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ABSTRACT 

Electrodeposition of Hydrogen Molybdenum Tungsten Bronze Films and Electrochemical 

Reduction of Carbon Dioxide CO2 

by 

Mohammad Bajunaid 

The foremost aim for performing this study was to focus on the electrodeposition of mixed 

hydrogen molybdenum tungsten bronze films, which have potential for e– transfer interactions 

carrying out reduction of carbon dioxide. A yellow peroxymolybdic tungstate solution was 

prepared and used for the electrodeposition of hydrogen molybdenum tungsten bronze films on 

conductive carbon paper. Electrodeposition was carried out at -2.0 V from 20 - 120 minutes to 

determine the effect of deposition time on film thickness and CO2 reduction. These films were 

characterized by X-ray photoelectron spectroscopy. The deposited films served as a working 

electrode for CO2 electrochemical reduction utilizing 0.8 M NaHCO3 as the electrolyte. Carbon 

dioxide gas was bubbled into the cathode solution for an hour while bulk electrolysis was carried 

out at different applied potentials. Products were identified and evaluated using ion 

chromatography. 
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CHAPTER 1. INTRODUCTION 

 

Carbon Dioxide 

 

Carbon dioxide (CO2) is a major by-product that is formed upon combusting fossil fuels. 

Combusting one ton of fossil fuels results in over 3.5 tons of CO2.
1 CO2 is a greenhouse gas that 

is found to have a close correlation to ocean acidification and global warming.2 That is because 

this gas absorbs infrared radiation. As more greenhouse gases (GHGs) are in the air, less heat is 

released from the earth.3 The CO2 concentration in the air has reached historical levels and has 

been rising over the last few years.4 The current global average level of atmospheric carbon 

exceeds 400 ppm, as shown in Figure 1.5  

 

Figure 1. Atmospheric CO2 levels and year as measured by the Earth System Research 

Laboratory. Reprinted by permission from NOAA/ESRL Global Monitoring Division Lab.5 

The amount of atmospheric CO2 in ppm and year are presented in Figure 1 obtained from the 

National Oceanic and Atmospheric Administration’s Earth System Research Laboratory 

website.5 Research has been focused on CO2 reduction to recycle carbon dioxide and possibly 

convert CO2 to feedstocks for energy production.6 Two examples of useful products from 
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reduced CO2 are formate and methanol. These reduction products are of interest as they may be 

used in fuel cells generating power in the form of current.7,8 An example is a formate fuel cell 

operating at 60 °C that produces a power density of 591 mW/cm2.9 To realize using CO2 as a 

feedstock for fuel cells, reduction of CO2 must be selective and efficient. Electrochemical 

conversion is one way to reduce CO2. 

Electrochemical CO2 Reduction to Formate and Methanol 

 

Electrochemical reduction of CO2 is capable of generating useful hydrocarbons.6 

Reduction products are hydrocarbons including CH3OH (methanol), CH4 (methane), CO (carbon 

monoxide), HCOO– (formate) and even oxalate.10 The reduction steps resulting in formate and 

methanol, due to being products of interest, are briefly reviewed. Table 1 shows the 

electrochemical reactions at the cathode, anode, and overall reaction reducing CO2 to methanol. 

Table 1. Electrochemical reaction for carbon dioxide (CO2) conversion to methanol CH3OH 

under standard condition.11 

 Electrochemical reaction  E (V) 

Cathode CO2 + 6H+ + 6e- ⇄ CH3OH + H2O            -0.22 vs. SCE          (1) 

Anode 3 H2O ⇄ 1.5 O2 + 6H+ + 6e-              0.99 vs. SCE           (2) 

Overall CO2 + 2 H2O ⇄ CH3OH + 1.5O2                   1.21                  (3) 

 

Figure 2 shows the two most probable reaction pathways for the electrochemical reduction of 

CO2 that result in formate and methanol. The 1st mechanism (a) proceeds through generating CO, 

and the 2nd mechanism (b) through the formate (HCOO–) intermediate. 
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(a) CO2 + e- + H+ (at the cathode surface) → HOCO-    E°= − 0.125 V 

HOCO- + e- + H+ → H2O + CO    E°= − 0.106 V  

CO + e- + H+ → HCO    E°= − 0.125 V 

HCO + e- + H+ → CH2O E° = − 0.024 V  

HCHO + 2 e- + 2H+ → CH3OH E°= + 0.16 V 

                    Overall: CO2 + 6H+ + 6e- → CH3OH + H2O E°= − 0.22 V                   (4) 

