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ABSTRACT 

Investigating the Role of Charge Separation in Triplet State  

Formation in Zinc Dipyrrin Photosensitizers 

by  

Irene Yayra Dzaye 

 

About 85% of the world’s energy is derived from non-renewable sources—coal, petroleum, and 

natural gas. Solar photocatalysis is one way to potentially generate cheap renewable fuels by 

harnessing energy from the sun using a photosensitizer and converting it into chemical energy. 

The efficiency of a photosensitizer depends on its capacity to form a prolonged triplet excited 

state. Zinc dipyrrin complexes have the potential to be efficient sensitizers for reductive 

photochemistry, but their ability to form long-lived triplet excited states still needs extensive 

research. The overall aim of this research is to probe the role charge separation plays in the 

formation of triplet state in metal complexes of dipyrrin photosensitizers. The specific objectives 

are to synthesize and characterize zinc and boron dipyrrin complexes, analyze their 

photophysical properties—such as steady state spectroscopy, low temperature emission 

spectroscopy—and quantify their triplet states using time-resolved transient absorption 

spectroscopy.  
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CHAPTER 1: INTRODUCTION 

Background 

The average temperature of the Earth’s climatic system has increased exponentially, over 

the last century, to an alarming rate. Approximately 80% of global energy is derived from non-

renewable sources such as coal, petroleum, and natural gas.1,2 The US in 2018 accounted for 

80.2% of its energy from carbon-based sources as shown in figure 1. This gives rise to two 

problems needing attention. There is the problem of deriving energy from non-renewable 

sources—hydrocarbon deposits—which are bound to run out since the fuels are not regenerated.  

 

Figure 1: US energy consumption by source in 20183 

 

Another serious issue is the large accumulation of waste from the burning of fossil fuels 

deposited in the atmosphere. Among such waste are gas pollutants like carbon monoxide, 

nitrogen oxides, and carbon dioxide. Carbon dioxide, in particular, has over the decades 
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increased vastly in concentration in the atmosphere. It is the major greenhouse gas of much 

concern presently due to its contribution to global warming and the high rise of sea levels.2,4 

 

Figure 2: US greenhouse gas emissions in 2017 measured in metric tons3 

 

The search for greener energy has caught the attention of most scientists with varying 

levels of research on the rise. This research is among many that seek to solve the problem of 

energy recycle and global warming by reducing the atmospheric concentration of carbon dioxide 

through the conversion of CO2 into useful starting materials and energy sources. 

Reductive photocatalysis of carbon dioxide presents a solution that can help solve both 

problems mentioned above, where carbon dioxide is converted into useful energy sources 

making fossil fuels renewable and reducing atmospheric concentration of CO2. There are a 

number of catalysts that are available to achieve the reduction process. However, 

photosensitizers used with these catalysts are quite expensive and inaccessible. The goal is 
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therefore to produce photosensitizers incorporating first-row transition metals that are earth-

abundant and cheap to be used with catalysts for the photocatalytic reduction of CO2.  

 

Photolysis of CO2  

Carbon dioxide is a symmetric linear molecule with a point group of D∞h. It has a Gibbs 

free energy of formation of almost –400 kJ/mol.5 Due to its high stability, conversion of CO2 will 

require a high amount of energy thermally. An excellent alternative to achieve effective 

fragmentation of CO2 is photocatalysis.6 With green chemistry being the goal, one way to attain 

high energy that is cheap is solar energy. Power from the sun is clean, renewable and can 

generate high power needed to breakdown CO2.  

Natural photosynthesis, from a long time ago, has been one process that has successfully 

harvested solar energy and transformed it into chemical energy for storage to be used as fuel for 

subsequent reactions.7 It involves the splitting of H2O to form H2 and O2 and conversion of CO2 

to carbohydrates.2  The process occurs in three generalized pathways: light absorption by 

pigment molecules, electron transport to create holes, and catalysis.8,9 Pigmented molecules such 

as chlorophyll (figure 3) and carotenoids in plants, bilins in cyanobacteria and algae, absorb solar 

energy to initiate the process, serving as nature’s photosensitizers. The ability of the pigments to 

absorb light is due to the presence of alternating single and double bonds in their carbon chain 

forming a conjugated π- electron system. Upon absorption of a photon, the light-harvesting 

complexes transfer an electron to a nearby electron acceptor by a process termed as 

photoinduced charge/electron transfer.10 This serves as the initial step for the photosynthetic 

process.   
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Figure 3: An example of light-harvesting compound in green plants8 

 

The success story associated with nature’s photosynthesis since the beginning of time has 

inspired scientists to create artificial photosynthetic systems for solar energy conversion.9 There 

are fundamentally three components involved with setting up a photosynthetic system: a 

photosensitizer to harness the solar energy, an electron donor to serve as the electron source, and 

a catalyst to aid in the chemical conversion of CO2 to useful fuel bases. Figure 4 presents a 

pictorial description of reductive photocatalysis. During the process, the photosensitizer S 

absorbs light from the sun resulting in an electronic excited state S*. The excited photosensitizer 

accepts an electron from a sacrificial electron donor D to form S ̅. The reduced photosensitizer 

then undergoes a second electron transfer to a nearby catalyst and returns to the ground state. 

The catalyst further carries out the reduction process.  
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Figure 4: Reductive photocatalytic cycle1 

 

In the modelling of synthetic photosensitizers, there are some key factors to consider for 

CO2 reduction. The photosensitizer should primarily absorb light energy from the sun and form 

an electronically stable excited state with enough energy to make an excited state reaction 

(electron transfer) thermodynamically favorable. The light-absorbing species should have a long-

excited state lifetime enough to allow reaction to compete with excited state decay. Another vital 

factor is that the excited sensitizer should be able to undergo the oxidation/reduction reaction for 

many cycles without decomposing. Carbon dioxide has a high solubility in polar solvents and 

therefore, its reduction is much more efficient in such media. The photosensitizer must also be 

soluble in the polar medium for effective reduction.1,11 Most synthetic photosensitizers that have 

been employed in photochemistry are metal complexes of Ir, Ru, Os, amongst other second and 

third row transition metals.12–14  Though effective, the problem with these photosensitizers is the 

availability and cost of the metals. Such metals are considered rare earth metals; hence, they are 

not readily available and expensive to acquire. In order to run the artificial photosynthetic 



15 

 

systems for a long time, availability and cost are of great importance. Zinc complexes offer a 

potential solution in the synthesis of cheap and effective photosensitizers.  

