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ABSTRACT 

Vitamin B12 Deficiency Does Not Stimulate Amyloid-beta toxicity in a  

Ceanorhabditis elegans Model of Alzheimer’s Disease 

by 

Opeyemi F. Showemimo 

 

Alzheimer’s disease (AD) is symptomized by amyloid-beta plaques in the brain and accounts 

for more than 65 percent of dementia cases. Vitamin B12 (cobalamin) deficiency can result in 

similar cognitive impairment and roughly 15% of the elderly are vitamin B12 deficient. 

Vitamin B12 deficiency results in the accumulation of toxic methylmalonic acid and 

homocysteine. Hyperhomocysteinemia is a strong risk factor for AD. To test if vitamin B12 

deficiency stimulates amyloid-beta toxicity, Caenorhabditis elegans expressing amyloid-beta 

in muscle were fed either vitamin B12-deficient OP50-1 or vitamin B12-rich HT115(DE3) E. 

coli bacteria. Increased amyloid-beta toxicity was found in worms fed the 0P50-1 diet. 

Supplementation of the OP50-1 diet with vitamin B12 did not rescue the increased C. elegans 

toxicity. Knockdown of either of the only two C. elegans vitamin B12-dependent enzymes 

metr-1 or mmcm-1 protected against toxicity. Therefore, vitamin B12 deficiency does not 

stimulate Alzheimer’s amyloid-beta-mediated toxicity in C. elegans. 
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CHAPTER 1. INTRODUCTION 

Alzheimer’s disease (AD) is a neurodegenerative disorder that is progressive in nature 

and in patients it features loss of memory, communication skills, and cognitive functions such 

as thinking, learning and problem-solving. AD causes brain cells (neurons) in certain areas of 

the brain such as the hippocampus to degenerate. Over time the neurodegeneration spreads to 

much of the frontal and temporal lobes of the cerebral cortex causing loss of synapses and 

eventually leading to brain atrophy (Morrison and Hof 2007; Alzheimer's Association 2019). 

AD is believed to begin two decades before clinical symptoms are seen in patients (Bennett et 

al. 2004).  Although, AD accounts for more than 75% of the cases of dementia in individuals 

over 65 years of age (Erkkinen et al. 2018), it should not be viewed as a normal aspect of 

brain aging.  

AD exists in two form. The Familial AD typically begins between the ages of 30 and 

55 and is referred to as the early onset form accounting for less than 5% of AD cases. The 

late onset form (sporadic AD) is the most prevalent form of AD and begins after 65 years of 

age (Bird 2018). AD development is linked with multiple factors, and in the case of the early 

onset form, has been linked to mutation in three genes: amyloid precursor protein (APP), 

presenilin 1 (PS1) and presenilin 2 (PS2). The greatest risk factors for sporadic AD are aging, 

inheriting the apolipoprotein Ɛ4 allele, and family history (Bekris et al. 2010; Wallon et al. 

2017; Giau et al. 2019). Epidemiological studies have also shown that subjects with 

cerebrovascular disorders, a high cholesterol level, a history of brain injury, diabetes, or mid-

life hypertension are at higher risk of developing AD (Reitz and Mayeux 2014; Prince et al. 

2016). Factors such as gender, level of education, race, and poor diet and lifestyle are 

associated with risk for AD development. (Scheltens et al. 2016). 
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Over 5 million Americans over 65 years of age are living with AD, and by 2050 a 

projected rise to 15.8 million is expected. AD is the 6th leading cause of death in the United 

States and a major cause of poor health and disability in individuals over 65 years of age 

(Alzheimer's Association 2019). The social, economic and financial burden to individuals 

living with AD, the family members who support them, and the nation is on the rise 

(Maresova et al. 2016; Prince et al. 2016). 

Current pharmacological treatment for AD includes acetylcholinesterase inhibitors 

(ACHei) and N-methyl D-aspartate (NMDA) receptor antagonists (Aderinwale et al. 2010). 

However, these treatments provide only mild relief for cognitive function and are used to 

treat cognitive decline at the later stages of the disease. In addition, these drugs are not 

effective in all patients and have substantial side effects (Bianchetti et al. 2006; Small and 

Duff 2008). Non-pharmacological treatments such as exercise and music therapy have been 

found to be mildly effective in some cases. Both, like the pharmaceutical treatments, only 

provide symptomatic relief without stopping AD progression. 

Despite the number of years dedicated towards research to understand the molecular 

and pathological basis of AD no drug has been developed to even slow down its progression 

and almost all drugs have failed clinical trials. AD represents a global challenge to public 

health with impacts on individuals, families, and society at large giving rise to economic and 

social hardship. Due to these devastating consequences there is an increasing need for the 

development of drugs that target novel molecular pathways to attempt to slow down AD 

disease progression. 

Alzheimer’s Disease Pathology 

In the brain, pathophysiology of AD include extracellular deposits of amyloid plaques 

and intracellular aggregation of neurofibrillary tangles (NFTs), which were first described by 



10 
 

Alois Alzheimer in 1907 from studying the brain autopsy of AD patients (Murphy and Levine 

2010; Serrano-Pozo et al. 2011). Amyloid plaques contain abnormally folded amyloid-beta 

(Aβ) peptides of 40/42 amino acids in length proteolytically formed from cleavage of 

amyloid precursor protein (APP) (Sheng et al. 2018). Aβ peptides form soluble oligomers and 

then aggregate into beta sheet structures in the neuronal extracellular space and form 

insoluble Aβ plaques. Recent studies posit that intracellular Aβ oligomers are more toxic than 

extracellular Aβ plaques as the oligomers induce neuronal damage and loss of synapses (Tu 

et al. 2014; Ferreira et al. 2015; Ono and Tsuji 2020). Intracellular neurofibrillary tangles are 

helical filaments composed of highly phosphorylated tau proteins, which prevent the 

movements of cargo up and down microtubules in the axons thereby disrupting neuronal 

function (Singh et al. 2016). Both Aβ plaques and tau NFTs inhibit neuronal communication 

via disrupting synapses and consequently lead to neurodegeneration and brain atrophy. 

Hypotheses of AD Development and Progression 

Since the first identification of AD, numerous hypotheses have been put forth to 

explain this multifaceted disorder. The first data-driven molecular hypothesis was postulated 

in 1976 by Peter Davies and A. J. F. Maloney (Davies and Maloney 1976). Behavioral 

changes such as irritability, agitation, depression, and psychosis are often observed at the 

later stage of AD and these are likely coupled with the loss of acetylcholine.  These findings 

led to the cholinergic hypothesis, which posits that deficiency of acetylcholine, a 

neurotransmitter produced by the enzyme choline acetyltransferase at presynaptic clefts, 

causes the behavioral deficits seen in AD patients. Pharmacological therapies such as 

acetylcholinesterase inhibitors, which serve to decrease the rate of acetylcholine degradation, 

have been used to treat late onset AD (Francis et al. 1999; Yiannopoulou and Papageorgiou 

2013; H. Ferreira-Vieira et al. 2016). 
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The amyloid-beta cascade hypothesis has been at the forefront of AD research for the 

past three decades. According to its founders (Hardy and Allsop 1991), the aggregation of Aβ 

peptide , which is a proteolytic product of the transmembrane protein amyloid precursor 

protein (APP), is the major culprit in AD. The downstream effects of Aβ plaque deposition 

result in intracellular neurofibrillary tangle deposition and neuronal and synaptic loss, 

ultimately leading to dementia. The Aβ cascade hypothesis was further corroborated when it 

was found that patients with the familial form of the disease have mutations in genes 

involved in the proteolytic processing of Aβ. The genes involved are APP, PS1 and PS2. 

