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ABSTRACT 

Past, Current, and Future Potential Distributions of Red Spruce and Fraser Fir Forests in the 

Southern Appalachians: Interpreting Possible Impacts of Climate Change 

by 

Danika Leigh Mosher  

 

Spruce-Fir forests are relicts from the Pleistocene and can only be found within the Southern 

Appalachians. Analyzing the relationships between species distribution, climatic parameters, 

topography, and biotic interactions through ecological niche modeling creates prediction maps 

for conservation efforts. Maxent, Boosted Regression, and Random Forest were utilized to 

compare which model and variable combinations best approximate the unique mountain forest 

environment. Maxent with a bias file produced optimal results and was used to examine 

distributional changes that may occur in the future and how these changes compare to paleo-

environmental distributions. Fraser fir has shown evidence of being influenced by changing 

climates based on historical data and in future predictions. These findings show areas of decline 

in 2050 and 2070. When combined with weather, climate, genetics, and ecological studies, this is 

a useful tool for resource allocation to areas that are predicted to be resilient in the face of 

climate change. 
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CHAPTER 1. INTRODUCTION 

Sky Islands 

            Climate, topography, and geography together drive interactions that heavily influence the 

patterns and long-term trends of species distributions and biodiversity (Badgley et al. 2017; 

Gundogdu 2017). Previous research examined fossil records in relation to changes in climate to 

deduce the connection between climate change, composition of communities, and extinction of 

species (Peters 1990). Habitats that reside in high altitude and latitude locations are one of the 

most responsive ecosystems to climate change (Aitken et al. 2008). High altitude environments 

are especially sensitive and vulnerable to changes in climate, which may cause usually small and 

fragmented suitable environments to disappear completely (Potter et al. 2010). In addition to 

geographic restraints, high altitude forests heavily rely on precipitation to shape their biomes 

(Palmate et al. 2014). Factors such as annual precipitation, precipitation during the warmest 

month, or even coldest month, may be altered due to climate change. When combined with 

geographic constraints, it is detrimental to forest ecosystems such as the Southern Appalachian 

Spruce-Fir forest.  

            The Southern Appalachian Mountains (SAM) are considered to be the only temperate 

rainforest in the United States east of the Mississippi River (Aldy et al. 1999). The Spruce Fir 

(SF) forest occurs in Tennessee, Virginia, and primarily North Carolina on seven of the ten 

mountain tops that are higher than 1,680 m in elevation (Cogbill and White 1991; Aldy et al. 

1999; Hayes et al. 2006). The SF name is derived from red spruce (Picea rubens) and Fraser fir 

(Abies fraseri). Due to the limited habitat space, this ecosystem is considered refugial and 

harbors numerous disjunct, isolated, and endangered species (Berry and Smith 2012). There are 

17 species of plants and animals and 20 species of invertebrates that are endemic to these forests 
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(Jenkins et al. 2002; NC Wildlife). The Great Smoky Mountains in particular contain upper and 

lower limit environments for 125 species (Shanks 1954). Rare species include the moss spider 

(Microhexura montivaga), ground beetles (Coleoptera: Carabidae), Weller’s salamander 

(Plethodon welleri), Carolina northern flying squirrel (Glaucomys sabrinus), Virginia big-eared 

bat (Plecotus townsendii), northern saw-whet owl (Aegolius acadicus), blue ridge goldenrod 

(Solidago spithamaea), and Heller’s blazing star (Liatris helleri) with the rarest being the rock 

gnome lichen (Gymnoderma lineare) (Evans et al. 2013; Evans et al. 2014; Ford et al. 2015; 

USDA; NC Wildlife).  

            The geographic distribution of this ecosystem is primarily explained by climate 

parameters. Fog immersion, which results in low cloud ceilings, not only provides ample 

precipitation, but also regulates temperatures by reducing radiative forcing (Richardson et al. 

2003; Berry et al. 2013). Average levels of cloud bases in this region are associated with the 

distribution and health of SF forests, especially since these habitats are immersed in clouds 70 

percent of the year (Berry et al. 2013; Cory et al. 2017). Decreased evapotranspiration and 

increased precipitation with altitude in conjunction with moist southwesterly winds aid in mean 

annual precipitation ranges from 127 to 200 cm (Shanks 1954, Wiser et al. 1996). The majority 

of precipitation falls during the summer and winter months with wind speeds around 18.5 km/hr 

to 33 km/hr, creating harsh winters and limiting what species can survive at the highest 

elevations (Wiser et al. 1996). Mean July temperatures differ based on elevation with 17°C at 

1,618 m and 15°C at 1,990 m, with the highest tolerable temperature at 22°C (Cogbill and White 

1991; Wiser et al. 1996). With these specific parameters, the sensitivity of these species to 

climate is observed in ecotones, the transitional treeline between SF forests and deciduous 

hardwood forests (Peteet 2000). Southern-facing slope ecotones are higher in elevation due to 
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historic logging and additional radiative forcing compared to northern slopes (Busing et al. 1993; 

Hayes et al. 2006; White et al. 2014).  

Previous Impacts 

Human disturbance is the primary driver altering the SF ecosystem dating back to 19th 

century extensive logging that increased the occurrence of fires (Hayes et al. 2006; Berry et al. 

2013; Mitchell et al. 2014; White et al. 2014; NC Wildlife). In the 1950s, balsam woolly adelgid 

(Adelges piceae) was introduced to central Virginia and spread to the Appalachians, killing 

between 40 and 90 percent of mature Fraser fir (Berry and Smith 2012, Cory et al. 2017; Kaylor 

et al. 2017). The three fates a species encounters when faced with stress is adaptation, migration, 

or extirpation (Aitken et al. 2008). Due to the longevity of trees and times between generations 

that can span from 100 to 1,000 years, adaptation and evolution occurs more slowly than the rate 

of current climate change (Petit et al. 2008; Potter et al. 2010;). The SF forests are boreal relicts 

from the late Pleistocene (~22,000 years ago) during the last glacial maximum and are typical of 

temperate and higher latitude populations that inhabited this region during this time (Hampe and 

Jump 2011; Berry et al. 2013). As temperatures warmed, migration occurred either altitudinally 

or poleward, eventually separating balsam fir (Abies balsamea) and the southern extreme extent 

that formed into Fraser fir (Potter et al. 2009; Hampe and Jump 2011). Isolation of these SAM 

‘sky islands’ has been exacerbated by fragmentation, which can aid in species extinction by 

preventing distribution changes (Pitelka et al. 1997; Thomas 2011). Even if these habitats could 

migrate without the threat of inhospitable landscapes due to fragmentation and differences in 

climate, migration rates would need to be 1 km per year under twice the amount of carbon 

dioxide climate forcing they have experienced in the past, which is the fastest that has been 

observed for trees in general (Pitelka et al. 1997; Aitken et al. 2008). Even though the required 
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migration rate is equivalent to extreme past rates, the projected change for climate is a higher 

rate than observed, thus it will be difficult for trees in particular to respond effectively (Peters 

1990). This type of isolation makes SF forests more susceptible to catastrophic events and 

ultimately one of the most threatened ecosystems (Hayes et al. 2006; NC Wildlife). 

Threat of Climate Change 

Southern Appalachian Spruce-Fir forests are listed as the second-most endangered 

ecosystem within the United States and this ecosystem is listed as a priority habitat in the 2005 

Wildlife Action Plan (NC Wildlife). If certain tolerance thresholds are passed for this habitat, 

such as reduced cloud cover or higher average temperatures in July, then the replacement of 

native species with exotic invasives will become more likely (Delcourt and Delcourt 1998). Red 

spruce and especially Fraser fir are considered foundation, or keystone, species. There are many 

species that rely on these trees to regulate their habitat and generate stability, such as nutrient and 

water availability (Hayes et al. 2006; Aitken et al. 2008; White et al. 2014). Fraser fir is better 

suited for the harsh winters and thrives on natural disturbances such as ice and high winds 

(White et al. 1985; Busing et al. 1993; Busing and Pauley 1994; USDA). Red spruce relies on 

Fraser fir for protection and it has been observed that the death of Fraser fir not only influences 

the magnitude of spruce deaths, but also impacts the community composition and understory 

regeneration (Busing et al. 1993; Busing and Pauley 1994; Busing 2004; NC Wildlife). With 

cloud ceilings rising and cloud immersion being less frequent with warmer temperatures, it is 

only natural for the baseline of this ecosystem to follow the base of clouds (Berry et al. 2013). 

Previous research examined the extinction of keystone mutualists, like Fraser fir, and suggested 

that on average 10 to 30 other species relied on them (Ehlrich and Mooney 1983).  
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Despite the morbid outlook for this endangered habitat, ecological niche models (ENM) help 

with understanding how a species may react to climate change and can be used to inform 

mitigation and conservation planning (Guisan and Thuiller 2005). ENM primarily evaluates the 

relationship between the presence of a species and its environment based on geographic and 

climate information to form hypothetical fundamental niche boundaries (Guisan and Thuiller 

2005; Araújo and Guisan 2006; Naimi et al. 2011). These models can confirm field observations, 

such as SF requiring ample precipitation and low average temperatures, and also point out gaps 

in understanding parameter requirements that are important (Busing and Mailly 2004; Bastow et 

al. 2005). Understanding the biological process of certain species is still necessary to evaluate the 

effectiveness of a model and understand what is important versus what is noise or repetitive. This 

is particularly pertinent to rare species, such as Fraser fir, to know if the model is over or under 

predicting based on the variable inputs (Delcourt and Delcourt 1998; Wiser et al. 1998; Arújo 

and Guisan 2006; Merow et al. 2014; Breiner et al. 2015). For example, the explanatory 

variables for extreme areas, like those representatives of alpine or arctic environments, will more 

likely be climatic rather than topographic (Arújo and Guisan 2006).  

Modeling for Change 

There are multiple types of models that can help answer these specific types of questions, 

but the majority of them are mechanistic and derive maps based on statistics and species 

physiology (Guisan and Thuiller 2005; Hijmans and Graham 2006; Aitken et al. 2008; Merow et 

al. 2014). Some of the different types include: 1) generalized linear and additive models (e.g., 

GLM, GAM), 2) maximum entropy (Maxent), or 3) decision tree-based models (e.g., random 

forest (RF), boosted regression (BR)). These models are often grouped as artificial intelligence 

or machine learning approaches where they ‘learn’ the patterns of the presence of a species in 
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correlation with physiological or behavioral characteristics that are associated with climatic and 

geographic variables, generating a prediction on where a species may exist, or at least where its 

fundamental niche occurs (i.e., maximum suitable (Guisan and Thuiller 2005; Aitken et al. 

2008). The outputs show which variables have the most explanatory power and percent 

contribution to the model, which not only help with verification on known field observations, but 

aid in identifying possible gaps in ecological theories (Elith et al. 2008; He et al. 2015; Yuan et 

al. 2015).  

Analyzing the relationship between a species and its environment is complex and 

complicated, as there may be many influential direct and indirect variables (Griesbauer et al. 

2011). The primary limitation of ENMs is the lack of biological inclusion, such as interspecific 

and intraspecific competition, mutualism, predation, symbiosis, commensalism, and parasitism 

(Guisan and Thuiller 2005; Araújo and Guisan 2006; Hijmans and Graham 2006; Bahn and 

McGill 2012). An additional issue with modeling that has ties to the ecological processes is 

spatial bias resulting from the sampling process. Difficulties arise when sampling in 

mountainous areas with steep gradients such as the SAM, making the samples heterogeneous. 

Information to complete the niche description can be neglected in models that include these 

environmental gradients (Williams et al. 2009; He et al. 2015). With a restricted species like 

Fraser fir that may have low sample size after spatial rarefication, model robustness is 

compromised unless alternative methods such as model ensembles or inclusion of bias files are 

applied (Araújo and Guisan 2006; Williams et al. 2009; Breiner et al. 2015). It is important to 

understand the assumptions inherent to ENMs such as a species being in pseudo-equilibrium 

with the environment, degrees of overlap between abiotic, biotic, and geographic variables, and 

the level of uncertainty from lack of information (Guisan and Thuiller 2005; Soberón and 
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Peterson 2005; Griesbauer et al. 2011). Additional assumptions can include variation based on 

the spatial scale and selected model that is used to perform ENM (Delcourt and Delcourt 1998; 

Naimi et al. 2011). The outputs of these models primarily predict the broader fundamental niche 

based on numerous assumptions, but when combined with field observations and other post-hoc 

testing and modification procedures, model predictions can be successful in identifying 

unexplored suitable habitats (Busing and Mailly 2004).  

Modeling the Southern Appalachians 

The purpose of this study is to understand which variables impact the potential 

distribution of Fraser fir and red spruce. This information is then added to predictive models of 

historic climate change and different future anthropogenic forcings to properly understand how 

these species responded to change in the past and how they may respond to future expected 

changes. With North Carolina declaring SF forests priority habitat, this type of information is 

imperative for policy decisions, budget priorities, management strategies, and biodiversity 

conservation (Jenkins et al. 2002; Hijmans and Graham 2006; Griesbauer et al. 2011). While the 

future is uncertain, data are assimilated to include socio-economic change, technological change, 

energy land use, and air pollutants such as greenhouse gases in the form of representative 

concentration pathways (RCPs) that are published in the Intergovernmental Panel on Climate 

Change (IPCC) assessment reports. Different RCP levels account for the degree of emissions that 

are the result of changes in policies such as the switch to using mostly renewable energy and 

changing population patterns (van Vuuren et al. 2011). It is pertinent to understand historic 

species distributions prior to human interference, but conservation should not use them as 

baselines. Instead, conservation efforts must account for future prospects that include a range of 

‘best’ and ‘worst’ scenarios (Hampe and Jump 2011; Wang et al. 2012). ENMs that project into 
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the future to generate predictive maps aid in understanding how a species may be successful in 

certain locations with, for example, warmer temperatures, sunnier exposures, and lower 

humidity, while other areas may experience habitat loss (Berry and Smith 2012). This helps with 

allocation of efforts, also called triage, to protect and strengthen conservation efforts for more 

than just one species. Plants traditionally garner the least amount of funding because they are less 

charismatic, but are incredibly important for shaping the habitat for other rare or endangered 

flora and fauna (Cornwall 2018).  

Inclusion of ENMs during the policy-making process can also benefit the economy. The 

Great Smoky Mountains National Park (GRSM) is the most highly visited national park in the 

country with 12.5 million visitors in 2019, primarily attracting those from the eastern states. It is 

an incredibly unique environment within the southern United States, making it attractive because 

of its varied landscape compared to the surrounding foothills and coasts (Aldy et al. 1999). The 

Appalachians are known for having poor local economies due to the demographics of the area, 

but businesses such as Dollywood in Gatlinburg, Tennessee help bring tourism to these areas, 

creating revenue for these economies. Based on a survey for those attending GRSM during 1999 

by Aldy et al, it was predominantly wealthy households that were tourists visiting the parks and 

towns in the surrounding area, increasing revenue at local businesses that aid in combating 

poverty in rural Appalachia. The survey also indicated that households with lower income held a 

higher value for these forests rather than wealthier families. This could be in relation to the local 

population being predominantly poor and relying on tourism, while the wealthy explore these 

areas for aesthetic satisfaction and educational experiences. Christmas tree farms, another 

regional economic driver, rely on the success of Fraser firs since they make up 90 percent of 

trees sold for the season. In North Carolina alone, over 50 million trees are grown each year to 
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meet the demand, covering over 30,000 hectares of land and valued at $100 million per year 

(Cory et al. 2017). Fraser firs are preferred for their structure and conical shape, which protects 

them well during storm events. Because of their valued aesthetic, high demand calls for them to 

be grown in naturally unfavorable areas that require significant upkeep such as weeding and 

pesticides. Understanding how the Fraser fir responds to and possibly adapts to climate change 

may even improve farm management practices (Cory et al. 2017).  

Objectives and Research Questions 

 Federal, state, and non-profit agencies rely on the diversity of the SAM for economic and 

research purposes. Anticipating the fate of the SF habitat under different climate scenarios and 

understanding historic changes aids in forest management and planning. This study contributes 

to the decision-making process for these agencies and brings awareness to the potential 

disappearance not only of a unique habitat, but several species that is instrumental to the cultural 

identity of the Southern Appalachians. Comparing different ENMs based on statistics and known 

distributions will inform past and future projections for these species. Changes such as 

expansion, contraction, and continued presence and absence between time periods will be used to 

characterize how red spruce and Fraser fir will fare with a changing climate.  

