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ABSTRACT 

 

Agreement Level of Running Temporal Measurements, Kinetics, and Force-Time Curves 

Calculated from Inertial Measurement Units 

by 

Austin Patrick Smith 

Inertial measurement units (IMUs) and wearable sensors have enabled athlete monitoring and 

research to become more ecologically valid due to their small size and low cost. Under Specific 

conditions, IMUs and accelerometers have demonstrated high validity when measuring temporal 

gait event moments during upright running. While the use of IMUs has increased in the sport 

performance and athlete monitoring realm, the potential of the technology’s ability to estimate 

running force-time curves utilizing the two-mass model (TMM) remains unexplored. The 

purpose of this study was to assess the agreement level of estimating temporal gait events and 

force-time curves from shank-mounted IMUs. Using the raw data from the IMUs, GCT, FT, total 

step time (ST), PF, and two-mass model-based force-time (F-t) curves were generated for 25 

steps at 8 different speeds. Paired sample T-tests were performed on the gait events and peak 

force between the IMU and treadmill with both individual step comparison and averages per 

each speed. 95% confidence intervals were calculated for each timepoint of the force time 

curves. No statistically significant differences (p > 0.05) and nearly perfect relationships were 

observed for the step averages for each speed with FT, ST, and PF.  Confidence intervals of the 

corrected mean difference suggest that F-t curves calculated from the TMM may not be valid 

when assessing the running population as a whole. In skilled runners, the 95% CI for the mean 

difference contained zero within the first 60% of the GCT duration, whereas the 95% CI 
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recreational runners contained a zero-value in a smaller percentage of the GCT located only in 

the middle of the GCT at the curve peak height. The results of this study suggest that 

interchangeability between shank-mounted IMUs and force plates may be very limited when 

estimating temporal gait events and kinetics. While agreement was low between F-t curves after 

the peak in skilled runners, use of shank-mounted IMUs to estimate F-t curves may have several 

benefits still in skilled runners when assessing peak forces and force development from initial 

contact until peak force. 
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Chapter 1. Introduction 

 Running kinetics and temporal gait events are important variables to consider when 

monitoring runners. Knowledge of these variables has opened the doors for understanding 

different aspects of sport performance and how factors such as fatigue and adaptations to 

different training stimuli affect performance. Temporal gait events like ground contact time 

(GCT), flight time (FT), and step kinetics/peak force (PF) are a few variables that have been 

linked to improved running economy, which has been defined as a major component 

differentiating success in elite level runners (Giovanelli et al., 2017; Mikkola et al., 2016; 

Milbrath et al., 2016; Saunders et al., 2004). The gold standard methods for measuring these 

variables during running are embedded or treadmill-equipped force plates and motion capture 

systems. While very accurate, they have the downside of being costly and limited to use in a 

laboratory setting. 

 Force-time curve models have allowed for visualization of force application during 

different movements, such as running and sprinting (Blickhan, 1989; Clark et al., 2014; Clark et 

al., 2017). The first model developed was the Spring-Mass Model (SMM) (Blickhan, 1989). This 

model describes the body as a massless spring that compresses at touchdown, stores elastic 

energy, and releases that energy during the propulsion phase (Alexander, 1992; Cavagna et al., 

1964; McMahon & Chang, 1990). While this model was accurate when modeling forces during 

hopping and slow velocity running, the three assumptions of the simple-stance SMM were not 

valid for high velocity running and sprinting and resulted in low accuracy when modeling force-

time curves. Goodness-of-fit tests showed that sprinters running at high speeds demonstrated 

asymmetrical force-time curves compared to those predicted by the SMM (R2 = 0.782 + 0.016) 

(Clark et al., 2014). The Two-Mass Model, which breaks the body into two separate masses, was 
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introduced as a potentially more accurate method of modeling runners and sprinters “force-time 

characteristics” (Clark et al., 2017). Initial research on the TMM successfully predicted force-

time curves from not only slow and fast running velocities, but also for athletes demonstrating 

both fore-foot and rear-foot strike patterns.  

 With their small size, low cost, and non-invasive use during research and monitoring, 

IMUs have allowed for higher ecological validity during athlete monitoring. Inertial 

measurement units contain triaxial accelerometers, gyroscopes, and magnetometers (Al-Amri et 

al., 2018), which allow for a more complete motion analysis during human movements such as 

running and sprinting. When compared to gold standard reference systems (force plates, motion 

capture systems), variables such as GCT (r > 0.99), PF (r > 0.88), and angular velocity (r > 0.99), 

have demonstrated acceptable validity when estimated from IMU data (Channells et al., 2006; 

Macadam et al., 2019; Purcell et al., 2006; Setuian et al., 2018). Various models to estimate 

running variables from IMU data have been shown to have discrepancies (Kenneally-Dabrowski 

et al., 2017; Macadam et al., 2019; Setuian et al., 2018). However, two conditions that have been 

consistently related to higher or lower validity scores are the placement of the sensors on the 

body and the capture frequency of the sensors. For example, Kenneally-Dabrowski and 

colleagues (2017) demonstrated units sampling under 200 Hz that were placed further from the 

segment of interest demonstrated poor validity (r = 0.088) in comparison to force plates. Thus, 

IMUs placed closer to the source of impact and sampling at sufficiently high frequencies may 

improve the validity of data recorded during running and sprint monitoring.  

 Therefore, the purpose of this dissertation is two-fold. The first purpose is to validate the 

measurement of temporal gait events and step kinetics such as GCT, FT, ST, and ground reaction 

forces estimated from shank-mounted inertial measurement units (IMU, Blue Thunder, Vicon) in 



 14 

comparison to data derived from a force plate-equipped treadmill. The second purpose of this 

study is to validate the calculation of force-time curve shapes derived from the integration of 

shank-mounted IMU data and the TMM. 
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Chapter 2. Comprehensive Review of Literature 

Running Performance Variables and Metrics 

Advancements in running and sprint performance have developed from the knowledge 

gained through studies concerned with the different aspects that relate to elite-level running. In 

elite-level sport, the small advantages an athlete has over competitors can be the deciding factors 

between winning and losing. One of the primary influences related to elite running outcomes is 

running economy. Running economy is the energy (i.e., oxygen consumption) required to 

maintain a submaximal velocity (Daniels, 1985). In runners with similar maximal oxygen 

consumption profiles, the athletes who have the ability to sustain the lowest metabolic cost at the 

same submaximal paces are generally the athletes who come out on top. One of the issues with 

determining running economy is that it requires expensive pieces of equipment (e.g. metabolic 

carts) that generally restrict measurements to a laboratory setting. Due to the invasiveness and 

poor ecological validity of lab-based physiological and biomechanical testing, recent research 

has aimed to approximate running economy through running efficiency-related measures (Hunter 

et al., 2015; Saunders et al., 2004; Williams et al., 1987).  

Running efficiency is determined by the ratio between the mechanical energy produced 

during exercise and the energy cost of the exercise. Biomechanical factors and gait temporal 

events seem to be two of the most influential components for increasing running efficiency 

(Milbrath et al., 2016). When assessing efficiency in elite-level running and sprinting, standard 

variables include GCT, ankle/leg stiffness and vertical oscillation. The ability to measure these 

variables has led to further knowledge of what training types lead to either improvements of 

decrements in these variables (Dumke et al., 2010; Giovanelli et al., 2017; Mikkola et al., 2011). 
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Ground Contact Time 

 Extensive debate surrounds the importance of short GCT on running economy (Di 

Michele & Merni, 2014; Folland et al., 2017; Nummela et al., 2007; Santos-Concejero et al., 

2014). While Di Michele and colleagues (2014) showed poorer running economy from shorter 

GCT, a potential explanation for this result could be the study’s small sample size of relatively 

weak runners. Research on stronger, faster, and overall more skilled runners and sprinters show 

these athletes have the ability to produce most of the ground reaction forces during the early 

stages of the contact phase (Clark et al., 2017; Weyand et al., 2010; Weyand et al., 2012). 

Therefore, while shorter GCT can potentially lead to either improved or impaired running 

economy, the deciding element seems to be the ability or inability for that runner to produce high 

forces quickly. The goals of this approach to force development are two-fold: 1) reduce the 

athlete’s braking time and 2) minimize neuromuscular activation and resultant energy cost during 

GCT (Barnes & Kilding, 2015; Miller et al., 2012; Nummela et al., 2008; Paavolainen et al., 

1999). 

 

Vertical Oscillation 

 In running, vertical oscillation (VO) refers to the movement/displacement of the COM in 

the vertical direction. Typically, lower VO has been associated with enhanced running economy 

(Cavagna et al., 1997; Cavagna et al., 2005; Svedenhag & Sjodin, 1984; Tartaruga et al., 2012). 

This finding is further supported by recent research demonstrating a strong relationship between 

pelvic VO, greater energy cost, and decreased performance in running (r = 0.534, P < 0.001) 

(Folland et al., 2017; Halveron et al., 2015). The energy cost related to the degree of change in 

VO is directly proportionate to the amount of work required to propel the body forward due to 
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the force from gravity. That is, the higher the VO, the more work required to overcome the force 

due to gravity (Folland et al., 2017; Kobsar et al., 2019; Slawinski & Billat, 2004). 