Also, Down syndrome patients, who possess an extra copy of chromosome 21, have a higher 

risk for developing AD due to location of the APP gene on chromosome 21 (Ricciarelli and 

Fedele 2017). 

As convincing as the amyloid-beta cascade hypothesis seems, many questions are yet 

to be resolved including how increased production of Aβ peptides lead to NFT formation, 

why anti-amyloid therapy has not been able to successfully treat the disease at the clinical 

level, why there are Aβ plaques in the aging brain of patients with no signs of dementia, why 

Aβ plaques and NFTs are seen in patients with late onset AD with no mutation in the APP, 

PS1,or PS2 genes, and how Aβ plaques and NFTs can develop independently of mutations in 

these genes (Swerdlow et al. 2010; Morris et al. 2014; Ricciarelli and Fedele 2017). 

In a bid to explain the pathophysiology of the most common form of AD (sporadic 

late onset AD), the “mitochondrial cascade hypothesis” was put forth. The hypothesis posits 

that mitochondrial dysfunction, which increases with aging leads to decreased oxidative 

phosphorylation and increased reactive oxygen species (ROS) production and that this 

dysfunction drives Aβ deposition and NFT formation. Deposited amyloid-beta peptides are 

imported into mitochondria, where they further increase ROS production and decrease ATP 
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production leading to neuronal cell death (Butterfield 2002; Swerdlow and Khan 2004; 

Swerdlow et al. 2010).  

Other hypotheses for development of AD include the tau hypothesis (Frost et al. 

2009), the calcium hypothesis (Mattson et al. 1992), the metal ion hypothesis (Liu et al. 

2018), the dual pathway hypothesis  (Small and Duff 2008), and the oxidative stress 

hypothesis (Markesbery 1997). An alternative hypothesis recently put forth is the 

homocysteine hypothesis. Homocysteine is a non-protein sulfur containing amino acid, which 

is remethylated to form methionine in the methionine-homocysteine cycle. High serum level 

of homocysteine is an indicator of low B vitamin level (B12, B9, or B6) (Smith et al. 2018).  

The homocysteine hypothesis was formulated to attempt to find a link between the 

cause for the early and late onset forms of AD. Familial AD has been linked with vitamin 

B12 deficiency as mutation in APP gene leads to endolysosomal protease inhibition 

preventing release of vitamin B12 bound to its carrier protein. This is further discussed later 

in the thesis. Likewise, mutation of the presenilin-1 (PS1) gene could disrupt lysosome 

function, preventing the release of cobalamin (vitamin B12) for use by the rest of the cell. 

Several studies have reported high serum homocysteine levels in older subjects before the 

onset of dementia and AD suggesting hyperhomocysteinemia as a risk factor for sporadic AD 

(Regland and McCaddon 2019). 

Mitochondria and AD Development 

Considering the importance of mitochondria as the main energy provider for the cell, 

they have been hypothesized to play a role in AD development and progression and are 

important targets for therapeutic purposes. Mitochondria produce adenosine triphosphate 

(ATP) via oxidative phosphorylation. The electron transport chain (complexes I, II, III, and 

IV) and ATP synthase (complex V) located in the mitochondrial inner membrane generate 
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energy from the NADH and FADH2 produced from the mitochondrial citric acid cycle 

oxidation of respiratory substrates such as pyruvate, fatty acids, and amino acids. 

Cytoplasmic NADH derived from glucose oxidation is also shuttled into the mitochondrial 

matrix space for energy generation. 

Genetic information is present in the mitochondrial matrix space in the form of 

mitochondrial DNA (mtDNA), which can replicate independently of the cell cycle. MtDNA 

is quite susceptible to mutations such as deletions and base substitution mutations. Mutations 

have been shown to accumulate during brain aging and in neurodegenerative disease, to a 

level which can compromise mitochondrial bioenergetics (Tillement et al. 2011). This was 

corroborated in studies that reported mtDNA mutations in neurons in patients with AD (Hirai 

et al. 2001; Wang et al. 2014).   

Also, increased ROS level, reduced ATP production, reduced NADH dehydrogenase 

(complex I) activity, and reduced cytochrome c oxidase (complex IV) activity was reported in 

autopsied AD patient brain mitochondria and in studies that used AD cybrid cell lines, where 

mitochondria from patient blood cells were injected into cell lines depleted of mtDNA, and 

the cells were exposed to A1-40 (Cardoso et al. 2004). β-amyloid oligomers have been 

implicated as the cause of several types of mitochondrial dysfunction. Several studies have 

noted that β-amyloid can be imported across the mitochondrial inner and outer membranes, 

and is able to interact with mitochondrial matrix space molecules (Lustbader et al. 2004; 

Singh et al. 2009).  

A group that used human neuroblastoma cells reported that Aβ1-42 peptide crossed 

the mitochondrial outer membrane and interacted with complex II in the inner membrane 

(Tillement et al. 2006). This is not so surprising given that the mitochondrial outer membrane 

contains oligomeric VDAC proteins that form pores allowing the passage of solutes smaller 
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than 100 amino acids (~ 10 kD) in size. This study further showed that Aβ1-42 can also 

interact with complexes IV and V of the mitochondrial oxidative phosphorylation machinery. 

Another study also noted a decrease in complex IV (cytochrome oxidase) activity in 

the brain of AD patients (Bosetti et al. 2002). Furthermore, examination of the hippocampus 

of patients with late onset AD revealed decreased cytochrome c oxidase activity (COX) 

compared to normal patients of the same age. Further analysis of the neuronal mtDNA-linked 

COX deficiency found that it was due to elevated mtDNA deletions, which increase with 

aging (Krishnan et al. 2012). 

β-amyloid can further compromise membrane integrity and lead to cell membrane 

deformation, increased membrane permeability (Janson et al., 1999; Engel, 2009) and 

disrupted calcium homeostasis, which can interfere with normal mitochondrial function 

(Csordás et al. 1999). β-amyloid can also impede ATP production via inhibition of oxidative 

phosphorylation (Hauptmann et al. 2009), which consequently increases ROS production 

(Alexeyev et al. 2006). ROS overproduction can lead to DNA damage, lipid peroxidation, 

and cell apoptosis (Tillement et al. 2011). A plethora of evidence has shown a link between 

β-amyloid peptide deposits, mitochondrial dysfunction, and increased oxidative stress 

(Butterfield 2002; Chen and Zhong 2014; Wang et al. 2014; Huang et al. 2016). 

Roles of B Vitamin in Brain Function 

B Vitamins are a group of water-soluble vitamins, which play a role in normal cell 

function by serving as coenzymes/cofactors in enzymatic reactions (Mikkelsen, Stojanovska, 

and Apostolopoulos 2016). They play a role in maintaining mitochondrial energy production, 

the metabolism of protein, fats and carbohydrate, the synthesis of nucleic acids and amino 

acids, as well as play a role in DNA repair and immunity (Laquale 2006; Kennedy 2016). 
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The eight B vitamins with inter-related functions are thiamine (B1), riboflavin (B2), 

niacin (B3), pantothenic acid (B5), pyridoxine (B6), biotin (B7), folate (B9), and cobalamin 

(B12). Except for vitamin B12, which is synthesized only by some bacteria, all other B 

vitamins can be synthesized by plants. B vitamins are derived from dietary supplements of 

plant and animal origin such as meat, grains, fruits, fish, dairy, milk, and vegetables 

(Kennedy 2016). 