  



 

17 

CHAPTER 2. WHERE DID THEY COME FROM, WHERE DO THEY GO: USING 

ECOLOGICAL NICHE MODELS TO ASSESS HOW SOUTHERN APPALACHIAN 

SPRUCE-FIR FORESTS RESPOND TO CHANGING CLIMATES 

 

Danika L. Mosher, T. Andrew Joyner, Josh X. Samuels, Eileen G. Ernenwein 

 

Keywords: Habitat Suitability, Biogeography, Rare Species, Mountains, Maxent, Random 

Forest, Boosted Regression 

 

Abstract 

 The Southern Appalachian Mountains harbor a unique habitat with numerous disjunct, 

isolated, and endangered species residing under a Spruce-Fir forest canopy. While red spruce 

(Picea rubens) has a distribution that travels up the Appalachians into Canada, Fraser fir (Abies 

fraseri) is endemic and is genetically different from northern balsams. The combination of these 

two species provide unique habitats that reside on the highest peaks in North Carolina, 

Tennessee, and Virginia. These refugial forests require certain climatic parameters in order to 

stay viable such as significant precipitation, cool summer temperatures, and predominant cloud 

cover. Due to limited immigration for the majority of the species on these mountains, a 

significant number of organisms are at risk of being endangered or extinct. Ecological niche 

models help with conservation management by determining what factors influence species’ 

distribution and how they would react in a historical or future context. Models like boosted 

regression, random forest, and Maxent provide such a service because of their computational 

power. Boosted regression and random forest were used in the R package biomod2 and 

statistically performed well, but Maxent through a graphical user interface was used for model 

comparisons. With a rare species like Fraser fir, a bias file was needed to reduce overpredicting. 
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Precipitation dominated how Fraser fir responded to the model inputs for the past and future 

where projections exhibited significant decline. Red spruce also significantly contracted within 

the Southern Appalachians, but show resilience at higher elevations. Representative 

concentration pathway 4.5 holds more hope for the survival of Spruce-Fir forests whereas 8.5 

shows near extinction for Fraser fir and would generate metapopulations on peaks for red spruce, 

potentially reducing gene flow. 
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Introduction 

            Anticipating how a species may respond to a changing climate is often complicated, with 

unknown and poorly understood ecological impacts and co-dependencies. The use of models, 

particularly ecological niche models (ENMs), provides a quantitative glance at the estimated 

environmental requirements and parameters of a species (Araújo and Guisan 2006). These 

models help reveal what influences the distribution of a species by analyzing relationships and 

patterns between the presence of a species and the concurrent geography and climate where it is 

most suitable (Bastow et al. 2005; Guisan and Thuiller 2005; Naimi et al. 2011; Gundogdu 

2017). Because of the limited amount of information that can be included in a model, ENMs 

primarily depict some variation of the fundamental niche (maximum realized niche space) rather 

than the realized niche (actual inhabited niche space) (Guisan and Thuiller 2005; Soberón and 

Peterson 2005; Phillips and Dudík 2008). Although this can be a limitation, models fill in 

knowledge gaps for a species and its interaction with the environment and help to confirm field 

observations (Busing and Mailly 2004).  

Certain ENMs utilize artificial intelligence that combines statistics and machine-learning 

to generate predictions based on what the model learns from inputs (Aitken et al. 2008). The 

models use the inputs (occurrences and variables) in an iterative training process that results in 

distribution predictions that may increase understanding of physiological, biological, ecological, 

climatic, and geographic barriers and parameters for suitability (Guisan and Thuiller 2005). The 

types of models used, also called mechanistic models, can be generalized linear or additive 

models, maximum entropy, regression, or tree-based, as examples (Hijmans and Graham 2006; 

Elith et al. 2008; Merow et al. 2014). The majority of these are presence-only models, as 

presence-absence indicates that a species is truly absent from (or does not maintain a population 
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within) a certain environment, which is more difficult to determine compared to presence 

(Phillips and Dudik 2008). Since absence data are often not available and difficult to confirm 

when they are available, there is some uncertainty inherent to presence-only models (Griesbauer 

et al. 2011). This may result in variable model outputs depending on the algorithm, parameters, 

and variables chosen (Naimi et al. 2011). 

            The primary assumption with ENMs is that a species is in pseudo-equilibrium with its 

environment (Iverson and Prasad 2001; Guisan and Thuiller 2005; Soberón and Peterson 2005). 

Because of the complexity of ecological interactions, it is hard to know every single influence on 

a species’ distribution in addition to acquiring adequate occurrence data (Wiser et al. 1998; Koo 

et al. 2014). Variables used as inputs may also be highly spatially autocorrelated, impacting their 

interpretive ability. Spatial autocorrelation also happens when occurrence points (sample 

locations) are too close together, possibly leading to overestimation in some areas and 

underestimation in other areas (Bahn and McGill 2012). Sampling should be conducted across a 

gradient of geographical or environmental space to adequately show the relationship between 

temperature, precipitation, and radiative forcing, as examples (Araújo and Guisan 2006; 

Williams et al. 2009; Berry and Smith 2012; Franklin et al. 2012). This is particularly important 

with rare species that occupy relatively small niche spaces (Breiner et al. 2015).  

Another common issue inherent to modeling is the exclusion of biotic interactions. This 

is partly due to the complexity of biotic interactions and the difficulty of including such 

interactions as ‘variable’ inputs, but inclusion of biotic interactions can be critical in better 

understanding the distribution of a species (Soberón and Peterson 2005; Araújo and Guisan 

2006; Bahn and McGill 2012; Clark et al. 2014). A useful suggestion is to examine specific 

species, such as keystone species, foundation species, or those that impact biogeochemistry such 
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as trees (Brodie et al. 2018). While ENMs are essential tools used to model broadly defined 

distributions, additional information (included within a model or during model post-processing) 

can elucidate a species’ ecology, population dynamics, and sensitivities to extremes, such as 

moisture content, to determine what variables are important and to observe if the model is 

representative (Delcourt and Delcourt 1998; Araújo and Guisan 2006; Merow et al. 2014). 

Spatial scale of the model is also important. Even when small ‘sub-habitat’ areas are examined, it 

may be best to include all possible locations of the species to incorporate a variety of 

environmental conditions that may occur in the smaller area (Hijmans and Graham 2006; Clark 

et al. 2014).  

            ENMs have multiple uses depending on the question, but are particularly useful for 

management and conservation efforts (Hijmans and Graham 2006; Hampe and Jump 2011). The 

goals of conservation typically address issues such as mitigating anthropogenic forcings 

impacting an endangered habitat so that the area not only is sustained, but could potentially 

expand its boundaries and corridors for migration (Delcourt and Delcourt 1998). While it is 

desired to focus conservation efforts on every single species facing impacts to their habitat, it is 

difficult to discern how species will react to these efforts and the degree of effort required.  

ENMs can project into the past to see how a species historically reacted to a changing climate 

and how it may react under different forcings in the future (Davis 1978; Peteet 2000; Aitken et 

al. 2008; Petit et al. 2008; Hu et al. 2009; French and Millar 2013). Relict populations in 

particular are essential in understanding how a species may react to climate change, establishing 

a natural laboratory (Hampe and Jump 2011). Current relict populations, along with 

paleoecology and fossil records, can lead to locating refuge populations and colonization routes, 

aiding in the characterization of a species’ response to a changing climate (Hu et al. 2009). The 
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characteristics are then compared with future models to test validity of future shifts and 

vegetation change (Overpeck et al. 1992; Clark et al. 2014).  

These predictions help feed into decisions, such as allocations of effort, also known as 

triage, to strengthen conservation efforts for a specific species or areas and to admit when these 

endeavors may be inconsequential (Jenkins et al. 2002; Cornwall 2018). Funding tends to follow 

charismatic organisms, resulting in minimal conservation efforts for most flora and fauna 

(Cornwall 2018). Being able to understand habitat composition and cross-species interactions 

can help save more than just one group. For example, trees help shape habitats. When focusing 

on an endangered or threatened rodent, it may be beneficial to allocate efforts in conserving the 

trees it uses for housing to ensure the preservation of its habitat. Of course, triage is not for every 

situation, but can help guide decision-making (Cornwall 2018). While historical data can provide 

a window for several millennia, future predictions use temporal scales measured in decades 

because of a high amount of uncertainty and variance. However, models help by providing a 

glimpse into what may happen based on different scenarios. While the past provides useful 

information, conservation cannot rely on traditional management in restoring historical biota 

(Thomas 2011). Instead, comprehension of a changing climate and the degree of uncertainty 

surrounding what may happen should be integrated more into a science-based approach to 

conservation management, including the use of ENMs (Delcourt and Delcourt 1998; Griesbauer 

et al. 2011; Thomas 2011; Wang et al. 2012; Seidl and Lexer 2013).  

            Climate change is a natural phenomenon that is constant and expected (Petit et al. 2008). 

Fossil records expose this phenomenon by recording its impacts on large-scale shifts in the 

distribution, adaptation, or extinction of species correlated to changes in temperature and 

moisture (Peters 1990; Griesbauer et al. 2011). Changes in vegetative compositions have been 



 

23 

observed on a continental-scale since the end of the last glacial maximum (~20,000 years ago) to 

reveal a responsive pattern that lags around 1,500 years (Prentice et al. 1993). However, because 

anthropogenic forcings are increasing the rate of the current changing climate, the response of 

species migration and adaptation will need to be quicker than ever before to avoid extirpation 

(Peters 1990; Aitken et al. 2008). Other changes to anticipate may include altered levels of 

albedo, canopy, water vapor, and carbon dioxide exchange as vegetation composition within 

habitats changes (Pitelka et al. 1997).  

Organisms modify their environments to varying degrees, but controllers play a 

significant role by impacting structure, species composition, and trophic relationships (Ehlrich 

and Mooney 1983; Bastow et al. 2005). Trees in particular influence the trophic levels by fixing 

solar energy, controlling water, and maintaining microclimates (Ehlrich and Mooney 1983). 

Many trees are regarded as keystone species - not only is half of terrestrial Earth covered by 

forests, three-fourths of land biomass is contained within these forests (Aitken et al. 2008). 

Depletion of this mass in the form of canopy mortality can impact an ecosystem’s resilience to 

invasive species or climate change, ultimately transforming a habitat. The importance of having 

these keystone mutualist species of trees is observable. When one plant species goes extinct, an 

average of 10 to 30 other species that relied on plants for shaping habitats and primarily trophic 

levels may even go extinct themselves (Raven 1976).  

            The fastest migration rate recorded for trees was one kilometer per year, which is the 

required average rate to keep up with current climate forcings (Pitelka et al. 1997; Aitken et al. 

2008). While ecotones are the best areas to initiate migration, expansion requires the population 

to not fall under a minimum value to succeed in at least a fraction of the new habitat (Pitelka et 

al. 1997; Hampe and Jump 2011). However, species near ecotone boundaries are often more 
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climatically sensitive because they inhabit the edge of their dispersal zones (White et al. 2014). 

The geographic distribution of metapopulations aids in the exchange of genetics to ensure a 

population does not reach that minimum threshold, but fragmentation, most often caused by 

human development and natural resource extraction, threatens this ability (Pitelka et al. 1997; 

Potter et al. 2008; Thomas 2011). If migration is not feasible, adaptation can help a species 

survive a changing climate, especially when combined with migration (Aitken et al. 2008). 

However, the process of adaptation and evolution for a species is conservative and may take 

longer than the current rate of change, particularly with trees that have long life histories (Peters 

1990; Petit et al. 2008; Seidl and Lexer 2013). Phenotypic variation, strength of selection, 

fecundity, and interspecific competition are all biotic factors that dictate adaptation ability but 

are difficult to predict (Aitken et al. 2008). When inbreeding and genetic drift occurs, a species 

can easily succumb to the loss of genetic variation and become more susceptible to pathogens as 

an example. With energy being allocated for survival, the ability to adapt is lessened, ensuing a 

positive feedback and eventually extinction (Potter et al. 2010). This type of path is more 

common among species that are endemic with restricted populations and may also impact 

keystone species (Peters 1990). Generalists in this situation may be more adaptable to a changing 

niche, but the same cannot be said for specialists because of their specific requirements that 

contribute to their ecosystem function (Ehlrich and Mooney 1983).  

            Locations at high altitudes and latitudes experience warming at a greater rate, impacting 

them more significantly than most other types of ecosystems (Peters 1990; Aitken et al. 2008; 

Palmate et al. 2014). Species at high elevations also have limited space to which they can 

migrate or have additional suitable habitat and may even compete with species at higher altitudes 

that add new environmental pressures (Peters 1990; Potter et al. 2010). Most species that reside 
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in these elevated habitats are relicts from the last glacial maximum and commonly have cooler 

preferences (Hampe and Jump 2011). As temperatures warmed, these populations that reside in 

low-latitude high-altitude regions encroached on the tolerance limits for that species. Because of 

this, extreme events such as increases in fires or an abnormally warm summer, can impact 

reproduction and regeneration along with limited migration (Delcourt and Delcourt 1998; Hampe 

and Jump 2011). When considering the rate of the current changing climate, the outcomes of 

many relict, endemic, and disjunct species that reside on mountaintops, particularly in low-

latitude areas, may be dire (Potter et al. 2010). Change is expected to have repercussions for 

biodiversity that will even trickle down into local and regional economies (Peters 1990; Díaz et 

al. 2006).  

           The Spruce-Fir (SF) forests in the Southern Appalachian Mountains (SAM), which 

primarily consist of red spruce (Picea rubens) and Fraser fir (Abies fraseri), is an ecosystem that 

is threatened by the impacts of a changing climate. The SAM is unique because it is the only 

temperate rainforest east of the Mississippi in the United States and harbors one of the most 

threatened and rarest ecosystems, the SF forest (Aldy et al. 1999; Hays et al. 2006; NC Wildlife). 

According to the 2005 Wildlife Action Plan in North Carolina, the Southern Blue Ridge 

Mountain SF forests are a priority habitat (NC Wildlife). These areas occur in Tennessee, 

Virginia, and primarily North Carolina on seven mountaintops (Aldy et al. 1999; Berry and 

Smith 2012) (Figure 2.1). The geological environment from juxtaposed rocks and 

metamorphosed sandstone outcrops and cliffs aided in the diversity of habitats that harbor rare 

plants and animals (Clark 2001). Habitats south of Asheville, North Carolina primarily face 

northeast and are close to streams within low-base metamorphic rocks on broad ridges. North of 

Asheville they typically reside away from low-base sedimentary and metamorphic rocks while 
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being near streamheads with substantial rainfall during the growing season (Simon et al. 2005). 

SF forests typically exist above 1,370 meters, but do not reside on all mountaintops, some of 

which even reach 1,680 meters such as Beech Mountain (Cogbill and White 1991; Aldy et al. 

1999; Hayes et al. 2006). The mountains draw in crowds from surrounding areas, and 

recreational opportunities are prominent in the Jefferson, Pisgah, and Cherokee National Forests, 

the Blue Ridge Parkway, Appalachian Trail, the North Carolina State Park System, and the Great 

Smoky Mountains National Park (GRSM) (Jenkins et al. 2002). The GRSM is the most visited 

national park and brings in residents from states along the coast to provide a unique experience. 

The SF forest covers over 34,000 hectares with around 75 percent of the habitat residing in the 

park, which also hosts the most virgin and oldest SF stands (Oosting and Billings 1951; Aldy et 

al. 1999; Hayes et al. 2006; Koo et al. 2014). Fraser firs are popular to use as Christmas trees and 

over 50 million trees are grown in North Carolina alone, but typically require pesticides and 

herbicides if grown out of their natural habitat (Cory et al. 2017). 
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Figure 2.1. Mountaintop locations that harbor Spruce-Fir forests 

            The SF ecosystem is a remnant of the late Pleistocene boreal forest that primarily 

consisted of balsam fir (Abies balsamea) rather than Fraser fir (Berry et al. 2013). The southern 

extent of balsam fir reached its tolerance limit and either receded to the north or stayed within 

the mountains when temperatures warmed. Because of the length of separation and the southern 

extent being able to be plastic enough genetically to have different characteristics, Fraser fir 

came to be (Oostings and Billings, 1951). SF forests are still similar to their balsam relatives 

such as the Acadian forest rather than other habitats that are closer in areas like Knoxville, 

Tennessee (Shanks 1954). The primary difference in habitat preferences is that the North 

Carolina mountains are warmer and wetter. Mountains in New Hampshire are colder in the 

winter and receive more snow, but mountains in North Carolina have a cooler climate during the 

summer (Oosting and Billings 1951). Forest composition also differs where SAM SF forests are 

mixed conifer with a deciduous shrub understory in addition to the presence of balds (Cogbill 

and White 1991; Wilds et al. 2000). Balds are located in areas where there is poor nutrient 

availability because of the rock type, such as granite domes and fine-textured bedrock such as the 

Anakeesta slate. Fire, logging, and acid deposition also influence the distribution of balds (Wilds 

et al. 2000; Clark 2001). SF habitats typically have long fire intervals on the order of decades 

due to the moisture content, attracting species that are fire sensitive (Mitchell et al. 2014). The 

extents of ecotones differ based on aspect and are relatively narrow, residing primarily on steep, 

north-facing slopes because of lower solar radiation and cooler temperatures (Cogbill and White 

1991; Busing et al. 1993).  

            Average temperatures at these seven habitat peaks are 5-8℃ cooler than the surrounding 

foothills during the growing season (Shanks 1954). Average July temperatures are 11.8℃ at the 

treeline, 17 ℃ at 1,618 m, and 15 ℃ at 1,991 m with maximum temperatures getting to 22 ℃ 
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(Cogbill and White 1991; Wiser et al. 1996; Cory et al. 2017). The northern distribution around 

Roan Mountain and Mount Rodgers are cooler (Simon et al. 2005). Winds are dominant from the 

southwest, with speeds from 18.5 kilometers per hour up to 33 kilometers per hour. Most 

precipitation arrives during the summer and winter resulting in 1270 to 2000 mm of rainfall 

(Wiser et al. 1996). The amount received is dependent on elevation and is higher closer to the 

Georgia and South Carolina border (Shanks 1954; Simon et al. 2005). Potential evaporation is 

also dependent on elevation and decreases with altitude (Shanks 1954). Low cloud ceilings that 

lead to immersion are vital for these habitats since they experience fog 70 percent of the year 

(Cory et al. 2017). Cloud immersion is important to improve carbon gain and water conservation 

and helps delineate ecotones (Busing et al. 1993; Richardson et al. 2003; Berry et al. 2013). 

Harsh winters, particularly ice and high winds, also determine the extent of the habitat of 

primarily Fraser fir (White et al. 1985; Cogbill and White 1991; Hayes et al. 2006; NC Wildlife; 

USDA).  

