 18.755 / 18.385 16.75 / 15.265

USNM 399993 Ovibos m. wardi 9.415 / 10.545 12.665 / 14.15 14.395 / 12.785 16.73 / 17.41 18.14 / 17.875 14.08 / 12.44 13.445 / 15.07 16.71 / 17.535 19.78 / 18.225 25.6 / 23.67 33.125 / 32.12 31.765 / 29.65 11.755 / 13.285 15.04 / 16.105 16.29 / 17.97 18.025 / 18.815 15.535 / 18.715 14.425 / 15.325 14.505 / 14.49 16.5 / 16.79 21.735 / 16.56 22.985 / 21.525 30.525 / 30.42 33.21 / 31.37 15.09 / 17.545 15.955 / 16.575 18.675 / 14.59 18.755 / 17.355 18.115 / 16.34 13.45 / 14.02

USNM V 13696 Symbos cavifrons 26.36 / 32.11 / 24.785  / 23.46 30.58 / 38.44 / 36.98  / 39.485 27.995 / 30.72 / 30.495 / 25.84 24.55 / 29.465 / 28.8  / 39.61 21.485 / 31.33 / 31.84  / 28.29

USNM V 533996 Bootherium 19.74 / 36.225 / 29.27 / 35.615 / 46.05 / 

USNM V 636245-1 Unknown 27.94 / 43.56 / 35.695 / 39.8 / 29.005 / 

ETMNH 19793 Unknown  / 16.24  / 26.79  / 18.875  / 22.375  / 18.875

ETMNH 15423-A Bootherium  / 18.67  / 22.335  / 24.49  / 17.775  / 30.46

ETMNH  15423-B Bootherium  / 21.985  / 31.425  / 27.33  / 24.19  / 30.46

ETMNH 15423-C Bootherium  / 21.01  / 35.92  / 28.455  / 31.49  / 39.985

King Leo LP4 Bootherium 24.3 / 19.1 / 

King Leo RP4A Bootherium  / 21.7  / 19.8

King Leo RP4B Bootherium  / 24.2  / 20.6

King Leo RM2 Bootherium  / 28  / 30.4

King Leo RM3 Bootherium  / 27.8  / 41.8
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Specimen Identification p2 OB L/R p3 OB L/R p4 OB L/R m1 OB L/R m2 OB L/R m3 OB L/R p2 OL L/R p3 OL L/R p4 OL L/R m1 OL L/R m2 OL L/R m3 OL L/R p2 BB L/R p3 BB L/R p4 BB L/R m1 BB L/R m2 BB L/R m3 BB L/R p2 BL L/R p3 BL L/R p4 BL L/R m1 BL L/R m2 BL L/R m3 BL L/R p2 CH L/R p3 CH L/R p4 CH L/R m1 CH L/R m2 CH L/R m3 CH L/R p2 MH L/R p3 MH L/R p4 MH L/R m1 MH L/R m2 MH L/R m3 MH L/R

USNM 291202 Ovibos m. wardi 6.185 / 8.395 / 9.225 11.695 / 12.98514.835 / 14.235 16.315 / 14.835 14.575 / 14.095 8.385 / 15.96 / 14.86 20.395 / 19.2 23.345 / 23.84 28.225 / 28.29 42.31 / 41.04 7.225 / 5.09 9.71 / 10.09 12.44 / 12.775 14.665 / 15.02 16.96 / 16.83 15.665 / 15.545 8.58 / 5.435 11.375 / 11.01 17.805 / 17.495 19.405 / 20.945 24.645 / 25.665 40.87 / 42.775 9.715 / 10.96 / 11.635 21.58 / 16.585 22.395 / 16.95 20.8 / 18.835 18.69 / 17.32

USNM 291025 Ovibos moschatus 5.295 / 5.85 9.3 / 8.195 12.32 / 12.27 14.87 / 15.27 14.2 / 14.955 12.475 / 13.28 7.83 / 7.915 14.27 / 15.185 21.665 / 20.835 24.455 / 24.54 28.32 / 28.66 40.89 / 40.93 6.88 / 5.91 9.99 / 9.095 13.145 / 12.63 16.46 / 16.635 17.56 / 17.67 15.355 / 15.27 9.4 / 9.57 12.82 / 14.11 18.705 / 19.37 21.065 / 21.55 24.99 / 26.72 41.235 / 41.835 10.395 / 11.765 12.875 / 12.13 20.23 / 14.485 20.32 / 16.665 19.41 / 18.535 19.12 / 16.67

USNM 291029 Ovibos m. wardi 4.97 / 5.475 8.52 / 8.96 12.165 / 12.29514.765 / 14.57 15.28 / 14.515 13.2 / 13.255 11.08 / 10.36 14.885 / 15.065 19.235 / 19.16 24.305 / 22.21 27.33 / 25.65 38.655 / 39.095 7.385 / 7.225 9.495 / 9.32 12.835 / 12.71515.38 / 15.615 16.48 / 15.72 14.84 / 14.195 8.71 / 8.1 12.635 / 12.02 18.24 / 18.805 22.465 / 21.65 27.12 / 24.505 39.67 / 39.33 9.87 / 6.44 11.46 / 8.485 14.175 / 15.08 17.87 / 16.705 17.51 / 18.07 16.505 / 15.68