Thiamine acts as a cofactor in pathways that are involved in carbohydrate 

metabolism. It plays a role in maintaining neuronal structure and function. Riboflavin and 

niacin function together in mitochondrial energy metabolism. Riboflavin is a precursor for 

two coenzymes, flavin mononucleotide and flavin adenine dinucleotide, while the active 

forms of niacin are nicotinamide adenine dinucleotide (NAD(H)) and NAD phosphate 

(NADP(H)). In addition, riboflavin regulates the recycling of niacin, folate, and vitamin B6 

(pyridoxine). Pantothenic acid is a precursor for the synthesis of coenzyme A and is used in 

the metabolism of amino acids, fatty acids, cholesterols, and phospholipids. Biotin is used in 

carboxylation reactions and is also required for glucose and fatty acid metabolism 

(Mikkelsen, Stojanovska, and Apostolopoulos 2016).  

Vitamin B6, B9, and B12 are involved in one-carbon metabolism of methyl groups, 

which are crucial for the methylation of proteins and nucleic acids. Pyridoxine (B6) serves as 

a cofactor in the folate cycle. Folate (B9) is also important for red blood cell maturation, 

synthesis of DNA, and metabolism of amino acids. Cobalamin (B12) is crucial for the 

synthesis of new red blood cells and for the conversion of folate into its active forms. These 

three vitamins are involved in the folate and methionine cycles, which produce the methyl 

groups required for DNA and RNA methylation. They are also important in lowering the 

plasma level of homocysteine, which is linked to heart disease, stroke, and AD (Kennedy 

2016).  Deficiency of B vitamins is common in the elderly and it is often linked with 
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cardiovascular disorders and neurological disorders such as AD (Mikkelsen, Stojanovska, and 

Apostolopoulos 2016; Smith and Refsum 2016). Daily storage and uptake of up to 1-2 µg of 

vitamin B12 is essential to maintain a healthy vitamin status (Kozyraki and Cases 2013). Ten 

percent of adults over the age of 65 are vitamin B12-deficient due to the loss of intestinal 

uptake with age (Mikkelsen, Stojanovska, Tangalakis, et al. 2016). 

Vitamin B12 Deficiency and AD 

Vitamin B12 (cobalamin) is converted into its two active forms, which are 

adenosylcobalamin in the mitochondrial matrix space and methylcobalamin in the cytoplasm. 

Each is a cofactor for a single enzyme. Adenosylcobalamin is used by the mitochondrial 

enzyme methylmalonyl-CoA mutase and methylcobalamin is used by the cytoplasmic 

enzyme methionine synthase (Morris 2012). Methionine synthase, encoded by the human 

MTR gene and the C. elegans metr-1 gene, catalyzes the synthesis of methionine from 

homocysteine by addition of a methyl group, which is donated by N5-methyl-tetrahydrofolate 

to yield tetrahydrofolate (de Jager 2014). In the mitochondrial matrix, a series of enzymes 

converts propionyl-CoA into D-methylmalonyl-CoA and L-methylmalonyl-CoA 

intermediates. The methylmalonyl-CoA mutase enzyme, encoded by the human MMUT 

(formerly MCM) gene and the C. elegans mmcm-1 gene, with its adenosylcobalamin 

coenzyme, converts L-methylmalonyl-CoA into succinyl-CoA, with the latter being part of 

the citric acid cycle that supplies reducing equivalents for oxidative phosphorylation (Miller 

2003; Birch et al. 2009). Vitamin B12 deficiency leads to the buildup of toxic compounds, 

such as homocysteine and methylmalonic acid, directly upstream of the deficient enzymes 

(Allen 1998; Morris 2012). The measurement of these compounds in the blood is used for the 

diagnosis of vitamin B12 deficiency. 
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One mechanism through which vitamin B12 deficiency may cause dementia is 

through increasing homocysteine levels as decreased cytoplasmic methionine synthase 

activity leads to increased homocysteine levels and increased blood homocysteine is linked 

with AD dementia (Seshadri et al. 2002; Smith and Refsum 2016). A high homocysteine 

level has been suggested to cause increased oxidative stress (Birch et al. 2009), decreased 

DNA methylation, and increased DNA damage, subsequently leading to accumulation of 

amyloid-beta, neurofibrillary tangles, and neuronal cell death (Smith 2008; Smith and 

Refsum 2016). 

Interestingly,  experiments using a C. elegans AD model where  the metr-1 gene was 

knocked down showed an increased level of homocysteine and amyloid-beta toxicity 

(Leiteritz et al. 2018). This might be explained by the fact that hyperhomocysteinemia 

increases amyloid-beta toxicity through the homocysteinylation of peptide lysine residues, 

which leads to the increased formation and stabilization of toxic amyloid-beta oligomers 

(Khodadadi et al. 2012). 

Several lines of study have established that B vitamin deficiency and increased 

plasma homocysteine levels are risk factors for cognitive decline, dementia, and AD. 

However, conflicting results have been reported within the last two decades when vitamins 

B6, B9, and B12, either alone or in combination, have been administered to AD patients. For 

example, a study that examined AD patients, non-demented hospital patients, and healthy 

controls living at home noted that the highest level of homocysteine and methylmalonic acid 

was present in the plasma of AD subjects compared to controls (Joosten et al. 1997). This 

was also confirmed by another group that noted that total serum homocysteine was 

significantly higher, while total serum folate and vitamin B12 were decreased in patients with 

AD dementia when compared to control subjects (Clarke et al. 1998). 
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Others performed an eight-year follow-up study of non-demented elderly who 

participated in the Framingham heart study and reported an increase in plasma homocysteine 

in some subjects with mild dementia, while patients with confirmed cases of AD showed 

higher levels of plasma homocysteine than controls (Seshadri et al. 2002). In contrast, a two-

year study investigated if oral supplementation of folic acid and vitamin B12 could improve 

cognitive function in elderly subjects that had elevated plasma homocysteine and reported 

that there was no improvement in cognitive performance between the group that had been 

given the B vitamin supplement and the group that had received the placebo control. 

However, plasma homocysteine level was significantly reduced in the subjects given the B 

vitamin supplementation compared to the control (Van Der Zwaluw et al. 2014).  A meta-

analysis study of the effects of folate, cobalamin, and vitamin B6 (pyridoxine) 

supplementation on AD patients found that there was a decreased serum homocysteine level 

without an improvement in cognitive function (Zhang et al. 2017). A more recent publication 

that used the above-mentioned B vitamins supplemented to elderly with or without cognitive 

decline also saw no significant improvement in cognition between the treatment group and 

those that were given the placebo. They did however find a significant decrease in 

homocysteine levels in the plasma of subjects supplemented with the B vitamins (Ford and 

Almeida 2019). One possibility is that synapses are irreversibly lost or neurons die shortly 

after the onset of B vitamin deficiency and hyperhomocysteinemia in AD subjects and 

therefore, subsequent recovery of B vitamin levels and lowering of homocysteine levels are 

unable to recover the lost cognitive function. 