            The biodiversity in the SAM is renowned among researchers and attracts many visitors 

(Clark 2001; White et al. 2014). Rare species such as the moss spider (Microhexura montivaga), 

ground beetles (Coleoptera: Carabidae), Weller’s salamander (Plethodon welleri), Carolina 

northern flying squirrel (Glaucomys sabrinus), Virginia big-eared bat (Plecotus townsendii), blue 

ridge goldenrod (Solidago spithamaea), Heller’s blazing star (Liatris helleri), and the very rare 

rock gnome lichen (Gymnoderma lineare) can be spotted within these habitats (NC Wildlife; 

USDA). Up to 125 other species reach their upper or lower limits, attributing to their behavior 

and degree of sensitivity to changes in the climate (Shanks 1954; Aldy 1999). There are 17 

species or subspecies of both plants and animals that are endemic in addition to 20 species or 

subspecies of invertebrates (Aldy et al. 1999; Jenkins et al. 2002; NC Wildlife). Total plant count 
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is 185 species where there are 22 trees, 34 shrubs, 126 herbs, and 3 vines (Simon et al. 2005). 

Yellow birch (Betula alleghaniensis) and red spruce are dominant along the ecotone (Cogbill and 

White 1991). The habitat these plants comprise is critical for the breeding of numerous landbirds 

that are of high concerns such as the brown creeper (Certhia americana), northern saw-whet owl 

(Aegolius acadicus), and black-capped chickadee (Poecile atricapillus) (NC Wildlife). Weller’s 

salamander is the most at risk of extirpation and the moss spider and ground beetles are also 

susceptible to desiccation (NC Wildlife).  

            Both red spruce and Fraser fir are considered to be foundation, keystone, or controller 

species. They impact numerous species and even their own regeneration (Hayes et al. 2006). 

They are both shade tolerant and require the other for understory growth (White et al. 1985). Red 

spruce habitat starts around 1,190 meters with its most southern extent being in the SAM and its 

northern extent extending into Canada (Cogbill and White 1991). Spruce domination occurs 

above 1,400 meters and can go as high as 1,900 meters, but can only exist at sheltered areas due 

to high winds (Busing et al. 1993). The transition to dominant fir occurs around 1,620 to 1,689 

meters (Cogbill and White 1991). Spruce has high economic value and was logged in the early 

19th century and into the beginning of the 20th century (Hayes et al. 2006). Spruce is a long-

lived species where the average age of death is 225 years (White et al. 1985; McLaughlin et al. 

1987). Their preferences include metal-rich layers that are acidic and regenerate well in yellow 

birch gaps (White et al. 1985; Clark 2001). While red spruce itself is not globally threatened, it is 

within the SAM due to it being closest to the temperature optimum for summer (Prentice et al. 

1993; Pearson 2016).  

            Fraser fir are abundant in shallow rocky soils to deeper mineral soils with an organic 

layer (USDA). Cloud immersion is more important to water balance for fir than spruce by 
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supplying a third of water intake (Berry et al. 2013). Fir covers around 18,000 hectares and 

dominates above 1,800 meters (Cogbill and White 1991; Busing et al. 1993; Cory et al. 2017). 

Ice storms and large-scale windfalls are important factors that make these peaks more favorable 

to fir than spruce (Busing and Pauley 1994). Despite separation, gene exchange between 

metapopulations still occurs from wind-dispersed pollen and populations are still genetically 

well-mixed (Potter et al. 2009). The mean age of death is 137 years and it is the most important 

successor in all gaps, particularly within spruce gaps (White et al. 1985). Fir has dense 

understories which provide a higher chance of dominating regeneration since it has short canopy 

time and high turnover rate from withstanding intense ice and wind (White et al. 1985; Busing et 

al. 1993; USDA).  

            Even though fir relies on natural disturbances to promote rapid colonization, the SF forest 

has endured human disturbances that have altered the ecosystem (Hayes et al. 2006). Issues 

started with intense logging in the 19th century, but increased fires, introduction of exotic 

insects, historic grazing, and even recreational development exacerbated the decline into the 21st 

century (Jenkins et al. 2002; Berry et al. 2013; White et al. 2014; NC Wildlife). Intense mortality 

rates were predominantly experienced between 1840 and 1950 (McLaughlin et al. 1987). 

Logging eventually led to clear cutting of most areas aside from those on cliffs and high slopes. 

The lack of management meant there was no replanting or soil rework to reduce solar radiation 

that would destroy the soil and its ability to recover (Hayes et al. 2006). Even though these 

habitats experience abundant moisture, the lack of trees made it more susceptible to fires. More 

intense logging led to more fires in the region and severely disturbed or eliminated the organic 

soil layer (Hayes et al. 2006; Mitchell et al. 2014; NC Wildlife). Once forest regrowth occurred, 

there was less spruce and the species became more influenced by aspect (Cogbill and White 
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1991; Hayes et al. 2006). This becomes evident when comparing stands in North Carolina and 

Tennessee since logging primarily took place in the eastern state. Elevation of the ecotone is 

higher on the southern slopes compared to the northern due to increased solar radiation exposure 

and potentially more soil erosion (Hayes et al. 2006). This ecosystem is used to natural 

disturbances that cause gap regeneration, but logging was exceptional. Soon after recovery was 

underway, an invasive species was introduced in the middle of the 20th century that stunted 

adequate restoration (Hayes et al. 2006).  

            As many as 40 percent of nearly all documented species-level extinctions are attributed to 

invasive species (Thomas 2011). The balsam woolly adelgid (Adelges piceae) was introduced to 

the United States in the 1950s in central Virginia and made its way to the Appalachians later in 

the century. Their impact was felt in the decline of basal area and canopy cover that impacted 

both fauna and flora (Allen and Kupfer 2001). Prior to the 1930s, fir stands were described as 

uniform across peaks, had a higher basal area compared to present, and the canopies were denser 

which prevented significant radiational energy from reaching the forest floor (White et al. 2014; 

Kaylor et al. 2017). Once balsam woolly adelgid was introduced, between 40 to 90 percent of 

firs were killed and it has permanently impacted regeneration capabilities (Berry and Smith 

2012; Kaylor et al. 2017; Cory et al. 2017). In regards to fir, there was a 78 percent decrease in 

basal area and 28 percent decrease in total basal area (Busing and Pauley 1994). While the link 

between balsam woolly adelgid activity and climate change has not been extensively studied, the 

presence of plant diseases is correlated with climate change impacting both host and pathogen 

(Bosso et al. 2017). However, these populations are experiencing deterioration from both an 

invasive species and climate change individually (Jenkins et al. 2002).  
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            Mortality has increased while canopy size has decreased in these forest environments 

since 1985 (Busing 2004). During this time, a regional drought from 1983 to 1993 was linked 

with the loss of forest canopy (Busing 2004). The percent of recent decrease of spruce being 4 

percent per year (1993-2004) is higher than noted in the 1960s through 1986 (0.5 percent per 

year). Wind deaths have also increased during this time, expanding spruce gaps (Busing 2004). 

The death of fir influences the death of spruce because firs protect spruce from wind damage 

(Busing and Pauley 1994; Busing 2004). This habitat helps with community stability and has 

gone through numerous threats, but is now encroaching, or going beyond, the critical threshold 

for recovery. This can be observed with what has happened on the south-facing slopes where the 

composition and ecosystem dynamics in those old ecotones have changed (Busing et al. 1993; 

Hayes et al. 2006; NC Wildlife). The ecotone for fir specifically has been undergoing change as 

they compete with encroaching herbaceous and deciduous woody species beneath dead fir 

canopy (Allen and Kupfer 2001). Low cloud ceilings aid in controlling the boundary between 

them, but with rising ceilings due to climate change, it is more difficult for firs to withstand the 

invasion (Richardson et al. 2003). SF forests are not able to migrate altitudinally because of a 

lack of available land. Human activity has induced fragmentation further disrupting patterns of 

migration and expanding loss of potential habitat (Peters 1990; Pitelka et al. 1997). 

Repercussions to the SF ecosystem will continue due to ongoing climate change and human 

impact. Past studies show effects already experienced in addition to what may happen through 

models.  

            Recovery from majority of historical disturbances is already underway at Roan Mountain 

and the Black Mountains as observed by increase in Fraser fir overstory, but most models 

anticipate significant change during the next few decades (Hampe and Jump 2011; Kaylor et al. 
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2017). On a regional scale, future projections indicate that even though areas east of the 

Mississippi will see an increase of precipitation by six percent, the fire season will be around two 

to three months longer (Mitchell et al. 2014). Other models predict shifts in forest compositions 

(Aitken et al. 2008). Clouds will not only become less frequent, but the lifting condensation 

level, or the cloud ceiling, will be higher with warmer air temperatures (Berry and Smith; Berry 

et al. 2013). Less precipitation from loss of cloud immersion pairs with changed times of 

snowmelt and the arrival of spring and summer rains, impacting growing days, lack of nutrient 

reserves, and delay of frost hardening required to reduce tissue damage (White et al. 2014). 

Some models predict that cloud heights may lower over the next several decades, but there is a 

consensus that cloud heights will rise back up higher than the current level towards the latter half 

of the 21st century (Richardson 2003; Berry and Smith 2012; Berry et al. 2013; Koo et al. 2014). 

SF habitats lowest in elevation are anticipated to decline (Kaylor et al. 2017). There could be 

temporary recovery by 2050, similar to the lowered cloud ceilings, but certain contraction by 

2100 (Potter et al. 2010; Kaylor et al. 2017). Areas where fir may recover are around mature 

overstories that have remained steady within the past two decades (Kaylor et al. 2017). Another 

study indicates that spruce will experience growth from 2080 to 2099 and that the degree of air 

pollution in the model impacts the availability of suitable habitat (Koo et al. 2015). Additional 

parameters that influenced models used in these studies were elevation, geofertility, and average 

annual precipitation (Simon et al. 2005). The impact of solar radiation diminished at high 

elevations, and so both spruce and fir did not show a strong response (Busing et al. 1993).  

            The purpose of this study is to observe which parameters influence red spruce and Fraser 

fir distributions through the use of ENMs at all seven mountaintop locations. The selected 

variables will then be used for historic and future projections to better understand how these 
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species have been influenced by historic climate change and how they may fare in the future. 

Findings can be used by organizations such as the Southern Appalachian Spruce Restoration 

Initiative, Grandfather Mountain Stewardship Foundation, Southern Appalachian Highland 

Conservancy, Appalachian Trail Conservancy, US Fish and Wildlife Services, National Park 

Services, US Forest Services, and Highlands of Roan Stewardship to inform conservation and 

management plans. While past studies indicate decline in most areas, this study can provide 

quantitative support for targeted conservation and resource allocation efforts for areas that may 

be more likely to withstand the various impacts of climate change. 

Methods 

The incorporation of biotic interactions as recommended for both red spruce and Fraser 

fir was done by observing interspecific competition, parasitic relationships, and symbiosis within 

primarily hardwoods (Guisan and Thuiller 2005; Soberón and Peterson 2005; Araújo and 

Guisan, 2006; Hijmans and Graham 2006; Griesbauer et al. 2011). This aids in obtaining overall 

dynamics of the forest by simulating multiple trees (Busing and Mailly 2004). Occurrence data 

for red spruce, Fraser fir, yellow birch (Betula alleghaniensis), North American beech (Fagus 

grandifolia), Catawba rhododendron (Rhododendron catawbiense), water molds (Phytophthora), 

balsam woolly adelgid (Adelges piceae), American mountain ash (Sorbus americana), and 

mountain maple (Acer spicatum) were obtained from the Global Biodiversity Information 

Facility (GBIF). Balsam fir (Abies balsamea) was combined with Fraser fir and used for late 

historic data. Points were compared with known distribution to eliminate major outliers (Phillips 

and Dudík 2008).  

Points were spatially rarefied by 1 kilometer to fit the spatial resolution of climate data 

and to reduce over-sampling bias (Bahn and McGill 2012; He et al. 2015; Shabani et al. 2017). 
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Data were then split between training (80 percent) and testing (20 percent) (Bahn and McGill 

2012; Liu et al. 2015). Fraser fir and red spruce locality data are mapped in figure 2.2. Climate 

data and elevation were obtained from WorldClim.org at 30 arc seconds (~1 x 1 kilometer) for 

higher sensitivity, particularly in mountainous regions (Hijmans et al. 2005; Bahn and McGill 

2012). Data were retrieved for the time periods of the Last Glacial Maximum (LGM, ~22,000 

years ago), the Middle Holocene (Mid-Holo, ~6,000 years ago), the present (1960 - 1990 

climatic data), 2050, and 2070. Future data were based on representative concentration pathways 

(RCPs) which anticipate socio-economic changes, technological change, energy land use, and air 

pollutants. The numbers represent radiative forcing levels (
𝑊

𝑚2
) at increments of 2.6, 4.5, 6.0, and 

8.5 (van Vuuren et al. 2011). Selected forcings were 4.5 as a moderate best-case scenario and 8.5 

as worst-case. The Complete Coupled System Model (CCSM4) was used as the global 

circulation model (GCM) because of its reliability and availability across time periods in the 

study (Bosso et al. 2017; Shabani et al. 2017). Slope, aspect cosine, roughness, profile curvature, 

and terrain ruggedness index were obtained from EarthEnv.org at a 1 kilometer resolution 

(Amatulli et al. 2018). The environmental data were extracted to the occurrence points of each 

species. A Pearson’s correlation in SPSS produced coefficients to determine the selection of 

variables where correlation was less than 0.85 for each tree species (Williams et al. 2009; Elith et 

al. 2011; Clark et al. 2014; Hill et al. 2017; Shabani et al. 2017). This is to reduce variables that 

may have similar explanation power (Simon et al. 2005; Phillips and Dudíc 2008; Koo et al. 

2015). Even though the focus area is in the southern Appalachians, the extent of the data 

included the continental US and the lower Canadian provinces (Newfoundland, Prince Edward 

Island, Nova Scotia, New Brunswick, Quebec, Ontario, Manitoba, Saskatchewan, Alberta, and 
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British Columbia). Inclusion of a larger area improves explanatory power for the variables by 

covering the full ranges of species.  

 

Figure 2.2. Species occurrence points from GBIF for Fraser fir (blue dots) and red spruce (pink 

diamonds). The white triangles are in reference to Figure 2.1 of the labeled mountains and 

ranges. Highest point is at Mount Mitchell at 2,037 meters. Unaka Mountain is the lowest in 

elevation with the peak at 1,584 meters.  

Generalized Boosted Regression (GBM) and Random Forest (RF) were used in the 

biomod2 package within R following the methods outlined by Georges and Thuiller (2014). 

While biomod2 has the capability to perform Maximum Entropy (Maxent), the model was run 

through its stand-alone graphical user interface (GUI) (Phillips et al. 2020). Models were 

compared based on true skill statistic (TSS) and receiver operating characteristic (ROC) area 

under the curve (AUC). TSS is a range of sensitive and specific values where its range is from -1 

to 1 and AUC has a range from 0 to 1 that details a model’s ability to predict the presence of a 

species. Values closer to 1 for both TSS and AUC indicate good model performance, 0.5 is 
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random, and anything less is worse than random (Williams et al. 2009; Clark et al. 2014; Liu et 

al. 2015; Mi et al. 2017). Because rare species tend to be over-predicted through usual modeling 

means from a limited and homogenous sample size (Wilds et al. 2000; Evans et al. 2010; Liu et 

al. 2015), the inclusion of a bias density file helps inform pseudo-absence data (Williams et al. 

2009; Elith et al. 2011; Merow et al. 2013; Rej and Joyner 2019). This also reduces the number 

of explanatory variables to prevent overprediction (Breiner et al. 2015). The Maxent GUI is able 

to incorporate a bias file made through the SDMtoolbox (Brown et al. 2014; Brown et al. 2017), 

so this model was chosen over GBM and RF for all species and time periods to address the 

overfitting issue with Fraser fir. The bias file was made using Gaussian density with a distance of 

10 kilometers for only Fraser fir.  

The selected variables for Fraser fir were precipitation of driest month (Bio 14), Catawba 

rhododendron, red spruce, beech, temperature seasonality (Bio 4), mean diurnal range (Bio 2), 

and precipitation seasonality (Bio 15). The variables for red spruce were mountain ash, annual 

precipitation (Bio 12), minimum temperature of coldest month (Bio 6), mean temperature of 

wettest quarter (Bio 8), maximum temperature of warmest month (Bio 5), slope, and mean 

temperature of driest quarter (Bio 9). Probability maps of occurrence were generated using the 

10-percentile training threshold to reclassify into binary maps of projected presence-absence of a 

species (Clark et al. 2014; Norris 2014; Liu et al. 2015). The binary maps were then compared 

for red spruce and Fraser fir through each time period to detect any expansion, contraction, and 

absence or presence in both scenarios.  
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Table 2.1. Total variables placed in initial models. Species Model Output Variables were 

generated from modeling each individual species with the WorldClim and EarthEnv variables. 

Variables included in the final red spruce model are indicated with * whereas Fraser fir are 

indicated with ⸙.  

WorldClim Bioclimatic 

Variables 

Species Model Output 

Variables 

EarthEnv Additional 

Abiotic Variables 

Annual Mean Temperature Fraser fir 

(Abies fraseri) 

Elevation 

Mean Diurnal Range⸙ Mountain Maple 

(Acer spicatum) 

Slope* 

Isothermality Balsam Woolly Adelgid 

(Adelges piceae) 

Aspect Cosine 

Temperature Seasonality⸙ Yellow Birch 

(Betula alleghaniensis) 

Roughness 

Max. Temp. of Warmest 

Month* 

American Beech⸙ 

(Fagus grandifolia) 

Terrain Ruggedness Index 

Min. Temp. of Coldest Month* Red Spruce⸙ 

(Picea rubens) 

Profile Curvature 

Temp. Annual Range Water Mold 

(Phytophthora) 

Mean Annual Cloud Cover 

Mean Temp. of Wettest 

Quarter* 

Catawba Rhododendron⸙ 

(Rhododendron 

catawbiense) 

Seasonality Concentration 

Cloud Cover 

Mean Temp. of Driest 

Quarter* 

Mountain Ash* 

(Sorbus americana) 

Cloud Cover Mean for July 

Mean Temp. of Warmest 

Quarter 

  

Mean Temp. of Coldest 

Quarter 

  

Annual Precipitation*   

Precip. Of Wettest Month   

Precip. Of Driest Month   

Precipitation Seasonality⸙   

Precip. Of Wettest Quarter   

Precip. Of Driest Quarter⸙   

Precip. Of Warmest Quarter   

Precip. Of Coldest Quarter   
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Results 

 Maxent, GBM, and RF produced unique results for both red spruce (Figure 2.3) and 

Fraser fir (Figure 2.4). Of the three comparing models, statistically RF was the best performing 

for both red spruce (Figure 2.3c) and Fraser fir (Figure 2.4c). Maxent had the lowest values, but 

was still a well performing model due to its AUC proximity to 1.0 (Figures 2.3b and 2.4b). 