(b) CO2 + e- + H+ → HCOO- E°= − 0.210 V  

HCOO- + e- + H+ → HCOOH E°= − 0.150 V  

HCOOH + e- + H+ → HCO + H2O E°= − 0.210 V 

HCO + e- + H+ → CH2O E°= − 0.06 V 

HCHO + 2e- + 2H+ → CH3OH E°= + 0.41 V 

                  Overall: CO2 + 6 H+ + 6e- → CH3OH + H2O E°= − 0.22 V                 (5) 

Figure 2. Most probable reaction pathways in the CO2 electrochemical reduction to CH3OH, via 

intermediates of (a) CO and (b) HCOOH.11,12,13 

 

Another possible reduction product is oxalate.  

Electrochemical CO2 Reduction to Oxalate 

 

 Conversion of CO2 to oxalate is important due to the results obtained in this work. There 

are numerous reports on CO2 reduction to oxalates using low-valent d and f block metals.14,15 

The standard reduction potential for CO2 to oxalate is -0.590 V vs. the SHE.16 Just this year 

(2020), a stainless-steel electrode in acetonitrile with CO2 at 2 atm using a current density of 15 

mA/cm2 resulted in production of oxalate with an average Faradaic efficiency of 78%.15 A 

stainless-steel electrode is beneficial over other metal electrodes because it does not corrode and 

promote electroreduction of CO2.
17,18 In another study, a binuclear Cu (I) complex consisting of 

[Cu2(m-xpt)2] (PF6)2 was found to reduce CO2, resulting in a bridged oxalate ion between two 
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Cu2+ ions.14 The bound oxalate ions are removed as oxalic acid upon reaction with mineral acids. 

The copper (I) complex can be regenerated using ascorbate as a moderate reducing agent.14  

 

Figure 3. he preliminary copper (II) complexes (1= [Cu2(m-xpt)2(NO3)2] (PF6)2 and 2= [Cu2(m-

xpt)2Cl2] (PF6)2) are reduced in the existence of sod. ascorbate to Cu(I) complex (3= [Cu2(m-

xpt)2] (PF6)2). The CO2 reacts then with the later complex to yield oxalate-bridged complex (4= 

[Cu2(m-xpt)2(μ-C2O4)] (PF6)2). The oxalate is converted to oxalic acid upon reacting acids with 

complex 4, renewing the preliminary ‘empty’ complexes again.14 Reprinted by permission from 

[the Licensor]: [Springer] [Nature Communications] [(Reduction of carbon dioxide to oxalate by a 

binuclear copper complex, Pokharel, UR., Fronczek, FR. & Maverick, AW.), [COPYRIGHT] 

(2014), (doi.org/10.1038/ncomms6883.[Nat. Comm]).14 

 

To produce methanol, formate, and oxalate selectively and efficiently, metal modified and metal 

supported carbon electrodes have been used.  

Metal Electrodes for CO2 Reduction 

 

Copper was first used in 1985 to reduce CO2.
19 Other metals have been used for CO2 

reduction and are classified into four groups based on the main product they produce. Pb, Hg, Ti, 

In, Sn, Cd and Bi produce formate, Au, Ag, Zn, Pd and Ga produce carbon monoxide, Ni, Fe, Pt, 

https://doi.org/10.1038/ncomms6883
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and Ga reduce a small amount of CO2 and produce H2 from water. These differences in 

selectivity and product formation are considered to be due to the binding energy of key 

intermediates in reduction of CO2 which occupy catalytic active sites.20 Pure copper stands out 

due to being able to reduce CO2 to multiple products requiring two or more electrons for 

reduction of CO2. These include methane, ethane, ethanol, propanol, formate, carbon 

monoxide.20 Metal electrodes at a pH of 6.8 using 0.1 M KHCO3 as an electrolyte are known to 

result in Faradaic efficiencies near 100% when summing liquid and gaseous products.21 

Producing formate requires an overpotential of 1.1 V vs. the RHE. Copper produces 

hydrocarbons and oxygenated hydrocarbons at a potential of 1.0 V vs. RHE and at an 

overpotential of 0.9 V, before formate is produced, CO2R products are converted to carbon 

monoxide. At an overpotential of 1.2 V methane is a main product.20 One goal is selective 

reduction meaning one product is favored over another. As an example, Ru, Cu-Cd modified Ru, 

and Cu-Cd modified Ru and Iridium oxides have been used having Faradaic efficiencies ranging 

from 15.3 to 38.2% at applied potential of -0.8 V vs. SCE in 0.5 M NaHCO3 electrolyte 

solution.11 Methanol was found to be the main product.11 Another strategy for selective 

electrochemical CO2 reduction is using metals and metal alloys supported on carbon. 