Another mechanism through which vitamin B12 deficiency may cause dementia is 

through increasing the level of methylmalonic acid (MMA), which can cause mitochondrial 

electron transport chain dysfunction (Brusque et al. 2002; Chandler et al. 2009; Schuck et al. 

2013). Elevated MMA can occur as a result of deficient vitamin B12-dependent 
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methylmalonyl-CoA mutase enzyme activity within the mitochondrial matrix (Grützner et al. 

2013). Several reports have suggested that MMA causes oxidative stress in mitochondria 

through the accumulation of toxic metabolites, such as propionyl-CoA and propionic acid, 

although their roles in mitochondrial impairment have not been fully elucidated (Haijes et al. 

2019). 

Vitamin B12 Structure and Metabolism 

The chemical structure of Vitamin B12 consists of a cobalt ion, which is the 

functional group, surrounded by a planar corrin ring. Various derivatives of vitamin B12 are 

formed by functional groups which are added to the corrin ring, such as cyanide forming 

cyanocobalamin, a methyl group forming methylcobalamin, or an adenosyl group forming 

adenosylcobalamin.  Cyanocobalamin is a stable synthetic form of vitamin B12 used in 

dietary supplements (Kräutler 2012).  

Many genes are involved in the absorption, transport, binding, and covalent 

modification of cobalamin. Absorption of vitamin B12 occurs in the stomach and small 

intestine. When a meal containing Vitamin B12 is ingested, vitamin B12 binds to haptocorrin 

(also known as transcobalamin 1 (TC1)) in the upper part of the stomach. In the duodenum, 

haptocorrin is degraded and vitamin B12 binds to the intrinsic factor glycoprotein in the 

ileum. In this area of the intestine, the enterocytes synthesize cubulin and amnionless, where 

they localize to the luminal membrane and function to internalize the intrinsic factor-vitamin 

B12 complex within an endosome. Degradation of intrinsic factor occurs within the 

endosome and vitamin B12 binds to another protein called transcobalamin 2 (TC2) and the 

complex is exocytosed into the systemic circulation. Some vitamin B12 in the circulation re-

binds haptocorrin and is unable to be taken up by cells. For vitamin B12 to enter cells, the 

vitamin 12-TC2 complex binds a plasma membrane receptor called CD320 or TCb1R and the 
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entire complex is then endocytosed into the endolysosomal system. In the lysosome, 

proteolytic digestion of TC2 occurs. Mutation in TCN2 has been linked with AD and low 

vitamin B12 status in individuals with autoimmune gastritis. (Surendran et al. 2018).  

Two membrane proteins LMBD1 and ABCD4 are required for the transport of 

cobalamin out of the lysosome. Defects in the genes encoding these proteins will cause 

vitamin B12 to be trapped within the lysosome and unable to be utilized as a coenzyme. Just 

as in these patients with an inborn error of metabolism, defects in lysosomal function in AD 

patients may prevent vitamin B12 from being processed properly into methylcobalamin or 

adenosylcobalamin in neurons leading to the local accumulation of toxic homocysteine and 

methylmalonic acid. But since glial cells may still be able to correctly process vitamin B12 

and metabolize homocysteine and MMA, these toxic products may not increase in the 

bloodstream.  

The MMACHC (methylmalonic aciduria type C and homocysteine) gene product is 

important in conversion of cobalamin into methylcobalamin. This gene encodes the cblC 

protein which is present on the outside of the lysosomal membrane and in the cytoplasm to 

catalyze the conversion of cyanocobalamin, methylcobalamin, or adenosylcobalamin into 

cob(II)alamin, a common intermediate that can be further converted into either 

methylcobalamin or adenosylcobalamin (Surendran et al. 2018). Reduced glutathione is a 

required cofactor for cblC. Glutathione levels are depleted in AD neurons that may perturb 

synthesis of the active forms of vitamin B12. The MMADHC gene locus encodes the cblD 

protein that functions in the partitioning of cob(II)alamin between the cytoplasmic and 

mitochondrial compartments (Gherasim, Hannibal, et al. 2013). Methionine synthase 

reductase also known as the cblE protein encoded by the MTRR gene catalyzes the 

methylation of inactive cob(II)alamin into the active form methylcob(I)alamin (Gherasim et 

al. 2013). The cblA protein encoded by the MMAA gene locus function in the transport of 
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cob(II)alamin into the mitochondrial matrix. The cblB (ATP-dependent cob(I)alamin 

adenosyltransferease) protein is encoded by the MMAB gene locus and functions in the 

synthesis of adenosylcob(I)alamin from cob(II)alamin and S-adenosylmethionine (Oussalah 

et al. 2017). Lastly, adenosylcob(I)alamin functions as a coenzyme for the methylmalonyl-

CoA mutase (MMUT) enzyme, which catalyzes the conversion of methylmalonyl-CoA to 

succinyl-CoA that is used for the production of energy in the tricarboxylic acid cycle 

(Gherasim et al. 2013).   

Since AD is widely understood to be a disease caused by gradual cytoplasmic and 

mitochondrial energy depletion and increased oxidative stress, it is important to discover 

specific molecular mechanisms through which vitamin B12 deficiency may sensitize 

mitochondria and cells to amyloid-beta toxicity. Once this is better understood, targeted 

therapies can be created to restore the levels of the active forms of vitamin B12 to decrease 

homocysteine and methylmalonic acid levels and improve neuronal function to delay the 

onset of the disease. As amyloid plaques can occur up to twenty years before cognitive 

dysfunction, it is important to maintain adequate B vitamin levels starting in middle 

adulthood. 

 Caenorhabditis elegans as a Model Organism  

Use of mammalian models for neurodegenerative disease research has been plagued 

with setbacks ranging from high cost of maintenance to long experiment time. This has led to 

the use of simple and less expensive model organisms to understand the disease mechanism 

with the aim of developing potential drug therapies more rapidly (Chen et al., 2015) 

Caenorhabditis elegans (C. elegans) is a non-parasitic, free-living nematode 

(roundworm) found in the soil that can consume bacteria and fungi as a source of food 

(Barrière and Félix 2014; Corsi et al. 2015). Since it was first introduced by Sydney Brenner 
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in the 1960’s, C. elegans has been shown to be  a good model organism for investigating 

various biological studies ranging from host-microbiota interactions, aging and age-related 

diseases, development, and neurobiology (Kaletta and Hengartner 2006). 

C. elegans is a microscopic organism with a maximum length of 1 mm and a 

simplified anatomy consisting of reproductive, digestive, muscular, and nervous systems, 

which are visible under the microscope due to its transparent body (Culetto and Satelle 2000). 

It has a short life cycle of 4-7 days depending upon the temperature at which it is cultured 

(between 15 and 250 C) and a mean lifespan of 2.5 weeks at 200C (Corsi et al. 2015). In the 

lab, it is typically grown on nematode growth media (NGM) agar in a Petri dish or in 

oxygenated liquid S-media. It is typically fed E. coli bacteria. It generates a large brood size 

and exists mostly as a hermaphrodite, but males are also found at a prevalence of 

approximately 0.1% in the population (Brenner 1974). It can be stored over long periods of 

time in liquid nitrogen. All these characteristics makes it a simple, inexpensive, and effective 

model organism for high throughput screening which has provided the means to elucidate 

molecular mechanisms of disease in a whole organism (Kaletta and Hengartner 2006; Sin et 

al. 2014). 

