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ABSTRACT

Decomposition on Complete Mixed Graphs by Mixed Stars

by

Chancé Culver

In the study of mixed graphs, a common question is: What are the necessary and

sufficient conditions for the existence of a decomposition of the complete mixed graph

into isomorphic copies of a given mixed graph? Since the complete mixed graph

has twice as many arcs as edges, then an obvious necessary condition is that the

isomorphic copies have twice as many arcs as edges. We will prove necessary and

sufficient conditions for the existence of a decomposition of the complete mixed graphs

into mixed stars with two edges and four arcs. We also consider some special cases of

decompositions of the complete mixed graph into partially oriented stars with twice

as many arcs as edges. We employ difference methods in most of our constructions

when showing sufficiency.
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1 INTRODUCTION AND DEFINITIONS

An active area of mathematical research is the study of graph designs. This area

of mathematics predominately studies graph decompositions [4, 6] . We consider a

set of points, called vertices, as well as a relationship between pairs of vertices called

adjacency. The relationship between two vertices is categorized by either edges or

arcs. These concepts lead to graphs, digraphs, and mixed graphs. A graph, denoted

G, is a finite nonempty set of vertices denoted V (G), together with a set of unordered

pairs of distinct vertices called edges denoted E(G). For vertices u, v ∈ G, an edge

is denoted by [u, v] [5].

Note that in the definition of a graph G every two distinct vertices are joined by

either a single edge or no edge of G; these graphs are referred to as simple graphs.

For this, thesis we will be focusing on the decomposition of a simple mixed graph by

a simple mixed star. Note, that a simple graph contains no loops nor multi-edges.

Furthermore, given a finite nonempty set of all vertices in a graph G, we obtain a

directed graph denoted D by assigning a direction or orientation to each edge in G. A

directed graph’s structure is determined by a set of ordered pairs of distinct vertices

u, v ∈ D, that are called arcs. If a = (u, v) is an arc in the graph D, then the arc a

is said to be incident to v and incident from u.

A partial orientation of a digraph or a mixed graph is obtained from G by replacing

each edge [u, v] ∈ E(G) with either (u, v), (v, u), or [u, v] or some combination of

8



these. We restrict our attention here to partial orientations that contain twice as

many arcs as edges because we consider the decompositions of the complete mixed

graph on v vertices, denoted Mv, and Mv contains twice as many arcs as edges

(namely, n(n− 1) arcs and n(n− 1)/2 edges).

The degree denoted d(v) of vertex v is the number of vertices adjacent to v. The

edge [u, v] is said to be incident with vertex u and v [5].

Additionally, the complete symmetric directed graph is denoted as Dn of order n.

We have A(Dn) contains both ordered pairs (u, v) and (v, u) for every two distinct

vertices u, v ∈ V (D) [5]. This leads us to the definition of a mixed graph M , which

is an ordered triple (V (M), E(M), A(M)), where V (M) is a set whose elements are

called vertices, E(M) is a set disjoint from V (M) whose elements are called edges,

and A(M) is a set disjoint from both V (M) and E(M), whose elements are called

arcs and are ordered pairs of, not necessarily different, vertices u and v.

Similarly, the complete mixed graph on n vertices, denoted Mn, is the digraph

where |V (Mn)| = n, E(Mn) = {[u, v] | u, v ∈ V (Mn), u 6= v}, and A(Mn) =

{(u, v), (v, u) | u, v ∈ V (Mn), u 6= v} [3]. An example of a complete mixed graph

is shown in Figure 1. The converse of a mixed graph M or directed graph D is

obtained by reversing the direction of every arc of M or D. Note, if a = (u, v)

is an arc of a digraph D, or mixed graph M , then u is said to be adjacent to v

and v is adjacent from u. In both directed as well as mixed graphs, a vertex has

out-degree of od(u) = |{(u,w) ∈ A(G) | w ∈ V (G)}|. This then refers to the num-
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ber of vertices of either a directed or mixed graph that are adjacent from vertex u

in the graph. Each vertex in a directed or mixed graph also has an in-degree of

id(u) = |{(w, u) ∈ A(G) | w ∈ V (G)}|. This refers to the number of vertices of either

a directed or mixed graph that are adjacent to vertex u in the graph.

We will be focusing predominately on complete mixed graphs. The edge degree

denoted as d(u) of the vertex u in a mixed graph is the d(u) = |{[u, v] ∈ E(M) |

v ∈ V (M), u 6= v}|. The total degree of vertex u is determined by the sum: od(u) +

id(u) + d(u) [2].