Recent Carbon Supported Metal and Metal Alloys for CO2 Electrochemical Reduction 

 

Carbon supports have the ability to enhance metal dispersion improving selectivity and/or 

activity of the supported electrocatalyst.22 A Pb-Sn alloy on a carbon support is such an example 

used in the reduction of CO2. Both CV and XPS showed that these supported metals formed 

oxides. The FE employing the Pb-Sn alloy for the formate production was 79.8%, at -0.6 V 

compared to the silver chloride reference electrode, which is higher than Pb or Sn alone by 

16%.23 Pt and Pd were employed as an alloy for CO2 electrochemical reduction. A Pd/Pt catalyst 
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on a C-film support was used for CO2 electrochemical reduction to formate at low overpotentials. 

The supported Pd-Pt nanoparticles have the capability for reducing CO2 to formate starting at –

0.05 V.24 Furthermore, a 70 % Pd: Pt 30% alloy resulted in an FE of 88% for formate after 1 

hour of electrolysis at -0.4 V. Nonetheless, reduction was restricted due to formation of CO at 

the surface of the catalyst.24 Carbon supported Pd nanoparticles are an example in which the CO2 

reduction Faradaic efficiency reached 97%. However, the Faradaic efficiency dropped swiftly, 

after one hour, due to catalytic poisoning. Embedded Pd in carbon ink on titanium foil achieved 

CO2 electrochemical reduction. In 0.5 M NaHCO3 saturated with CO2, the Faradaic efficiency 

decreased at -0.35 V by 80% after 3 hours.25 Carbon electrocatalysts doped with N  atoms, Co, 

Ni, and Fe achieved CO2 reduction to CO, requiring an overpotential of 0.560 V with a Faradaic 

efficacy of 93%.26 The Faradaic efficacy dropped over 2 hours and maintained an efficiency of 

63% for the remaining 12 hours.26 In many of these examples, the reduction of CO2 requires a 

high overpotential, have low selectivity and activity decreases over time.27 One reason for a 

decrease in Faradaic efficiency is carbon monoxide poisoning. 

Carbon Monoxide Poisoning 

 

Carbon monoxide (CO) is a typical byproduct which forms at -0.11 V vs. the RHE.28   

Using an overpotential to generate hydrocarbons from CO2, CO is almost always generated to 

some degree. Once CO is formed, all metals have a positive adsorption energy for CO, except for 

copper. This is due to the positive binding energy copper has for CO, + 0.1 eV.20 Carbon 

monoxide (CO), an intermediate, deactivates the catalyst, referred to as poisoning, by adsorbing 

which blocks active sites of the catalyst.29 Poisoning is characterized by the steady degradation 

of the catalytic ability toward product formation observed as a decrease in measurable current.   

For example, in the case of Pd supported on carbon, after 3 hours electrochemical reduction of 
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CO2 to formate is inhibited by generation of CO.25 Due to such issues as CO poisoning of 

electrocatalysts for CO2 reduction, selectivity and efficiency new and different catalysts are 

desired.   

Selection of Hydrogen Bronzes for Electrochemical Reduction of CO2 

Hydrogen bronze is the name given to a metal oxide with hydrogen ion. An example is 

hydrogen molybdenum bronze, HxMoO3, in which x is between 0.46 and 1.63.30-32 Hydrogen 

molybdenum bronze is blue in color.33 Other examples of metal oxides that form hydrogen 

bronzes include tungsten and vanadium oxide.34 Many methods are used for preparing hydrogen 

bronze films include sol-gel approaches, ammonium-heptamolybdate thermal decomposition, or 

metal vapor deposition followed by oxidation and addition of hydrogen using zinc and HCl.34-38  

In solution, hydrogen molybdenum bronze is easily generated by adding zinc to a 

solution of MoO3 solid in an aqueous solution of HCl which generates hydrogen ion. The 

generated hydrogen in contact with the WO3 surface undergoes dissociative chemisorption and 

diffuses into the metal oxide matrix turning yellow MoO3 blue and results in molybdenum 

having a mix of 5+ and 6+ oxidation states.39 During the reaction, the color changes from pale 

green for pure WO3 to blue for treated WO3. The W atoms are reduced by 0.5 M HCl to W5+ or 