C. elegans was the first multicellular organism to have its genome sequenced 

(Consortium 1998). About 40-60% of human genes have orthologs in the C. elegans genome 

(Kaletta and Hengartner 2006), while  approximately 42% of genes known to cause human 

diseases such as APP, tau and parkin have orthologs in C. elegans (Culetto and Satelle 2000). 

C. elegans has been used to model neurodegenerative diseases such AD, Parkinson’s disease 

(PD) and Huntington’s disease (HD). This process usually involves gene knockout, 

knockdown, or the creation of a transgenic strain expressing a heterologous human protein 

involved in such diseases (Kaletta and Hengartner 2006; Ma et al. 2018), although 
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CRISPR/Cas9 can also be used to introduce a specific mutation in C. elegans genes to 

engineer a new disease model (Dickinson and Goldstein 2016). 

The ease of genetic manipulation in C. elegans has proven useful in large scale 

genomic screening. RNA interference for gene knockdown is achieved by feeding C. elegans 

with E. coli expressing double stranded RNA (dsRNA), or soaking or injecting the worm 

with dsRNA (Kaletta and Hengartner 2006; Dimitriadi and Hart 2010). Due to the transparent 

body, fluorescent reporter strains of worms have been engineered. In these strains green 

fluorescent protein (GFP) is typically introduced downstream of an endogenous promoter, so 

the expression and tissue localization of that gene can be monitored by fluorescence 

measurements (Teschendorf and Link 2009). Numerous transgenic and knockout strains of C. 

elegans are also available from the University of Minnesota’s Caenorhabditis Genome 

Center (CGC). 

 C. elegans Model of Alzheimer’s Disease 

A strain of C. elegans has been engineered to express human Aβ peptide in the body 

wall muscle. The construct is made of a body wall muscle-specific promoter which drives 

expression of an Aβ1-42 mini-gene fused with an artificial signal peptide from the her-1 gene. 

The transgene plasmid was injected into the C. elegans gonad together with the rol-6 

plasmid, which expresses a mutated collagen gene with a roller marker phenotype causing 

worms to move in a distinctive C shape (Link 1995). 

Aβ expression in C. elegans has been engineered to be inducible or constitutive. The 

former uses a myo-3-specific promoter and a temperature sensitive signal peptide, at which 

upshift of temperature induces Aβ expression causing a relatively quick (within 48 hours) 

paralysis of body wall muscle. In the constitutive expression model, the unc-54 body wall 

muscle-specific promoter drives Aβ expression with a constitutive signal peptide causing 
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paralysis in aged worms  (Teschendorf and Link 2009). The paralysis phenotype in both 

cases is easily scored by observing a lack of body movement in C. elegans or by the 

formation of a halo of cleared bacteria near the head region of the paralyzed worms, as the 

head, neck, and pharyngeal muscles do not become paralyzed. 

A transgenic C. elegans strain expressing amyloid-beta from the snb-1 pan-neuronal 

promoter has also been created (Link 2006). In these worms, one group noted decreased 

chemotaxis and high sensitivity to serotonin with no apparent defect in body movement (Wu 

et al. 2006) 

Some of the drawbacks as regards to the use of C. elegans as a model organism is the 

inability to investigate the molecular pathways that they lack but are present in mammals. 

Also, RNAi is not effective in neurons in most commonly used strains, and human disease 

models of C. elegans don’t fully capture the entire pathophysiology of the disease seen in 

humans (Kaletta and Hengartner 2006; Teschendorf and Link 2009). Low uptake of drugs by 

C. elegans as a result of degradation by their E. coli food source and the  impermeant external 

C. elegans cuticle which prevents drug uptake through the epidermis limits the use of C. 

elegans as a drug discovery model (O’Reilly et al. 2014), although strains with increased 

cuticle permeability have been identified (Xiong et al. 2017). 

C. elegans and a Natural Vitamin B12 Deficient Diet 

Like humans, C. elegans does not synthesize vitamin B12 but must obtain it from the 

diet. E. coli, unlike many other enteric bacteria, lacks the first of three portions of the 

cobalamin synthesis pathway and can only synthesize cobalamin if supplemented with the 

intermediate cobinamide. E. coli take up micronutrients from their LB growth media, a 

peptone and yeast extract-based media containing abundant peptides, fatty acids, simple 

sugars, and micronutrients (Maynard and Weinkove 2020). Two different strains of E. coli 
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are commonly fed to C. elegans in the laboratory. The most common E. coli strain used is 

OP50, while the next most common is HT115(DE3), which was used for the synthesis of the 

two global RNAi libraries.  

It has been shown that the OP50 strain is moderately deficient in vitamin B12 

synthesis due to the lack of the membrane transporter tonB for the uptake of cobalamin 

(MacNeil et al. 2013; Watson et al. 2014). So, when C. elegans feeds on OP50 bacteria, they 

become deficient in vitamin B12, which has been shown to just slightly reduce lifespan, 

fertility and retard growth in C. elegans (Watson et al. 2015). Also, an accumulation of toxic 

intermediates, such as methylmalonic acid and homocysteine, was seen in C. elegans grown 

on vitamin B12-deficient OP50 bacteria (Watanabe et al. 2013). A study by the Revtovich 

group also demonstrated an increased resistance to pathogens, heat, and oxidative stress and 

improved mitochondrial function in C. elegans fed the HT115(DE3) E. coli strain compared 

to worms fed the 0P50 E. coli strain. The increased resistance was eradicated when they 

knocked down the mmcm-1 gene encoding mitochondrial methylmalonyl-CoA mutase, which 

uses vitamin B12 as a cofactor (Revtovich et al. 2019). 

Furthermore, unpublished studies performed by another master’s student from our 

laboratory showed that when C. elegans expressing amyloid-beta in body wall muscle was 

fed with vitamin a B12-deficient OP50 bacterial diet, they became paralyzed more quickly, 

roughly 48 hours after amyloid-beta expression was induced compared to when the C. 

elegans were fed a vitamin B12-rich HT115(DE3) bacterial diet, where they became 

paralyzed roughly 72 hours after amyloid-beta expression was induced. 

Therefore, we hypothesized that vitamin B12-deficiency stimulates amyloid-beta 

toxicity. Consistent with this, a recent report showed that vitamin B12 prevented amyloid-

beta monomer aggregation in a human neuronal cell line (Alam et al. 2017). Thus, following 
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the treatment of vitamin B12-deficient C. elegans expressing amyloid-beta with vitamin B12 

we expected to find a decreased rate of amyloid-beta-induced body wall muscle paralysis. In 

addition, we hypothesized that vitamin B12-deficiency stimulates amyloid-beta toxicity 

through decreasing methylmalonyl-CoA mutase activity and that the addition of 

methylmalonic acid or knocking down the methylmalonyl-CoA mutase gene (mmcm-1) by 

RNAi to increase worm methylmalonic acid levels in vitamin B12-proficient worms will 

stimulate amyloid-beta-mediated body wall muscle paralysis to mimic the effects of vitamin 

B12 deficiency. 
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CHAPTER 2. MATERIALS AND METHODS 

C. elegans AD Model   

The C. elegans amyloid-beta expressing strain used for this study was CL4176 [smg-

1(cc546)]; dvIs27, (dvIs27 [myo-3p::A-Beta (1-42)::let-851 3'UTR) + rol-6(su1006)]  

showing temperature-inducible expression of amyloid-beta in body wall muscle when 

upshifted to 250 C. The strain was obtained from University of Minnesota Caenorhabditis 

Genetics Center and reared at 15 0C on Nematode Growth Media (NGM) agar plates and fed 

either the of E. coli OP50-1 strain or the HT115(DE3) strain of E. coli.  