 

Steady State Spectroscopy of Complexes 

 

 

Figure 5: Jablonski diagram showing the possible occurrences in a metal complex. S0 represents 

the singlet ground state. S1 and S2 represent the first and second singlet excited states, 

respectively. Within the singlet ground state S0, there are vibrational energy states labeled 0, 1 

and 2. T1 denotes the energy level of the triplet excited state 

 

When a molecule is placed in a light source, it absorbs a certain part of the light spectrum 

called the absorption spectrum of the molecule. Upon absorption of a photon, electrons within 

the molecule are promoted from the ground state to the highest electronically excited state. For 

some transition metal complexes, the ground state is usually a singlet ground state S0 as 
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illustrated in figure 5.15 Electrons move from the singlet ground state to the singlet excited states, 

which is the only excitation allowed according to the spin selection rule.12 Transitions usually 

observed in organic molecules, metal complexes, and molecules with conjugated π systems are 

π→π* and n→π*. Dipyrrin complexes of zinc feature absorption bands in the visible region 

between 400 nm and 550 nm and possess long-lived excited states which allow for electron and 

energy transfer processes.16 In an electronic state, there are several vibrational states that can 

accommodate electrons. At an excited electronic state, the electron has the tendency to relax to 

the lowest vibrational energy level termed as vibrational relaxation (figure 5). 

There are two types of decay process that can occur after absorption—radiative and non-

radiative. Radiative decay of molecules comes in two distinct forms—fluorescence and 

phosphorescence. Fluorescence is the radiative decay of a molecule from the excited state to the 

ground state of the same spin multiplicity. This is when the singlet excited state electron returns 

to the singlet ground state with the emission of a photon. Fluorescence can be detected by the 

fluorometer or spectrofluorometer under normal conditions.   For some transition metal 

complexes, radiationless decay from the singlet excited state to the triplet state is observed. This 

phenomenon is called intersystem crossing where electrons move from one state of spin 

multiplicity to another.  It is enhanced by strong spin-orbit coupling resulting in the mixing of 

the excited states which relaxes the selection rules. Emission from the triplet excited state to the 

singlet ground state, once forbidden, therefore becomes possible.17,18 Hence, phosphorescence is 

slow and is always observed at wavelengths lower than the fluorescence wavelength. For organic 

dyes, observation of phosphorescence intensity in an emission spectrum is very minimal under 

normal conditions due to factors that compete with the slow relaxation process. Among such are 

energy transfer, electron transfer, and non-radiative decay pathways. Measurements of 
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phosphorescence are therefore taken under low temperatures (77 K) using liquid nitrogen. This 

reduces collisions and vibrational deactivations increasing the phosphorescence intensity.18  

 

Triplet State Formation 

Population of the spin-forbidden localized triplet excited state from the singlet excited 

state is a phenomenon that is only possible for certain metal complexes. Following light 

absorption and promotion to the S1 energy level, charge transfer between chromophores results 

in polarized excited states. Filatov gives a vivid pictorial account of the molecular orbital 

diagram for the photo-induced electron transfer (PET) process between electron donor and 

electron acceptor systems.19 Generally, there are a number of intersystem crossing (ISC) 

pathways that have been studied and reported to enhance the formation of triplet state. Among 

them are two commonly known: the radical-pair intersystem crossing (RP-ISC) and spin-orbit 

charge transfer intersystem crossing (SOCT-ISC) as illustrated in figure 6.20–22 With the RP-ISC, 

there is a formation of a triplet charge-transfer state intermediate from a singlet charge-transfer 

state. Electrons move from the triplet charge-transfer state intermediate to the localized triplet 

excited state. An example of a reaction process that utilizes this pathway is photosynthesis.20 The 

SOCT-ISC pathway sees a direct transfer of electrons from the singlet excited state charge 

transfer state to the localized triplet excited state. This mechanism is especially observed in 

metal-organic frameworks with two or more identical and symmetric chromophores and is 

reported to be similar to aromatic carbonyls with n→π* and π→π* type of ISC. The major 

difference between the pathways lies in the proximity of the donor-acceptor species. In RP-ISC, 

there is weak interaction between electrons of the chromophore pair because, they are farther 
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apart. The chromophore pairs that are closely linked tend to go through the SOCT-ISC to form a 

triplet state.20,23 

 

Figure 6: Diagram illustrating mechanisms of triplet state formation22 

Fluorescence(fl), absorption (abs), phosphorescence (ph), charge recombination (CR), singlet 

ground state (S0), singlet excited state (S1), triplet excited state (T1), singlet charge-separated 

state (S1(CS)), triplet charge-separated state (T1(CS)), photo-induced electron transfer (PET), 

radical-pair intersystem crossing (RP-ISC), spin-orbit charge transfer intersystem crossing 

(SOCT-ISC). 

 

Complexes, especially metal complex systems, that undergo ISC may follow either of the 

mechanisms mentioned above and other pathways that were not cited here. Of interest to us is 

the SOCT-ISC which has been the mechanistic pathway reported to be employed by some metal 

dipyrrin complexes that are closely spaced, including zinc dipyrrin complexes in the formation 

localized triplet excited state.19 The symmetric chromophores of the transition metal complexes 

such as homoleptic zinc dipyrrins form electron donor-electron acceptor system. Structural 
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geometry of complexes is of great importance here. The structure of homoleptic zinc dipyrrin 

complex is such that the two dipyrrin ligands on both sides are almost perpendicular (orthogonal) 

to each other.  Trinh and co-workers measured the dihedral angles of distortion between the two 

dipyrrin ligands for a series of zinc dipyrrin complexes.16 Their report shows that the dihedral 

angles between mean planes of the two dipyrrin ligands ranged from 76.7o to 88.3o.16 The 

orthogonal geometry of the metal-ligand complexes compensates for the electron spin magnetic 

moment and orbital angular momentum interaction in the SOCT-ISC process. As electrons orbit, 

their motion generates a magnetic field which interacts with the electron spin magnetic moments. 