W6+ resulting in HxWO3 following injection of H+ ions into the oxide matrix.33 The coating 

effective surface electronic resistivity (ρs) has been measured, and the results demonstrated a 

decrease in the ρs upon injection of H+ ions. The primary implication is that the crystal structure 

of the doped H+ ions from HxWO3 improved electrical conductivity. Thus, this evidence reveals 

that HxWO3 has a strong metallic character, which is attributed to the intercalation of H+ ions into 

WO3 lattice. The result is an increase in donor energy and charge carries.33  
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Formation of hydrogen bronzes also result when using water and hydrogen gas. Oxygen 

vacancies exist represented by the 3-x subscript in the blue hydrogen molybdenum bronze 

product shown in equation (6).40
 

½ yH2 + MoVIO3 → HyMoV/VIO3 → HyMoV/VIO3-x + xH2O     (6) 

The oxygen vacancies in a hydrogen bronze when optimized contribute to increasing light 

absorption, electron-hole recombination, increased conductivity, and most importantly, improved 

electrocatalysis.41-46 Another study characterized MoxW1-x O3 films. They found several oxides 

present as WxO3x-1, such as W3O8, W4O11, W8O23.
47 This makes it difficult to determine the 

stoichiometry of bronze formed, and the actual molecular composition since characterizing the 

as-deposited amorphous are difficult to determine using both electrochemical quartz crystal 

microbalance (EQCM) methods and conventional surface analytical techniques. Hydrogen 

bronzes may also be prepared by electrodeposition from metal peroxy acid solutions. 

Electrodeposition from a mixture of peroxymolybdic and peroxytungstic acids, described below, 

was successful and XPS confirmed the presence of both molybdenum and tungsten.47
 

Peroxymolybdic and Peroxytungstic Acid Solutions 

 

Hydrogen bronze films may be prepared by electrochemical deposition on metal 

substrates from peroxymetal solutions.48 Two common methods are employed to prepare the 

solution from which hydrogen bronze films may be prepared by electrodeposition: sodium 

molybdate dissolved with the addition of hydrogen peroxide H2O2 and molybdenum metal 

dissolved directly with H2O2. The prepared solution also serves as the electrolyte for 

electrodeposition.49 Equation (7) shows the reaction forming peroxymolybdate. 

[MoO4]
2- + 2 H2O2 ⇌ [MoO2(O2)2]

2- + 2 H2O   (7) 

After adding acid shown in Equation (8), the solution turns yellow.   
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H+ + [MoO2(O2)2]
2- ⇌ [HMoO2(O2)2]

2-   (8) 

The yellow color fades due to decreasing H2O2 over time.49 It was established that adding 

additional H2O2 caused the yellow color to return.49 In the same way, peroxytungstate acid may 

be prepared. Sodium tungsten dissolution with the addition of hydrogen peroxide H2O2 is shown 

in Equations (9) and (10).50 

[WO4]
2- + 2 H2O2 ⇌ [WO2(O2)2]

2- + 2 H2O   (9) 

H+ + [WO2(O2)2]
2- ⇌ [HWO2(O2)2]

2-   (10) 

 

In this work, a mixed peroxy molybdate tungstic acid solution was prepared to electrodeposit a 

hydrogen molybdenum tungsten bronze film.  

Use of Hydrogen Bronze for CO2 Reduction 

 

Hydrogen bronzes themselves are known to have high surface area (30 m2/g-1) making 

them capable of serving as a catalyst and/or catalytic support.51 A recent thesis has shown that 

nickel coated MoO3 and WO3 as a hydrogen bronze in the presence of hydrogen gas is capable of 

photocatalytic reduction of CO2.
40 The amount of CO2 converted to methane increased with 

temperature and when illuminated using a 300 W Xenon light source compared to dark 

conditions. At 200 °C, CO2 was converted at a rate of 20 µmole/g/hr in the dark compared to 80 

µmole/g/hr when illuminated using 5% by mass loading of nickel on the hydrogen bronze.40 The 

rate of CH4 formation was shown to be stable over 12 hours. In this same study, WO3 without 

nickel illuminated for one hour using a 1:1 ratio of CO2 and H2 at 2 atm was shown to produce 