NGM Agar Plate Preparation 

To prepare the NGM agar plates 1.5g NaCl, 8.5 g agar, and 1.25 g peptone were 

dissolved in 500 ml of double deionized water. The solution was autoclaved for 90 minutes 

and allowed to cool down in a 550C water bath for 15 minutes. After cooling, to the media 

was added 500 µl of 1 M CaCl2, 1 M MgSO4, Cholesterol in ethanol 5mg/ml and 12.5 ml of 1 

M KH2PO4 followed by mixing thoroughly. 1 ml of 50 mg/ml ampicillin or streptomycin was 

added to the media based on the strain of E. coli that was grown on the plates. 1 ml of 10 

mg/ml nystatin dissolved in ethanol was added to the media as an antifungal agent. 15 ml of 

the prepared NGM was dispensed to make one 90 mm by 15 mm NGM agar plate. After 

pouring, the plates were placed on a counter to dry and kept in a 150C incubator for future 

use.  

E. coli Food Preparation 

For this project two E. coli strains were used for feeding the worms, OP50 and 

HT115(DE3). Luria-Bertani (LB) broth media was prepared, autoclaved, and completely 

cooled down. The media was then inoculated aseptically with the appropriate strain of E. coli 

(OP50 or HT115(DE3)) and antibiotics, then placed in an incubator shaker and shaken at a 



28 
 

speed of 200-250 rpm at 370C for overnight growth (12-18 hrs). The overnight media was 

spun down at 5000g for 10 minutes to obtain the bacterial pellets. The pellets were washed 

three times to remove all traces of LB broth, then weighed and dissolved in sterile double 

deionized H2O at 100 mg/ml concentration. The bacterial food was stored at 40C and used for 

up to 3 weeks. NGM agar plates used for the experiments were seeded with the appropriate E. 

coli food fro overnight growth. 

B vitamins Preparation and Concentration 

  Methylcobalamin which is an active form of was used for this study. C. elegans, like 

mammals, can convert methylcobalamin to adenosylcobalamin. Methylcobalamin was diluted 

in deionized water at 200 ng/ml. Vitamin B9 (folic acid) and vitamin B6 (pyridoxal-5’-

phosphate) were dissolved in double deionized water to a final concentration of 25 µM. 500 

µl of the solution containing the compound was added to the surface of 15 ml NGM agar 

plates and allowed to dry in the absence of light before seeding with the appropriate strain of 

E. coli as a food source. 

Amyloid-Beta Peptide Paralysis Assay 

  Before induction of amyloid-beta peptide expression in the CL4176 C. elegans AD 

strain, a two-generation age-synchronization was performed. First, an age synchronization of 

a worm population was obtained by picking 30 gravid worms onto a fresh NGM agar plate 

spread with a lawn of either the E. coli OP50-1 strain or the E. coli HT115(DE3) strain as a 

food source. The NGM agar plates were made with 50 mg/ml of the antibiotic streptomycin 

or ampicillin and 0.01 mg/ml of the antifungal nystatin from a 70% ethanol stock solution. 

The adult worms were left to lay eggs for 2 hours at 200 C, after which the gravid worms 

were removed. The plates were then kept in a 15 0C incubator for one week. On day 7, 8-10 

gravid worms were transferred using a worm pick onto a new NGM agar plate containing the 
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appropriate E. coli strain as food. After laying eggs for 2 hours, gravid worms were removed, 

and the eggs were kept at 15 0C for 48 hours until the nematodes developed into the third 

larval stage (L3). Plates were then transferred to a 25 0C incubator for another 28 hours to 

induce amyloid-beta expression. Worms were then checked every 2 hours for the next 20-24 

hours for paralysis by prodding each one with a worm pick. Paralyzed worms were counted 

as those that ceased motion along at least half the length of their body. To test the protective 

effect of vitamin B12, the appropriate concentration of the drug was added to freshly 

prepared NGM agar plates and allowed to dry overnight, followed by adding 200 µl of 100 

mg/ml 0P50-1 E. coli food, which was incubated  for at least 8 hours at 370 C. For each 

experiment, three plates were used, and each plate had at least 75 nematodes. 

RNAi Interference Experiments 

RNAi experiments were performed using the RNAi feeding method. The 

HT115(DE3) RNAi bacterial clones from the Ahringer and Vidal global RNAi libraries 

contain an L4440 plasmid that possesses a 0.5-1.5 kb insert corresponding to the gene of 

interest, which is flanked on each side by T7 RNA polymerase promoters. 1 mM isopropyl-

D-thiogalactopyranoside (IPTG) was used to induce expression of the T7 RNA polymerase 

gene present in the bacterial genome leading to expression of both strands of the insert on the 

plasmid. For this method we incubated the HT115(DE3) E. coli RNAi-expressing clone with 

IPTG during the last 4 hours of their 16-hour culture in LB media at 370C to induce the 

expression of dsRNA. 50 µg/ml ampicillin added to the culture media.  The overnight media 

was centrifuged for 10 minutes at 5000g. Bacteria was washed up to three times using double 

deionized water (ddw) and resuspended in ddw concentrated at 100 mg/ml and in the 

refrigerator until further use. 
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Knockdown of the vitamin B12-dependent mitochondrial methylmalonyl-CoA mutase 

mmcm-1 gene or the vitamin B12-dependent methionine synthase metr-1 gene was performed 

by using the RNAi feeding method. 25 µg/ml carbenicillin and 1 mM IPTG was added to the 

NGM agar plates. The mmcm-1 and metr-1 E. coli RNAi clones are present in the Vidal 

RNAi library and were obtained from the Dharmacon (Horizon Discovery) company. The 

Aβ-mediated paralysis assays were performed on synchronized C. elegans feeding on the 

metr-1, mmcm-1, or empty vector E. coli RNAi clones. 

Statistical Analysis 

The paralysis assay data was analyzed using Sigma plot version 11.0 software using 

the Kaplan-Meier survival analysis and the Log-Rank test. For each survival curve, the 

experiment was done in triplicate. P-values < 0.05 were deemed statistically significant. 
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CHAPTER 3. RESULTS 

Effects of Different Diets on Amyloid-Beta Induced Paralysis 

This research investigated a potential protective role of vitamin B12 on amyloid-beta 

induced toxicity in a C. elegans AD model. To induce cobalamin deficiency or proficiency, 

the worms were fed with two different E. coli strains, either the vitamin B12-deficient OP50 

strain or the vitamin B12-proficient HT115(DE3) strain. Following age-synchronization of C. 

elegans feeding on the appropriate diet, a temperature upshift for 30 hours at the third larval 

stage was used to induce amyloid-beta peptide expression in the body wall muscle, which 

leads to paralysis within 48 hours after the temperature upshift. 