For symmetric orthogonal organometallics, charge recombination from the CS state changes the 

molecular orbital angular momentum which generates a magnetic force for the electron spin to 

flip forming a triplet excited state.   

The efficiency of triplet state formation depends on the relaxation pathway from singlet 

excited state.12 There are a number of relaxation pathways from the singlet excited state that 

compete. Among such are radiative decay from the singlet excited state straight to the singlet 

ground state and quenching of the singlet excited state by the formation of intramolecular 

charge-separated state, which aids in the population of the localized triplet excited state. In non-

polar solvents, there is no stabilization of charges in the S1 state. Therefore, radiative decay to 

the singlet ground state is observed. However, in polar environments, the singlet excited state in 

transition metal-organic dyads is quenched by the formation of a charge-separated state. This 

pathway, lower in energy than the S1 state, reduces the CT-T1 energy gap maximizing triplet 

state formation through intersystem crossing.  
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Dipyrrin Complexes of Zinc 

Dipyrrins (dipyrromethenes) are a type of oligopyrroles specifically grouped as hemi-

porphyrins.18 They are organic molecules that possess a high number of degrees of unsaturation. 

This allows for delocalization of the electron density across their structure due to the presence of 

the conjugated π system. Photophysical properties, including stability, of dipyrrins are a function 

of the type and number of substituents attached to the mother structure. Hydrogens on all parts of 

the parent dipyrrin structure can undergo numerous forms of substitutions to finetune 

characteristics and properties of the molecule for specific applications. Free-base dipyrrins are 

bidentate ligands. The pyrrolic nitrogens seen in figure 7 serve as sites for coordination to 

metals, especially transition metals which have been widely exploited for various purposes and 

uses.15 Dipyrrins play very key roles in biological systems such as photosynthesis, metabolism, 

oxygen transport, and a host of biotic redox activities.19 A typical function is in the aspect of 

metabolism; dipyrrins act as metabolites of porphyrins and are part of a group of oligopyrroles 

called bile pigments. In photosynthesis, they serve as light absorbers due to their conjugated π 

system. 

 

Figure 7: IUPAC-recommended numbering scheme for dipyrrin nomenclature.24 

Positions 1 and 9 are termed as the α positions while the 5-position is known as the meso 

position 
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Metal complexes of dipyrrin ligands have attracted a lot of attention due to the diversity 

of applications they present. The flexibility and tunability of their structure modification allow 

for suitable and specific uses. Boron dipyrrin complexes, BODIPYs, have been used extensively 

in the areas where photochemistry plays a major role such as optical sensors, laser dyes, 

biomarkers, drug delivery systems, photodynamic therapy, etc.22,25,26  They are thermally stable, 

have intense absorption and emission bands and high fluorescence quantum yields.27,28 

Fluorescence quantum yields reported from literature are usually very high (between 75 % and 

90 %).28–32 The major limitation to boron dipyrromethenes (BODIPYs) is the inability to form an 

intramolecular charge transfer leading to an ISC due to the presence of only one dipyrrin ligand 

attached to BF2. Another drawback for BODIPYs is that compared to zinc dipyrrins, BODIPYs 

are rigid. The flexibility of zinc dipyrrins gives them an advantage in terms of structural 

modification and tunability.  

Homoleptic zinc complexes of dipyrrin have two dipyrrin ligands in almost orthogonal 

position to each other with the zinc metal at the center. Intramolecular transfer of electrons can 

occur between the two dipyrrin chromophores forming charge separation with high oxidation-

reduction potentials. Relative to the BODIPYs, dipyrromethene chelates of d-block metals have 

an advantage in terms of easier self-assembling at room temperature favoring them in practical 

applications.33 Sazanovich et al., for instance, in 2004 achieved high fluorescence in a 

bis(dipyrrinato)-zinc complex by replacing phenyl substituted rings at the 5,5’ positions with 

mesityl groups (figure 8). There was a  transformation in the photophysical property of the zinc 

complex from a weak emitter complex with a very short half-life of relaxation to a highly 

fluorescent chromophore with an extended singlet excited-state lifetime.34 This substituent 
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replacement induced some rigidification into the zinc dipyrrin structure and eliminated non-

radiative emission by the rotation of the phenyl ring. 

 

Figure 8: Zinc dipyrrins with a variety of substituents that have been studied in previous 

works1,34–38 

 

In the zinc dipyrrin metal complex, the metal-ligand bonds are slightly polar.16 The 

molecular orbitals are not equally delocalized between metal and ligands but predominantly 

located at the ligands. Once the metal complex absorbs light, the electron transfer that occurs at 

the highly polar excited state results in the creation of a charge-separated state.19 The type of 

solvent used plays a very key role during emission in metal complex dyads. In polar solvents, 

very little fluorescent emission is observed in homoleptic zinc dipyrrin complexes due to the 

intramolecular transfer of charges between the dipyrrin chromophores.  Formation of CS state 

can be attributed to the effective stabilization of charges on the dipyrrin ligands in the polar 

region as shown in figure 9.16 In a polar medium, the charged complex in its excited state forms a 

dipole-dipole interaction with solvent molecules leading to effective stabilization of charges. The 

stabilization of charges in the polar medium brings the CS state to a lower energy level than the 
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singlet excited state which makes a forbidden phenomenon possible in this system. On the other 

hand, in nonpolar solvents, a variation is observed when the zinc complexes do not undergo 

charge separation.19,39  

 

Figure 9: Pictorial illustration of the behavior of zinc complex in polar and nonpolar solvents 

 

Previous Work 

 

Figure 10: Previously studied zinc(II) dipyrrin photosensitizers 

A B 
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The above zinc dipyrrin complexes (figure 10) were synthesized and studied by 

Alqahtani et al.  in quantifying the triplet state formation in photosensitizers in 2019.39  

According to Alqahtani and co-workers, though a CS state was observed in polar environments 

of the transition metal complexes of zinc above, the zinc complex B did not match the 

hypothesis, which states that the formation of a charge-separated state consequently results in a  

triplet state. The triplet state formation was calculated by measuring the extinction coefficient of 

the triplet excited state using a triplet-triplet energy transfer to perylene, an electron acceptor, 

against a standard sample. From the results obtained, it was established that the intramolecular 

π→π* transitions were discrete rather than charge delocalization, as observed in the lowest 

energy triplet excited state computational calculations in both complexes.  