CO at a rate of 5 µmole/g/hr.40 This result leads to the idea and motivation of using hydrogen 

bronzes as a potential electrocatalyst supported on carbon for stable and selective 

electrochemical reduction of CO2.    
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Motivation for Current Research Work 

 

Dr. Scott’s research using hydrogen molybdenum bronze films supported on carbon 

paper was shown to reduce CO2 to formate electrochemically.52 However, due to only obtaining 

a Faradaic efficiency of 8% for formate at an applied potential of -0.4 V vs. the silver chloride 

reference electrode, these results were not ideal, and no CO gas was detected in the headspace.52 

Bimetal oxides compared to single metal oxides have been shown to increase reaction rates due 

to having a greater number of acidic or basic sites and/or increased surface area.53-57 An 

electrochemical example of this strategy is a study which used the combination of CuO and ZnO 

as a gas diffusion electrode for reduction of CO2. Methanol was formed with an efficiency of 

17% and a selectivity of 88% at -1.32 V. Use of CuO and ZnO resulted in reduced selectivity for 

methanol.58 As there are three metal oxides that result in hydrogen bronzes, a mixed 

molybdenum tungsten hydrogen bronze film was chosen to use first for electrochemical 

conversion of CO2. The mixed hydrogen bronze films were prepared on carbon paper by 

electrodeposition and characterized by voltammetry.  
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CHAPTER 2. EXPERIMENTAL METHODS 

 

Materials and Chemicals 

 

 Both N2 and CO2 gases were purchased from Airgas. The Na2SO4 (Salt bridge/0.2 M), 

conductive carbon-paper with a resistivity of 80 mΩ·cm, NaOH, NaHCO3, sodium molybdate 

dihydrate, and sodium tungstate were purchased from VWR. A solution of Na2CO3 (3.6 mM) 

was utilized as the mobile phase for performing ion chromatography to quantify the product.  

Equipment 

 

Two beakers serving as an anode and cathode compartment were connected with a fritted 

salt bridge (0.2 M Na2SO4). The CHI 604 E using software version 15 was used to carry out 

electrodeposition, cyclic voltammetry studies, and electrochemical reduction. All stated 

potentials are in reference to the silver chloride reference electrode. Product was quantified by 

using a Metrohm 930 Ion Chromatogram. 

Electrodeposition of Tungsten Molybdenum Hydrogen Bronze Films 

 

Hydrogen molybdenum tungstate bronze films were prepared on carbon paper by 

electrodeposition using by modifying reported procedures.47,52,59-61 The method involves reacting 

molybdenum powder or metal with H2O2 creating peroxymolybdic acid, which acts as the 

electrolyte for electrodeposition. Approximately 2.42 g of sodium molybdate dihydrate was 

dissolved in 30 mL of 10% sodium tungstate and 22 mL of 3% H2O2 was added resulting in a 

yellow solution of peroxymolybdic tungstate acid, which was stirred overnight. About 22 mL of 

3% H2O2 was then added, followed by conc. H2SO4 dropwise for adjusting the pH of the solution 

to 2 measured using a calibrated Vernier® pH electrode. The yellow peroxymolybdic tungstate 

solution was used for the deposition of molybdenum and tungsten bronzes films. The 
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experimental setup is shown below in Figure 4. A 3-electrode scheme was utilized in which the 

Ag/AgCl electrode was employed as a reference, an inexpensive wire mesh platinized titanium 

anode was used as the counter electrode and carbon paper (1 in x 3 in) was the working electrode 

for depositing the hydrogen molybdenum tungsten bronze films. While the active area of the 

counter electrode is not known or was measured, this counter electrode permitted 

electrodeposition across the entire area of the carbon paper. The peroxymolybdic tungstate was 

reduced through bulk electrolysis, creating a blue film on carbon paper with a potential of -2.0 V 

for 20 – 120 minutes. Ultimately, these films were characterized by XPS (X-ray photoelectron 

spectroscopy).  

 

Figure 4. A photo of electrodeposition experiment  

 

Characterization of Films  

 

To evaluate the nature of the prepared films, samples have been sent for determining 

conductivity, thickness, and X-ray photoelectron spectroscopy. Samples have been mailed to 

Oklahoma State University for conductivity and film thickness by Dr. Toby Nelson using the 
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Bruker DektakXT® Stylus Profiler (which utilized a cantilever deflection) and 4-point probe 

with a Keithley 2400 source meter (Results are pending due to lab closure). Samples were also 

sent to Dr. Nicholas Materer at Oklahoma State University for XPS to confirm the presence of 

molybdenum and tungsten. The XPS system uses a Physical Electronics (PHI Industries Inc.) 

dual pass cylinder-shaped mirror analyzer with a 50eV accompanied by PHI Mg anode with 300 

W dual anode X-ray resource.  