Minimal visual difference was detected between all three models for red spruce (Figure 2.3b-d), 

indicating the selected model for time comparisons would be RF. However, significant visual 

change is evident for Fraser fir when a bias file was included for Maxent (Figure 2.4b-d). When 

compared to the GBIF locations (Figure 2.4a) and habitat maps for SF forests provided by both 

the US Forest Service (USFS) and North Carolina Wildlife Resources Commission (NC 

Wildlife), Maxent was able to predict a slightly more accurate prediction map.  
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Figure 2.3. GBIF locations for red spruce (A) that informed the models for Maxent with an AUC 

of 0.959 (B), random forest with an AUC of 1 and a TSS of 0.986 (C), and boosted regression 

with an AUC of 0.996 and a TSS of 0.951 (D). 

 

Figure 2.4. GBIF locations for Fraser fir (A) that informed the models for Maxent with an AUC 

of 0.991 (B), random forest with an AUC of 1.0 and a TSS of 0.994 (C), and boosted regression 

with an AUC of 1.0 and a TSS of 0.996 (D). 

 During the LGM and Mid-Holo, both red spruce and Fraser fir (with balsam fir) were 

predicted to occupy the coasts along the Carolinas and Virginia in addition to the Piedmont 

regions of Georgia and Alabama (Figure 2.5a,c). Within the preceeding ~14,000 years to the 

Mid-Holo, significant contraction and expansion was observed to where there was no overlap of 

extent (Table 2.1). Red spruce spread through the Appalachian Mountains (Figure 2.5a) while 

Fraser fir/balsam fir was restricted to the lower SAM stretching from Hendersonville, NC into 

the GRSM and dipping down into the Chattahoochee National Forest in Georgia (Figure 2.5c). 

The next ~6,000 years to the present was nearly the same for red spruce (Figure 2.5b), but Fraser 

fir experienced an upward shift through the SAM to where it has the near same extent as red 
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spruce (Figure 2.5d). Out of all time comparisons, this represented the highest percentage of 

expansion (Table 2.1).  

Table 2.2. Percent contribution of each classification to the map outputs of Figures 2.5 through 

2.8. 

 

Figure 

 

Description 

% 

Contraction 

% Absent 

Both 

% Present 

Both 

% 

Expansion 

2.5 a RS Mid-Holo - LGM 1.159 96.535 0.0 2.305 

2.5 b RS Pres - Mid-Holo 0.553 96.864 1.752 0.831 

2.5 c FF Mid-Holo - LGM 1.542 98.424 0.0 0.034 

2.5 d FF Pres - Mid-Holo 0.013 97.426 0.0 2.561 

2.6 a RS 2050 4.5 - Present 1.749 96.036 0.834 1.381 

2.6 b RS 2050 8.5 - Present 1.969 95.932 0.614 1.485 

2.6 c RS 2070 4.5 - Present 1.870 96.082 0.712 1.335 

2.6 d RS 2070 8.5 - Present 2.318 95.384 0.264 2.034 

2.7 a FF 2050 4.5 - Present 0.045 99.863 0.079 0.013 

2.7 b FF 2050 8.5 - Present 0.088 99.876 0.036 0.001 

2.7 c FF 2070 4.5 - Present 0.085 99.852 0.039 0.024 

2.7 d FF 2070 8.5 - Present 0.123 99.858 0.001 0.018 

2.8 a RS 2070 4.5 - 2050 4.5 0.516 97.437 1.699 0.348 

2.8 b RS 2070 8.5 - 2050 8.5 0.937 96.765 1.161 1.137 

2.8 c FF 2070 4.5 - 2050 4.5 0.046 99.890 0.045 0.018 

2.8 d FF 2070 8.5 - 2050 8.5 0.036 99.946 0.001 0.018 
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Figure 2.5. Historical comparisons for red spruce between LGM and Mid-Holo (A) and between 

Mid-Holo and the present (B). Fraser fir comparisons between LGM and Mid-Holo (C) and 

between Mid-Holo and the present (D). 

 All future projections for red spruce indicate contraction with RCP 4.5 (Figure 2.6a,c) 

having more standing habitat than 8.5 (Figure 2.6b,d). RCP 8.5 for 2050 most adequately 

resembles the habitat maps by USFS and NC Wildlife. Mount Mitchell is the prominent stand 

that withstands all future climates. The next best safe haven according to RCP 8.5 in 2070 is the 

GRSM with Roan Mountain coming in as a close third. The Great Balsam Mountains have a few 

peaks that will be viable as well as Mount Rogers, but not Whitetop Mountain. Unaka Mountain 

has no areas for ‘present both’ and Grandfather Mountain only has one small area. Figure 2.6d 

has the highest percent contraction because of the SAM, but also the highest expansion because 

of predicted migration in northern New England and primarily southeastern Canada (Table 2.1). 

Majority of the contraction occurred between the present and 2050 for both RCPs in addition to 

expansion, but to a lesser degree (Figure 2.8 a,b). 
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Figure 2.6. Future projection comparisons for red spruce from the present to 2050 using RCPs 

4.5 (A) and 8.5 (B) along with 2070 projections from the present with RCPs 4.5 (C) and 8.5 (D). 

Fraser fir experiences the least amount of expansion out of any time comparison and 

species for the future with a slightly higher degree of contraction in 2070 than 2050 (Table 2.1). 

Expansion is also higher in 2070 than 2050. RCP 8.5 in 2050 (Figure 2.7b) is visually similar to 

RCP 4.5 2070 (Figure 2.7c), but there is slightly more expansion in 2070 (Table 2.1). According 

to the worst-case scenario of RCP 8.5 in 2070, the only safe havens for Fraser fir are scattered 

along the Great Balsam Mountains, GRSM, and into Nantahala National Forest (Figure 2.7d). 

None of the northern refugial peaks have areas of ‘present both.’ The majority of contraction 

occurred between the present and 2050 for RCP 8.5, whereas expansion primarily occurred 

between 2050 and 2070 for RCP 8.5 (Figure 2.8d). RCP 4.5 had nearly the same metrics for 

expansion and contraction for both time periods (Figure 2.8c, Table 2.1).  
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Figure 2.7. Future projection comparisons for Fraser fir from the present to 2050 using RCPs 4.5 

(A) and 8.5 (B) along with 2070 projections from the present with RCPs 4.5 (C) and 8.5 (D). 

 

 

Figure 2.8. Changes between projected 2050 and 2070 for red spruce RCP 4.5 (A) and 8.5 (B) 

and Fraser fir 4.5 (C) and 8.5 (D). 
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Discussion 

 Precipitation plays an important role for both Fraser fir and red spruce when it comes to 

influencing their delineation and the model. Elevation may play an important role because of the 

difference in altitude between the SAM and New England red spruce, but could actually be a 

surrogate for precipitation or temperature (Simon et al. 2005; Soberón and Peterson 2005; Koo et 

al. 2015). Precipitation of the driest month (Bio 14) for Fraser fir needs to be higher than the 

surrounding area at a median of 129 mm, indicating that precipitation is an important factor for 

sustaining this species since it was the variable that contributed the most to the models. Fraser fir 

also prefer lower precipitation seasonality (Bio 15) at around 9 percent, alluding to the need for 

consistent precipitation around 1270 to 2000 mm (Wiser et al. 1996). This suggests that the 

drought from 1983 to 1993, an extreme derivation, was a major factor in the loss of Fraser fir 

forest canopy (Busing 2004). The primary difference between the SAM and New England is that 

the summers are cooler and the winters are warmer (Oosting and Billings 1951). This is reflected 

in the annual mean diurnal range (Bio 2) being lower than the surrounding area of around 10.4℃ 

in addition to lower temperature seasonality (Bio 4).  

 Red spruce prefers the maximum temperature of the warmest month to be lower than the 

surrounding area at around 25℃, which holds close to an observed maximum threshold of 22℃ 

(Cory et al. 2017). Overall annual precipitation for red spruce is around 1084 mm, but within the 

SAM is around 1981 mm, also reflecting the mean annual precipitation range and the need of 

water availability (Wiser et al. 1996). The mean temperature experienced during the wettest 

quarter is close but cooler than the July mean temperature (Cogbill and White 1991). On the 

opposite end of the spectrum for the driest quarter, it is during the winter months.  
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 Model outputs differ between models and should be chosen based on the questions that 

are being asked (Hijmans and Graham 2006; Naimi et al. 2011). Statistical assessments reveal 

the better performing model, but are limited based on the provided parameters that may negate 

variables that may be important, but difficult to capture (Williams et al. 2009). Visually 

comparing models based on the known extent of a species from other studies is essential to 

understand the biases observed in a model (Mi et al. 2017). Rare species pose a particular 

difficulty because not only are the sample sizes small, the distribution of these samples to 

adequately understand their true range creates power issues and ultimately stifles the model’s 

robustness and lead to overprediction (Figure 2.4 c,d) (Wilds et al. 2000; Williams et al. 2009). It 

is suggested that the sample size should be 10 times larger than the number of variables used in 

the model (Breiner et al. 2015). Fraser fir originally had 14 after performing a stepwise variable 

selection, requiring 140 points. After rarefication, Fraser fir only had 80 points that then had to 

be split into training and testing data for the models. With the introduction of a bias file, the 

environmental variables went down to seven.  

There will always be a level of uncertainty when choosing and interpreting a model due 

to the multitude of factors that are not possible to enter into a model, such as biotic factors like 

dispersal limitation, competition, and random events (Wiser et al. 1998; Griesbauer et al. 2011; 

Soberón and Peterson 2005). There is also the limitation of acquiring adequate samples along 

mountains, which is reflected with Unaka Mountain having no location points due to limited and 

difficult access to the peak (Figure 2.2) (Araújo and Guisan 2006; Clark et al. 2014). When 

observing a model, it is pertinent to understand that they assume tree species occur wherever 

possible based on the aligning variables and that the species are in equilibrium with the 

environment and may not be sustained outside of that environment (Iverson and Prasad 2001). 
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Most models are not able to incorporate human impacts, such as logging. Red spruce was 

historically widespread above 910 m in west-central VA, but now is only observed at higher 

elevations due to logging. This may explain why red spruce looks to cover more area within all 

of the models compared to maps by the USFS and NC Wildlife (Figure 2.3c-d) (Cogbill and 

White 1991).  The lack of adequate explanatory variables for Fraser fir can also explain why 

both RF and GBM performed poorly for Fraser fir (Figure 2.4c,d), whereas Maxent performed 

better with a bias file (Figure 2.4b). RF nearly always has a better statistical performance with 

TSS and AUC and tends to do well in undersampled areas (Williams et al. 2009; Mi et al. 2017). 

However, there are multiple implementations to use RF such as the R packages randomForest 

and biomod2, Python, and a GUI which may lead to differences in performance based on 

computation power and options (Mi et al. 2017).  

 When comparing historic projections, it should be noted that climate change within the 

past 18,000 years has been responsible for the changing distribution of trees that can be observed 

in late Quaternary pollen records (Prentice et al. 1993). During the Wisconsinian glacial period, 

which started 110,000 years ago and ended with the LGM, balsam fir was in a mixed boreal 

forest that spread from the coast of Virginia and North Carolina into the Piedmont region (Figure 

2.5c) (Potter et al. 2009). When observing pollen core data sites (Figure 2.9), Rockyhound Bay, 

Quicksand Pond, Chesapeake Bay, Browns Pond, Cranberry Glades, Anderson Pond, and 

Jackson Pond had the presence of Abies and Picea pollen prior to 20,000 years BP. Because of 

the intense coldness and dryness during this period, fir presence was minimal (Prentice et al. 

1993). Based on what influences the current models, precipitation plays an important role for 

both species by residing near the Atlantic coast to withstand reduced precipitation near the LGM 

alpine permafrost (north of 38° N) and tundra (north of 34° N) (Delcourt 1979; French and 
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Millar 2013). Fraser fir, intermediate fir (Canaan fir, Abies balsamea var. pahnerolepis), and 

maritime balsam fir are genetically similar, so it is suggested that during this time they shared a 

Pleistocene glacial refuge that stemmed from balsam fir (Potter et al. 2009). SAM red spruce was 

also very similar to the current northern extent (Delcourt 1979).  

 Significant change occurred between the LGM and Mid-Holo that influenced the drastic 

expansion and contraction with no overlap (Figure 2.5a,c). Between 18,000 to 16,300 years 

before present (BP), red spruce declined where balsam fir had trace amounts, from consistent 

low precipitation, while only amounting to 1,000 m in elevation at 35°N (Delcourt 1979; 

Prentice et al. 1993; Hayes et al. 2006). Presence of pollen was prominent at Anderson Pond and 

Brown Pond during this period (Figure 2.9). Temperatures increased suddenly 16,000 years BP, 

signaling retreat from both species either latitudinally or altitudinally (Potter et al. 2009).  

 

Figure 2.9. Locations of pollen core data containing genus Abies and Picea derived from 

Neotoma data.  
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The tundra that resided in the Piedmont foothills and mountains north of 34° latitude 

infers why it was easier for species to migrate on the eastern side of the Appalachians since 

minimal species resided there during the LGM and there were less fires compared to areas inland 

(Cwynar 1990; French and Millar 2013). Both red spruce and fir were able to populate the SAM 

more between 16,300 and 12,500 years BP while the Laurentide ice sheet decreased (Delcourt 

1979). Neotoma pollen core data show high consistency of red spruce at Rockyhound Bay, Hack 

Pond, Cranberry Glades, Anderson Pond, Jackson Pond, and Crider’s Pond. Anderson Pond and 

Browns Pond sees a fair amount of Fraser fir during this period with very minimal numbers at 

Rockyhound Bay, Cranberry Glades, and Jackson Pond. Crider’s Pond saw a significant increase 

of Fraser fir pollen around 13,255. During this period by 14,180 years BP, it is recognized that 

SF forests were established (Kneller and Peteet 1999). Warming and deglaciation continued into 

the Bølling-Allerød period that led to the rise of oak, hickory, beech, ash, and hornbeam (Peteet 

2000). Increase in precipitation during this period also allowed for the establishment and 

northeastward expansion of fir (Prentice et al. 1993). The Younger Dryas Cold Snap that began 

around 13,000 to 11,600 years BP witnessed the most abrupt climate change where temperature 

declined between 6° and 20°C (Peteet 2000). Warming occurred again, bringing the temperatures 

back up by 6°C that helped define the Pleistocene-Holocene boundary along with ecosystem and 

landscape instability (Delcourt 1979; Peteet 2000). This boundary experienced an increase in 

deciduous trees, a decrease in fir, and the continued migration of fir to the north and primarily on 

the eastern side of the Appalachians (Overpeck et al. 1992; Prentice et al. 1993; Kneller and 

Peteet 1999; Potter et al. 2009). A cold reversal 11,300 years BP in the northern North Atlantic 

caused an increase in warmth, moisture, and storms that contributed to the present coastline free 

of ice (Cwynar 1990; Kneller and Peteet 1999). Around 10,000 years BP, balsam fir in the 
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Northeast and SAM were separated long enough to be genetically different based on chloroplast 

DNA (cpDNA) markers, thus creating a new species of Fraser fir (Potter et al. 2009). The 

separation of species after the LGM is the reason why balsam fir was combined with Fraser fir 

for the LGM model. The exclusion of other species in the model was also influenced by the fact 

that there are non analog forests prior to 9,000 years BP that currently exist since 40 percent of 

these forest compositions were lost between 16,000 and 11,000 years BP (Overpeck et al. 1992). 

Shady Valley Bog still has minimal amounts of Fraser fir pollen with more red spruce (Figure 

2.9). Hack Pond and Crider’s Pond see a significant decline in red spruce while Cranberry 

Glades experiences an increase. Warming and drying occurred from 8,000 until 4,000 with a 

peak 7,000 years BP. Drought completed the separation between northern and southern species 

for Fraser fir where only those at high elevations withstood this hypsithermal period (Delcourt 

1979; Oosting and Billings 1951; Kneller and Peteet 1999).  