The steady state absorption and emission energies showed very little to no change in 

different solvents. The fluorescence quantum yields, however, had a significant decrease moving 

from non-polar to polar solvents due the quenching of the S1 state by the CS excited sate. The 

triplet lifetimes observed for the two zinc complexes in both non-polar toluene and polar THF 

solvents exceeded the minimum lifetime needed for an effective photosensitizer. The triplet 

excited state extinction coefficient was observed to be lower in complex A than in complex B 

and was independent of the solvent environment in both complexes. In the quantification of the 

triplet state formation, complex A almost doubled in the triplet quantum yield calculation from 

toluene to THF which confirms the hypothesis of fluorescence quenching through the non-

radiative CS excited state pathway for transition metal-organic complexes. Complex B, on the 

other hand, did not agree with the hypothesis. Triplet quantum yield results were independent of 

solvent polarity and did not see much of an increase in value. Though the presence of a heavy 

atom, iodine, increased the CS state formation, there was not a positive correlation to the 
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formation of triplet excited state. The increase in the CS state seen did not result in the formation 

of triplet state signifying that triplet state formation may not go through the CS state route for 

this complex.  

Research Aims 

The overall aim of this research is to investigate the photophysical properties of bis(2,8-

diethyl-1,3,7,9-tetramethyl-5-mesityl dipyrrinato) zinc (II) complex as a photosensitizer and the 

role of charge-separated state in the formation of long-lived triplet excited state for reductive 

solar catalysis. 2,8-diethyl-1,3,7,9-tetramethyl-5-mesityl dipyrrinato boron difluoride complex is 

used as a control for the experiment because it contains only one dipyrrin ligand and therefore 

cannot form a charge-separated state. 

The specific objectives are to:  

a. Synthesize 2,8-diethyl-1,3,7,9-tetramethyl-5-mesityl dipyrrin complexes of boron and zinc. 

b. Characterize complexes using analytical techniques like NMR, mass spectroscopy, and 

elemental analysis.  

c. Measure and compare the initial photophysical properties of BODIPY and Zn(DIPY)2 

complexes such as fluorescence quantum yield in solvents of variable polarities and low 

temperature emission. 

d. Measure the transient absorption of the complexes and quantify the triplet yield. 
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CHAPTER 2: EXPERIMENTAL 

Materials 

All chemicals and reagents used were purchased from Fisher Chemical, USA. Column, 

FS5 spectrofluorometer, rotary evaporator, rotary vane vacuum pump, VWR-6300PC UV-

Visible Double Beam Spectrophotometer were available at the Department of Chemistry, East 

Tennessee State University. Nuclear Magnetic Resonance (NMR), Mass Spectroscopy (HR ESI-

MS), and Elemental Analysis (EA) were analytical techniques used in the characterization of the 

synthesized complexes. JOEL AS400 FT NMR instrument was used to analyze the complex. 

High-Resolution Electrospray Ionization Mass Spectrometer (HR ESI-MS) analysis was 

performed at Michigan State University Mass Spectrometry & Metabolomics Core where the 

respective samples were ionized and vaporized, and their mass-to-charge ratio measured. The 

percent composition of carbon, hydrogen and nitrogen from each complex were determined for 

the elemental analysis at Atlantic Microlab, Inc., Georgia.  Boron dipyrrin and zinc dipyrrin 

complexes were synthesized using procedures described by Tao et al. and Thompson et al. 

respectively with slight modifications.16,40  

Methodology 

Synthesis of Dipyrromethane 

3-Ethyl-2-4 dimethylpyrrole (1.56 mL, 15.13 mmol) and mesitaldehyde (1.14 mL, 7.75 

mmol) were dissolved in 50 mL of dichloromethane. 3 drops of trifluoroacetic acid (TFA) were 

added to the reaction mixture while stirring under nitrogen for 6 hours. The reaction was 

quenched by adding 3 mL of triethylamine (TEA) to the mixture. Washing was done with a 

solution of saturated Na2CO3 (25 mL, 3 times), 0.1 M of HCl (1 time) and brine (25 mL, 1 time). 
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The resulting reaction mixture was dried over anhydrous Na2SO4, and solvent was removed by a 

rotary evaporator at 700 mbar, 40oC. The product obtained was a dark yellow solid and was used 

for the next step without purification. NMR spectrum of the product 2,8-diethyl-1, 3, 7, 9-

tetramethyl-5-mesityldipyrromethane matched that of the reported literature.16 1H NMR (399.78 

MHz, CDCl3): δ ppm 6.82 (s, 2.00H), 5.72 (s, 0.95H), 2.36 – 2.34 (q, 5.31H), 2.26 (s, 3.51H), 

2.07 (s, 6.00H), 1.99 (s, 6.73H), 1.69 (s, 5.70H), 1.05-1.01 (t, 6.39H). 

Synthesis of Dipyrromethene Ligand (Dipyrrin) 

Tetrahydrofuran (THF) was freshly distilled for this process. About 300 mL of THF was 

poured into a round bottom flask. Pieces of sodium sticks were added to the solvent in the 

presence of benzophenone indicator. The mixture was distilled until yellow color turned blue 

indicating the absence of water. The freshly distilled THF was collected into a beaker through 

the distillation outlet and used in the next step. Dipyrromethane ligand from the previous 

synthesis was dissolved in about 150 mL of distilled THF. Approximately 3.95 g of 2,3-dichloro-

5,6-dicyano 1,4-benzoquinone (DDQ) dissolved in 30 mL of THF was added slowly to the 

dipyrromethane solution stirring under nitrogen for two hours. The reaction was quenched with 

2.5 mL of triethylamine and solvent was then removed under reduced pressure. Resultant 

product was dissolved in 125 mL of dichloromethane and washed three times with saturated 

NaHCO3 solution and one time with brine. The solution was dried over anhydrous Na2SO4 

filtered. A small amount of the product was dissolved in chloroform-D and analyzed under the 

NMR for similarities with literature values. It was used for the next step without purification. 1H 

NMR (399.78 MHz, CDCl3): δ ppm 12.09 (s, 0.55H), 6.92 (s, 1.99H), 2.69 (s, 5.98H), 2.32 (s, 

3.51H), 2.31 – 2.29 (q, 5.51H), 1.95 (s, 7.07H), 1.23 (s, 6.53H), 0.97-0.93 (t, 6.68H). 
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Synthesis of Boron Dipyrrin Complex 

The boron was added on to the dipyrrin ligand by mixing boron trifluoroetherate with 

dipyrrin in dichloromethane in a 1:1 ratio in the basic medium and stirred overnight. After 

washing the complex with water and dried over anhydrous sodium sulfate, it was dried in vacuo. 