CO2 Electrochemical Reduction 

 

The experimental setup for electrochemical reduction of CO2 is shown below in Figure 5. 

           

Figure 5. The employed electrochemical cell for the reduction trial of CO2 in the lab 

 

The cathode compartment included both the Ag/AgCl reference electrode and the 

hydrogen molybdenum tungsten bronze film as a working electrode. The area of the film in 

solution for each trial was approximately 1.3 cm2. The anode comprised the platinized titanium 

counter electrode and 18.5 mL of DI water saturated with CO2 and 2 mL of 0.8 M NaHCO3. This 

solution was prepared by saturating 18.5 mL of 18.2 MΩ pure water with CO2 utilizing a 

SodaStream® and adding 2 mL of 0.8 M NaHCO3 with one drop of conc. H2SO4, adjusting the 

pH to 6. The salt bridge connected the anode and the cathode compartments. Carbon dioxide gas 

was bubbled into the cathode solution for an hour by using a CO2 tank. Bulk electrolysis was 

applied using different potentials (-0.2, -0.4, -0.6, -0.8, -1.0, -1.2, and -1.4 V) for an hour in 
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which both time and entire charge (in Coulombs) was determined using CHI software which 

plotted current and potential.  

Evaluating Products Through Ion Chromatography 

 

Formate was the expected product. However, ion chromatography identified oxalate as 

the only main product, which was carried out using a Metrohm 930 IC in which a Metro Sep 

column a Supp 16-250/4.0 was utilized at 45°C and a 0.7 mL/min flow rate of Na2CO3 (3.6 

mmol) employed as an eluent and 5 mmol H2SO4 was used as a chemical suppressor.62 Dilution 

with 0.8 M NaHCO3 was utilized for preparing formate standards. Formate, the original 

suspected product, has a retention time of 4.6 minutes, while oxalate appears at 21 to 26 minutes.  

The range in retention time is due to overuse, the column’s failure, and is planned to be replaced.  

Calibration using a newer column is needed to quantify the amount of oxalate generated. The 

background chromatogram was obtained by bubbling CO2 into the electrolyte for an hour at each 

applied potential.   

 

Figure 6. Metrohm 930 ion chromatography       
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CHAPTER 3. RESULTS AND DISCUSSION 

Characterization of Electrodeposited Films 

 

As mentioned previously, bulk electrolysis was carried out by utilizing the yellow 

solution of peroxymolybdic tungstate acid for the electrodeposition of the molybdenum tungsten 

hydrogen bronze films at an applied potential of -2.0 V. These films are blue when H+ ion 

intercalated to a solid matrix. Figures 7 and 8 show the C-paper before and after 

electrodeposition.  

 

Figure 7. C-paper before the electrodeposition 

 

Figure 8. The film of hydrogen bronze after 7200 seconds of electrodeposition on the C-paper 

 

Film’s XPS Characterization  

 

The XPS of carbon paper and carbon paper with the electrodeposited hydrogen bronze 

film is shown in Figure 9. The blue line represents hydrogen bronze film while the orange line 

represents the carbon paper only. This spectrum proves that molybdenum (230 eV) and tungsten 

(425 eV) are in the electrodeposited film. Due to the carbon paper and hydrogen bronze film 

being exposed to air, oxygen (531 eV) is observed in both samples. However, the peak for 

oxygen is more intense for the electrodeposited film and the film is blue in color, which is 

similar to prepared hydrogen bronzes.33 
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Figure 9. The combination of electrodeposited MoW bronze film’s XPS spectrum and XPS 

spectrum for carbon paper only 

 

 

Cyclic Voltammetry of the CO2 Reduction 

The CV of the C-paper only in CO2 saturated with 0.8 M NaHCO3 was carried out and 

shown in Figure 10. The same experiment using a molybdenum tungsten hydrogen bronze film 

on carbon paper is shown in Figure 11. 
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Figure 10. The CV of carbon paper in CO2 saturated with NaHCO3 (0.8 M) using the silver 

chloride as a reference electrode 

 

Figure 11. The CV of carbon paper with the molybdenum tungsten hydrogen bronze film and 

CO2 gases saturated with NaHCO3 (0.8 M) employing the reference electrode, which is Ag/AgCl 
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Comparing Figures 10 and 11, the current is larger and started at an applied potential of -