Biomechanical factors that assist with reducing VO are greater stiffness of the lower leg and 

ankle. Greater stiffness in the lower extremities allows for reduced time to stabilize and reduces 

aberrant limb movement (collapse) during contact (Gunther & Blickhan, 2002). 

 

Ankle/Leg Stiffness 

 Shorter GCT, greater muscle pre-activation, and enhanced ability to produce high forces 

quickly are three factors that can positively influence an athlete’s lower-leg stiffness (Dalleau et 

al., 1998; Paavolainen et al., Nummela et al., 2008; 1999). Enhanced lower leg stiffness has been 

correlated to higher running economy in various subject groups (Arampatzis et al., 2006; Dalleau 

et al., 1998; Franklin et al., 2003). Findings that support this observation are the ability of 

runners with greater lower leg stiffness to transition to the propulsion phase from the braking 

phase more quickly and overall enhanced motor unit recruitment in pre-activation muscle 

activity (Avela & Komi, 1998; Heise et al., 2008). Finally, increased muscle-tendon stiffness has 

been shown to be more efficient with higher energy storage and release during the stretch-

shortening cycle (SSC) (Albracht & Arampatzis, 2013). 

 

Running Force Modeling Applications 

Spring-Mass Model 

 The ability to gather force-time data for running/sprint steps has led to great 

advancements in sport performance. This concept was first explored with the SMM (Blickhan, 

1989). The SMM describes the body as a simple massless spring that compresses at touchdown, 
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storing energy to be released during take-off (Figure 1) (Alexander, 1992; Blickhan, 1989; 

Cavagna et al., 1964; McMahon & Cheng, 1990).  

 

Figure 2.1.  

The Simple Stance Mass Model (Blickhan, 1989).  

 

 

The stretch-shortening cycle (SSC) is the concept most responsible for how the SMM 

functions (Blickhan, 1989; Dickinson et al., 2000; Farley et al., 1993; Komi, 1984). At each 

initial foot contact, the force of gravity causes the lower limb to compress, which causes the 

storage of elastic energy. As the contact leg goes from mid-stance to take-off, the stored energy 

is released (Dalleau et al., 1998; Farley et al., 1991; Farley & Gonzalez, 1996; Ferris et al., 

1998). One of the key factors that determines the effectiveness of the SMM is vertical stiffness 

(Brughelli and Cronin, 2007; Farley & Gonzalez, 1996; Girard et al., 2011; Morin et al., 2005). 

The greater the vertical stiffness, the higher the maximum velocity and force that can be attained 

(He et al., 1991; McMahaon et al., 1987).  
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Two-Mass Model 

 One limitation of the simple SMM was that the calculated force-time curves were not 

sufficiently accurate to be representative of the force-time curves of skilled runner and sprinters 

at high speeds, demonstrating mean R2 values of 0.782 + 0.016 (Clark, 2014). As shown in 

previous research, this limitation can be traced to only using slower speeds and hopping when 

comparing curves between several movement conditions in most studies (Bruggeman et al., 

2009; Farley & Gonzalez, 1996; Farley et al., 1998; McMahon & Cheng, 1990; Srinivasan & 

Holmes, 2008). The SMM’s demonstrated weaknesses in force-time calculations of faster/more 

skilled sprinters originates from several simplifications in the model calculations. The first 

simplification of the SMM is that the shape of the force-time curve is always a half-sine (Figure 

2.2).  

 

Figure 2.2. 

Half-sine SMM Force-Time Curve (Clark et al., 2014) 

 

 

While trying to differentiate between the force-time curves between slow vs. fast runners, 

each group demonstrates having similar characteristics of lower limb patterns during flight 
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(Weyand et al., 2000; Weyand et al., 2010). Therefore, the differences lay in the ability of the 

more skilled/faster sprinters to produce more force in less time during foot contact, with the 

resultant waveforms from faster speeds presenting a more asymmetrical pattern. 

The second simplification of the SMM is that the displacement of the center of mass 

(COM) is even throughout the entire foot contact phase. Finally, the model assumes that peak 

vertical force always occurs in the middle of the ground contact phase, which coincides with the 

COM’s lowest point. While the SMM’s predictions proved fairly accurate at slow to moderate 

speeds, force-time curves from faster runners and sprinters consistently demonstrated 

asymmetrical patterns, with the highest forces achieved prior mid-stance (Blickhan, 1989; 

Bundle & Weyand, 2012; Weyand et al., 2009; Weyand et al., 2010). In addition to the SMM’s 

inaccuracies in modeling F-t curves at high speeds, difficulties also arise in modeling fore-foot 

strikes (Ly et al., 2010; Zadpoor and Nikooyan, 2010) and the falling edge of the F-t curve 

(Clark et al., 2014).  

 Other approaches to predict waveforms have been proposed that account for the 

limitations of the SMM. One such model that was successful in predicting waveforms developed 

by Bobbert and colleagues (1991) used a seven-component acceleration model. The seven rigid 

bodies in this model were comprised of both feet, both shanks, both thighs, and a combined 

segment of the trunk, arms, and head. While successful in predicting the waveforms, utilization 

of seven different body segments proved to not be very practical. As a simplification to the seven 

mass system, Clark and colleagues (2014) proposed an alternative model consisting of two body 

masses (two-mass model, TMM) in which the first mass represents the shank of the contact leg 

(~8% body mass) and the second mass represents the remainder of the body (Clark et al., 2014). 

Each mass, when coupled with three step-related temporal events and kinetic components, allows 
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for the calculation to two separate vertical impulses that can be summed together to produce a 

single force-time waveform (Figure 3). 

 

Figure 2.3. 

The TMM Force-Time Curve (Clark et al., 2017). Impulse 1 (red) represents the force of the first 

mass (shank) and Impulse 2 (green) represents the force of the second mass (body). The impulses 

are summed to give the total impulse curve (Blue). 

 

 

These three additional components are the GCT, aerial time (FT), and lower-limb acceleration 

data of each step (Clark et al., 2017). The resultant equation for calculating total impulse is: 

EQUATION 1: Calculation of Total Impulse 

 JT = J1 + J2 = FTavgtc 

Where JT is the combined impulse from J1 (impulse 1) and J2 (impulse 2), FTavg is the average 

vertical ground reaction force, and tc is the ground contact time. The average force may be 

calculated as follows: 

EQUATION 2: Calculation of Average Vertical Ground Reaction Force during GCT 
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 FTavg = mg ((tc + ta)/(tc)) 

The total body mass is represented by m, acceleration from gravity (9.81m*s-2) is g, and tc and ta 

are contact time and aerial time of each step. Impulse 1 can be calculated through the following: 

EQUATION 3: Calculation of Mass 1 Impulse 

 J1 = F1avg (2Δt1) = (m1 (Δv1/Δt1) + m1g)(2Δt1) 

Where F1avg is the average force of the first mass from initial contact until shank stabilization, 

Δt1 is the time from initial touchdown until zero velocity/stabilization, m1 is the mass of the 

shank (8% of total body mass, and Δv1 is the change of velocity of the first mass during the time 

until stabilization, (Clark et al., 2017). Finally, Impulse 2 is calculated by the following equation: 

EQUATION 4: Calculation of Mass 2 Impulse 

 J2 = F2avg tc = JT – J1  

Where F2avg is the average force of the second mass’ impulse during ground contact time (Clark 

et al., 2017). In place of the half-cosine functions, Clark and colleagues (2017) demonstrated a 

raised bell function more accurately represented the two impulses and final resultant impulse. 

Similar to the SMM, the TMM was able to accurately estimate force-time data for rear-foot 

strikers and slower speed running. Unlike the SMM, however, the TMM also accurately 

estimated kinetic data for forefoot strikers and faster runners. 

 

Accelerometry: Inertial Sensors, Applications, and Limitations 

Accelerometers/Inertial Sensors 

 Research involving accelerometers and similar technologies has historically focused on 

robotics and military application; however, the development of smaller integrated units (micro-

electrical-mechanical systems, MEMS) has led to an increase of research in human applications 
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(Passaro et al., 2017; Pirinen et al., 2020; Tobin et al., 2020). Uses of accelerometers and inertial 

sensors with human research have involved multiple conditions such as healthy and unhealthy 

populations (Klucken et al., 2013; Zago et al., 2018). These small units have assisted with 

gaining a greater understanding of how different diseases can affect day-to-day living in 

individuals such as gait parameters in patients with Parkinson’s disease. 

Inertial measurement units (IMUs) are MEMS that generally contain multi-axis 

accelerometers, gyroscopes, and magnetometers (Al-Amri et al., 2018). Accelerometers are 

devices that measure acceleration, or the rate of change of velocity. Accelerometers typically are 

tri-axial and measure the rate of change in velocity in the three different planes of movement 

(anterior-posterior, lateral, vertical) (Schutz et al., 2001). Accuracy of the raw data from 

accelerometers in human research is typically dependent on four factors: the activity being 

performed, the posture/orientation of the subject, the position/location of the sensor on the body, 

and the orientation of the sensor at the placed location (Mathie et al., 2004). One of the major 

disadvantages of using only an accelerometer is that these devices only measure the change in 

velocity in a linear plane. To overcome that limitation of accelerometers, IMUs are generally 

equipped with a gyroscope and sometimes magnetometer. Gyroscopes are devices that allow the 

measurement of angular velocity, or the rate of rotation around a particular axis (Passaro et al., 

2017). A gyroscope operates by a spinning mass that rotates around one of three axes, installed 

on gimbals that allow for free rotation. The direction in which the mass spins is related to the 

reference inertia, under the condition that a constant torque is applied to the mass (Passaro et al., 

2017). Magnetometers are devices that are sensitive to the strength and direction of a magnetic 

field. They assist with determining the orientation of a body, as well as assist with drift-

correction from the gyroscope (Wittman et al., 2019). Thus when properly instrumented, IMUs 
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are able to capture 3-dimensional movement and have allowed for more advanced total body 

motion analysis 

 

Validity and Reliability in Running Metrics 

 Due to IMUs’ small size, low cost, and potential for high ecological validity, a number of 

studies have aimed to quantify their reliability and validity in measuring running performance 

metrics (Al-Amri et al., 2018; Robert-Lachaine et al., 2017). These validation and reliability 

studies have examined a range of conditions to determine their impact on the validity and 

reliability of wearable IMUs. 