The most virgin SF forest resides in the GRSM, which was identified well in the Mid-

Holo model for Fraser fir (Figure 2.5c,d) (Oosting and Billings 1951; Hayes et al. 2006). The 

migration from the LGM to the Mid-Holo also indicates that not all species migrate northward 

during a changing climate (Davis 1978). The SAM provided a refuge for SF forests from 

unfavorable temperature and precipitation conditions, observing fast tree migrations to shift with 

the climate (Figure 2.5d) (Iverson and Prasad 2001; Petit et al. 2008). This warming influenced 

the elimination of SF forests from lower elevations and created a bottleneck effect for Fraser firs 

due to higher warmth and aridity compared to the present (Potter et al. 2008). A thousand years 

after the Mid-Holo, an increased tropical maritime air mass from the Gulf of Mexico increased 

precipitation and decreased temperature, lowering the ecotone from 1,700 meters to the current 

1,370 meters (Delcourt 1979; Aldy et al. 1999; Hayes et al. 2006). Since then, populations on the 
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refuge mountaintops have had no contact with each other aside from winds carrying pollen to 

nearby, leading to some degree of genetic isolation (Wiser et al. 1998). Mount Rogers and 

Whitetop Mountain—the northernmost peaks—are considered to be genetic outliers for Fraser 

fir, contain the most private alleles, and are the most inbred (Potter et al. 2008; 2009). The 

Balsam Mountains fall in the same category for alleles in addition to having the greatest allelic 

richness alongside Grandfather Mountain. The GRSM and Grandfather Mountain both have the 

most alleles per locus (Potter et al. 2008). Mount Mitchell is the least inbred. Grandfather 

Mountain has the highest genetic variation despite it being one of the smaller populations due to 

its proximity to Mount Mitchell and Roan (Potter et al. 2008). While Fraser fir may be 

genetically impoverished compared to other conifers, high winds contribute to adequate dispersal 

for pollen to create genetically well-mixed populations (Potter et al. 2008; 2009).  

Assumptions can be made as to which peaks will progress in the future based on genetics, 

but changes in climate and extremes are more urgent to comprehend for future habitats. All 

futures exhibit a decline for both species within the SAM, particularly in the lower elevations 

(Figures 2.6 and 2.7) (Kaylor et al. 2017). This is also observed in two other studies where the 

next few decades exhibit a reduction in habitat, but one of them expressed a recovery in mature 

overstory during this period (Potter et al. 2010; Kaylor et al. 2017). The GRSM shows a 

promising location, even if only at the highest peaks, for both species. This may be due to the 

GRSM having the largest block of old growth and containing the most virgin forest (Oosting and 

Billings 1951, Hayes et al. 2006). For red spruce, all other locations bode well for both RCPs in 

2050 including Big Bald, Beech Mountain, Plott Balsam Mountains, Sugar Mountain, and Elk 

Knob.  
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It may be speculated that the development of the current climate dataset attributes to why 

red spruce’s model output for 2050 RCP 8.5 is the closest visually to the USFS and NC 

Wildlife’s SF delineation maps. WorldClim produces the current environmental data based on 

climate data from 1960 to 1990. Areas high in latitude and altitude are impacted by climate 

change to a higher degree than most surrounding areas, especially where trees exist near the limit 

of their range (Araújo and Guisan 2006; Aitken et al. 2008; Hampe and Jump 2011; Palmate et 

al. 2014; White et al. 2014). Since this study has been conducted, the WorldClim data has been 

updated to contain climate data from 1970 to 2000, but not for the global circulation model 

(GCM) CCSM4 (Fick and Hijmans 2020). It could also be due to the extent of logging and 

impact of balsam woolly adelgid severely stunting the regeneration of SF forests to occupy its 

full fundamental niche, equating the severity of reduction to RCP 8.5 in 2050 for the 

fundamental niche.  

 The projections for 2070 RCP 4.5 for both species still see some reduction, but to a 

significantly lesser degree compared to RCP 8.5. The red spruce projection of 2070 RCP 4.5 

(Figure 2.6c) shows more habitat withstanding contraction than 2050 RCP 8.5 (Figure 2.6b). 

There is no expansion in the SAM for red spruce, only into Canada. One study anticipates the 

decline in lower elevations (Kaylor et al. 2017), but two more studies agree that overall SF 

habitat will expand toward the end of the century (Potter et al. 2010; Koo et al. 2015). Fraser fir 

has a similar prediction in contradiction to the projected models here (Potter et al. 2010; Kaylor 

et al 2017). However, with the importance of precipitation and cloud immersion, one study 

suggests the lowering of cloud height and the eventual rise to where it is higher than current 

(Berry and Smith 2012; Berry et al. 2013; Richardson et al. 2003). Fraser fir may be following 
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the pattern of reduced precipitation for its contraction particularly in 2070 RCP 8.5 since the 

lower peaks receive more rain (Simon et al. 2005).  

Conclusion 

 Temperature and precipitation parameters act as surrogates for geographical variables 

that contribute to interpreting the delineation of species within ENMs (Soberón and Peterson 

2005). It is evident in the models that Fraser fir responds significantly to precipitation to ensure it 

receives adequate amounts. This is observed in its historical distribution near the coasts and the 

southernmost peaks withstanding worst-case scenario futures since they receive more moisture 

from the Gulf (Shanks 1954; Delcourt 1979; Simon et al. 2005). This is also reflected in 

temperature seasonality and mean diurnal range being important since cloud covers provide a 

blanket of protection during the summer’s heat. Reduction of precipitation and rise to a cloud 

ceiling will give way to more extreme events, to which Fraser firs are ill-suited (Oosting and 

Billings 1951; Peters 1990). Red spruce followed similar patterns of previous studies where they 

experience reduction in future climates, but are still able to find refuge on the higher peaks 

(Potter et al. 2010; Kaylor et al. 2017).  

 Future research calls for employing more models and better data to ensure that the 

statistics match with the visual outputs. The recent update of WorldClim data to bring climate 

data closer to the present will improve model outputs (Fick and Hijmans 2017). Future 

projections are also made at 20-year intervals so it is easier to outline which periods will 

experience the most decline. Rare species, particularly those along complex topography, require 

larger resolution to pick up environmental gradients, so it is recommended to wait until the 30 

arc second data is available (Franklin 2012). Additional variables should also be considered to 

better represent anthropogenic influences like fragmentation or other disturbances such as wind, 
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ice, and extreme weather events (Mi et al. 2017). While models perform better with less 

overlapping variables, ensembling models to generate weight input for the overall model 

mitigate this issue. Additional GCMs can also be added into these models to provide a better 

summarization of what may happen (Breiner et al. 2015; Shabani et al. 2017). The future of 

conservation is about managing change and being able to incorporate finer temporal scale data in 

addition to more information within models that can provide the quality of information needed to 

mitigate climate change (Delcourt and Delcourt 1998; Thomas 2011). 

 A relict habitat like SF forests are conservation hotspots and should bring together 

multiple fields of study to comprehend where a habitat has been and where it may go based on a 

changing climate (Hampe and Jump 2011). Collaborative efforts with genetics, remote sensing, 

field biology, and statistical modeling bring together information to provide exceptional 

explanatory power to models and ultimately conservation efforts (Pitelka 1997; Allen and Kupfer 

2001; Aitkin et al. 2008; Hu et al. 2009; Cord et al. 2013; He et al. 2015). There will always be 

room for improvements, such as increased occurrence points along gradients and better spatial 

distribution (Simon et al. 2005; Araújo and Guisan 2006; Shibani et al. 2017). There will always 

be a level of uncertainty with ENMs, but with internal and external validation from adequate 

presence data, fossil records, and other models, ENMs provide an essential and necessary service 

for conservation management (Griesbauer et al. 2011; Thomas 2011; Wang et al. 2012; Seidl and 

Lexer 2013).  
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CHAPTER 3. CONCLUSIONS AND FUTURE WORK 

A clear upward trend in global and regional temperatures are apparent and will continue 

into subsequent decades, making it pertinent to understand how species will survive in this type 

of environment where it will be sunnier and lower humidity, both which may negatively impact 

the SF forests (Berry and Smith 2012). ENMs are helpful in understanding possible impacts, but 

some improvements need to be implemented for this habitat in particular. While red spruce has 

adequate samples in regard to quantity and quality, Fraser fir is severely lacking. Because of the 

difficult terrain, many occurrence points are overlapping or within 1 kilometer of each other, 

increasing spatial autocorrelation and overestimation (Bahn and McGill 2012). Fraser firs need 

more samples that are spatially distributed and along gradients (Simon et al. 2005; Araújo and 

Guisan 2006). This can be done by employing volunteers for field efforts or through the use of 

unmanned aerial vehicles (UAVs) (Wilds et al. 2000; Mi et al. 2017). Purposefully selecting 

outliers to observe the presence of Fraser firs generates better validation for models (Shabani et 

al. 2017). Though limited through available data, increased resolution can significantly help with 

rare species that reside in small niches and complex topography (Simon et al. 2005). Large 

spatial resolution results in loss of occurrence points for explanatory power within models that 

impacts rare species the most (Franklin et al. 2012). One method is to spatially correct climate 

data down to 90 meters using ancillary data, improving the correlation with plant distributions 

and the selected climate variables (Franklin et al. 2012).  

 Model accuracy will always be questioned, especially since outputs can vary depending 

on the approach and the GCM used (Wang et al. 2012). It is also admissible to understand all that 

may influence a species such as population dynamics, sensitivity to disturbances, and of course 

climate, leading to a multitude of predictors that can impact the model’s performance (Araújo 
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and Guisan 2006). Both of these issues can be simultaneously combatted through the use of 

ensembles, or model averaging (Iverson and Prasad 2001; Araújo and Guisan 2006; Breiner et al. 

2015; Shabani et al. 2017). Since rare species tend to include more variables than most, this can 

allow them to include more explanatory power by using small bivariate models using two 

predictors. The models are then combined by using weights inferred from the model 

performances so as not to lose explanatory power, to stabilize inference, and generate better 

predictions (Breiner et al. 2015).  

 Ensembles allow additional variables to be considered for models at least in the current 

projections. Weather studies that include cloud regimes, teleconnections, and anomalies can be 

influential to a species like Fraser fir (Peters 1990; Hampe and Jump 2011; Berry et al. 2013). 

While this study attempted to include biotic interactions, more research is needed to better 

understand forest structure and composition through interspecific interactions and 

metapopulation dynamics (Busing and Mailly 2004; Soberón and Peterson 2005). Scale also 

plays an important role. As a whole for red spruce, Fraser fir is not important to their 

distribution; however, in the SAM Fraser fir provides shelter allowing them to reach higher 

elevations (Busing et al. 1993; Busing and Pauley 1994; Busing 2004). The same can be said for 

the importance of yellow birch along ecotones and in regeneration gaps (White et al. 1985; 

Cogbill and White, 1991). Other disturbances aside from ice and wind that need to be included in 

models are roads, railroads, rivers, lakes, coastline, and settlement maps as a way to include 

anthropogenic influences that are not pollution-based, but rather near the realm of fragmentation 

(Mi et al. 2017).  

 The use of remote sensing can be useful for acquiring occurrence points where UAVs are 

not permitted due to protection laws of national and state forests and parks (Allen and Kupfer 
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2001). Remote sensing has been slowly introduced into the realm of ENMs to infer more about 

known absences, abiotic influence, dispersal barriers, and even biotic interactions (Cord et al. 

2013). Additional variables can be included in models such as normalized difference vegetation 

index (NDVI), leaf area index, biophysical, biochemical, and physiological predictors, or 

spectral signature of specific species (He et al. 2015; Cord et al. 2013). Accuracy can vary 

between 76.5 to 93.2 percent when combined with hyperspectral imagery and light detection and 

ranging (Lidar) due to geographical biases and lack of interpolation  (He et al. 2015). It can also 

be used to acquire ecotone position and data (Hayes et al. 2006).  

 Model accuracy can also be acquired through using paleo data as a natural lab. Projected 

models should be compared with the fossil record such as pollen cores or even cpDNA (Aitkin et 

al. 2008). Reproductive rates, maturity, lag times, and life histories help inform historical and 

future migrations to generate a better picture as to how a species will react to climate change 

(Pitelka et al. 1997). One way this can be done is to observe the maternally inherited markers to 

track historic geographic locations. This is possible with trees because few generations have 

passed, causing less genetic drift and essentially “fossilizing” and “carrying over” the genes (Hu 

et al. 2009). This genetic data can track postglacial migration and dispersal patterns of a species. 

Rare species that are also controllers require attention from all fields to mitigate the impacts of 

climate change. Utilizing ENMs in combination with fossil records, genetics, and remote sensing 

can improve the quality of information provided to conservation management agencies and 

effectively triage the potential loss of so many species and biodiversity. 
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APPENDIX: R CODE 

install.packages(c('dismo', 'rgdal', 'maptools', 'biomod2'))  

library(dismo)  

library(biomod2)  

library(rgdal)  

library(maptools)  

 

#Input species data  

Balsam_Test <- 

read.csv("C:\\Temp\\Thesis\\\Species\\BalsamWoollyAdelgid\\train_test\\balsamwoolly_all_test.

csv") 

Balsam_Train <- 

read.csv("C:\\Temp\\Thesis\\Species\\BalsamWoollyAdelgid\\train_test\\balsamwoolly_all_train.

csv") 

 

Fraser_Test <- read.csv("C:\\Temp\\Thesis\\Species\\FraserFir\\train_test\\fraserfir_test.csv") 

Fraser_Train <- read.csv("C:\\Temp\\Thesis\\Species\\FraserFir\\train_test\\fraserfir_train.csv") 

 

Mash_Test <- read.csv("C:\\Temp\\Thesis\\Species\\MountainAsh\\train_test\\mash_test.csv") 

Mash_Train <- read.csv("C:\\Temp\\Thesis\\Species\\MountainAsh\\train_test\\mash_train.csv") 

 

Maple_Test <- 

read.csv("C:\\Temp\\Thesis\\Species\\MountainMaple\\train_test\\mmaple_test.csv") 

Maple_Train <- 

read.csv("C:\\Temp\\Thesis\\Species\\MountainMaple\\train_test\\mmaple_train.csv") 

 

Beech_Test <- 

read.csv("C:\\Temp\\Thesis\\Species\\NAmBeech\\train_test\\nambeech_test.csv") 

Beech_Train <- 

read.csv("C:\\Temp\\Thesis\\Species\\NAmBeech\\train_test\\nambeech_train.csv") 

 

Phytoph_Test <- 

read.csv("C:\\Temp\\Thesis\\Species\\Phytophthora\\train_test\\phytoph_test.csv") 

Phytoph_Train <- 

read.csv("C:\\Temp\\Thesis\\Species\\Phytophthora\\train_test\\phytoph_train.csv") 

 

Spruce_Test <- read.csv("C:\\Temp\\Thesis\\Species\\RedSpruce\\train_test\\redspruce_test.csv") 

Spruce_Train <- 

read.csv("C:\\Temp\\Thesis\\Species\\RedSpruce\\train_test\\redspruce_train.csv") 
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Rhodo_Test <- read.csv("C:\\Temp\\Thesis\\Species\\Rhododendron\\train_test\\rhodo_test.csv") 

Rhodo_Train <- 

read.csv("C:\\Temp\\Thesis\\Species\\Rhododendron\\train_test\\rhodo_train.csv") 

 

Birch_Test <- read.csv("C:\\Temp\\Thesis\\Species\\YellowBirch\\train_test\\ylwbirch_test.csv") 

Birch_Train <- 

read.csv("C:\\Temp\\Thesis\\Species\\YellowBirch\\train_test\\ylwbirch_train.csv") 

 

#Input predictor data  

Current_vars_path <- file.path("C:\\Temp\\Thesis\\AndrewVars\\Test\\Current") 

Current_vars <- list.files(Current_vars_path, pattern = 'asc$', full.names = TRUE) 

predictors <- stack(Current_vars) 

names(predictors) 

 

#Models for each species  

 

################################################# 

#Balsam 

################################################# 

 

BalsamName <- "species"  

BalsamXY <- Balsam_Train[,c("Longitude","Latitude")]  

RespBalsam <- as.numeric(Balsam_Train[,BalsamName])  

 

BalsamBiomodData <- BIOMOD_FormatingData(resp.var = RespBalsam,  

                                     expl.var = predictors,  

                                     resp.xy = BalsamXY,  

                                     resp.name = BalsamName,  

                                     PA.nb.rep = 1,  

                                     PA.nb.absences = 200,  

                                     PA.strategy = 'random') 

plot(BalsamBiomodData) 

 

 

BiomodOption <- BIOMOD_ModelingOptions() 

BalsamModelOut <- BIOMOD_Modeling(BalsamBiomodData,  

                                  models = c("GBM", "RF"),  

                                  models.options = BiomodOption,  

                                  NbRunEval = 1,  
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                                  Prevalence = 0.5,  

                                  VarImport = 3,  

                                  models.eval.meth = c('TSS', 'ROC'),  

                                  SaveObj = TRUE,  

                                  rescal.all.models = TRUE,  

                                  do.full.models = FALSE,  

                                  modeling.id = paste(BalsamName, "BalsamModeling", sep="")) 

 

BalsamModelOut 

 

#Get test metrics for GBM 

BalsamModelEval <- get_evaluations(BalsamModelOut)  

dimnames(BalsamModelEval)  

BalsamModelEval["TSS", "Testing.data", "GBM",,] 

BalsamModelEval["TSS", "Testing.data", "RF",,] 

BalsamModelEval["ROC", "Testing.data", "GBM",,] 

BalsamModelEval["ROC", "Testing.data", "RF",,] 

get_variables_importance(BalsamModelOut)  

 

#Project  

BalsamProj <- BIOMOD_Projection(modeling.output = BalsamModelOut,  

                                new.env = predictors,  

                                proj.name = 'balsam',  

                                selected.models = 'all',  

                                binary.meth = 'TSS',  

                                compress = 'xz',  

                                clamping.mask=F,  

                                do.stack=F,  

                                output.format='.img')  

 

#Display  

plot(BalsamProj,str.grep='GBM') 

plot(BalsamProj,str.grep='RF') 

 

proj.Balsam <- get_predictions(BalsamProj) 

 

#ID which laer correspond to which projection 

names(proj.Balsam) 

 

#choose which layer you want to export 
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writeRaster(subset(proj.Balsam, "species_PA1_Full_GBM"), filename = "balsamGBM.asc") 

writeRaster(subset(proj.Balsam, "species_PA1_Full_RF"), filename = "balsamRF.asc") 

 

 

 

 

################################################################ 

#FraserFir 

################################################################ 

 

FraserName <- "species"  