0.6 V using the hydrogen molybdenum tungsten bronze film compared to carbon paper only that 

may indicate the film’s enhanced electrochemical behavior toward electrochemical CO2 

reduction. Although, the current is slightly higher with hydrogen molybdenum tungsten bronze 

film at an applied potential of - 0.6 V, Figure 11 does not definitively show that the hydrogen 

bronze film is electrocatalytic toward CO2 reduction. In order fully understand the cyclic 

voltammetry studies for CO2 reduction, further experimentation is needed. This involves a 

control experiment (CVs in the absence of CO2) to verify Figure 11. However, the control 

experiment has not been completed due to lab closure.   

Evaluation for CO2 Reduction Products 

Formate was expected to be the product and the 930 IC was calibrated for detecting formate. 

Figure 12 shows a typical ion chromatogram identifying formate in 0.8 M NaHCO3. 

 

 

Figure 12. Typical ion chromatogram of conductivity (µS/cm) and time (minutes) identifying 

formate in 0.8 M NaHCO3 with a retention time of 4.6 minute 
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For preparing the standard solutions, a 1,000-ppm standard of formate solution was 

diluted using NaHCO3 (0.8 M) to prepare standard solutions. Figure 13 is a plot of peak area and 

formate concentration. 

 

Figure 13. Calibration of the IC for projected yield formate 

For evaluating the Faradaic efficiency, Equation (11) may be used for determining FE for 

the CO2 reduction to formate.63 

ε =  
nformatenF

Q
 X 100%.          (11) 

Where F = 96,485 Coulombs/mol (Faraday’s constant), ε is FE, nformate is the formate’s mole, Q 

is the charge for the CO2 reduction period, and n is the e– for the reduction of CO2 gas to 

formate. However, ion chromatography following electrochemical reduction of CO2 using the 

prepared films did not identify formate as a major reduction product. Figure 14 shows the ion 

chromatogram of the electrolyte using carbon paper only and an electrodeposited film at an 

applied potential of -0.6 V.  
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Figure 14. Ion chromatogram of electrolyte using carbon paper only and the deposited 

molybdenum tungsten bronze film at an applied potential of -0.6 V. (Red line represents 

molybdenum tungsten bronze film while black line represents carbon paper only) 

Sulfuric acid appears with a retention time between 12 and 16 minutes, which is not surprising as 

sulfuric acid was used to adjust the electrolyte’s pH to 6.0 before carrying out reduction 

experiments. The hydrogen bronze film in Figure 14 exhibited the sulfate peak could be less 

compared to the carbon paper only due to the possible reduction of sulfate. The main reduction 

product, thiosulfate, may have a similar retention time as oxalate at retention time between 21 to 

26 minutes as shown in Figure 15. Some additional experiments need to be done in order to 

verify the presence of oxalate or other sulfate reduction compounds. Formate was an expected 

product. However, there is no peak with a retention time consistent with formate. Another 

unexpected very broad peak is observed at a retention time between 21 to 26 minutes. An 

expanded view of the chromatogram is shown in Figure 15. 
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Figure 15. Ion chromatogram from 19 to 29 minutes of electrolyte using carbon paper only and 

the deposited molybdenum tungsten bronze film at an applied potential of -0.6 V. (Red line 

represents molybdenum tungsten bronze film while black line represents carbon paper only) 

The peak in Figure 15 is possibly oxalate, which is a known reduction product in CO2 reduction.  

Analyzing oxalic acid has the same retention time range. Just like in Figure 3, the mixed 

molybdenum tungsten hydrogen bronze film may act as a bimetal center fixing CO2 and carry 

out an electrochemical reduction to oxalate. After reduction, the electrolyte at a pH of 6 extracts 

the oxalate anion. If this is indeed the case, then this is the first report of using a bimetal 

hydrogen bronze film for reduction of CO2 selectively to two products based on ion 

chromatography. Ion chromatograms using other potentials are provided in Appendix 1. The 

most useful potential for conversion CO2 to oxalate was at -0.6 V vs. the silver chloride 

reference, which is reasonably close to the standard reduction potential of -0.590 V vs. SHE. The 

standard reduction potential of CO2 to oxalate is approximately -0.5 V meaning the overpotential 

is 0.1 V.64 However, retention time alone is not definitive for oxalate.  