Temporal Measures and Gait Events. The highest validity of recording gait 

events/temporal measurements has been observed when the inertial sensors are placed on the 

lower limbs or the lumbar spine (Schmidt et al., 2016; Ammann et al., 2016; Bergamini et al., 

2012; Kenneally-Dabrowski et al., 2017; Purcell et al., 2006). This observation has held true 

across a variety of “gold standard” reference systems, including force plates, high-speed 

cameras, and photoelectric systems. Despite generally strong relationships, not all research has 

demonstrated agreement between the reference system and IMU. For example, Kenneally-

Dabrowski and colleagues (2017) found low validity (r = -0.177) in IMU in reference to 

embedded force plates. The researchers, however, placed the IMUs between the scapulae, which 

could have distorted the acceleration measurements during each step (Macadam et al., 2019). 

Compounding the problem of unit placement is the sampling rate of the IMUs. Researchers have 

typically found the sampling frequency should be in excess of 200 Hz, with higher frequencies 

improving the unit’s measurement validity (Ammann et al., 2016). Taken together, wearable 
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IMUs should be placed on or near the lower limbs and should sample in excess of 200 Hz when 

the goal is to measure temporal gait events such as contact time and aerial time.  

 

Forces. Placement of inertial sensors closest to the COM (Lumbar and Sacrum) resulted 

in the highest levels of validity of vertical and horizontal force (r > 0.88) as well as resultant 

peak forces (r > 0.76) (Gurchiek et al., 2017; Setuian et al., 2018). Similar to measuring GCT, 

the further away from the COM the sensor was placed (e.g., T2 spine), the less valid and more 

varying the results were when measuring forces from running steps (Wundersitz et al., 2013). 

Thus, we can theorize that the further an inertial unit is away from the point of ground contact 

(the foot), the lower the measurement validity. Similar to temporal gait events, sampling 

frequencies in excess of 200 Hz have been demonstrated to have higher measurement validity for 

peak vertical force (Macadam et al., 2019).  

 

Sensor Displacement and Angular Velocity. High levels of validity with angular 

displacement of the trunk (r > 0.99) and shank angular velocity/acceleration (RMSE < 10%) 

were reported when placement of the units was closest to the body segment interest in reference 

to high-speed cameras (Bergamini et al., 2013; Channells et al., 2006). Similar to force and 

temporal data, IMU estimation of displacement and angular velocity suffers as the unit moves 

further away from the area of interest. For example, Kenneally-Dabrowski and colleagues (2017) 

observed low levels of validity for medial-lateral axis step displacement (r = 0.088) with inertial 

senor placement between the scapulae in reference to force plates. Conversely, Bergamini and 

colleagues (2013) observed high validity (r = 0.998) for trunk angular displacement with inertial 

sensors placed on the lumbar spine in reference to high-speed cameras.  
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Summary 

To account for the limitations of the SMM to predict waveforms for running steps, the 

Two-mass model was developed. The TMM successfully estimated force-time curves for 

running steps not only for fore-foot and rear-foot strikers, but also for both slower and faster 

running speeds. Several components needed to model the waveforms are temporal gait events 

that have been linked to increased running economy in elite runners. Use of inertial sensors has 

grown rapidly in research because of their small size, low cost, and potential for high ecological 

validity. A range of conditions has been analyzed to determine the validity of IMUs and their 

ability to estimate running performance measurements. When coupled together, sampling 

frequencies of at least 200 HZ and sensor placement closest to the body segment of interest have 

demonstrated the highest validity. Reliability and validity measurements for temporal events and 

kinetics have demonstrated varying results based on placement of the sensor and the “gold 

standard” reference system utilized during the comparison. When running performance 

measurements such as temporal gait events and kinetics are of interest, inertial placement on or 

close to the lower limbs and sample rates of at least 200 Hz has demonstrated the highest 

validity. 
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Agreement of Temporal Gait Events and Kinetics Derived from Shank-Mounted Inertial 

Measurement Units 

Abstract 

Inertial measurement units (IMUs) and other small wearable sensors have been 

useful tools in sport monitoring and research due to their low cost and non-

invasive capabilities. Body placement closest to the point of impact and higher 

sampling frequencies have resulted in higher validity for recording variables 

during running from several different accelerometers and inertial sensors. The 

purpose of this study was to assess the validity of running temporal gait events 

and kinetics derived from commercial-based shank-mounted IMUs in reference to 

a force plate-equipped treadmill. Ten subjects completed submaximal treadmill 

tests with speeds ranging from 8mph to 15mph. Raw data from the IMUs were 

filtered and plotted to manually determine ground contact time (GCT), flight time 

(FT), and total step time (ST). Peak force was estimated from the acceleration 

data from each shank via the proposed equations of the two-mass model. No 

statistically significant differences existed between the variables calculated from 

the IMUs and the treadmill force plate (p > 0.05) and moderate to very large 

relationships (r = 0.771 – 0.998) existed among variables over the averages of 

each speed. When assessing individual steps, no statistically significant 

differences (p > 0.05) were present between GCT, FT, and PF paired with mostly 

moderate to very large relationships at every speed. No statistically significant 

differences were present with ST based on the robust t test. This evidence 

suggests that shank-mounted IMUs are potential substitutes for force plates for 
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measuring temporal gait events and peak forces during upright running across 

multiple speeds. 

Keywords: Inertial Measurement Unit, Temporal Gait Events, Peak Force, 

Running 

 

Introduction 

Knowledge of temporal gait events and kinetics have led to increased understanding of 

walking, running, and sprinting and their impact of overall health and sport performance. For 

sport performance, the ability to analyze variables such as ground contact time (GCT), flight 

time (FT), and peak force (PF) during running has allowed for athlete monitoring to become 

more efficient in running-based athletes. These have led to investigations regarding two aspects 

of sport, 1) how to alter the variables through different training types and modalities and 2) how 

alterations in these variables impact overall running performance (Dumke et al., 2010; Giovanelli 

et al., 2017; Mikkola et al., 2011). Currently the most widely accepted methods for measuring 

these variables are force plates and motion analysis camera systems. However, these methods are 

restricted in their ecological validity because they are not only expensive, but also generally 

limited to a laboratory setting. 

While historically used during robotics and military use, smaller, commercialized inertial 

measurement units (IMUs) have become available for use in human research (Al-Amri et al., 

2018; Klucken et al., 2013; Robert-Lachaine et al., 2017; Zago et al., 2018). IMUs consist of 

multi-axis accelerometers, gyroscopes, and magnetometers that assist with measurement of total-

body motion. When compared to gold standard reference methods (e.g., force plates, motion 

capture systems), running temporal gait events such as ground contact time (r > 0.99), CV < 4%, 
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ICC > 0.91), and step time (LoA bias 25ms) and running kinetics such as peak forces (r > 0.88, 

ICC > 0.88) calculated from IMUs were reported to have good validity and reliability (Ammann 

et al., 2016; Gurchiek et al., 2017; Macadam et al., 2019; Purcell et al., 2006; Schmidt et al., 

2016; Setuain et al., 2018). Several conditions have been suggested in order to achieve the 

highest validity. First, a minimum recording frequency of at least 200Hz. Second, the placement 

of the sensors has been found to produce higher validity measurements when placed closer to the 

area of interest, such as the lower legs for running metrics (Purcell et al., 2006; Schmidt et al., 

2016). The benefits of using IMUs in measuring running performance have led to more 

ecological validity. However, measurement validity varies among different brands of IMUs. 

Therefore, the purpose of this study is to assess the agreement of an IMU (Blue Thunder Inertial 

Measurement Units, Vicon) for the measurement of running temporal gait events such as GCT, 

FT, and ST and running peak forces in reference to treadmill equipped force plates.  

 

Methods 

Subjects 

Ten runners volunteered to participate in the study (5 male, 5 female, 24.5 ± 3.6 yrs, 63.2 

± 9.46 kg). Each subject had been actively running for at least 1 year, with past competition 

experience preferred. Further breakdown of the group showed subjects consisting of four 

recreationally trained subjects and six skilled runners (1 Olympian and 5 collegiate). 