FraserXY <- Fraser_Train[,c("Longitude","Latitude")]  

RespFraser <- as.numeric(Fraser_Train[,FraserName]) 

 

FraserBiomodData <- BIOMOD_FormatingData(resp.var = RespFraser,  

                                     expl.var = predictors,  

                                     resp.xy = FraserXY,  

                                     resp.name = FraserName,  

                                     PA.nb.rep = 1,  

                                     PA.nb.absences = 500,  

                                     PA.strategy = 'random') 

plot(FraserBiomodData) 

 

BiomodOption <- BIOMOD_ModelingOptions() 

FraserModelOut <- BIOMOD_Modeling(FraserBiomodData,  

                                  models = c("GBM", "RF"),  

                                  models.options = BiomodOption,  

                                  NbRunEval = 1,  

                                  Prevalence = 0.5,  

                                  VarImport = 3,  

                                  models.eval.meth = c('TSS', 'ROC'),  

                                  SaveObj = TRUE,  

                                  rescal.all.models = TRUE,  

                                  do.full.models = FALSE,  

                                  modeling.id = paste(FraserName, "FraserModeling", sep="")) 

FraserModelOut 

 

#Get test metrics for GBM 

FraserModelEval <- get_evaluations(FraserModelOut)  

dimnames(FraserModelEval)  
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FraserModelEval["TSS", "Testing.data", "GBM",,] 

FraserModelEval["TSS", "Testing.data", "RF",,] 

FraserModelEval["ROC", "Testing.data", "GBM",,] 

FraserModelEval["ROC", "Testing.data", "RF",,] 

get_variables_importance(FraserModelOut)  

 

#Project  

FraserProj <- BIOMOD_Projection(modeling.output = FraserModelOut,  

                                new.env = predictors,  

                                proj.name = 'fraser',  

                                selected.models = 'all',  

                                binary.meth = 'TSS',  

                                compress = 'xz',  

                                clamping.mask=F,  

                                do.stack=F,  

                                output.format='.img') 

 

#Display  

plot(FraserProj,str.grep='GBM') 

plot(FraserProj,str.grep='RF') 

 

proj.Fraser <- get_predictions(FraserProj) 

 

#ID which laer correspond to which projection 

names(proj.Fraser) 

 

#choose which layer you want to export 

writeRaster(subset(proj.Fraser, "species_PA1_Full_GBM"), filename = "fraserGBM.asc") 

writeRaster(subset(proj.Fraser, "species_PA1_Full_RF"), filename = "fraserRF.asc") 

 

 

 

##############################################################################

############ 

#Mountain Ash 

##############################################################################

############ 

 

MashName <- "species"  

MashXY <- Mash_Train[,c("Longitude","Latitude")]  
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RespMash <- as.numeric(Mash_Train[,MashName]) 

 

MashBiomodData <- BIOMOD_FormatingData(resp.var = RespMash,  

                                     expl.var = predictors,  

                                     resp.xy = MashXY,  

                                     resp.name = MashName,  

                                     PA.nb.rep = 1,  

                                     PA.nb.absences = 500,  

                                     PA.strategy = 'random') 

plot(MashBiomodData) 

 

BiomodOption <- BIOMOD_ModelingOptions() 

MashModelOut <- BIOMOD_Modeling(MashBiomodData,  

                                  models = c("RF"),  

                                  models.options = BiomodOption,  

                                  NbRunEval = 1,  

                                  Prevalence = 0.5,  

                                  VarImport = 3,  

                                  models.eval.meth = c('TSS', 'ROC'),  

                                  SaveObj = TRUE,  

                                  rescal.all.models = TRUE,  

                                  do.full.models = FALSE,  

                                  modeling.id = paste(MashName, "MashModeling", sep="")) 

MashModelOut 

 

#Get test metrics for GBM 

MashModelEval <- get_evaluations(MashModelOut)  

dimnames(MashModelEval)  

MashModelEval["TSS", "Testing.data", "GBM",,] 

MashModelEval["TSS", "Testing.data", "RF",,] 

MashModelEval["ROC", "Testing.data", "GBM",,] 

MashModelEval["ROC", "Testing.data", "RF",,] 

get_variables_importance(MashModelOut)  

 

#Project  

MashProj <- BIOMOD_Projection(modeling.output = MashModelOut,  

                                new.env = predictors,  

                                proj.name = 'ash',  

                                selected.models = 'all',  

                                binary.meth = 'TSS',  
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                                compress = 'xz',  

                                clamping.mask=F,  

                                do.stack=F,  

                                output.format='.img') 

 

#Display  

plot(MashProj,str.grep='GBM') 

plot(MashProj,str.grep='RF') 

 

proj.Mash <- get_predictions(MashProj) 

 

#ID which laer correspond to which projection 

names(proj.Mash) 

 

#choose which layer you want to export 

writeRaster(subset(proj.Mash, "species_PA1_Full_GBM"), filename = "ashGBM.asc") 

writeRaster(subset(proj.Mash, "species_PA1_Full_RF"), filename = "ashRF.asc") 

 

 

##############################################################################

############### 

#Mountain Maple 

##############################################################################

############### 

 

MapleName <- "species"  

MapleXY <- Maple_Train[,c("Longitude","Latitude")]  

RespMaple <- as.numeric(Maple_Train[,MapleName]) 

 

MapleBiomodData <- BIOMOD_FormatingData(resp.var = RespMaple,  

                                     expl.var = predictors,  

                                     resp.xy = MapleXY,  

                                     resp.name = MapleName,  

                                     PA.nb.rep = 1,  

                                     PA.nb.absences = 500,  

                                     PA.strategy = 'random') 

plot(MapleBiomodData) 

 

BiomodOption <- BIOMOD_ModelingOptions() 

MapleModelOut <- BIOMOD_Modeling(MapleBiomodData,  
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                                  models = c("RF"),  

                                  models.options = BiomodOption,  

                                  NbRunEval = 1,  

                                  Prevalence = 0.5,  

                                  VarImport = 3,  

                                  models.eval.meth = c('TSS', 'ROC'),  

                                  SaveObj = TRUE,  

                                  rescal.all.models = TRUE,  

                                  do.full.models = FALSE,  

                                  modeling.id = paste(MapleName, "MapleModeling", sep="")) 

MapleModelOut 

 

#Get test metrics for GBM 

MapleModelEval <- get_evaluations(MapleModelOut)  

dimnames(MapleModelEval)  

MapleModelEval["TSS", "Testing.data", "GBM",,] 

MapleModelEval["TSS", "Testing.data", "RF",,] 

MapleModelEval["ROC", "Testing.data", "GBM",,] 

MapleModelEval["ROC", "Testing.data", "RF",,] 

get_variables_importance(MapleModelOut)  

 

#Project  

MapleProj <- BIOMOD_Projection(modeling.output = MapleModelOut,  

                                new.env = predictors,  

                                proj.name = 'maple',  

                                selected.models = 'all',  

                                binary.meth = 'TSS',  

                                compress = 'xz',  

                                clamping.mask=F,  

                                do.stack=F,  

                                output.format='.img') 

 

#Display  

plot(MapleProj,str.grep='GBM') 

plot(MapleProj,str.grep='RF') 

 

proj.Maple <- get_predictions(MapleProj) 

 

#ID which laer correspond to which projection 

names(proj.Maple) 
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#choose which layer you want to export 

writeRaster(subset(proj.Maple, "species_PA1_Full_GBM"), filename = "mapleGBM.asc") 

writeRaster(subset(proj.Maple, "species_PA1_Full_RF"), filename = "mapleRF.asc") 

 

 

##############################################################################

################ 

#N. Am. Beech 

##############################################################################

################ 

 

BeechName <- "species"  

BeechXY <- Beech_Train[,c("Longitude","Latitude")]  

RespBeech <- as.numeric(Beech_Train[,BeechName]) 

 

BeechBiomodData <- BIOMOD_FormatingData(resp.var = RespBeech,  

                                     expl.var = predictors,  

                                     resp.xy = BeechXY,  

                                     resp.name = BeechName,  

                                     PA.nb.rep = 1,  

                                     PA.nb.absences = 500,  

                                     PA.strategy = 'random') 

plot(BeechBiomodData) 

 

BiomodOption <- BIOMOD_ModelingOptions() 

BeechModelOut <- BIOMOD_Modeling(BeechBiomodData,  

                                  models = c("RF"),  

                                  models.options = BiomodOption,  

                                  NbRunEval = 1,  

                                  Prevalence = 0.5,  

                                  VarImport = 3,  

                                  models.eval.meth = c('TSS', 'ROC'),  

                                  SaveObj = TRUE,  

                                  rescal.all.models = TRUE,  

                                  do.full.models = FALSE,  

                                  modeling.id = paste(BeechName, "BeechModeling", sep="")) 

BeechModelOut 

 

#Get test metrics for GBM 
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BeechModelEval <- get_evaluations(BeechModelOut)  

dimnames(BeechModelEval)  

BeechModelEval["TSS", "Testing.data", "GBM",,] 

BeechModelEval["TSS", "Testing.data", "RF",,] 

BeechModelEval["ROC", "Testing.data", "GBM",,] 

BeechModelEval["ROC", "Testing.data", "RF",,] 

get_variables_importance(BeechModelOut)  

 

#Project  

BeechProj <- BIOMOD_Projection(modeling.output = BeechModelOut,  

                                new.env = predictors,  

                                proj.name = 'beech',  

                                selected.models = 'all',  

                                binary.meth = 'TSS',  

                                compress = 'xz',  

                                clamping.mask=F,  

                                do.stack=F,  

                                output.format='.img') 

 

#Display  

plot(BeechProj,str.grep='GBM') 

plot(BeechProj,str.grep='RF') 

 

proj.Beech <- get_predictions(BeechProj) 

 

#ID which laer correspond to which projection 

names(proj.Beech) 

 

#choose which layer you want to export 

writeRaster(subset(proj.Beech, "species_PA1_Full_GBM"), filename = "beechGBM.asc") 

writeRaster(subset(proj.Beech, "species_PA1_Full_RF"), filename = "beechRF.asc") 

 

 

 

##############################################################################

############## 

#Phytophthora 

##############################################################################

############## 
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PhytophName <- "species"  

PhytophXY <- Phytoph_Train[,c("Longitude","Latitude")]  

RespPhytoph <- as.numeric(Phytoph_Train[,PhytophName]) 

 

PhytophBiomodData <- BIOMOD_FormatingData(resp.var = RespPhytoph,  

                                     expl.var = predictors,  

                                     resp.xy = PhytophXY,  

                                     resp.name = PhytophName,  

                                     PA.nb.rep = 1,  

                                     PA.nb.absences = 500,  

                                     PA.strategy = 'random') 

plot(PhytophBiomodData) 

 

BiomodOption <- BIOMOD_ModelingOptions() 

PhytophModelOut <- BIOMOD_Modeling(PhytophBiomodData,  

                                  models = c("RF"),  

                                  models.options = BiomodOption,  

                                  NbRunEval = 1,  

                                  Prevalence = 0.5,  

                                  VarImport = 3,  

                                  models.eval.meth = c('TSS', 'ROC'),  

                                  SaveObj = TRUE,  

                                  rescal.all.models = TRUE,  

                                  do.full.models = FALSE,  

                                  modeling.id = paste(PhytophName, "PhytophModeling", sep="")) 

PhytophModelOut 

 

#Get test metrics for GBM 

PhytophModelEval <- get_evaluations(PhytophModelOut)  

dimnames(PhytophModelEval)  

PhytophModelEval["TSS", "Testing.data", "GBM",,] 

PhytophModelEval["TSS", "Testing.data", "RF",,] 

PhytophModelEval["ROC", "Testing.data", "GBM",,] 

PhytophModelEval["ROC", "Testing.data", "RF",,] 

get_variables_importance(PhytophModelOut)  

 

#Project  

PhytophProj <- BIOMOD_Projection(modeling.output = PhytophModelOut,  

                                new.env = predictors,  

                                proj.name = 'phytophthora',  
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                                selected.models = 'all',  

                                binary.meth = 'TSS',  

                                compress = 'xz',  

                                clamping.mask=F,  

                                do.stack=F,  

                                output.format='.img') 

 

#Display  

plot(PhytophProj,str.grep='GBM') 

plot(PhytophProj,str.grep='RF') 

 

proj.Phytoph <- get_predictions(PhytophProj) 

 

#ID which laer correspond to which projection 

names(proj.Phytoph) 

 

#choose which layer you want to export 

writeRaster(subset(proj.Phytoph, "species_PA1_Full_GBM"), filename = "phytophGBM.asc") 

writeRaster(subset(proj.Phytoph, "species_PA1_Full_RF"), filename = "phytophRF.asc") 

 

 

##############################################################################

##################### 

#Red Spruce 

##############################################################################

##################### 

 

SpruceName <- "species"  

SpruceXY <- Spruce_Train[,c("Longitude","Latitude")]  

RespSpruce <- as.numeric(Spruce_Train[,SpruceName]) 

 

SpruceBiomodData <- BIOMOD_FormatingData(resp.var = RespSpruce,  

                                     expl.var = predictors,  

                                     resp.xy = SpruceXY,  

                                     resp.name = SpruceName,  

                                     PA.nb.rep = 1,  

                                     PA.nb.absences = 500,  

                                     PA.strategy = 'random') 

plot(SpruceBiomodData) 
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BiomodOption <- BIOMOD_ModelingOptions() 

SpruceModelOut <- BIOMOD_Modeling(SpruceBiomodData,  

                                  models = c("RF"),  

                                  models.options = BiomodOption,  

                                  NbRunEval = 1,  

                                  Prevalence = 0.5,  

                                  VarImport = 3,  

                                  models.eval.meth = c('TSS', 'ROC'),  

                                  SaveObj = TRUE,  

                                  rescal.all.models = TRUE,  

                                  do.full.models = FALSE,  

                                  modeling.id = paste(SpruceName, "SpruceModeling", sep="")) 

SpruceModelOut 

 

#Get test metrics for GBM 

SpruceModelEval <- get_evaluations(SpruceModelOut)  

dimnames(SpruceModelEval)  

SpruceModelEval["TSS", "Testing.data", "GBM",,] 

SpruceModelEval["TSS", "Testing.data", "RF",,] 

SpruceModelEval["ROC", "Testing.data", "GBM",,] 

SpruceModelEval["ROC", "Testing.data", "RF",,] 

get_variables_importance(SpruceModelOut)  

 

#Project  

SpruceProj <- BIOMOD_Projection(modeling.output = SpruceModelOut,  

                                new.env = predictors,  

                                proj.name = 'spruce',  

                                selected.models = 'all',  

                                binary.meth = 'TSS',  

                                compress = 'xz',  

                                clamping.mask=F,  

                                do.stack=F,  

                                output.format='.img') 

 

#Display  

plot(SpruceProj,str.grep='GBM') 

plot(SpruceProj,str.grep='RF') 

 

proj.Spruce <- get_predictions(SpruceProj) 
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#ID which laer correspond to which projection 

names(proj.Spruce) 

 

#choose which layer you want to export 

writeRaster(subset(proj.Spruce, "species_PA1_Full_GBM"), filename = "spruceGBM.asc") 

writeRaster(subset(proj.Spruce, "species_PA1_Full_RF"), filename = "spruceRF.asc") 

 

 

##############################################################################

#################### 

#Rhododendron 

##############################################################################

#################### 

 

RhodoName <- "species"  

RhodoXY <- Rhodo_Train[,c("Longitude","Latitude")]  

RespRhodo <- as.numeric(Rhodo_Train[,RhodoName]) 

 

RhodoBiomodData <- BIOMOD_FormatingData(resp.var = RespRhodo,  

                                     expl.var = predictors,  

                                     resp.xy = RhodoXY,  

                                     resp.name = RhodoName,  

                                     PA.nb.rep = 1,  

                                     PA.nb.absences = 500,  

                                     PA.strategy = 'random') 

plot(RhodoBiomodData) 

 

BiomodOption <- BIOMOD_ModelingOptions() 

RhodoModelOut <- BIOMOD_Modeling(RhodoBiomodData,  

                                  models = c("RF"),  

                                  models.options = BiomodOption,  

                                  NbRunEval = 1,  

                                  Prevalence = 0.5,  

                                  VarImport = 3,  

                                  models.eval.meth = c('TSS', 'ROC'),  

                                  SaveObj = TRUE,  

                                  rescal.all.models = TRUE,  

                                  do.full.models = FALSE,  

                                  modeling.id = paste(RhodoName, "RhodoModeling", sep="")) 

RhodoModelOut 
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#Get test metrics for GBM 

RhodoModelEval <- get_evaluations(RhodoModelOut)  

dimnames(RhodoModelEval)  

RhodoModelEval["TSS", "Testing.data", "GBM",,] 

RhodoModelEval["TSS", "Testing.data", "RF",,] 

RhodoModelEval["ROC", "Testing.data", "GBM",,] 

RhodoModelEval["ROC", "Testing.data", "RF",,] 

get_variables_importance(RhodoModelOut)  

 

#Project  

RhodoProj <- BIOMOD_Projection(modeling.output = RhodoModelOut,  

                                new.env = predictors,  

                                proj.name = 'rhododendron',  

                                selected.models = 'all',  

                                binary.meth = 'TSS',  

                                compress = 'xz',  

                                clamping.mask=F,  

                                do.stack=F,  

                                output.format='.img') 

 

#Display  

plot(RhodoProj,str.grep='GBM') 

plot(RhodoProj,str.grep='RF') 

 

proj.Rhodo <- get_predictions(RhodoProj) 

 

#ID which laer correspond to which projection 

names(proj.Rhodo) 

 

#choose which layer you want to export 

writeRaster(subset(proj.Rhodo, "species_PA1_Full_GBM"), filename = "rhodoGBM.asc") 

writeRaster(subset(proj.Rhodo, "species_PA1_Full_RF"), filename = "rhodoRF.asc") 