 According to the 10th edition of Quantitative Chemical Analysis by Harris and Lucy, 

sulfate can be reduced to thiosulfate near -0.6 V, which would have a longer retention time than 

sulfate and possibly overlap with oxalate. An experiment currently being planned and underway 
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is converting of oxalate to an insoluble magnesium crystal salt for single crystal X-ray diffraction 

carried out by Dr. Cassandra Eagle. Identifying magnesium oxalate from the electrolyte will 

definitively prove that oxalate is a reduction product using the hydrogen molybdenum tungsten 

bronze film. Additionally, a new ion chromatography column is in the process of being obtained 

and this experiment will be repeated to verify the presence of oxalate and/or thiosulfate as 

reduction products. Headspace experiments are also planned to look for gaseous products such as 

CO and possibly hydrocarbons. Table 2 summarizes the peak areas for the amount of suspected 

oxalate product using hydrogen molybdenum tungsten bronze films and carbon paper only. 

These values have not been converted to moles or concentrations due to the required closure of 

the lab and the column’s failure, which did not permit calibrating the ion chromatogram. 

Repeating these trials at -0.6 V and confirmatory experiments are planned.   

Table 2. Applied potential and peak areas for suspected oxalate using hydrogen molybdenum 

tungsten bronze films and carbon paper 

 

 

 

 

 

 

 

 

 

 

Potential 
Oxalate peak area  

(bronze film)  

Oxalate peak area 

(Carbon paper only) 

(V) (µS·cm) (µS·cm) 

-1.4 0.059 0.009 

-1.2 0.021 0.003 

-1 0.113 0.006 

-0.8 0.015 0.008 

-0.6 0.129 0.008 

-0.4 0.098 0.003 

-0.2 0 0 
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These experiments show that reduction of CO2 to oxalate may be possible. The maximum 

amount of oxalate was obtained at an applied potential of – 0.6 V. This work shows that 

electrodeposited molybdenum and tungsten bronze films are useful in reduction of CO2. 
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CHAPTER 4. CONCLUSIONS 

 

           The goal of this project was to prepare mixed hydrogen molybdenum tungstate bronze 

films using electrodeposition and carry out the electrochemical reduction of CO2. The 

combination of sodium molybdate and sodium tungstate when dissolved in saturated water with 

hydrogen peroxide and sulfuric acid resulted in a yellow peroxy-metal solution. Bulk electrolysis 

generated a blue film deposited on carbon paper. The carbon paper for depositing the hydrogen 

molybdenum tungstate bronze films was used to electrochemically reduce CO2 at different 

potentials vs. the Ag/AgCl reference electrode. Reduction of CO2 at various potentials was 

carried out using film-modified carbon paper and products were evaluated by ion 

chromatography.33 These films are easy to prepare and cheap. X-ray photoelectron spectroscopy 

confirmed the presence of molybdenum, tungsten, and oxygen, indicating the film is most likely 

a hydrogen bronze. Cyclic voltammetry was carried out using both carbon paper only and carbon 

paper with hydrogen bronze films in carbon saturated with 0.8 M NaHCO3 as electrolyte. 

Compared to carbon paper only, when using the hydrogen molybdenum tungsten bronze film as 

the working electrode, oxalate was the most likely product obtained using an applied potential of 

–0.6 V vs. the silver chloride reference electrode. Further work is needed to identify these 

products definitively. Future work includes using other bronzes such as vanadium as the oxide 

form is a known catalyst for oxalate synthesis to improve the overall yield. Also, 

electrodeposition for longer times and lower current to determine the effect on the crystalline 

structure. 
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APPENDIX: Ion Chromatograms Using Other Potentials 

 

Figure 16 (A1). Ion chromatogram of electrolyte using carbon paper only and the deposited 

molybdenum tungsten bronze film at an applied potential of -0.4 V 

 

Figure 17 (A2). Ion chromatogram of electrolyte using carbon paper only and the deposited 

molybdenum tungsten bronze film at an applied potential of -0.8 V 
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Figure 18 (A3). Ion chromatogram of electrolyte using carbon paper only and the deposited 

molybdenum tungsten bronze film at an applied potential of -1.0 V 

 

Figure 19 (A4). Ion chromatogram of electrolyte using carbon paper only and the deposited 

molybdenum tungsten bronze film at an applied potential of -1.2 V 

 

Figure 20 (A5). Ion chromatogram of electrolyte using carbon paper only and the deposited 

molybdenum tungsten bronze film at an applied potential of -1.4 V 
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