Figure 1: Complete mixed graph on 5 vertices

A decomposition D of a graph G is a collection of {H1, H2, ..., Ht} of nonempty

subgraphs called blocks, such that V (Hi) ⊂ V (G) for all i = 1, 2, ..., t, and

·
t⋃

i=1

E(Hi) = E(G),

10



where ·
⋃

represents a disjoint union. By convention we require that no subgraph Hi

in a decomposition of G contains any isolated vertex. If D is a decomposition of G,

then we say G is decomposed into the subgraphs H1, H2, H3, ..., Ht. Furthermore, an

automorphism of a graph G is an isomorphism from G to itself. Thus, an automor-

phism of G is a permutation π : V (G) that preserves adjacency, and non-adjacency.

Of course, the identity function ι on V (G) is an automorphism of G. The inverse of

an automorphism of G is also an automorphism of G, as is the composition of two

automorphisms of G [5].

Now, if D is a decomposition of a graph G where each subgraph Hi is a spanning

subgraph of G, then {H1, H2, ..., Ht} is a factorization of G. However, every factoriza-

tion of a nonempty graph G is also a decomposition of G [5]. Furthermore, an isomor-

phic decomposition of a graph G is a decomposition D = {H1, H2, . . . , Hi} where each

subgraph Hi is isomorphic to some subgraph H of G [5]. We call such an isomorphic

decomposition an “H-decomposition of G.” We similarly define H-decompositions of

directed graphs D where H is a sub-digraph of D, and H-decompositions of mixed

graph M where H is a sub-mixed graph of M .

Now, in anH-decomposition of a graph, digraph, or mixed graph, D = {H1, H2, . . . ,

Hi}, each Hi is called a block of the decomposition. A graph is a star if it is isomor-

phic to the complete bipartite graph K1,n. A graph is a complete bipartite graph if

V (G) can be partitioned into two sets U and W , so that [u,w] ∈ E(G) if and only if

u ∈ U and w ∈ W [5]. We denote a star as Sn = K1,n. The vertex of Sn of degree n is

11



the center of the star and the remaining vertices make up the corona of the star. We

will consider partial orientations of the star S3k. We denote the partial orientation

of S3k in which the center has in-degree i and out-degree 2k − i where 0 ≤ i ≤ 2k as

Si
3k. We consider such partial orientations since we consider the Si

3k-decompositions

of complete mixed graph Mv and Mv has twice as many arcs as edges.[9]
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2 HISTORY OF TRIPLE SYSTEMS

To motivate the topic of this thesis, we now state results concerning decompo-

sitions of complete graphs, digraphs and mixed graphs. In each case, we consider

isomorphic decompositions based on either 3-cycles, orientations of 3-cycles, or par-

tial orientations of 3-cycles.

2.1 3-cycles

A cycle is a graph of order n and size n whose vertices can be labeled by v1, v2, ..., vn

and whose edges are v1vn and vivi+1 for i = 1, 2, ..., n − 1 [5]. A representation of a

3− cycle is given in Figure 2.

u u

u

�
�
�
�
��

A
A
A
A
AA

b c

a

Figure 2: A representation of the 3− cycle with edge set {[a, b], [b, c], [a, c]}

A graph, or digraph, decomposition into isomorphic copies of a graph, respectively

directed graph, on three vertices is referred to as a triple system [5].
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2.2 Steiner Triple Systems

An early result deals with the decomposition of complete graphs into three cycles,

which are called Steiner Triple Systems. A Steiner Triple System of order v, denoted

STS(v), corresponds to a K3-decomposition of Kv. This consists of a set S of v

elements and a collection T of 3-elements subsets of S, called triples, such that every

pair of elements of S belongs to exactly one triple in T [5]. Furthermore, Steiner triple

systems are named after the Swiss mathematician Jacob Steiner [13]. The original

conjecture was to determine the integers v such that a triple system of order v exists.

However, Jacob Steiner was not the first person to propose this conjecture. The

conjecture was first proposed by Reverend Wesley S. B. Woolhouse. The conjecture

was published and answered by Reverend Thomas P. Kirkman in 1847. Kirkman

proved the following [11].

Theorem 2.1 [11] There exists a Steiner triple system of order v if and only if

v ≡ 1 or 3 (mod 6).