 

Figure 1:  CL4176 Amyloid-Beta expressing Worms fed on the HT115 or the OP50  

     E. coli Diet 
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For this experiment, our hypothesis was that the OP50 E. coli diet, which is deficient 

in vitamin B12, will sensitize the worms to amyloid-beta toxicity and the worms would show 

an increased rate of paralysis, while worms fed the vitamin B12-replete HT115 E. coli diet 

will be protected showing a decreased rate of paralysis. The hypothesis was shown to be 

correct as the mean time until paralysis when feeding on HT115 was 16% greater than when 

feeding on OP50 (p<0.001) as shown in Figure 1. 

Vitamin B12 Supplementation When Feeding the OP50 E. coli Diet 

Following the protective effect of the HT115 E. coli diet for delaying paralysis in the 

C. elegans AD model compared to the accelerated paralysis in worms that were fed the OP50 

diet, the OP50 diet was supplemented with 200 ng/ml of methylcobalamin. This was done to 

determine if restoration of vitamin B12 levels could mimic the effect of feeding HT115 E. 

coli to decrease the rate of paralysis and protect against amyloid-beta toxicity. However, 

methylcobalamin addition did not rescue the increased rate of paralysis when worms were fed 

the vitamin B12-deficient OP50 bacteria as shown in Figure 2 with (p˃0.05). 
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Figure 2:  CL4176 C. elegans fed OP50 in the absence or presence of  

                 Vitamin B12 (200 ng/ml) 

Effects of metr-1 or mmcm-1 Knockdown on the C. elegans AD Model 

It was possible in the previous experiment that the supplemented vitamin B12 was not 

being efficiently taken up or metabolized by C. elegans, thus resulting in the negative result. 

Therefore, further experiments were performed to test if decreased vitamin B12 levels could 

be responsible for the increased toxicity of amyloid-beta peptide when worms were fed the 

OP50 diet.  As mentioned above, the only two enzymes in the C. elegans genome that use 

vitamin B12 as a coenzyme are cytoplasmic methionine synthase (metr-1) and mitochondrial 

methylmalonyl-CoA mutase (mmcm-1). To determine which of these genes may be important 

in the protective effects conferred by the vitamin B12 replete HT115 E. coli diet, RNAi 

knockdown targeting either metr-1 or mmcm-1 was performed. For these RNAi experiments 

the C. elegans were fed on E. coli HT115 carrying either an empty vector, or a vector 
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expressing dsRNA targeted to metr-1 or mmcm-1. If decreased vitamin B12 levels stimulate 

increased amyloid-beta toxicity, then knockdown of one of the two vitamin B12-dependent 

enzymes under vitamin B12 proficient conditions should mimic this effect and increase the 

rate of amyloid-beta-induced paralysis. 

 

 

Figure 3: Effects of mmcm-1 Knockdown on Amyloid-Beta Induced Paralysis in the 

                C. elegans AD Model 
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Figure 4: Effects of metr-1 Knockdown on Amyloid-Beta Induced Paralysis in the  

               C. elegans AD Model 

The mean time until paralysis when either mmcm-1 or metr-1 was knocked down was 

20 % greater than the worms fed the HT115 empty vector control E. coli diet with (p<0.001) 

(Figure 3 and Figure 4). Therefore, knockdown of neither of these two vitamin B12-

dependent enzymes increased the rate of amyloid-beta mediated paralysis as hypothesized, 

but instead decreased the rate of paralysis and were protective. 
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Vitamin B9 and B6 Supplementation When Feeding the OP50 E. coli Diet 

To determine if other B vitamins of the folate cycle and one-carbon metabolism are 

protective against amyloid-beta toxicity in the C. elegans amyloid-beta toxicity model, 25 

µM of vitamin B9 (folate) or vitamin B6 (pyridoxal-5’-phosphate) was added to the NGM 

agar plate. C. elegans was fed the OP50 E. coli diet, the temperature was upshifted to induce 

amyloid-beta expression, and the worms were scored for paralysis. 

 

 

 

Figure 5:  CL4176 C. elegans fed OP50 in the absence or presence of  

                 Folate (25 µM) 
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Figure 6:  CL4176 C. elegans fed OP50 in the absence or presence of  

                 Pyridoxal-5-phosphate (25 µM) 

Neither vitamin B9 (Figure 5) or vitamin B6 (Figure 6) was able to reduce the rate of 

paralysis and protect against amyloid-beta toxicity in the CL4176 AD worm model. 
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CHAPTER 4. DISCUSSION 

Deficiency of the B vitamins is common in the elderly and is often linked with 

neurodegenerative disorders such as AD, and cardiovascular disease (Mikkelsen, 

Stojanovska, and Apostolopoulos 2016; Smith and Refsum 2016). Vitamin B6, B9, and B12 

are involved in one carbon metabolism, which is crucial for protein and nucleic acid 

methylation. These three vitamins are also involved in the folate and methionine cycles, 

which are also important for lowering the level of toxic homocysteine in the blood (Kennedy 

2016).   

Over the past three decades, clinical trials administering these vitamins involved in 

one carbon metabolism individually or in combination to treat patients with cognitive decline, 

dementia or AD have reported conflicting results (Joosten et al. 1997; Clarke et al. 1998; 

Seshadri et al. 2002; Zhang et al. 2017; Ford and Almeida 2019). Most recently, the increased 

plasma homocysteine level seen in AD patients was proposed to be a strong, independent risk 

factor for AD (Smith and Refsum 2016). Hyperhomocysteinemia is associated with 

deficiencies of vitamins B6, B9, and B12. Discovering protective roles of vitamins 

functioning in one carbon-metabolism (vitamins B6, B9, and B12) has been a research 

interest to attempt to slow aging and the onset and progression of neurodegenerative diseases. 

This study therefore investigated the effects of vitamin B12 deficiency on amyloid-beta 

toxicity in a C. elegans model of AD. 

Unpublished studies performed by another student from my lab showed that  C. 

elegans fed with vitamin B12-deficient OP50 bacteria as their food became paralyzed more 

quickly, roughly 48 hours after amyloid-beta expression was induced, but C. elegans fed on 

vitamin B12-proficient HT115(DE3) bacteria became paralyzed roughly 72 hours after 

amyloid-beta expression was induced. Differences between the two E. coli diet were also 
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noted in the study performed by the Revtowich group in which there was an increased 

resistance to pathogens, heat, and oxidative stress and improved mitochondrial function in C. 

elegans fed HT115 E. coli compared to those fed 0P50 E. coli (Revtovich et al. 2019). 

C. elegans feeds on different bacteria and fungi in the soil. However, in the laboratory 

their diet is mainly one of two different strains of E. coli. Their most common food source is 

the OP50 strain, which is a B strain of E. coli, and the next most common food source is the 

HT115 strain, which is a K-12 strain of E. coli possessing a mutant RNAse III gene that is 

mostly used for RNAi feeding experiments. The bacterial food source generally provides 

macronutrients such as carbohydrates, proteins, fats, lipids, and nucleic acids, but also 

provides vitamins and other cofactors (Zečić et al. 2019). Both E. coli strains have been 

reported to be composed of different compositions of macro and micronutrients, with HT115 

having a higher carbohydrate composition compared to the OP50 strain (Brooks et al. 2009). 

Nutrition has a significant effect on cellular metabolism and animal health. C. elegans reared 

on these two different E. coli strains exhibited different physiological parameters such as 

lifespan, gene expression profile, fecundity, and growth rate (Stuhr and Curran 2020). The 

OP50 diet has been reported to contain low levels of vitamin B12, which leads to reduced 

fertility and a slow developmental rate without an effect on lifespan (Watson et al. 2014).  