BODIPY was further purified using column chromatography with silica gel suspended in 

dichloromethane as the stationary phase. A percentage yield of 26% was obtained. 1H NMR 

(399.782 MHz, CDCl3): δ ppm 6.93 (s, 1.99H), 2.52 (s, 6.07H), 2.33 (s, 2.45H), 2.30 – 2.29 (q, 

3.79H), 2.08 (s, 6.13H), 1.28 (s, 6.83H), 0.99-0.96 (t, 6.28H). 13C NMR (100.53 MHz, CDCl3): δ 

ppm 154.82, 142.15, 137.32, 137.20, 137.16, 136.10, 134.26, 130.76, 128.68, 21.29, 19.68, 

17.16, 14.80, 12.60, 10.60. EA Calculated for C26H33N2BF2.0.4 CH3OH: C, 72.86%; H, 8.01%; 

N, 6.44% found C,72.90%; H, 8.09%; N,6.29%. HR ESI-MS Calculated for C26H33N2BF2 

423.2782 [M+H]+, Found: 422.2811 [M+H]+. 

Synthesis of Zinc Dipyrrin Complex 

 A solution of zinc acetate dihydrate Zn(OAc)2•2H2O (5.13 g, 23.371 mmol) in 25 mL of 

methanol was prepared and added to dipyrrin ligand in methanol in the presence of TEA. The 

reaction mixture was stirred under air overnight. The resultant solution was filtered with a frit 

and the solvent removed under reduced pressure. The solid obtained was further dissolved in a 

minimum amount of dichloromethane and recrystallized by the addition of methanol to yield a 

dark-green substance.  Afterwards, the solid was purified with a column filled with neutral 

alumina suspended in dichloromethane as the stationary phase. The resultant zinc dipyrrin 

complex ranged from dark-green crystals to orange powder to red powder with green crystals. 

Percent yield after purification was between 5 % and 13 %. 1H NMR (399.782 MHz, CDCl3): δ 
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ppm 6.91 (s, 4.32H), 2.346 (s, 6.91H), 2.250 – 2.231 (q, 9.89H), 2.100 (s, 14.27H), 1.961 (s, 

14.04H), 1.178 (s, 14.98H), 0.914-0.877 (t, 15.27H). 13C NMR (100.53 MHz, CDCl3): δ ppm 

154.82, 142.15, 137.32, 137.20, 137.16, 136.10, 134.26, 130.76, 128.68, 21.37, 19.60, 18.04, 

15.40, 14.49, 11.88. EA calculated for C52H66N4Zn.2 H2O. 0.8 CH3OH. 0.2 CH2Cl2 : C, 71.43%; 

H, 8.32%; N, 6.29% found C, 71.51%; H, 8.15%; N, 6.11%. HR ESI-MS Calculated for 

C52H66N4Zn 811.4626 [M+H]+, Found: 811.4626 [M+H]+. 

Steady State Spectroscopy 

Dilute solutions (Abs < 2) of the complexes were prepared in six different solvents and 

UV-Visible spectra were recorded on a VWR-6300PC UV-Visible Double Beam 

Spectrophotometer.  Solvents included hexanes, toluene, THF, ethyl acetate, chloroform, and 

DCM. The double beam spectrophotometer was equipped with D2 and W lamps controlled by 

the UV-VIS ANALYST software version 5.44. Wavelength scan range was set from 250 nm to 

750 nm. For every new set of measurement, system baseline was calibrated, as well as the 

automatic blank calibration. The step of the absorbance spectra was 0.5 nm with a slit bandwidth 

of 2.0 nm. A one-centimeter quartz cuvette was used to help maintain the light pathlength at 1.0 

cm. Absorbance measurements were taken at least three times on independently prepared 

samples.   

Steady-state emission spectroscopic measurements of aerated complex solutions were 

taken on an FS5 spectrofluorometer from Edinburgh Instruments, UK using the SC-05 standard 

cuvette holder. The instrument is equipped with Xenon lamp as the excitation source, a PMT 

(R928P, Hamamatsu) detector and controlled by the Fluoracle software version 1.9.4. Excitation 

and emission bandwidths were both 1.0 nm. Emission scans ranged between 480 nm and 800 
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nm, were repeated at least three times on independently prepared samples and each emission 

scan was corrected for detector response.  

Fluorescence Quantum Yield 

Zn(DIPY)2 and BODIPY complexes were analyzed for their fluorescence quantum 

yields. Dilute solutions of complexes were prepared in six solvents—n-hexane, toluene, ethyl 

acetate, THF, chloroform, and DCM—and absorbance was first taken using VWR-6300PC UV-

Visible Double Beam Spectrophotometer to ensure the excitation wavelengths were recorded 

between the absorbances of 0.1 and 0.2. Emission spectra of the same complex solutions were 

then taken with an FS5 spectrofluorometer. Excitation absorbances were recorded at 480 nm for 

all solutions of the zinc dipyrrin complex, and 499 nm for that of boron dipyrrin complex. 