Furthermore, subjects did not have any musculoskeletal injuries within the past 6 months, or any 

other current condition that could potentially lead to complications during exercise. All subjects 

read and signed an informed consent document prior to participation in the study, as approved by 

the university’s Institutional Review Board. 
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Experimental Design 

Each subject underwent one testing session in the laboratory. Subjects were first assessed 

for body mass measurements using a standard scale. Each subject was then prepared to run a 

discontinuous graded treadmill test. Blue Thunder Inertial Measurement Units (Vicon Motion 

Systems, United Kingdom) were placed immediately superior to the medial malleolus on both 

shanks. Recording frequency for the IMUs was 500Hz, with data collection accomplished 

through a smartphone application (IMU Research 3.1, Vicon). The treadmill was a high-speed 

treadmill that was equipped with a force plate. Sampling rate of the force plate was 1000 Hz, and 

data was recorded and processed in LabVIEW. Treadmill tests consisted of speeds 8mph-15mph, 

with each stage lasting 20-40 seconds. Rest time between each stage lasted a minimum of 60 

seconds, to ensure the least amount of fatigue was accumulated during the faster speeds.  

Signal Processing 

Inertial measurement data were filtered through a second order band-pass Butterworth 

filter (0.7Hz to 50Hz) (Charry et al., 2009a; Charry et al., 2009b; Lai et al., 2008). Following the 

filtering, the y-axis acceleration data, z-axis gyroscope data, and the resultant acceleration data 

were plotted to manually identify specific gait events. The resultant acceleration was calculated 

from taking the square root of the sum of squares of the ‘x’, ‘y’, and ‘z’-axis acceleration data. 

Ground Contact (GC) and time to zero acceleration (T0) were defined by the onset and 

termination, respectively, of the first rise in the y acceleration data, located in between two 

gyroscope peaks (Figure 4). Toe Off (TO) was represented as the first spike in the resultant 

acceleration data immediately after the highest gyroscope spike situated between the two 

gyroscope peaks (Figure 4).  
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Figure 3.1. 

Location of key timepoints to calculate three temporospatial gait characteristics. 

 

 

The timepoints for initial contact, time until zero acceleration, and toe off allowed for the 

calculation of Ground Contact Time (GCT), Time to shank stabilization (TSS), Flight Time (FT), 

and total Step Time (ST). Utilizing the manually determined timepoints and acceleration data, 

Impulse 1 and Impulse 2 were calculated using the equations developed by Clark and colleagues 

(2017). Total impulse was then calculated by adding Impulse 1 and Impulse 2 together. Peak 

Force (PF) was acquired after the total impulse/impulse curve was developed for each step. Raw 

data from the treadmill force plate were collected via a custom program (LabVIEW 2018, 

National Instruments) and exported for processing and analysis. The first six steps of every speed 

were omitted from the analysis to allow for gait stabilization.  

 

Statistical Analysis 

All data processing and statistical analysis were performed with the statistical software R 

(version 3.0.1+) (R Core Team, 2019). Two different conditions were assessed for agreement 
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between the IMU and treadmill derived variables, 1) individual step comparison with randomly 

selected steps from each speed, and 2) averages of 20 randomly selected steps from every speed. 

Paired-sample t-tests were performed to determine if statistically significant differences existed 

between the force plate and IMU variables. Pearson’s correlations were used to evaluate 

relationships between the two devices. Correlations were rated as trivial (0-0.10), small (0.11-

0.39), moderate (0.40-0.69), large (0.70-0.89), and nearly perfect (0.90-1.00) (Mukaka, 2012). 

Lastly, Hedge’s g effect sizes were calculated to describe the magnitude of difference between 

devices. Magnitudes thresholds of effect sizes were interpreted as 0-0.2, 0.21-0.6, 0.61-1.21, 

1.21-2.0, and 2.0 and above as trivial, small, moderate, large, and very large (Hopkins, 

Batterham, Marshall, & Hanin, 2009). The critical alpha was set at 0.05. The assumptions of 

general linear model were assessed for each model. Shapiro-Wilks test was performed to assess 

the distribution of residuals. Independence of error was assessed with Durbin-Watson’s test. 

Lastly residuals were plotted against fitted values to assess for heteroscedasticity. For all 

violations except for independence of error, robust alternatives were used (Mair & Wilcox, 

2020). Force plate and IMU data were reported as mean ± SD, whereas correlation coefficient 

and effect sizes are presented as the respective point estimate. 

 

Results 

Gait Event and Kinetic Averages 

 No assumptions were violated with peak force, ground contact time, and flight time. Step 

time residuals violated normality distributions based on Shapiro-Wilks t-tests (p < 0.05). When 

steps were averaged over a given speed, no statistically significant differences were observed 

between the force plate and IMU for GCT (p > 0.05, -0.051 < g < 0.049), FT (p > 0.05, -0.051 < 
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g < 0.049), ST (p > 0.05, -0.051 < g < 0.049), and PF (p > 0.05, -0.051 < g < 0.049) (Tables 3.1-

3.3). Correlations between devices ranged from very large (GCT, 0.771 < r 0.89) to nearly 

perfect (FT, 0.904 < r < 0.988; ST, 0.964 < r < 0.998; PF, 0.971 < r < 0.993). 

 

Table 3.1. 

 Average Ground Contact Time per Speed 

 Speed Force Plate IMU Pearson’s Hedge's g 
8 212.57 + 12.83 211.99 + 8.2 0.890 0.005 
9 199.3 + 12.07 199.66 + 12.07 0.825 0.046 

10 187.47 + 9.29 186.05 + 6.35 0.787 -0.048 
11 176.24 + 8.88 175.49 + 6.16 0.771 -0.016 
12 164.63 + 7.83 164.4 + 5.27 0.798 -0.004 
13 155.98 + 8.42 154.87 + 5.51 0.844 0.009 
14 149.46 + 8.88 147.84 + 4.98 0.870 -0.019 
15 142.57 + 8.23 141.07 + 6.21 0.881 -0.019 

Data presented as mean ± SD in milliseconds. Correlation coefficients and effect sizes presented 
as point estimates. 
 

Table 3.2.  

Average Flight Time per Speed 

Speed  Force Plate IMU Pearson’s Hedge's g 

8 120.42 + 15.24 120.35 + 12.61 0.964 0.005 
9 125.29 + 13.21 124.67 + 10.4 0.904 0.046 

10 128.6 + 12.67 129.15 + 13.81 0.959 -0.048 
11 129.33 + 11.98 129.45 + 11.12 0.966 -0.009 
12 128.68 + 11.66 128.73 + 13.12 0.951 -0.004 
13 126.93 + 13.9 126.83 + 13.61 0.970 0.008 

14 121.32 + 19.99 121.81 + 18.04 0.988 -0.022 
15 117.23 + 19.11 117.59 + 18.8 0.988 -0.019 

Data presented as mean ± SD in milliseconds (ms). Correlation coefficients and effect sizes 
presented as point estimates. 
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Table 3.3.  

Average Peak Force per Speed 

 Speed Force Plate IMU Pearson’s Hedge's g 

8 1730.39 + 316.92 1697.1 + 286.41 0.990 0.005 

9 1763.26 + 319.07 1756.36 + 289.22 0.993 0.046 

10 1806.32 + 310.68 1832.36 + 298.92 0.991 -0.048 

11 1836.91 + 306.7 1876.25 + 281.71 0.990 -0.016 

12 1862.68 + 311.2 1919.85 + 272.21 0.982 -0.004 

13 1883.23 + 332.09 1956.29 + 294.93 0.992 0.009 

14 1905.34 + 320.02 1960.65 + 294.86 0.977 -0.022 

15 1936.68 + 318.02 1971.68 + 300.09 0.971 -0.019 
Data presented as mean ± SD in Newtons (N). Correlation coefficients and effect sizes presented 
as point estimates. 
 

 Robust alternatives for paired-sample t-tests and effect sizes for ST demonstrated no 

statistically significant differences between devices (p > 0.05, 0.00 > ES > 0.07) (Table 3.4) and 

robust correlations ranged from large (8mph, r = 0.785) to nearly perfect (9-15mph, 0.943 > r > 

0.999). 
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Table 3.4.  

Robust Alternatives for Average Step Time per Speed 

 Speed Force Plate IMU 
Trimmed 
Mean Diff Correlation Effect Size 

8 332.99 + 12.76 332.35 + 11.78 1.075 0.785 0.09 
9 324.59 + 13.73 324.59 + 12.51 0.361 0.976 0.028 
10 316.07 + 14.64 315.2 + 15.68 0.535 0.943 0.066 
11 305.57 + 15.96 304.94 + 14.43 0.063 0.989 0.00 
12 293.31 + 15.37 293.13 + 15.22 -0.011 0.999 0.00 
13 282.91 + 18.39 281.69 + 15.98 -0.036 0.999 0.00 
14 270.78 + 20.62 269.65 + 18.09 0.279 0.999 0.009 
15 259.8 + 21.98 258.67 + 19.77 0.324 0.999 0.009 

Data presented as mean ± SD in milliseconds (ms). Correlation coefficients and effect sizes 
presented as point estimates 
 

Selected Step Comparison 

 No assumptions were violated for peak force, ground contact time, and flight time. Step 

time residuals violated normality distributions based on Shapiro-Wilks t-tests (p < 0.05). No 

statistically significant differences were found between the two devices for GCT (p = 0.316 – 

0.985; 0.02 < g < 0.361), FT (p = 0.148 – 0.719; 0.02 < g < 0.36), or PF (p = 0.174 – 0.923; 0.02 

< g < 0.361) (Table 3.5-3.7). 
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Table 3.5.  