 

 

 

##############################################################################

################# 

#Yellow Birch 



 

92 

##############################################################################

################# 

 

BirchName <- "species"  

BirchXY <- Birch_Train[,c("Longitude","Latitude")]  

RespBirch <- as.numeric(Birch_Train[,BirchName]) 

 

BirchBiomodData <- BIOMOD_FormatingData(resp.var = RespBirch,  

                                     expl.var = predictors,  

                                     resp.xy = BirchXY,  

                                     resp.name = BirchName,  

                                     PA.nb.rep = 1,  

                                     PA.nb.absences = 500,  

                                     PA.strategy = 'random') 

plot(BirchBiomodData)  

 

BiomodOption <- BIOMOD_ModelingOptions() 

BirchModelOut <- BIOMOD_Modeling(BirchBiomodData,  

                                  models = c("GBM", "RF"),  

                                  models.options = BiomodOption,  

                                  NbRunEval = 1,  

                                  Prevalence = 0.5,  

                                  VarImport = 3,  

                                  models.eval.meth = c('TSS', 'ROC'),  

                                  SaveObj = TRUE,  

                                  rescal.all.models = TRUE,  

                                  do.full.models = FALSE,  

                                  modeling.id = paste(BirchName, "BirchModeling", sep="")) 

BirchModelOut 

 

#Project  

BirchProj <- BIOMOD_Projection(modeling.output = BirchModelOut,  

                                new.env = predictors,  

                                proj.name = 'birch',  

                                selected.models = 'all',  

                                binary.meth = 'TSS',  

                                compress = 'xz',  

                                clamping.mask=F,  

                                do.stack=F,  

                                output.format='.img') 
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#Display  

plot(BirchProj,str.grep='GBM') 

plot(BirchProj,str.grep='RF') 

 

proj.Birch <- get_predictions(BirchProj) 

 

#ID which laer correspond to which projection 

names(proj.Birch) 

 

#choose which layer you want to export 

writeRaster(subset(proj.Birch, "species_PA1_Full_GBM"), filename = "birchGBM.asc") 

writeRaster(subset(proj.Birch, "species_PA1_Full_RF"), filename = "birchRF.asc") 

 

 

#moved files to respective folders without code cause i can do it easier manually 

 

 

################################################################ 

#FraserFir2.0 (I'm you but better) 

################################################################ 

 

#Input predictor data  

FF_RF_vars_path <- file.path("C:\\Temp\\Thesis\\GBM_RF\\FF_vars\\RF") 

FF_GBM_vars_path <- file.path("C:\\Temp\\Thesis\\GBM_RF\\FF_vars\\GBM") 

FF_RF_vars <- list.files(FF_RF_vars_path, pattern = 'asc$', full.names = TRUE) 

FF_GBM_vars <- list.files(FF_GBM_vars_path, pattern = 'asc$', full.names = TRUE) 

FF_RF_predictors <- stack(FF_RF_vars) 

FF_GBM_predictors <- stack(FF_GBM_vars) 

 

FraserName <- "species"  

FraserXY <- Fraser_Train[,c("Longitude","Latitude")]  

RespFraser <- as.numeric(Fraser_Train[,FraserName]) 

 

FF_RF_BiomodData <- BIOMOD_FormatingData(resp.var = RespFraser,  

                                         expl.var = FF_RF_predictors,  

                                         resp.xy = FraserXY,  

                                         resp.name = FraserName,  

                                         PA.nb.rep = 1,  

                                         PA.nb.absences = 500,  
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                                         PA.strategy = 'random') 

 

FF_GBM_BiomodData <- BIOMOD_FormatingData(resp.var = RespFraser,  

                                         expl.var = FF_GBM_predictors,  

                                         resp.xy = FraserXY,  

                                         resp.name = FraserName,  

                                         PA.nb.rep = 1,  

                                         PA.nb.absences = 500,  

                                         PA.strategy = 'random') 

plot(FF_RF_BiomodData) 

plot(FF_GBM_BiomodData) 

 

BiomodOption <- BIOMOD_ModelingOptions() 

 

FF_RF_ModelOut <- BIOMOD_Modeling(FF_RF_BiomodData,  

                                  models = ("RF"),  

                                  models.options = BiomodOption,  

                                  NbRunEval = 1,  

                                  Prevalence = 0.5,  

                                  VarImport = 3,  

                                  models.eval.meth = c('TSS', 'ROC', 'ACCURACY', 'BIAS', 'KAPPA'),  

                                  SaveObj = TRUE,  

                                  rescal.all.models = TRUE,  

                                  do.full.models = FALSE,  

                                  modeling.id = paste(FraserName, "FraserModeling_RF", sep="")) 

 

FF_GBM_ModelOut <- BIOMOD_Modeling(FF_GBM_BiomodData,  

                                  models = ("GBM"),  

                                  models.options = BiomodOption,  

                                  NbRunEval = 1,  

                                  Prevalence = 0.5,  

                                  VarImport = 3,  

                                  models.eval.meth = c('TSS', 'ROC', 'ACCURACY', 'BIAS', 'KAPPA'),  

                                  SaveObj = TRUE,  

                                  rescal.all.models = TRUE,  

                                  do.full.models = FALSE,  

                                  modeling.id = paste(FraserName, "FraserModeling_GBM", sep="")) 

FF_RF_ModelOut 
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#Get test metrics for GBM 

FF_RF_ModelEval <- get_evaluations(FF_RF_ModelOut) 

FF_GBM_ModelEval <- get_evaluations(FF_GBM_ModelOut) 

 

dimnames(FF_RF_ModelEval) 

dimnames(FF_GBM_ModelEval) 

 

 

FF_GBM_ModelEval["TSS", "Testing.data", "GBM",,] 

FF_RF_ModelEval["TSS", "Testing.data", "RF",,] 

FF_GBM_ModelEval["ROC", "Testing.data", "GBM",,] 

FF_RF_ModelEval["ROC", "Testing.data", "RF",,] 

FF_GBM_ModelEval["ACCURACY", "Testing.data", "GBM",,] 

FF_RF_ModelEval["ACCURACY", "Testing.data", "RF",,] 

FF_GBM_ModelEval["BIAS", "Testing.data", "GBM",,] 

FF_RF_ModelEval["BIAS", "Testing.data", "RF",,] 

FF_GBM_ModelEval["KAPPA", "Testing.data", "GBM",,] 

FF_RF_ModelEval["KAPPA", "Testing.data", "RF",,] 

 

calculate.stat(FF_RF_ModelOut, stat='KAPPA') 

 

get_variables_importance(FF_RF_ModelOut) 

get_variables_importance(FF_GBM_ModelOut)  

 

#Project  

FF_RF_Proj <- BIOMOD_Projection(modeling.output = FF_RF_ModelOut,  

                                new.env = FF_RF_predictors,  

                                proj.name = 'fraser_RF',  

                                selected.models = 'all',  

                                binary.meth = 'TSS',  

                                compress = 'xz',  

                                clamping.mask=F,  

                                do.stack=F,  

                                output.format='.img') 

FF_GBM_Proj <- BIOMOD_Projection(modeling.output = FF_GBM_ModelOut,  

                                new.env = FF_GBM_predictors,  

                                proj.name = 'fraser_GBM',  

                                selected.models = 'all',  

                                binary.meth = 'TSS',  

                                compress = 'xz',  
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                                clamping.mask=F,  

                                do.stack=F,  

                                output.format='.img') 

 

 

#Display  

plot(FF_GBM_Proj,str.grep='GBM') 

plot(FF_RF_Proj,str.grep='RF') 

 

proj.FF_RF <- get_predictions(FF_RF_Proj) 

proj.FF_GBM <- get_predictions(FF_GBM_Proj) 

 

#ID which laer correspond to which projection 

names(proj.FF_RF) 

names(proj.FF_GBM) 

 

#choose which layer you want to export 

writeRaster(subset(proj.FF_RF, "species_PA1_Full_RF"), filename = "fraserGBM2.0.asc") 

writeRaster(subset(proj.FF_GBM, "species_PA1_Full_GBM"), filename = "fraserRF2.0.asc") 

 

FilteringTransformation(proj.FF_RF,0.5) 

   

 

 

##############################################################################

##################### 

#Red Spruce 2: Electric Boogaloo 

##############################################################################

##################### 

#Input predictor data  

RS_RF_vars_path <- file.path("C:\\Temp\\Thesis\\GBM_RF\\RS_vars\\RF") 

RS_GBM_vars_path <- file.path("C:\\Temp\\Thesis\\GBM_RF\\RS_vars\\GBM") 

RS_RF_vars <- list.files(RS_RF_vars_path, pattern = 'asc$', full.names = TRUE) 

RS_GBM_vars <- list.files(RS_GBM_vars_path, pattern = 'asc$', full.names = TRUE) 

RS_RF_predictors <- stack(RS_RF_vars) 

RS_GBM_predictors <- stack(RS_GBM_vars) 

names(RS_GBM_predictors) 

 

SpruceName <- "species"  

SpruceXY <- Spruce_Train[,c("Longitude","Latitude")]  
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RespSpruce <- as.numeric(Spruce_Train[,SpruceName]) 

 

RS_RF_BiomodData <- BIOMOD_FormatingData(resp.var = RespSpruce,  

                                         expl.var = RS_RF_predictors,  

                                         resp.xy = SpruceXY,  

                                         resp.name = SpruceName,  

                                         PA.nb.rep = 1,  

                                         PA.nb.absences = 500,  

                                         PA.strategy = 'random') 

 

RS_GBM_BiomodData <- BIOMOD_FormatingData(resp.var = RespSpruce,  

                                          expl.var = RS_GBM_predictors,  

                                          resp.xy = SpruceXY,  

                                          resp.name = SpruceName,  

                                          PA.nb.rep = 1,  

                                          PA.nb.absences = 500,  

                                          PA.strategy = 'random') 

plot(RS_RF_BiomodData) 

plot(RS_GBM_BiomodData) 

 

BiomodOption <- BIOMOD_ModelingOptions() 

 

RS_RF_ModelOut <- BIOMOD_Modeling(RS_RF_BiomodData,  

                                  models = ("RF"),  

                                  models.options = BiomodOption,  

                                  NbRunEval = 1,  

                                  Prevalence = 0.5,  

                                  VarImport = 3,  

                                  models.eval.meth = c('TSS', 'ROC', 'ACCURACY', 'BIAS', 'KAPPA'),  

                                  SaveObj = TRUE,  

                                  rescal.all.models = TRUE,  

                                  do.full.models = FALSE,  

                                  modeling.id = paste(SpruceName, "RS_RF_Modeling", sep="")) 

 

 

RS_GBM_ModelOut <- BIOMOD_Modeling(RS_GBM_BiomodData,  

                                  models = ("GBM"),  

                                  models.options = BiomodOption,  

                                  NbRunEval = 1,  

                                  Prevalence = 0.5,  
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                                  VarImport = 3,  

                                  models.eval.meth = c('TSS', 'ROC', 'ACCURACY', 'BIAS', 'KAPPA'),  

                                  SaveObj = TRUE,  

                                  rescal.all.models = TRUE,  

                                  do.full.models = FALSE,  

                                  modeling.id = paste(SpruceName, "RS_GBM_Modeling", sep="")) 

 

#Get test metrics for GBM 

RS_RF_ModelEval <- get_evaluations(RS_RF_ModelOut) 

RS_GBM_ModelEval <- get_evaluations(RS_GBM_ModelOut) 

 

 

dimnames(RS_RF_ModelEval) 

dimnames(RS_GBM_ModelEval) 

 

 

RS_GBM_ModelEval["TSS", "Testing.data", "GBM",,] 

RS_RF_ModelEval["TSS", "Testing.data", "RF",,] 

RS_GBM_ModelEval["ROC", "Testing.data", "GBM",,] 

RS_RF_ModelEval["ROC", "Testing.data", "RF",,] 

 

get_variables_importance(RS_RF_ModelOut) 

get_variables_importance(RS_GBM_ModelOut)  

 

#Project  

RS_RF_Proj <- BIOMOD_Projection(modeling.output = RS_RF_ModelOut,  

                                new.env = RS_RF_predictors,  

                                proj.name = 'spruce_RF',  

                                selected.models = 'all',  

                                binary.meth = 'TSS',  

                                compress = 'xz',  

                                clamping.mask=F,  

                                do.stack=F,  

                                output.format='.img') 

RS_GBM_Proj <- BIOMOD_Projection(modeling.output = RS_GBM_ModelOut,  

                                 new.env = RS_GBM_predictors,  

                                 proj.name = 'spruce_GBM',  

                                 selected.models = 'all',  

                                 binary.meth = 'TSS',  

                                 compress = 'xz',  
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                                 clamping.mask=F,  

                                 do.stack=F,  

                                 output.format='.img') 

 

 

#Display  

plot(RS_GBM_Proj,str.grep='GBM') 

plot(RS_RF_Proj,str.grep='RF') 

 

proj.RS_RF <- get_predictions(RS_RF_Proj) 

proj.RS_GBM <- get_predictions(RS_GBM_Proj) 

 

#ID which laer correspond to which projection 

names(proj.RS_RF) 

names(proj.RS_GBM) 

 

#choose which layer you want to export 

writeRaster(subset(proj.RS_RF, "species_PA1_Full_RF"), filename = "spruceGBM2.0.asc") 

writeRaster(subset(proj.RS_GBM, "species_PA1_Full_GBM"), filename = "spruceRF2.0.asc") 

 

threshold(RS_GBM_Proj) 

 

setwd("C:\\Temp\\Thesis\\GBM_RF") 

 

 

###This is an example of a time period. Names and data were switched out based on the time 

observed 

 

 

############################################################## 

#Mid-Holocene 

############################################################## 

 

#holocene variables 

seven8.five_vars_path <- file.path("E:\\ThesisTake2\\AndrewVars\\Test\\7085") 

seven8.five_vars <- list.files(seven8.five_vars_path, pattern = 'asc$', full.names = TRUE) 

seven8.five_predictors <- stack(seven8.five_vars) 

 

seven4.five_vars_path <- file.path("E:\\ThesisTake2\\AndrewVars\\Test\\7045") 

seven4.five_vars <- list.files(seven4.five_vars_path, pattern = 'asc$', full.names = TRUE) 
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seven4.five_predictors <- stack(seven4.five_vars) 

 

five8.five_vars_path <- file.path("E:\\ThesisTake2\\AndrewVars\\Test\\5085") 

five8.five_vars <- list.files(five8.five_vars_path, pattern = 'asc$', full.names = TRUE) 

five8.five_predictors <- stack(five8.five_vars) 

 

five4.five_vars_path <- file.path("E:\\ThesisTake2\\AndrewVars\\Test\\5045") 

five4.five_vars <- list.files(five4.five_vars_path, pattern = 'asc$', full.names = TRUE) 

five4.five_predictors <- stack(five4.five_vars) 

 

 

#Mountain Ash 

Mash_Projseven8.five <- BIOMOD_Projection(modeling.output = MashModelOut, 

                                      new.env = seven8.five_predictors, 

                                      proj.name = 'Mash_7085', 

                                      selected.models = 'all', 

                                      binary.meth = 'TSS', 

                                      compress = 'xz', 

                                      clamping.mask = T, 

                                      output.format = '.img') 

 

Mash_Projseven4.five <- BIOMOD_Projection(modeling.output = MashModelOut, 

                                      new.env = seven4.five_predictors, 

                                      proj.name = 'Mash_7045', 

                                      selected.models = 'all', 

                                      binary.meth = 'TSS', 

                                      compress = 'xz', 

                                      clamping.mask = T, 

                                      output.format = '.img') 

 

Mash_Projfive8.five <- BIOMOD_Projection(modeling.output = MashModelOut, 

                                      new.env = five8.five_predictors, 

                                      proj.name = 'Mash_5085', 

                                      selected.models = 'all', 

                                      binary.meth = 'TSS', 

                                      compress = 'xz', 

                                      clamping.mask = T, 

                                      output.format = '.img') 

 

Mash_Projfive4.five <- BIOMOD_Projection(modeling.output = MashModelOut, 
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                                      new.env = five4.five_predictors, 

                                      proj.name = 'Mash_8045', 

                                      selected.models = 'all', 

                                      binary.meth = 'TSS', 

                                      compress = 'xz', 

                                      clamping.mask = T, 

                                      output.format = '.img') 

 

proj.Mash.seven8.five <- get_predictions(Mash_Projseven8.five) 

 

proj.Mash.seven4.five <- get_predictions(Mash_Projseven4.five) 

 

proj.Mash.five8.five <- get_predictions(Mash_Projfive8.five) 

 

proj.Mash.five4.five <- get_predictions(Mash_Projfive4.five) 

 

 

writeRaster(subset(proj.Mash.seven8.five, "species_PA1_Full_RF"), filename = 

"mash_7085.asc") 

 

writeRaster(subset(proj.Mash.seven4.five, "species_PA1_Full_RF"), filename = 

"mash_7045.asc") 

 

writeRaster(subset(proj.Mash.five8.five, "species_PA1_Full_RF"), filename = "mash_5085.asc") 

 

writeRaster(subset(proj.Mash.five4.five, "species_PA1_Full_RF"), filename = "mash_5045.asc") 

 

 

#Beech 

Beech_Projseven8.five <- BIOMOD_Projection(modeling.output = BeechModelOut, 

                                          new.env = seven8.five_predictors, 

                                          proj.name = 'Beech_7085', 

                                          selected.models = 'all', 

                                          binary.meth = 'TSS', 

                                          compress = 'xz', 

                                          clamping.mask = T, 

                                          output.format = '.img') 

 