Emission scans ranged from 490 nm to 820 nm for Zn(DIPY)2 and from 510 nm to 820 nm for 

BODIPY. Emission spectra for the sample solution, standard solution, standard solvent, and 

sample solvent were measured and corrected. Tris-(bipyridine) ruthenium(II) chloride 

[Ru(bpy)3]Cl2 in aerated water was used as the standard for the quantum yield measurements 

(quantum yield of the reference is 0.040)41. The fluorescence quantum yield was calculated using 

the equation below where ΦF  is fluorescence quantum yield of complex, Φstd  is fluorescence 

quantum yield of standard, Iunk is intensity of unknown (complex), Istd is intensity of standard, A 

is absorbance at excited wavelength and ɳ is the refractive index42 

  

Φ
F
 = Φ

std
 (

A𝑠𝑡𝑑
A𝑢𝑛𝑘

) (
I𝑢𝑛𝑘
I𝑠𝑡𝑑

) (
η𝑢𝑛𝑘
𝜂𝑠𝑡𝑑

)
2 

(3-1) 
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Low Temperature Emission 

Emission spectra of complexes were studied at 77K using liquid nitrogen. Data was 

collected using FS5 spectrofluorometer from Edinburgh Instruments, UK with an SC-70 Liquid 

Nitrogen Dewar cuvette holder. Diethyl ether, 2-methyl THF, and propionitrile-butyronitrile 

(4:5) were the solvents used for this analysis. They form optical glasses when frozen for efficient 

analysis.  The sample transferred into an NMR tube was submerged in liquid nitrogen in the 

sample chamber to freeze the solutions of dipyrrin complexes. Long pass filters (LP 470 nm and 

LP 660 nm) were placed after the sample to minimize scattering. Emission scans were taken and 

corrected for detector response.  
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CHAPTER 3: RESULTS AND DISCUSSION 

Synthesis and Characterization of Dipyrrin Complexes 

The synthesis of bis(2, 8-diethyl-1, 3, 7, 9-tetramethyl-5-mesityldipyrrinato) zinc(II) was 

a straightforward procedure where mesityladehyde reacted with 3-ethyl-2-4 dimethylpyrrole in 

the presence of trifluoroacetic acid for 6 hours under nitrogen to produce 2, 8-diethyl-1, 3, 7, 9-

tetramethyl-5-mesityldipyrromethane ligand as performed by Thompson et al in 2014.16 This 

ligand was oxidized with DDQ in freshly distilled THF by slowly adding DDQ-THF solution to 

the dipyrromethane ligand for 2 hours to form 2, 8-diethyl-1, 3, 7, 9-tetramethyl-5-

mesityldipyrrin ligand. The resultant product was washed with saturated NaHCO3 and brine, and 

dried—first over anhydrous Na2SO4 and later with a rotary vane pump. 1H NMR was analyzed 

after each stage of synthesis to ascertain the product of the synthetic process.  

Bis(2, 8-diethyl-1, 3, 7, 9-tetramethyl-5-mesityldipyrrinato) zinc(II) was finally obtained 

by adding a solution of zinc acetate dihydrate Zn(OAc)2•2H2O in methanol to the dipyrrin ligand 

(dissolved in methanol) in the presence of excess triethylamine. This process took place 

overnight under air. The end product was filtered using a frit and methanol was removed from 

the product solution with a rotary evaporator. The complex was purified with a column filled 

with neutral alumina solution as the stationary phase and dichloromethane as the mobile. The 

product was recrystallized afterwards to obtain a dark-green zinc dipyrrin complex. After three 

trials, the percent yield varied from 5 % to 13 % while the colors ranged from dark-green 

through orange to red. In their publication, Thompson and co-workers recoded a total percentage 

yield of 8-13 % their dipyrrin complexes.16 This falls in line with resultant yields obtained in the 

McCusker lab for the zinc dipyrrin complex. Zinc (II) dipyrrin complex is a stable complex and 

has a good shelf life; however, over the period, it was observed that the moisture content 
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increased when left on the shelf for a very long time. It was therefore dried each time before 

further analysis were carried out. Figure 11 gives a systematic procedure of the synthetic route of 

zinc(II) dipyrrin complex. 

 

Figure 11: Synthesis of zinc dipyrrin complex 

 

The first analytical tool employed for characterizing complexes was NMR using the 

JOEL AS400 FT NMR instrument. A small amount of the zinc complex was dissolved in 

chloroform-D and poured into an NMR tube for analysis. Detailed results of the NMR analysis 

for dipyrrinato zinc (II) complex are shown in figures 12 and 13. Figure 12 shows the 1H NMR 

peaks which matched what was recorded in literature by Thompson et al.16 The aromatic protons 

on the mesityl ring showed a peak at 6.91 ppm, the ethyl groups were located between 2.23 ppm 

and 2.25 ppm. The methyl groups showed singlet peaks from 0.87 ppm to 2.34 ppm. Figure 13 

also shows the 13C NMR peaks of the aliphatic (upfield) and aromatic carbons (further 

downfield). 
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Figure 12: 1H NMR of Zn(DIPY)2 analyzed in CDCl3 

 

Figure 13: 13C NMR of Zn(DIPY)2 analyzed in CDCl3 
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Boron Dipyrrin Complex 

The initial stages of the synthesis of the ligand were done exactly as outlined in the 

synthesis of the zinc dipyrrin complex. Mesityladehyde was mixed with 3-ethyl-2-4 

dimethylpyrrole in the presence of trifluoroacetic acid for 6 hours under nitrogen to produce 2, 8-

diethyl-1, 3, 7, 9-tetramethyl-5-mesityldipyrromethane ligand.16 The dipyrromethane ligand was 

oxidized with DDQ in freshly distilled THF to obtain 2, 8-diethyl-1, 3, 7, 9-tetramethyl-5-

mesityldipyrrin ligand. To form the boron dipyrrin complex, boron trifluoroetherate was added to 

dipyrrin in dichloromethane in a 1:1 ratio in the basic medium and stirred overnight. BODIPY 

was further purified using column chromatography with silicon dioxide as the stationary phase 

and dichloromethane as mobile phase. A percentage yield of 26% was obtained. BODIPY is a 

very stable red powdery complex. Figure 14 shows a schematic synthetic process of boron 

dipyrrin complex. Figures 15 and 16 show the 1H and 13C NMRs results, respectively, which 

were in line with literature.43 

 

Figure 14: Synthesis of  BODIPY 
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Figure 15: 1H NMR of BODIPY analyzed in CDCl3 

 

Figure 16: 13C NMR of BODIPY analyzed in CDCl3 
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Absorption Spectroscopy 

Solutions of Zn(DIPY)2 and BODIPY were exposed to a light source in the UV-Visible 

spectrophotometer equipped with D2 and W lamps. As radiation passed through the complex 

solutions, they absorbed light at respective wavelengths. Electrons therefore moved from the 

singlet ground state S0 to the singlet excited state S1 in both Zn(DIPY)2 and BODIPY. 