Ground Contact Time for Selected Steps per Speed 

Speed, Step # Force Plate IMU Pearson’s Hedge’s g 
8mph     

8 210.14 + 16.56 209.8 + 10.31 0.937 0.019 
14 211.59 + 14.66 214.8 + 8.78 0.799 0.120 
28 213.06 + 13.7 213.01 + 8.38 0.850 0.046 

9mph         
10 201.27 + 14.16 198.18 + 10.03 0.762 0.253 
12 199.04 + 13.85 200.39 + 8.6 0.787 0.028 
27 198.56 + 12.34 198.89 + 8.81 0.797 0.342 

10mph         
11 187.08 + 7.62 187.24 + 4.24 0.739 0.107 
18 188.82 + 11.25 185.16 + 8.92 0.671 0.216 
26 188.52 + 10.34 187.76 + 6.6 0.791 0.046 

11mph         
14 177.34 + 9.67 175.77 + 4.89 0.698 0.161 
20 179.38 + 10.27 176.57 + 5.65 0.665 0.002 
23 175.21 + 6.64 176.28 + 6.31 0.726 0.104 

12mph         
7 161.68 + 8.26 164.47 + 5.42 0.809 0.20 
15 164.31 + 11.1 164.47 + 6.99 0.879 0.084 
29 163.43 + 6.84 164.67 + 3.14 0.443 0.055 

13mph         
11 158.47 + 11.29 156.68 + 4.25 0.297 0.171 
15 161.2 + 13.6 156.28 + 2.65 0.108 0.31 
25 154.67 + 9.3 155.48 + 5.15 0.825 0.283 

14mph         
9 148.55 + 8.13 149.29 + 6.03 0.906 0.046 
17 149.81 + 9.89 147.49 + 3.85 0.397 0.335 
21 145.91 + 7.14 149.49 + 4.19 0.5 0.146 

15mph         
7 138.22 + 9.24 140.08 + 6.77 0.573 0.055 
13 145.52 + 7.81 142.27 + 4.51 0.689 0.163 
28 143.76 + 10.51 139.73 + 5.33 0.375 0.148 

Data presented as mean ± SD in milliseconds (ms). Correlation coefficients and effect sizes 
presented as point estimates. 
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Table 3.6.  

Flight Time for Selected Steps per Speed 

Speed, Step # Force Plate IMU Pearson’s Hedge’s g 
8mph     

8 120.02 + 14.69 119.66 + 14.83 0.926 0.002 
14 120.12 + 18.27 117.84 + 16.72 0.911 0.120 
28 120.02 + 15.44 120.82 + 13.41 0.898 0.046 

9mph         
10 122.21 + 11.05 125.37 + 12.2 0.846 0.253 
12 127.85 + 11.44 128.2 + 8.16 0.773 0.028 
27 129.84 + 16.72 123.15 + 13.38 0.741 0.342 

10mph         
11 124.2 + 12.1 122.85 + 11.78 0.524 0.107 
18 132.52 + 12.32 136.12 + 16.99 0.715 0.216 
26 131.33 + 5.62 130.74 + 13.99 0.343 0.046 

11mph         
14 131.12 + 11.35 120.02 + 12.93 0.719 0.161 
20 129.13 + 11.32 129.16 + 12.55 0.699 0.002 
23 124.36 + 12.52 125.65 + 10.54 0.475 0.104 

12mph         
7 127.48 + 10.03 129.76 + 11.43 0.523 0.20 
15 128.31 + 11.97 127.17 + 9.77 0.87 0.085 
29 127.58 + 10.48 128.25 + 10.64 0.507 0.057 

13mph         
11 123.67 + 12.46 121.96 + 9.86 0.701 0.171 
15 122.41 + 11.61 118.85 + 9.57 0.725 0.309 
25 126.63 + 10.67 123.64 + 9.15 0.674 0.283 

14mph         
9 112.99 + 22.1 111.89 + 17.27 0.854 0.047 
17 124.82 + 15.44 119.55 + 12.95 0.868 0.335 
21 119.48 + 16.71 116.98 + 14.42 0.874 0.146 

15mph         
7 109.72 + 15.05 108.61 + 17.69 0.828 0.057 
13 120.92 + 16.54 116.99 + 22.61 0.907 0.163 
28 118.92 + 23.94 122.73 + 17.3 0.876 0.148 

Data presented as mean ± SD in milliseconds (ms). Correlation coefficients and effect sizes 
presented as point estimates. 
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Table 3.7.  

Results for Peak Force Step Comparison 

Speed, Step # Force Plate IMU Pearson’s Hedge’s g 
8mph     

8 1709.28 ± 351.34 1697.34 + 314.58 0.981 0.019 
14 1723.02 + 373.15 1677.1 + 318.7 0.991 0.120 
28 1705.99 + 355.93 1703.16 + 311.7 0.972 0.046 

9mph         
10 1742.3 + 341.31 1771.4 + 351.88 0.984 0.253 
12 1752.31 + 352.85 1774.9 + 294.6 0.988 0.028 
27 1775.85 + 356.38 1751.1 + 330.0 0.974 0.342 

10mph         
11 1793.91 + 271.04 1781.26 + 286.71 0.927 0.107 
18 1812.16 + 348.41 1890.1 + 354.88 0.973 0.216 
26 1781.58 + 319.89 1836.61 + 283.9 0.961 0.046 

11mph         
14 1843.86 + 336.99 1872.79 + 296.03 0.977 0.161 
20 1816.89 + 333.66 1877.14 + 320.4 0.963 0.002 
23 1835.06 + 300.47 1841.35 + 286.83 0.966 0.109 

12mph         
7 1870.91 + 328.71 1919.98 + 244.82 0.936 0.20 
15 1876.39 + 347.43 1909.66 + 287.26 0.968 0.085 
29 1887.74 + 301.04 1913.80 + 269.4 0.949 0.056 

13mph         
11 1891.42 + 338.71 1898.22 + 283.72 0.975 0.171 
15 1863.44 + 321.23 1883.53 + 288.89 0.969 0.310 
25 1919.5 + 375.85 1933.21 + 309.05 0.984 0.283 

14mph         
9 1895.68 + 345.18 1867.47 + 302.51 0.895 0.047 
17 1944.12 + 350.75 1943.44 + 315.3 0.958 0.335 
21 1894.5 + 342.92 1907.71 + 302.01 0.965 0.146 

15mph         
7 1893.47 + 334.62 1891.85 + 239.16 0.831 0.057 
13 1965.14 + 348.31 1945.18 + 288.99 0.935 0.163 
28 1958.5 + 387.3 2034.07 + 320.44 0.968 0.149 

Data presented as mean ± SD in Newtons (N). Correlation coefficients and effect sizes presented 
as point estimates 
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As running speeds increased, correlations for GCT fell from large/nearly perfect (8-

10mph, 0.671 < r < 0.937) to ranging from small to large (11-15mph, 0.108 < r 0.879). Flight 

time and ST displayed a similar pattern in which relationship strength initially fell as speed 

increased (FT, 8-9mph, 0.741 < r 0.926, 10-13mph, 0.343 < r < 0.87; ST, 8-9mph, 0.873 < r < 

0.945, 10-13mph, 0.246 < r < 0.887), before increasing again at the highest speeds (FT, 14-

15mph, 0.828 < r < 0.907; ST, 14-15mph, 0.813 < r < 0.94). The relationships between force 

plate- and IMU-derived peak force remained very large to nearly perfect across all speeds (0.831 

< r < 0.991). Robust alternatives were calculated for t-tests and effect sizes for ST to account for 

the violations of assumptions (Table 3.8).  

 No statistically significant differences were found between the two devices after running 

robust alternatives (p > 0.05; 0.000 < ES < 0.408). ST demonstrated following a similar pattern 

in relationship strength that FT demonstrated. Strength of the relationship initially fell from 

large/nearly perfect to a range of small/very large (8mph, r = 0.87 – 0.984; 9-13mph, r = 0.394 – 

0.972), before increasing at the highest speeds (14-15mph, r = 0.822 – 0.982). 
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 Table 3.8.  