Beech_Projseven4.five <- BIOMOD_Projection(modeling.output = BeechModelOut, 

                                          new.env = seven4.five_predictors, 
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                                          proj.name = 'Beech_7045', 

                                          selected.models = 'all', 

                                          binary.meth = 'TSS', 

                                          compress = 'xz', 

                                          clamping.mask = T, 

                                          output.format = '.img') 

 

Beech_Projfive8.five <- BIOMOD_Projection(modeling.output = BeechModelOut, 

                                         new.env = five8.five_predictors, 

                                         proj.name = 'Beech_5085', 

                                         selected.models = 'all', 

                                         binary.meth = 'TSS', 

                                         compress = 'xz', 

                                         clamping.mask = T, 

                                         output.format = '.img') 

 

Beech_Projfive4.five <- BIOMOD_Projection(modeling.output = BeechModelOut, 

                                         new.env = five4.five_predictors, 

                                         proj.name = 'Beech_8045', 

                                         selected.models = 'all', 

                                         binary.meth = 'TSS', 

                                         compress = 'xz', 

                                         clamping.mask = T, 

                                         output.format = '.img') 

 

proj.Beech.seven8.five <- get_predictions(Beech_Projseven8.five) 

 

proj.Beech.seven4.five <- get_predictions(Beech_Projseven4.five) 

 

proj.Beech.five8.five <- get_predictions(Beech_Projfive8.five) 

 

proj.Beech.five4.five <- get_predictions(Beech_Projfive4.five) 

 

 

writeRaster(subset(proj.Beech.seven8.five, "species_PA1_Full_RF"), filename = 

"beech_7085.asc") 

 

writeRaster(subset(proj.Beech.seven4.five, "species_PA1_Full_RF"), filename = 

"beech_7045.asc") 
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writeRaster(subset(proj.Beech.five8.five, "species_PA1_Full_RF"), filename = 

"beech_5085.asc") 

 

writeRaster(subset(proj.Beech.five4.five, "species_PA1_Full_RF"), filename = 

"beech_5045.asc") 

 

 

#Phytophthora 

Phytoph_Projseven8.five <- BIOMOD_Projection(modeling.output = PhytophModelOut, 

                                          new.env = seven8.five_predictors, 

                                          proj.name = 'Phytoph_7085', 

                                          selected.models = 'all', 

                                          binary.meth = 'TSS', 

                                          compress = 'xz', 

                                          clamping.mask = T, 

                                          output.format = '.img') 

 

Phytoph_Projseven4.five <- BIOMOD_Projection(modeling.output = PhytophModelOut, 

                                          new.env = seven4.five_predictors, 

                                          proj.name = 'Phytoph_7045', 

                                          selected.models = 'all', 

                                          binary.meth = 'TSS', 

                                          compress = 'xz', 

                                          clamping.mask = T, 

                                          output.format = '.img') 

 

Phytoph_Projfive8.five <- BIOMOD_Projection(modeling.output = PhytophModelOut, 

                                         new.env = five8.five_predictors, 

                                         proj.name = 'Phytoph_5085', 

                                         selected.models = 'all', 

                                         binary.meth = 'TSS', 

                                         compress = 'xz', 

                                         clamping.mask = T, 

                                         output.format = '.img') 

 

Phytoph_Projfive4.five <- BIOMOD_Projection(modeling.output = PhytophModelOut, 

                                         new.env = five4.five_predictors, 

                                         proj.name = 'Phytoph_8045', 

                                         selected.models = 'all', 

                                         binary.meth = 'TSS', 
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                                         compress = 'xz', 

                                         clamping.mask = T, 

                                         output.format = '.img') 

 

proj.Phytoph.seven8.five <- get_predictions(Phytoph_Projseven8.five) 

 

proj.Phytoph.seven4.five <- get_predictions(Phytoph_Projseven4.five) 

 

proj.Phytoph.five8.five <- get_predictions(Phytoph_Projfive8.five) 

 

proj.Phytoph.five4.five <- get_predictions(Phytoph_Projfive4.five) 

 

 

writeRaster(subset(proj.Phytoph.seven8.five, "species_PA1_Full_RF"), filename = 

"phytoph_7085.asc") 

 

writeRaster(subset(proj.Phytoph.seven4.five, "species_PA1_Full_RF"), filename = 

"phytoph_7045.asc") 

 

writeRaster(subset(proj.Phytoph.five8.five, "species_PA1_Full_RF"), filename = 

"phytoph_5085.asc") 

 

writeRaster(subset(proj.Phytoph.five4.five, "species_PA1_Full_RF"), filename = 

"phytoph_5045.asc") 

 

#Red Spruce 

Spruce_Projseven8.five <- BIOMOD_Projection(modeling.output = SpruceModelOut, 

                                          new.env = seven8.five_predictors, 

                                          proj.name = 'Spruce_7085', 

                                          selected.models = 'all', 

                                          binary.meth = 'TSS', 

                                          compress = 'xz', 

                                          clamping.mask = T, 

                                          output.format = '.img') 

 

Spruce_Projseven4.five <- BIOMOD_Projection(modeling.output = SpruceModelOut, 

                                          new.env = seven4.five_predictors, 

                                          proj.name = 'Spruce_7045', 

                                          selected.models = 'all', 

                                          binary.meth = 'TSS', 
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                                          compress = 'xz', 

                                          clamping.mask = T, 

                                          output.format = '.img') 

 

Spruce_Projfive8.five <- BIOMOD_Projection(modeling.output = SpruceModelOut, 

                                         new.env = five8.five_predictors, 

                                         proj.name = 'Spruce_5085', 

                                         selected.models = 'all', 

                                         binary.meth = 'TSS', 

                                         compress = 'xz', 

                                         clamping.mask = T, 

                                         output.format = '.img') 

 

Spruce_Projfive4.five <- BIOMOD_Projection(modeling.output = SpruceModelOut, 

                                         new.env = five4.five_predictors, 

                                         proj.name = 'Spruce_8045', 

                                         selected.models = 'all', 

                                         binary.meth = 'TSS', 

                                         compress = 'xz', 

                                         clamping.mask = T, 

                                         output.format = '.img') 

 

proj.Spruce.seven8.five <- get_predictions(Spruce_Projseven8.five) 

 

proj.Spruce.seven4.five <- get_predictions(Spruce_Projseven4.five) 

 

proj.Spruce.five8.five <- get_predictions(Spruce_Projfive8.five) 

 

proj.Spruce.five4.five <- get_predictions(Spruce_Projfive4.five) 

 

 

writeRaster(subset(proj.Spruce.seven8.five, "species_PA1_Full_RF"), filename = 

"spruce_7085.asc") 

 

writeRaster(subset(proj.Spruce.seven4.five, "species_PA1_Full_RF"), filename = 

"spruce_7045.asc") 

 

writeRaster(subset(proj.Spruce.five8.five, "species_PA1_Full_RF"), filename = 

"spruce_5085.asc") 
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writeRaster(subset(proj.Spruce.five4.five, "species_PA1_Full_RF"), filename = 

"spruce_5045.asc") 

 

#Rhododendron 

Rhodo_Projseven8.five <- BIOMOD_Projection(modeling.output = RhodoModelOut, 

                                          new.env = seven8.five_predictors, 

                                          proj.name = 'Rhodo_7085', 

                                          selected.models = 'all', 

                                          binary.meth = 'TSS', 

                                          compress = 'xz', 

                                          clamping.mask = T, 

                                          output.format = '.img') 

 

Rhodo_Projseven4.five <- BIOMOD_Projection(modeling.output = RhodoModelOut, 

                                          new.env = seven4.five_predictors, 

                                          proj.name = 'Rhodo_7045', 

                                          selected.models = 'all', 

                                          binary.meth = 'TSS', 

                                          compress = 'xz', 

                                          clamping.mask = T, 

                                          output.format = '.img') 

 

Rhodo_Projfive8.five <- BIOMOD_Projection(modeling.output = RhodoModelOut, 

                                         new.env = five8.five_predictors, 

                                         proj.name = 'Rhodo_5085', 

                                         selected.models = 'all', 

                                         binary.meth = 'TSS', 

                                         compress = 'xz', 

                                         clamping.mask = T, 

                                         output.format = '.img') 

 

Rhodo_Projfive4.five <- BIOMOD_Projection(modeling.output = RhodoModelOut, 

                                         new.env = five4.five_predictors, 

                                         proj.name = 'Rhodo_8045', 

                                         selected.models = 'all', 

                                         binary.meth = 'TSS', 

                                         compress = 'xz', 

                                         clamping.mask = T, 

                                         output.format = '.img') 
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proj.Rhodo.seven8.five <- get_predictions(Rhodo_Projseven8.five) 

 

proj.Rhodo.seven4.five <- get_predictions(Rhodo_Projseven4.five) 

 

proj.Rhodo.five8.five <- get_predictions(Rhodo_Projfive8.five) 

 

proj.Rhodo.five4.five <- get_predictions(Rhodo_Projfive4.five) 

 

 

writeRaster(subset(proj.Rhodo.seven8.five, "species_PA1_Full_RF"), filename = 

"rhodo_7085.asc") 

 

writeRaster(subset(proj.Rhodo.seven4.five, "species_PA1_Full_RF"), filename = 

"rhodo_7045.asc") 

 

writeRaster(subset(proj.Rhodo.five8.five, "species_PA1_Full_RF"), filename = 

"rhodo_5085.asc") 

 

writeRaster(subset(proj.Rhodo.five4.five, "species_PA1_Full_RF"), filename = 

"rhodo_5045.asc") 

 

#Fraser Fir 2.0 

FF_RF_vars_path <- file.path("C:\\Temp\\Thesis\\GBM_RF\\FF_vars\\RF") 

FF_RF_vars <- list.files(FF_RF_vars_path, pattern = 'asc$', full.names = TRUE) 

FF_RF_predictors <- stack(FF_RF_vars) 

 

FraserName <- "species"  

FraserXY <- Fraser_Train[,c("Longitude","Latitude")]  

RespFraser <- as.numeric(Fraser_Train[,FraserName]) 

 

FFseven8.five_vars_path <- file.path("E:\\ThesisTake2\\GBM_RF\\FF_7085") 

FFseven8.five_vars <- list.files(FFseven8.five_vars_path, pattern = 'asc$', full.names = TRUE) 

FFseven8.five_predictors <- stack(FFseven8.five_vars) 

 

FFseven4.five_vars_path <- file.path("E:\\ThesisTake2\\GBM_RF\\FF_7045") 

FFseven4.five_vars <- list.files(FFseven4.five_vars_path, pattern = 'asc$', full.names = TRUE) 

FFseven4.five_predictors <- stack(FFseven4.five_vars) 

 

FFfive8.five_vars_path <- file.path("E:\\ThesisTake2\\GBM_RF\\FF_5085") 

FFfive8.five_vars <- list.files(FFfive8.five_vars_path, pattern = 'asc$', full.names = TRUE) 
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FFfive8.five_predictors <- stack(FFfive8.five_vars) 

 

FFfive4.five_vars_path <- file.path("E:\\ThesisTake2\\GBM_RF\\FF_5045") 

FFfive4.five_vars <- list.files(FFfive4.five_vars_path, pattern = 'asc$', full.names = TRUE) 

FFfive4.five_predictors <- stack(FFfive4.five_vars) 

 

Fraser2_Projseven8.five <- BIOMOD_Projection(modeling.output = FF_RF_ModelOut, 

                                             new.env = FFseven8.five_predictors, 

                                             proj.name = 'FF2_7085', 

                                             selected.models = 'all', 

                                             binary.meth = 'TSS', 

                                             compress = 'xz', 

                                             clamping.mask = T, 

                                             output.format = '.img') 

 

Fraser2_Projseven4.five <- BIOMOD_Projection(modeling.output = FF_RF_ModelOut, 

                                             new.env = FFseven4.five_predictors, 

                                             proj.name = 'FF2_7045', 

                                             selected.models = 'all', 

                                             binary.meth = 'TSS', 

                                             compress = 'xz', 

                                             clamping.mask = T, 

                                             output.format = '.img') 

 

Fraser2_Projfive8.five <- BIOMOD_Projection(modeling.output = FF_RF_ModelOut, 

                                            new.env = FFfive8.five_predictors, 

                                            proj.name = 'FF2_5085', 

                                            selected.models = 'all', 

                                            binary.meth = 'TSS', 

                                            compress = 'xz', 

                                            clamping.mask = T, 

                                            output.format = '.img') 

 

Fraser2_Projfive4.five <- BIOMOD_Projection(modeling.output = FF_RF_ModelOut, 

                                            new.env = FFfive4.five_predictors, 

                                            proj.name = 'FF2_8045', 

                                            selected.models = 'all', 

                                            binary.meth = 'TSS', 

                                            compress = 'xz', 

                                            clamping.mask = T, 
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                                            output.format = '.img') 

 

proj.Fraser2.seven8.five <- get_predictions(Fraser2_Projseven8.five) 

 

proj.Fraser2.seven4.five <- get_predictions(Fraser2_Projseven4.five) 

 

proj.Fraser2.five8.five <- get_predictions(Fraser2_Projfive8.five) 

 

proj.Fraser2.five4.five <- get_predictions(Fraser2_Projfive4.five) 

 

 

writeRaster(subset(proj.Fraser2.seven8.five, "species_PA1_Full_RF"), filename = 

"fraser2_7085.asc") 

 

writeRaster(subset(proj.Fraser2.seven4.five, "species_PA1_Full_RF"), filename = 

"fraser2_7045.asc") 

 

writeRaster(subset(proj.Fraser2.five8.five, "species_PA1_Full_RF"), filename = 

"fraser2_5085.asc") 

 

writeRaster(subset(proj.Fraser2.five4.five, "species_PA1_Full_RF"), filename = 

"fraser2_5045.asc") 

 

#Red Spruce 2.0 

RS_RF_vars_path <- file.path("C:\\Temp\\Thesis\\GBM_RF\\RS_vars\\RF") 

RS_RF_vars <- list.files(RS_RF_vars_path, pattern = 'asc$', full.names = TRUE) 

RS_RF_predictors <- stack(RS_RF_vars) 

 

RSseven8.five_vars_path <- file.path("E:\\ThesisTake2\\GBM_RF\\RS_7085") 

RSseven8.five_vars <- list.files(RSseven8.five_vars_path, pattern = 'asc$', full.names = TRUE) 

RSseven8.five_predictors <- stack(RSseven8.five_vars) 

 

RSseven4.five_vars_path <- file.path("E:\\ThesisTake2\\GBM_RF\\RS_7045") 

RSseven4.five_vars <- list.files(RSseven4.five_vars_path, pattern = 'asc$', full.names = TRUE) 

RSseven4.five_predictors <- stack(RSseven4.five_vars) 

 

RSfive8.five_vars_path <- file.path("E:\\ThesisTake2\\GBM_RF\\RS_5085") 

RSfive8.five_vars <- list.files(RSfive8.five_vars_path, pattern = 'asc$', full.names = TRUE) 

RSfive8.five_predictors <- stack(RSfive8.five_vars) 
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RSfive4.five_vars_path <- file.path("E:\\ThesisTake2\\GBM_RF\\RS_5045") 

RSfive4.five_vars <- list.files(RSfive4.five_vars_path, pattern = 'asc$', full.names = TRUE) 

RSfive4.five_predictors <- stack(RSfive4.five_vars) 

 

Spruce2_Projseven8.five <- BIOMOD_Projection(modeling.output = RS_RF_ModelOut, 

                                            new.env = RSseven8.five_predictors, 

                                            proj.name = 'Spruce2_7085', 

                                            selected.models = 'all', 

                                            binary.meth = 'TSS', 

                                            compress = 'xz', 

                                            clamping.mask = T, 

                                            output.format = '.img') 

 

Spruce2_Projseven4.five <- BIOMOD_Projection(modeling.output = RS_RF_ModelOut, 

                                            new.env = RSseven4.five_predictors, 

                                            proj.name = 'Spruce2_7045', 

                                            selected.models = 'all', 

                                            binary.meth = 'TSS', 

                                            compress = 'xz', 

                                            clamping.mask = T, 

                                            output.format = '.img') 

 

Spruce2_Projfive8.five <- BIOMOD_Projection(modeling.output = RS_RF_ModelOut, 

                                           new.env = RSfive8.five_predictors, 

                                           proj.name = 'Spruce2_5085', 

                                           selected.models = 'all', 

                                           binary.meth = 'TSS', 

                                           compress = 'xz', 

                                           clamping.mask = T, 

                                           output.format = '.img') 

 

Spruce2_Projfive4.five <- BIOMOD_Projection(modeling.output = RS_RF_ModelOut, 

                                           new.env = RSfive4.five_predictors, 

                                           proj.name = 'Spruce2_8045', 

                                           selected.models = 'all', 

                                           binary.meth = 'TSS', 

                                           compress = 'xz', 

                                           clamping.mask = T, 

                                           output.format = '.img') 
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proj.Spruce2.seven8.five <- get_predictions(Spruce2_Projseven8.five) 

 

proj.Spruce2.seven4.five <- get_predictions(Spruce2_Projseven4.five) 

 

proj.Spruce2.five8.five <- get_predictions(Spruce2_Projfive8.five) 

 

proj.Spruce2.five4.five <- get_predictions(Spruce2_Projfive4.five) 

 

 

writeRaster(subset(proj.Spruce2.seven8.five, "species_PA1_Full_RF"), filename = 

"spruce2_7085.asc") 

 

writeRaster(subset(proj.Spruce2.seven4.five, "species_PA1_Full_RF"), filename = 

"spruce2_7045.asc") 

 

writeRaster(subset(proj.Spruce2.five8.five, "species_PA1_Full_RF"), filename = 

"spruce2_5085.asc") 

 

writeRaster(subset(proj.Spruce2.five4.five, "species_PA1_Full_RF"), filename = 

"spruce2_5045.asc") 
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