Absorption spectra of both complexes under study were taken in six different solvents of 

different polarities and their absorbance maxima of  are tabulated in table 1. The solvent polarity 

indicator  is based on the Dimroth-Reichardt ET30 polarity scale. The ET30 polarity scale is 

defined as a measure of the electronic transition energy of the pyridinium N-phenolate betaine 

dye in a particular solvent.44 It is measured in kilocalories per mole at 250C and 1bar. A high 

ET30 value corresponds to a high solvent polarity and vice versa.45   

 

Table 1: Absorption and Emission Maxima of Complexes in Different Solvents 

Solvent ET30(kcal/mol) λabs (max/nm) λem
 
(max/nm) 

 Zn(DIPY)2 BODIPY Zn(DIPY)2 BODIPY 

n-Hexane 31.0 504.0 523.5 533.0 539.0 

Toluene 33.9 507.0 527.0 534.0 543.0 

THF 37.4 504.5 524.0 535.0 541.0 

Ethyl acetate 38.1 503.5 522.5 533.0 540.0 

Chloroform 39.1 506.0 527.0 534.0 543.0 

DCM 40.7 505.5 525.0 535.0 543.0 
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The UV-Vis absorption maxima observed for bis(2, 8-diethyl-1, 3, 7, 9-tetramethyl-5-

mesityldipyrrinato) zinc(II)  Zn(DIPY)2 ranged from 503.5 nm in ethyl acetate to 507.0 nm in 

toluene. According to Alqahtani in 2018, the absorption maximum for bis(1, 3, 7, 9-tetramethyl-

5-mesityldipyrrinato) zinc(II) ZnDPY complex in toluene was recorded at 490 nm.1 Thompson 

and coworkers in 2014 also reported a range of absorption maxima for bis(1, 3, 7, 9-tetramethyl-

5-mesityldipyrrinato) zinc(II) in different solvents from 488 nm in DCM, 489 nm in cyclohexane 

and THF, to 491 nm in toluene. For the same solvents, they recorded slightly higher values of 

absorption maxima in bis(2, 8-diethyl-1, 3, 7, 9-tetramethyl-5-mesityldipyrrinato) zinc(II) 

complex—between 505 nm in THF and 508 nm in toluene.16 The bathochromic shift of the UV-

Vis spectra observed  can be attributed to the presence of ethyl substituents at the 2,8 positions of 

the Zn(DIPY)2 complex. Introduction of the electron-donating auxochromes lowered the energy 

gap between the HOMO and LUMO of the Zn(DIPY)2 complex causing the shift in the 

absorbance maxima. Figure 17 shows the position of the ethyl substituents. 

 

 

Figure 17: Diagram of zinc complexes 
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A similar trend was observed for BODIPY complex. Tao et al. in their article published 

in 2019 reported the UV-Vis absorption spectra of  502 nm for 1, 3, 7, 9-tetramethyl-5-

mesityldipyrrinato boron difluoride in DCM.40 Adding of the ethyl substituents onto the complex 

effected a red shift. The absorbance maxima recorded in the McCusker lab therefore ranged from 

523.5 nm to 527.0 nm. The strong single unresolved absorption band observed in both 

complexes are characteristic of π→π* transitions. These single intense peaks were assigned to 

the excitation of an electron from S0→S1. 

 

 

Figure 18: Normalized absorption spectra of Zn(DIPY)2 

 

0

0.5

1

300 350 400 450 500 550 600

In
te

n
si

ty
 (

a.
u
.)

λ (nm)

n-Hexane

Toluene

Chloroform

Ethylacetate

THF

DCM



40 

 

 

Figure 19: Normalized absorption spectra of BODIPY 

 

 

Emission Spectroscopy 

The steady-state emission spectroscopic measurements of Zn(DIPY)2 and BODIPY were 

measured at room temperature in all six solvents used for previous UV-VIS analysis with 

emission maxima results displayed in table 1. Zn(DIPY)2 was found to emit light from 533.0 nm 

to 535.0 nm while BODIPY emitted light from 539.0 nm to 543.0 nm. Similar to the UV-Visible 

spectra, the emission spectra maxima of the complexes also red shifted in the spectra results 

relative to their respective methyl-substituted counterparts.   

Unlike the absorption spectra, there were variations in the emission spectra of Zn(DIPY)2 
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solvent) particularly showed a shoulder between 600 nm and 800 nm as shown in figure 20. 

Emission at the longer wavelength can be attributed to the charge-separated state16 experienced 

in polar solvents by the Zn(DIPY)2 complex. Most fluorophores have larger dipole moments in 

the excited state than in the ground state. Therefore, at the excited state, the charge-separated 

state intermediate of Zn(DIPY)2 interacts with the polar solvent molecules. The CS state is 

therefore effectively stabilized in the polar solvent lowering the energy gap between the CS state 

and the triplet excited state. Intersystem crossing to the triplet excited state is enhanced, followed 

by radiative emission from the triplet excited state to the singlet ground state.  The polar solvent 

effect is not experienced in BODIPY, on the other hand. There was intense emission in the 

fluorescence region in all solvents for BODIPY as shown in figure 21.  