Robust Alternatives of Step Time for Selected Steps per Speed 

Speed, Step # Force Plate IMU 
Trimmed 
Mean Diff Correlation Effect Size 

8mph      
8 330.16 + 11.78 329.46 + 12.21 4.337 0.984 0.213 
14 331.71 + 15.41 332.64 + 16.07 1.163 0.932 0.046 
28 333.07 + 9.67 333.82 + 10.96 0.070 0.870 0.009 

9mph          
10 323.49 + 12.93 323.55 + 11.18 -0.023 0.749 0.000 
12 326.89 + 14.77 328.59 + 12.7 0.124 0.832 0.009 
27 328.4 + 12.92 322.04 + 12.24 7.574 0.463 0.408 

10mph          
11 311.29 + 14.68 310.08 + 14.48 -0.733 0.521 0.037 
18 321.33 + 13.81 321.28 + 16.97 2.661 0.664 0.151 
26 319.85 + 10 318.51 + 14.29 4.154 0.394 0.294 

11mph          
14 308.46 + 17.27 304.79 + 16.3 5.262 0.779 0.228 
20 308.51 + 15.78 305.73 + 16.3 1.802 0.972 0.093 
23 299.57 + 15.45 301.94 + 14.1 -6.174 0.718 0.228 

12mph          
7 289.16 + 12.91 294.23 + 15.7 -6.966 0.706 0.323 
15 292.62 + 13.97 291.64 + 13.13 3.290 0.967 0.132 
29 291.01 + 13.41 292.13 + 11.87 -2.643 0.884 0.141 

13mph          
11 282.14 + 14.2 278.27 + 11.83 3.417 0.572 0.162 
15 283.61 + 13.0 275.13 + 10.97 6.669 0.426 0.416 
25 281.31 + 13.2 279.12 + 10.65 1.571 0.865 0.094 

14mph          
9 261.53 + 21.54 261.18 + 16.85 2.034 0.822 0.055 
17 274.63 + 17.01 267.04 + 13.04 5.718 0.918 0.219 
21 265.39 + 22.55 266.47 + 14.79 1.471 0.982 0.038 

15mph          
7 247.94 + 17.57 248.69 + 20.24 0.042 0.972 0.000 
13 266.44 + 20.51 259.08 + 24.22 8.233 0.910 0.229 
28 262.68 + 28.25 262.45 + 17.81 -0.957 0.831 0.027 

Data presented as mean ± SD in Newtons (N). Correlation coefficients and effect sizes presented 
as point estimates 
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Discussion 

The purpose of this study was to assess the agreement of shank-mounted IMUs and force 

plates with estimating running temporal gait events and kinetics. When analyzing temporal gait 

events and kinetics averaged per speed, shank-mounted IMUs may potentially be 

interchangeable with force plates for measuring FT, ST, and PF. No statistically significant 

differences (p < 0.05) were presented between devices, and relationship sizes remained nearly 

perfect for all speeds (r > 0.90).  

When analyzing running variables individually per step over different speeds, shank-

mounted IMUs may potentially be interchangeable with force plates when estimating only peak 

force. Similar to averaging steps over each speed, relationship sizes were less than nearly perfect 

for FT and ST potentially point to less ideal interchangeability between devices, regardless of no 

statistically significant differences being presented. Estimating peak forces with inertial sensors 

has shown high levels of validity in comparison to force plates (Gurchiek et al., 2017; Setuain et 

al., 2018). Higher sampling frequencies with both IMUs and force plates tend to have higher 

levels of agreement with estimating peak forces. While placement of the sensors has typically 

been associated with the center of mass (COM) for estimating peak force, incorporation of the 

TMM could potentially produce lower levels of agreement with placement of the sensors closer 

to the COM.  

Peak force is determined once both impulses have been summed into the resultant curve 

(Clark et al., 2017). One of the assumptions for the TMM is that the vertical displacement of the 

COM is zero throughout the whole GCT for each step (Clark et al., 2017). While the center of 

mass is assumed to have no changes in vertical displacement, this assumption does not include 

vertical displacement of the shank/heel drop at initial ground contact for forefoot strikers. One of 
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the main components of calculating the first impulse is the time until zero velocity of the 

shank/shank stabilization (Clark et al., 2017). Placement of the inertial sensors closer to the 

center of mass could potentially not estimate the time until shank stabilization, especially if the 

assumption of zero vertical displacement of the COM were true. While placement of the inertial 

sensors were further from the COM, calculating the impulses associated with the two different 

masses might produce higher levels of agreement when placed closer to the segment/joint of 

interest (Bergamini et al., 2012; Bergamini et al., 2013; Channells et al., 2006). With the small 

amount of research validating the displacement of sensors based on segmental analysis, more 

research should be conducted to further validate this. 

Lastly, whether it is through averaging steps over each speed, or analyzing each 

individual step, interchangeability between shank-mounted IMUs and force plates currently 

might not be suited for estimating GCT. While no statistically significant differences existed 

between devices, correlation sizes for both scenarios were all less than nearly perfect (r < 0.90). 

One potential hypothesis for this could be that the timepoint/raw data event for toe-off might not 

be the true positioning for “toe-off”. One potential explanation for this result could be that there 

are several defined moments in the raw data that have been associated with toe-off (Schmidt et 

al., 2016; Amman et al., 2016; Bergamini et al., 2012; Purcell et al., 2006). Different locations 

for placement of the sensor on the body and combinations of data used (accelerometer, 

gyroscope) have led to the establishment of multiple events or timepoints in the raw data 

potentially associated with “toe-off”. Further research should assess more locations/events in raw 

data when using shank-mounted IMUs and combining accelerometer and gyroscope data to 

determine the accuracy of locating “toe-off”. Further research should also analyze the differences 
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between skilled and non-skilled runners and the impact different foot strike patterns have on the 

level of agreement. 

 

Conclusion 

 This study demonstrated that shank-worn IMUs are potential alternative tools in 

measuring both temporal gait events and gait kinetics across a range of running speeds during 

upright running. No statistically significant differences were found for any of the measures 

across both scenarios. The nearly perfect relationships and no statistically significant differences 

in FT, ST, and PF across averages of steps and PF across individually selected steps indicate 

optimistic interchangeability in some situations between IMUs and force plates when assessing 

temporal gait events and kinetics. Should the use of force plates not be possible, measuring GCT, 

FP, ST, and PF across step averages and individually selected steps from shank-mounted IMUs 

may provide an alternative. 
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Shape Factor Validity of IMU Derived Force-Time Curves using the Two-Mass Model 

 Abstract 

Force-time (F-t) curve modeling has led to advancements in running and sprinting 

allowing for further in-depth analysis of running kinetics. The two-mass model 

was developed to correct the spring-mass model’s inability to reliably model 

force-time curves during faster velocity running and sprinting. The TMM 

incorporates two different impulses during sprinting, that when summed together, 

develop an asymmetrical curve shape properly modeling kinetics during higher 

velocity running. The key components of the TMM, such as ground contact time, 

time until shank zero velocity, shank acceleration, and body mass percentages of 

the two body masses utilized, have been validated using a high-speed camera 

setup. The purpose of this study was to validate modeling TMM F-t curves using 

data from shank-mounted inertial measurement units. Ten subjects completed 

submaximal treadmill tests with speeds ranging from 8mph to 15mph. Raw data 

from the IMUs were filtered and plotted manually to determine the three different 

temporal gait event moments. F-t curves were then approximated via previously 

developed TMM equations (Clark et al., 2017). Comparisons between the IMU 

curves and treadmill force plate curves were made by calculating 95% confidence 

intervals from the corrected mean differences. Comparisons were made between 

curves from the group as a whole, as well as sub-group analyses between skilled 

and recreational runners. The group-level comparison demonstrated a low level of 

agreement, with only 21% of the time points containing 0 in their confidence 

limits. Sub-group analysis found skilled runners’ modeled data agreed with the 
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force plate across the first 63% of ground contact, whereas recreational runners’ 

data only agreed with the force plate at peak force. The results of this study 

suggest F-t curves modeled from shank-mounted IMUs may possibly estimate 

skilled runner’s F-t characteristics until the falling edge of the waveform.   

 

Introduction 

 Evaluation of F-t curves and the resultant impulses underlying movement has allowed for 

deeper understanding of athlete movement and can serve as a potential athlete monitoring tool 

(Mizuguchi et al., 2015). Assessment of these parameters have allowed investigators to discern 

differences in shape of curves between sexes, discriminate strength levels of athletes, and 

contrast jump characteristics between athletes (Cormie et al., 2008; Cormie et al., 2009; Sole et 

al., 2018). Investigators have also examined how different training modalities can impact shapes 

and magnitudes of force-time curves between athletes of various strength levels (Cormie et al., 

2010a; Cormie et al., 2010b).  

 Using more affordable equipment such as phone/camera applications and wearable 

sensors, force application models were developed with the goal of predicting and calculating 

forces and force-time curves during running without the need for expensive equipment such as 

force plates. The first model developed was the Spring Mass Model (SMM) (Blickhan, 1989). 

The SMM describes the body as a simple massless spring that compresses at touchdown, storing 

elastic energy, and releasing that energy during the propulsion portion of the stance phase 

(Alexander, 1992; Blickhan, 1989; McMahon & Cheng, 1990). While the SMM produced force-

time curves during hopping and slow running were acceptable, several model assumptions led to 

a loss of validity when estimating forces in faster running and sprinting (Clark et al., 2014). In 
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brief, the model assumes the F-t curve is a half-sine in which vertical oscillation is even 

throughout ground contact and in which peak vertical force occurs at the midpoint of ground 

contact. In reality, research at faster running has shown asymmetric force application alongside 

peak vertical force occurring early during stance (Bundle & Weyand, 2012; Clark et al., 2014; 

Weyand et al., 2009). Aside from the aforementioned assumptions, the SMM was also unable to 

model forefoot strikers consistently (Ly et al., 2010; Zadpoor & Nikooyan, 2010). 

 The Two-Mass Model (TMM) was introduced as an alternative to overcome the SMM’s 

limitations at faster running speeds. Clark and colleagues (2014) noted that the asymmetrical 

curve shapes and time of highest force production were different between faster and slower 

runners. The TMM divides the body into two masses, the first being the shank of the contact leg 

(Mass1) and the remainder of the body (Mass2) (Clark et al., 2017). Impulses are then calculated 

for both masses during each step, which when added together, gave a more accurate 

representation of force-time curves developed by faster runners. 