USNM 256969 Ovibos moschatus 5.35 / 5.775 9.505 / 8.67 12.58 / 13.785 15.405 / 14.82 15.67 / 17.215 14.55 / 14.5 7.645 / 9.71 15.06 / 15.195 17.53 / 20.06 22.885 / 22.88 26.555 / 23.885 40.99 / 38.59 6.96 / 6.865 10.24 / 9.416 13.32 / 13.265 14.915 / 14.58 17.635 / 17.035 17.77 / 17.095 8.515 / 7.365 14.62 / 12.275 16.39 / 17.275 19.935 / 19.545 24.16 / 23.53 38.845 / 37.295 11.375 / 6.68 13.9 / 10.135 13.18 / 11.985 14.435 / 12.48 15.225 / 9.965 16.465 / 17.365

USNM 252504 Ovibos m. wardi 3.905 / 4.845 8.875 / 8.67 11.995 / 11.92515.37 / 15.555 15.185 / 14.915 12.5 / 12.585 5.115 / 6.51 16.205 / 15.46 18.07 / 18.38 24.54 / 25.01 29 / 27.73 36.39 / 35.95 7.15 / 6.695 9.805 / 9.785 13.71 / 13.31 15.195 / 15.455 17.09 / 16.535 14.71 / 14.205 7.87 / 7.965 13.845 / 13.425 19.085 / 17.345 21.295 / 20.985 25.75 / 25.68 36.15 / 37.04 6.955 / 6.335 11.005 / 10.95 14.39 / 13.775 19.295 / 16.895 18.845 / 15.625 15.93 / 18.2

USNM 275099 Ovibos m. wardi 6.995 / 6.605 9.56 / 9.51 11.565 / 11.88 15.47 / 14.635 15.47 / 15.415 15.645 / 16.155 9.8 / 7.945 14.57 / 14.745 19.385 / 18.935 23.36 / 22.255 26.465 / 27.81 41.685 / 42.675 6.555 / 6.22 9.65 / 8.975 12.855 / 12.26 15.995 / 15.585 18.38 / 17.16 17.5 / 17.775 8.71 / 8.405 13.11 / 12.235 18.125 / 18.11 21.37 / 20.56 26.165 / 25.315 40.135 / 41.825 6.705 / 5.845  / 8.35 8.5 / 13.965 / 13.48 18.54 / 14.27 15.985 / 14.905 15 / 13.685

USNM 108722 Ovibos m. moschatus 4.75 / 4.235 8.21 / 7.585 10.875 / 10.92514.005 / 14.225 13.11 / 14.175 13.54 / 12.405 11.23 / 11.72 15.42 / 14.92 19.67 / 18.6 24.71 / 24.84 28.79 / 27.935 37.26 / 34.795 7.51 / 7.5 9.645 / 8.98 12.49 / 12.775 16.725 / 15.085 15.775 / 16.17 13.71 / 14.96 8.785 / 8.64 13.82 / 12.84 18.875 / 18.025 23.565 / 23.7 27.115 / 27.265 37.4 / 38.15  / 12.09  / 13.2 12.93 / 14.005 / 16.685 / 14.67 19.075 / 18.05 19.71 / 22.315 16.855 / 18.545

USNM 399993 Ovibos m. wardi 4.73 / 4.84 6.945 / 7.51 10.095 / 10.97512.46 / 12.825 13.165 / 12.425 11.165 / 10.47 8.815 / 8.53 14.74 / 14.58 19.805 / 20.045 25.17 / 24.955 31.985 / 31.585 37.8 / 38.195 7.315 / 6.61 8.56 / 9.45 12.25 / 12.37 14.56 / 14.38 14.76 / 14.71 13.49 / 14.04 7.665 / 7.73 12.465 / 12.935 18.135 / 19.675 22.92 / 22.555 26.92 / 28.24 38.3 / 38.52 8.975 / 10.25 13.175 / 12.785 16.44 / 16.965 20.1 / 120.995 21.57 / 21.035 19.85 / 20.275

USNM V 437774 Bootherium bombifrons  / 17.745  / 44.4  / 21.205  / 43.655  / 54.89

USNM V 467597 Bootherium bombifrons  / 22.39  / 30.27  / 23.485  / 35.75  / 27.695

USNM V 23787 Unknown 16.215 / 18.665 / 17.815 / 18 / 28.525 / 28.085 / 36.99 / 49.73 / 18.785 / 21.495 / 23.68 / 21.33 / 19.99 / 25.185 / 24.585 / 48.715 / 29.62 / 25.3 / 47.92 / 57.275 / 17.715 / 15.335 / 22.23 / 21.58 / 

USNM V 636245-2 Unknown 20.5 / 39.715 / 31.325 / 29.93 / 41.505 / 

King Leo Lp2 Bootherium 11.5 / 12.2 / 

King Leo Rp2 Bootherium  / 11.6  / 12.5

King Leo Lp3 Bootherium 14.6 / 19.6 / 

King Leo Lm1 Bootherium 17.9 / 26.2 / 

King Leo Lm2 Bootherium 22.2 / 31.2 / 

King Leo Rm2 Bootherium  / 24.1  / 30.2

King Leo Rm3 Bootherium  / 22  / 52.1
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