 

 

Figure 20: Normalized emission spectra of Zn(DIPY)2 
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Figure 21: Emission spectra of BODIPY in various solvents 

 

Fluorescence Quantum Yield 

As mentioned earlier in chapter 1, there are generally a number of decay pathways for an 

excited molecule. The two fundamental pathways are radiative and non-radiative deactivation 

pathways. Fluorescence quantum yield measures the amount of light emitted from an excited 

species upon return to the ground state. The fluorescence quantum yield values of Zn(DIPY)2 

and BODIPY in varied solvents have been tabulated in table 2. [Ru(bpy)3]Cl2 in aerated water (Φ 

= 0.04)41 was used as standard. Zn(DIPY)2 was excited at 480 nm for all solvents while BODIPY 

was excited at 499 nm for the same solvents.  
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Table 2: Fluorescence Quantum Yield Values of Zn(DIPY)2 and BODIPY Complexes 

 

 

 

 

 

 

 

 

 

The results obtained shows that BODIPY is highly fluorescent emitting almost 90% of 

absorbed light, while Zn(DIPY)2 emitted only about 20 % of light absorbed in n-hexane while it 

emitted about 0.2 % in DCM. The fluorescence quantum yield can be close to unity if the non-

radiative decay rate is much smaller than the rate of radiative decay.15 The fluorescence quantum 

yield for BODIPY was independent of solvent polarity; there was no stabilization of charges 

observed in polar solvents. For Zn(DIPY)2, however, the quantum yield values recorded were a 

proof of heavy dependence on solvent polarity. The fluorescence quantum yield values decreased 

accordingly as solvent polarity increased, confirming the formation of a CS state which quenches 

the singlet excited state of the Zn(DIPY)2 in highly polar solvents. Figure 22 gives a trend in the 

fluorescence quantum yield values with solvent for the respective complexes.  

Solvent Zn(DIPY)2 SD % BODIPY SD % 

n-Hexane 0.212 3.471 0.854 3.037 

Toluene 0.177 1.729 0.867 8.873 

THF  0.033 3.535 0.858 4.849 

Ethyl acetate 0.023 4.174 0.811 3.062 

Chloroform 0.012 4.949 0.821 3.410 

DCM 0.003 21.651 0.836 4.397 
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Figure 22: Plot of fluorescence quantum yield values of solvents from nonpolar to most polar 

 

 

Low Temperature Emission Spectroscopy 

A photoinduced electron transfer from donor D to acceptor A results in the formation of a 

charge-separated state which consists of the corresponding radical cation and anion, and the 

process is in direct competition with the radiative and nonradiative deactivation processes.46 

After the formation of a CS state, there are further decay processes that kinetically compete with 

emission. Due to the competition, phosphorescence is usually not seen at room temperature. 

Figure 23 shows a graph of emission spectra of Zn(DIPY)2 observed at 77 K using liquid 

nitrogen. From the graph, emission was observed at longer wavelengths between 700 nm and 

750 nm in the most polar solvent (propionitrile-butyronitrile). At low temperatures, molecular 
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vibrations and collisions are reduced increasing the phosphorescence intensity. Figure 24 shows 

the optimized phosphorescence signal of the emission spectra. Phosphorescence is not observed 

in BODIPY because there is no formation of a CS state (due to the absence of a donor-acceptor 

system) as seen in figure 25.  

 

Figure 23: Normalized low temperature emission spectra for Zn(DIPY)2 
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Figure 24: Normalized low temperature emission spectra of Zn(DIPY)2 showing the 

phosphorescence region 

 

 

Figure 25: Low temperature emission spectra for BODIPY 
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CHAPTER 4: CONCLUSION 

Reductive photocatalysis of CO2 has long gained attention, with biomolecular 

photocatalysis requiring a photosensitizer to facilitate completion of the reaction cycle. The 

efficiency of a photosensitizer depends on its ability to form stable excited states with extended 

lifetimes long enough to allow for photochemical reactions. Extensive studies into zinc dipyrrins 

for a variety of applications have been done due to the ease in their syntheses and ability to 

finetune their photophysical properties for specific uses. Nevertheless, the use of zinc dipyrrins 

as efficient photosensitizers requires further research.  

Previous findings from the McCusker lab performed by Norah Alqahtani showed that 

ZnDPY and ZnIDPY were good candidates for photosensitizers because their triplet excited state 

lifetimes exceeded the minimum requirement for an effective photosensitizer. However, the 

findings showed that ZnDPY followed the S1→ CS →T1 route but ZnIDPY did not obey the 

pattern. The presence of the iodine increased the CS formation and lowered the fluorescence 

quantum yield in the polar solvent. Though the triplet quantum yield also increased in the 

presence of the heavy atom, the yield was independent of solvent polarity. This research 

therefore sought to investigate the role of the CS state in the formation of triplet excited state in a 

more alkyl substituted zinc dipyrrin.  

Bis(2,8-diethyl-1,3,7,9-tetramethyl-5-mesityl dipyrrinato) zinc (II) and 2,8-diethyl-

1,3,7,9-tetramethyl-5-mesityl dipyrrinato boron difluoride complexes were synthesized, purified, 

dried completely, and characterized using NMR, HR ESI-MS, and EA before analyses of their 

photophysical properties were performed. The absorbance spectroscopy of Zn(DIPY)2 ranged 

between 503 nm and 507 nm while that of BODIPY ranged between 522 nm and 527 nm. 

Steady-state emission spectroscopy for Zn(DIPY)2 was from 533 nm to 535 nm whereas 
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emission maxima for BODIPY was from 539 nm to 543 nm. The fluorescence quantum yield for 

BODIPY was very high emitting about 87% of radiation, confirming the numerous studied 

performed on boron dipyrrin complexes as highly fluorescent. Relatively, the highest 

fluorescence quantum yield value recorded for Zn(DIPY)2 was 21% in hexane. The value 

decreased accordingly as the solvent polarity increased. In DCM, a fluorescence quantum yield 

value of 2.7% was calculated. The results proved the stabilization of the CS state in Zn(DIPY)2.  

Low temperature emission of Zn(DIPY)2 was measured in three solvents with different 

polarities. Results showed that emission was observed at the phosphorescence region between 

700 nm and 750 nm in the most polar solvent. This signifies that the local triplet excited state 

was populated, and hence radiative emission from T1 to S0 was observed as 77 K.  

 

Future Research 

Transient absorption analysis and the triplet quantum yields of Zn(DIPY)2 and BODIPY 

are currently being measured by our collaborators at North Carolina State University. This will 

help determine the quenching route for the Zn(DIPY)2. Furthermore, syntheses, characterization, 

and analysis of the photophysics of 1, 3, 7, 9-tetramethyl-5-mesityl dipyrrinato boron difluoride 

(BoMeDIPY) and 2, 8- diiodo-1, 3, 7, 9- tetramethyl-5-mesityl dipyrrinato boron difluoride (Bo-

I-DIPY) will be carried out to validate the importance of the CS state in the formation of the 

triplet excited state.  
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