Objectively, the TMM describes the force production in relation to the shank and the rest 

of the body. Using ground contact time (GCT), shank acceleration during GCT, and percent 

body mass of the two masses (Mass1= 8%, Mass2= 92%), the two impulses can be calculated 

representing 1) forces/impulses developed from time of initial contact until shank stabilization 

(impulse 1), and the forces required to accelerate the remainder of the body through the stance 

phase. As hypothesized by Clark and Colleagues (2017), the resultant impulse curve from the 

two separate impulses accurately matched curves from a treadmill equipped force plate during 

high velocity running. Currently, validation of obtaining the variables for the two-mass model 

(GCT, FT, vertical oscillation) has only been completed using high speed cameras. Therefore, 
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the purpose of this study is to compare the resultant impulse curves from the TMM using shank-

mounted inertial measurement units to the curves from a force plate. 

 

Methods 

Subjects  

Ten runners volunteered to participate in the study (5 males, 5 females, 24.5±3.6 yrs, 

63.2±9.46 kg). Each subject had been actively running for at least 1 year, with past competition 

experience preferred. Further breakdown of subjects consisted of four recreationally trained 

subjects and six skilled runners (1 Olympian and 5 collegiate). Furthermore, subjects did not 

have any musculoskeletal injuries within the past 6 months or any other current condition that 

could potentially lead to complications during exercise. All subjects read and signed an informed 

consent document prior to participation in the study, as approved by the university’s Institutional 

Review Board. 

Data Collection 

Each subject underwent one testing session in the laboratory. Subjects were first assessed 

for body mass measurements using a standard scale. Each subject was then prepared to run a 

discontinuous graded treadmill test. Inertial measurement units (Blue Thunder, Vicon Motion 

Systems, United Kingdom) were placed immediately superior to the medial malleolus on both 

shanks. Recording frequency for the IMUs was 500Hz, with data collection occurring through a 

smartphone application (IMU Research, 3.1, Vicon). Treadmill tests consisted of speeds 8mph-

15mph, with each test lasting 20-40 seconds. Rest time between each stage lasted a minimum of 

60 seconds, to allow for adequate rest to minimize the accumulation of fatigue. In addition to the 

IMUs, the treadmill was equipped with an embedded force plate sampling at 1000Hz. Initial 
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force data collection and processing was carried out in a custom LabVIEW application 

(LabVIEW 2018, National Instruments). 

Signal Processing 

Inertial measurement unit data were filtered through a second order Butterworth band-

pass filter (0.7Hz to 50Hz) (Lai et al., 2008; Charry et al., 2009a; Charry et al., 2009b). 

Following the filter, the y-axis acceleration data, z-axis gyroscope data, and the resultant 

acceleration data were plotted to manually identify specific gait events. Ground Contact (GC), 

and Time to Zero Acceleration (T0) were defined by the onset and termination of the first peak in 

the y-axis acceleration data, located in between two gyroscope peaks. Toe Off (TO) was 

represented as the first peak in the resultant acceleration data immediately following the highest 

gyroscope spike situated between the same two gyroscope peaks. These three timepoints then 

allowed for the calculation of Ground Contact Time (GCT), Time to shank stabilization (TSS), 

Flight Time (FT), and total Step Time (ST). Using the manually determined timepoints and 

acceleration data, impulse1 and impulse2, were calculated using the equations developed by Clark 

and colleagues (2017). Total impulse was then calculated as the sum of impulse1 and impulse2. 

Figure 5 illustrates the resulting graphs of the TMM curves from the IMU. 
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Figure 4.1. 

Two-Mass Model impulse curve figures for 8mph and 15mph. 

 

 

Raw data from the treadmill force plate was collected using Labview. The raw data was 

then integrated with the force plate calibration formula to develop raw F-t curves in a customized 

Rstudio application. The developed F-t curves were then filtered through a low-pass, fourth 

order, zero-phase-shift Butterworth filter with a frequency of 25Hz (Clark et al., 2014) in a 

customized R application. The first six steps of every speed for each subject were omitted from 

analysis to account for stabilization/proper positioning upon getting on the treadmill at each 

stage. Force-time curves from both the treadmill force plate and the IMUs were normalized to 

ground contact time, giving 100 data points for each step. 

 

Statistical Analysis 

 The bias-corrected and accelerated 95% confidence intervals were calculated for the 

mean difference between the two devices at each of the 100 data points using ordinary non-
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trimmed mean differences within each of the two different populations (skilled and recreational) 

were calculated using a robust paired sample t test (Mair & Wilcox, 2020) for each of the 100 

data points. Because of the low sample size for both groups, bootstrapping was not possible. The 

confidence intervals were derived in the specific manners to avoid potential violations of general 

linear model. The confidence intervals were plotted to look for segments that did not include 0. 

A positive direction with the Cis indicated favoring of the IMUs. The segments without 0 were 

inferred to be statistically different. All statistical analyses were performed using the R software. 

 

Results 

Whole Group 

 The 95% CI for the whole running sample did not contain 0 for 79 of the 100 data points 

(Figure 4.3). The 21 data points that did contain 0 were separated into three different segments. 

The first and second segments did not appear to be associated with any specific event of the F-t 

curve, while the third segment was located at peak force of the two F-t curves. 

Figure 4.2. 

Force-Time curves for whole running sample from both IMUs and force plate. 
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Figure 4.3. 

95% CI with upper and lower limits for whole running sample F-t curves.  

 

 

Recreational vs. Skilled Runners 

 The 95% CI for skilled runners contained a zero-value in the first 63 timepoints of the F-t 

curves (Figure 4.5). The 95% CI for recreational runners did not contain a zero-value for 90 of 

the 100 data points (Figure 4.7). The 10 data points that did contain a zero-value were separated 

into two different segments. The first segment of 3 timepoints did not appear to be associated 

with any specific event of the F-t curves. The second segment was located at the peak of the F-t 

curves from both devices. 
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Figure 4.4. 

Force-Time curves for skilled runners from both IMUs and force plate 

 

Figure 4.5 

95% CI with upper and lower limits for skilled runner F-t curves.  
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Figure 4.6 

Force-time curves for recreational runner from both IMUs and force plate. 

 

Figure 4.7 

95% CI with upper and lower limits for recreational runner F-t curves.  
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Discussion 

 The purpose of this study was to compare the resultant F-t curves from shank mounted 

IMUs using the TMM to those derived from a force plate. Force time curves derived from shank 

mounted IMUs may not agree with those from force plates when assessing the running sample, 

regardless of running skill level, and may only be practical with estimating gait events and 

kinetics. Seventy-nine of the 100 timepoints did not contain 0 in the 95% CI, and only one of the 

three portions was associated with a specific event (peak force). This agrees with the previous 

study (Smith et al., 2021) that indicated finding no significant differences in peak forces between 

the IMU and force plate.  

The rising edge of the group-averaged F-t curve was higher with a steeper incline than 

the force plate in the first one- third segment of GCT, likely pointing to an overestimation of 

impulse 1. As developed by Clark and colleagues (2016) the resultant impulse curve for the 

TMM was calculated from the sum of impulse 1 and impulse 2. Impulse 1 is characterized as the 

impulse of the first mass from initial contact until the time until zero acceleration/shank 

stabilization (Clark et al., 2016) with one of the key variables of this calculation being the time it 

takes for the shank to stabilize. The need to separate skilled runners from non-skilled runners 

stems from the foot-strike differences between elite-level and non-elite level runners, and the 

differences in gait patterns that are potentially associated with those strike patterns. While most 

marathon runners, both elite and recreational level, exhibit rear foot strike patterns (Hanley et al., 

2019; Larson et al., 2011), skilled runners and sprinters competing in events from 1500m to 

shorter distances more commonly practice non-rearfoot striking (Hayes and Caplan, 2012). 

The IMU-derived F-t time curves from skilled runners may have a greater level of 

agreement than those from recreational runners. The 95% CI for the skilled runners contained 
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zero for the first 63 of 100 timepoints, while those from recreational runners contained zero for 

only 10 of the 100 timepoints. Similar to the whole group, the rising edge of the IMU resultant 

impulse curves from the recreational runners appeared higher with a steeper incline than the 

force plate, likely pointing to an overestimation of impulse 1. The first potential hypothesis to 

explain the overestimation of impulse 1 for the recreational runners is that heel striking could 

lead to larger movement artifacts than forefoot striking on initial ground contact for each footfall. 

Paired with this assumption is also that the company-issued ankle straps might not be able to 

prevent a significant amount of movement during initial contact for runners that heel strike.  

The second hypothesis to explain the low level of agreement for the recreational runners’ 

F-t curves could be that data from shank-mounted IMUs may not produce agreeable TMM-

derived F-t curves. As stated previously, one of the main components for the impulse 1 

calculation is the time until zero velocity, or shank stabilization (Clark et al., 2017). With heel 

striking, it could be likely that calculation of the time until zero velocity/shank stabilization is not 

possible without the use of high-speed cameras. This potential inability of the shank-mounted 

IMUs to calculate this variable could have been a determining factor in the overestimation of the 

impulse 1 for recreational runners. Further research needs to be conducted to determine the 

actuality of these two hypotheses. 