Like humans, but unlike many bacteria, C. elegans must obtain B vitamins from their 

diet. Therefore, to induce vitamin B12 deficiency the worms were first fed either a vitamin 

B12-deficient diet or a vitamin B12-replete diet. It was found that the vitamin B12-deficient 

diet induced an increased rate of amyloid-beta toxicity. Next, since there are several other 

differences in the nutritional makeup of the diets in addition to differences in vitamin B12 

levels, vitamin B12 was added back to the vitamin B12-deficient diet. Surprisingly, adding 

back vitamin B12 did not rescue the increased rate of paralysis. The results therefore suggest 

that the protective effect against amyloid-beta-induced paralysis observed for the worms 
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reared on the HT115 diet is either not related to the vitamin B12 levels in the diet or that the 

supplemented vitamin B12 for some unknown reason was not restoring the activity of the two 

vitamin B12-dependent enzymes. 

Our initial hypothesis was that vitamin B12-deficiency stimulates amyloid-beta 

toxicity and sensitizes mitochondria and cells to amyloid-beta toxicity. Therefore, we 

hypothesized that treatment with vitamin B12 would decrease the established pathological 

hallmarks of the disease. In addition, we hypothesized that vitamin B12-deficiency will 

stimulate amyloid-beta toxicity through decreasing methylmalonyl-CoA mutase activity and 

that knocking down the methylmalonyl-CoA mutase gene (mmcm-1) will increase worm 

methylmalonic acid levels in vitamin B12-proficient worms and stimulate amyloid-beta-

mediated toxicity to mimic the effects of vitamin B12 deficiency. Contrary to our hypothesis, 

results from our knockdown of the mmcm-1 gene showed a decreased paralysis rate 

demonstrating a protective effect.  Likewise, knockdown of the metr-1 gene decreased the 

paralysis rate demonstrating a protective effect. Our results are  in contrast to reports from a 

group that noted an increased rate of paralysis after knockdown of metr-1 in the C. elegans 

CL2006 AD model that constitutively expresses amyloid-beta in body wall muscle (Leiteritz 

et al. 2018). 

 It is likely that activation of the mitochondrial unfolded protein response (UPRmt), 

which can only be robustly induced during larval development, was responsible for the 

protective effects of mmcm-1 and metr-1 knockdown against amyloid-beta toxicity since 

UPRmt induction was shown to protect C. elegans from amyloid-beta toxicity (Sorrentino et 

al. 2018) and deficiency of either mmcm-1 or metr-1 was shown to induce UPRmt (Amin et al. 

2020). It will be important to perform experiments knocking down the mmcm-1 or metr-1 

genes starting from the first day of adulthood, to decrease the activation of the UPRmt, using 

the CL2006 or the similar GMC101 AD strain of worms (Romani et al. 2021). We predict 
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that the knockdown of metr-1 or mmcm-1 would no longer be protective and may even lead 

to an increased rate of paralysis, as shown by others knocking down metr-1 in the CL2006 

strain (Fan and Chiu 2010; Leiteritz et al. 2018) 

Our findings are different from those reported from Revtovich et. al., 2019 in which 

addition of exogenous methylcobalamin to the OP50 diet protected from pathogen, juglone (a 

superoxide generator), peroxide, or heat-induced worm death. In those experiments 

methylcobalamin addition significantly improved C. elegans mitochondrial health by 

increasing mitochondrial fusion and membrane potential. This group also found that mmcm-1 

knockdown in C. elegans prevented the protection conferred by methylcobalamin addition. 

However, they did not study amyloid-beta toxicity, which appears to induce toxicity by a 

different mechanism than the toxic treatments used in the prior study. 

Our results, therefore, do not suggest that vitamin B12 deficiency stimulates amyloid-

beta toxicity and suggest that vitamin B12 deficiency may even protect against amyloid-beta 

toxicity. The results of our study are in part supported by a report (Gagliano Taliun 2019), 

which used Mendelian randomized sampling of data from 6 different studies and found no 

link between low plasma vitamin B12 levels and an increased risk for late onset AD. In 

addition, the rate of AD is lower in India, which due to the high rate of vegetarians in this 

country, has a much higher rate of vitamin B12 deficiency than in the Unites States 

(Mathuranath et al. 2012). It should be determined if vitamin B12 deficiency activates the 

UPRmt in human brain to delay the onset and progression of AD. 

 Homocysteine metabolism is dependent upon one-carbon metabolism, which requires 

vitaminsB6, B12, and B9 (folate). Vitamin B12 and vitamin B9 serve as cofactors in the 

remethylation cycle, which converts homocysteine to methionine, while vitamin B6 is a 

coenzyme in the transsulfuration pathway that converts homocysteine into cysteine, which is 



42 
 

not only important for protein synthesis, but is also used for the synthesis of the important 

antioxidant glutathione. (Nieraad et al. 2020). However, the addition of vitamin B9 or B6 did 

not rescue the increased amyloid-beta toxicity that occurs when worms were fed the OP50 E. 

coli diet in the AD worm model. It is likely that amyloid-beta does not affect vitamin B6 or 

B9 metabolism to deplete their levels. So, they are likely already present in sufficient 

amounts so that adding more to the culture media did not have any effect on the enzymes that 

use them as cofactors.  

Conclusion 

This study was not able to demonstrate a link between vitamin B12 deficiency and 

increased Alzheimer’s amyloid-beta-mediated toxicity in C. elegans. In contrast, knockdown 

of either of the two enzymes that utilize vitamin B12 decreased the toxicity of amyloid-beta. 

So, the protection against amyloid-beta toxicity when C. elegans feeds on HT115 compared 

to OP50 E. coli is not due to the increased vitamin B12 levels in the HT115 E. coli, but must 

be due to other differences in the nutrient composition between these two strains. Recent 

studies have shown that the metabolites sucrose, maltose, lactic acid, aspartate, glutamate, 

lysine, GABA (a neurotransmitter), and betaine (involved in one-carbon metabolism) are 

present at higher levels in HT115 than OP50 E. coli and that oleic acid is present at lower 

levels in HT115 than OP50. So, one or more of these nutritional differences may explain the 

protection to C. elegans against amyloid-beta toxicity provided by the consumption of the 

HT115 E. coli diet. Consistent with this hypothesis, betaine was shown to protect C. elegans 

from amyloid-beta toxicity (Leiteritz et al. 2018). GABA was shown to improve cognitive 

function in the APP/PS1 mouse model of AD (Sun et al. 2012) and protect against 

neurodegeneration in C. elegans (Urrutia et al. 2020). 
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Future Directions 

With three of the B vitamins playing essential roles in the one-carbon metabolism 

pathway, it is possible that a deficiency in any one of these three vitamins increases tau 

toxicity, but not amyloid-beta toxicity, to stimulate Alzheimer’s disease. So similar 

experiments could be performed with a C. elegans strain that overexpresses tau protein and 

shows a decreased lifespan. Consistent with this idea, a link has been found between 

increased plasma homocysteine levels and neuronal tau pathology (Regland and McCaddon 

2019). So, more research on B vitamins and AD is needed to determine if any important 

relationships exist that can be targeted therapeutically. 
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