Lastly, using high speed cameras might produce more agreeable F-t curves than shank-

mounted IMUs, especially with varying skill levels of runners. As stated previously, one of the 

potential limitations of shank-mounted IMUs is the inability to calculate the time until shank 

stabilization in recreational runners/heel strikers. When using high-speed cameras, Clark and 

colleagues (2017) observed high levels of agreement of F-t curves with both rearfoot strikers 

(R2= 0.94) and forefoot strikers (R2= 0.95), which were observed across multiple running 
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velocities. Force-time curves from the high speed cameras were also able to produce high levels 

of agreement throughout all phases of the GCT, including the falling edge. Shank-mounted 

IMUs with skilled runners only produces high levels of agreement throughout the first ~60% of 

GCT, until after the peak and into the falling edge of the F-t curve. However, one potential 

limitation to the application of using high-speed cameras for the TMM is that validity has not 

been assessed. While very large goodness of fit values were reported with high speed cameras, 

the use of this statistical test does not allow for identification of specific events or portions of the 

F-t curve that may have exhibited low levels of agreement (Clark et al., 2017). When performing 

goodness of fit tests for IMU-derived F-t curves with skilled runners, very large degrees of 

overlap were demonstrated between the IMUs and force plate (R2= 0.94). This did not present 

that the falling edge of the IMU F-t curves produced low levels of agreement according to the 

95% CI of skilled runners. 

While the 95% CI for the skilled runners did not contain zero for the last 37 timepoints, it 

does not mean that practical interchangeability is not likely between the two devices for the 

falling edge of the F-t curve. Effect sizes can be calculated from the mean difference of each 

timepoint. If the effect sizes were trivial, then interchangeability may be likely between the two 

devices. However, if the effect sizes are larger than trivial, it may still point to no likely 

interchangeability for those timepoints. 

 

Conclusion 

 The purpose of this study was to assess the agreement of F-t curves derived from force 

plates and the TMM utilizing shank-mounted IMU data. Initial results of this study suggest that 

using shank-mounted IMUs to calculate TMM-based F-t curves may not be recommended 
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among the running sample as a whole, or for recreational runners. While less likely to produce 

agreeable F-t curves throughout the entirety of GCT, shank-mounted IMUs still have potential 

applications for use with skilled runners. The portion of the IMU F-t curves that was agreeable 

with the force plate was the first ~63%, which encompassed the entirety of the impulse 1 curve 

and the resultant peak. This can allow for higher ecological validity for research pertaining to the 

effect that different modalities of training (sprinting, running, weightlifting, etc.) and different 

sprint training tactics (incline, sled pulls, prone starts, etc.) can have on impulse 1 characteristics, 

vertical oscillation (time until shank stabilization), rate of force developments during initial 

contact, and overall peak forces 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



 63 

References 

Alexander, M, (1992). Simple models of walking and jumping. Human Movement Science, 11  
(1-2), 3-9. 

 
Blickhan R. (1989). The spring-mass model for running and hopping. J Biomech, 22, 1217– 

1227. 
 
Bundle, M., Weyand, P. (2012). Sprint exercise performance: does metabolic power matter?  

Exerc. Sport Sci. Rev., 40(3), 174-182. 
 
Cavagna GA, Heglund NC, Willems PA, (2005). Effect of an increase in gravity on the power  

output and the rebound of the body in human running. J Exp Biol, 208(Pt 12), 2333–46. 
 
Charry, E., Lai, D., Begg, R., Palaniswami, M, (2009a). A study on band-pass filtering for  

calculating foot displacements from accelerometer and gyroscope sensors. Engineering in 
Medicine and Biology, 2009, 4824-4827. 

 
Charry, E., Lai, D., Begg, R., Palaniswami, M, (2009b). Filtering techniques using frequency  

analysis for inertial sensors in gait measurements. World Congress on Medical Physics 
and Biomedical Engineering, 25(4), 1257-1260. 

 
Clark, K., & Weyand, P. (2014). Are running speeds maximized with simple-spring mechanics?  

J Appl Physiol, 117, 604-615. doi:10.1152/japplphysiol.00174.2014. 
 

Clark, K., Laurence, R., Weyand, P. (2017). A general relationship links gait mechanics and  
running ground reaction forces. J. Exp. Biol., 220(2), 247-258. Doi: 10.1242/jeb.138057 

 
Cormie, P., McGuigan, M., Newton, R. (2009). Adaptations in athletic performance after  

ballistic power versus strength training. Medicine and science in sports and exercise, 4
 2(8), 1582-1598. 
 
Cormie, Prue, MICHAEL R. McGUIGAN, and Robert U. Newton (2010a). "Changes in the  

eccentric phase contribute to improved stretch-shorten cycle performance after training." 
Medicine & Science in Sports & Exercise 42(9), 1731-1744. 

 
Cormie, P., McGuigan, M., Newton, R, (2010b). Influence of training status on power absorption  

and production during lower body stretch-shorten cycle movements. The Journal of 
Strength and Conditioning Research, 24(1). 

 
Cormie, P, McBride, JM, and McCaulley, GO (2008). Power-time, forcetime, and velocity-time  

curve analysis during the jump squat: Impact of load. J Appl Biomech, 24: 112 
 
Hanley, B., Bissas, A., Merlino, S., & Gruber, AH, (2019). Most marathon runners at the 2017  

IAAF World Championships were rearfoot strikers, and most did not change footstrike 
pattern. J Biomech, 92, 54-60. 



 64 

Hayes, P., & Caplan, N., (2012). Foot strike patterns and ground contact times during high- 
calibre middle-distance races. J Sports Sci, 30, 1275-1283. 

 
Larson, P., Higgins, E., Kaminski, J., Decker, T., Preble, J., Lyons, D., et el, (2011). Foot strike  

patterns of recreational and sub-elite runners in a long-distance road race. J Sports Sci, 
29, 1665-1673. 

 
Ly, Q. H., Alaoui, A., Erlicher, S. and Baly, L. (2010). Towards a footwear design tool:  

influence of shoe midsole properties and ground stiffness on the impact force during 
running. J. Biomech. 43, 310-317.  

 
Mair, P., & Wilcox, R. (2020). Robust Statistical Methods in R using the WRS2 package.  

Behavioral Research Methods, 52, 464-488. 
 
McMahon TA, Cheng GC, (1990). The mechanics of running: how does stiffness couple with  

speed? J Biomech, 23, Suppl 1: 65–78. 
 
Mizuguchi, S., Sands, W., Wassinger, C., Lamont, H., Stone, M (2015). A new approach to  

determining net impulse and identification of its characteristics in countermovement 
jumping: reliability and validity. Sports Biomechnics, 14(2), 1-15. 

 
Smith, A., Sams, M., Mizuguchi, S., DeWeese, B., & Stone, M., (2020). Validity of temporal  

gait events and kinetics derived from shank-mounted inertial measurement units. 
[Unpublished doctoral dissertation]. East Tennessee State University. 

 
Sole, C., Miziguchi, S., Sato, K., Moir, G., and Stone, MH. Phase Characteristics of the  

countermovement jump force-time curve: a comparison of athletes by jumping ability. 
Journal of Strength and Conditioning Research, 32:4 (2018) 1155-1165. 
 

Svedenhag J, Sjodin B, (1984). Maximal and submaximal oxygen uptakes and blood lactate  
levels in elite male middle- and long-distance runners. Int J Sports Med, 5(5), 255–61. 

 
Weyand PG, Bundle MW, McGowan CP, Grabowski A, Brown MB, Kram R, Herr H (2009).  

The fastest runner on artificial limbs: different limbs, similar function? J Appl Physiol, 
107: 903–911. 

 
Zadpoor, A. A. and Nikooyan, A. A. (2010). Modeling muscle activity to study the effects of  

footwear on the impact forces and vibrations of the human body during running. J. 
Biomech. 43, 186-193. 
 
 
 

 
 
 
 



 65 

Chapter 5. Summary and Future Direction 

 Shank-mounted IMUs are potentially good substitutions for force plates measuring 

temporal gait events and peak forces during upright running. This can be applied to both 

averages of steps across a similar speed and individual step analysis. When evaluating the shape 

factor differences of the TMM F-t curves, utilizing shank-mounted IMUs may not be valid tools 

when applying to a running sample as a whole when encompassing different skill levels. 

However, when breaking the population into recreational and skilled runners, F-t curves from the 

skilled runners exhibited more similarities between the IMUs and force plates and contained 

those similarities at key locations of the F-t graph and ground contact time. This finding suggests 

that the agreement of shank-mounted IMUs when incorporating the TMM is potentially 

dependent on the skill level of the runner. More specifically, the foot strike pattern of a runner is 

potentially the determining factor of producing high or low levels of agreement for IMU-derived 

F-t curves. While it does not produce agreeable results after the peak of the curve, skilled runners 

may still benefit from potential benefits of using shank-mounted IMUs that pertain to the first 

63-65% of GCT. 

 In the future, researchers should concentrate on using more locations/events in raw data 

when using shank-mounted IMUs and combining both accelerometer and gyroscope data to 

determine the accuracy of locating “toe-off”. Additionally, researchers should also analyze the 

differences between skilled and non-skilled runners and foot strike patterns have on the level of 

agreement for temporal gait events and kinetics for individual step comparisons between devices. 

Lastly, researchers should assess the impact different training modalities, both general and 

specific to sprinting, have on the force and impulse characteristics. 
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