2.3 Mendelsohn Triple Systems

In 1973 Nathan S. Mendelsohn considered triple systems based on digraphs. He

noted that there are two orientations of a 3-cycle [12]. A representation of the two

orientations of a 3-cycle is given in Figure 3. In 1973 Mendelsohn produced the

following result. A decomposition of the complete digraph on v vertices into 3-circuits

is called a Mendelsohn triple system of order v. A decomposition of the complete

14



u u

u

�

A
A
A
A
AAU�

�
�
�
���

b c

a

3− circuit
u u

u

-�
�
�
�
���
A
A
A
A
AAUb c

a

Transitive Triple

Figure 3: A representation of a 3-circuit and a transitive triple with arc sets

{(a, c), (c, b), (b, a)} and {(a, c), (b, c), (b, a)} respectively.

digraph on v vertices into transitive triples is called a directed triple system of order

v.

Theorem 2.2 [12] A Mendelsohn triple system of order v exists if and only if v ≡

0 or 1 (mod 3), v 6= 6.

Theorem 2.3 [10] A directed triple system of order v exists if and only if v ≡

0 or 1 (mod 3), v 6= 6.

Note, that a λ − fold complete directed graph on v vertices, denoted λDv, is a

directed multi-graph where, for every pair of distinct vertices u, v ∈ V (Dv) contains

λ copies of {(u, v), (v, u)} ⊂ C [12]. In 1986 Hartman and Mendelsohn considered the

decomposition of the λ−fold complete directed graph λDv into every possible simple

digraph on three vertices in a paper called “The Last of the Triples Systems” [7].

However, in 1999 the idea of triple systems was extended to include decompositions

of the complete mixed graph, denoted Mv [8].

15



2.4 Mixed Triples Systems

Mixed triple systems were defined and necessary and sufficient conditions for their

existence was given in [8]. These triangle systems are based on the three partial

orientations of a 3 − cycle which contain twice as many arcs as edges as shown in

Figure 4.

u u

u

�
�
�
�
���

A
A
A
A
AAK

b c

a

T2

u u

u

�
�
�
�
���
A
A
A
A
AAUb c

a

T3

u u

u
�
�
�
�
���

A
A
A
A
AAUb c

a

T1

Figure 4: A representation of the mixed triples with E(T1) = E(T2) = E(T3) =

{[b, c]}, A(T1) = {(a, c), (a, b)}, A(T2) = {(c, a), (b, a)}, and A(T3) = {(b, a), (a, c)}.

A Ti− triple system of order v is a Ti− decomposition of Mv. We then have the

following results [8].

Theorem 2.4 [8] A T1−triple system of order v exists if and only if v ≡ 1 (mod 2)

Theorem 2.5 [8] A T2−triple system of order v exists if and only if v ≡ 1 (mod 2).

And finally,

Theorem 2.6 [8] A T3− triple systems of order v exists if and only if v ≡ 1 (mod 2), v /∈

{3, 5}.
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Now we will move on to the main topic of this thesis, dealing with the decompo-

sition of mixed graphs by partial oriented mixed stars.
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3 DECOMPOSITION INVOLVING PARTIAL ORIENTATIONS OF Si
3k

In this chapter, we give the main results of this thesis. We give the necessary and

sufficient conditions for the existence of Si
6− decompositions of the complete mixed

graph Mv for each partial orientation of the star S6, where the center has in-degree i

and out-degree 4− i.

3.1 Introduction

An automorphism of a graph, digraph, or mixed graph decomposition D = {H1, H2,

. . . , Ht} of graph, digraph, or mixed graph G is a permutation π of V (G) such that

π(Hi) ∈ D for all i = 1, 2, . . . , t. A cyclic decomposition is one admitting an au-

tomorphism consisting of a single cycle of length |V (G)|. A rotational decomposi-

tion is one admitting an automorphism consisting of a cycle of length |V (G)| − 1

and a single fixed point. When dealing with cyclic decompositions of G, we take

V (G) = {0, 1, 2, . . . , v − 1} where v = |V (G)|, and where π(i) = i + 1 (mod v)

for each i ∈ V (G). When dealing with a rotational decomposition of G, we take

V (G) = {∞, 0, 1, 2, . . . , v − 2} where v = |V (G)|, and where π(∞) = ∞ and

π(i) = i + 1 (mod v − 1) for each i ∈ V (G)\{∞}. Since there are 3k + 1 vertices

in a Si
3k star and the star is simple, then there are 2k+ 1 possible partial orientations

of the A(Si
3k) with twice as many arcs as edges (up to isomorphism). Furthermore,

an example of the partial orientations of a Si
3k where k = 1 is shown in Figure 5.

18
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S1
3 = [a, d; b, c]13
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6
a

b
c

d

S2
3 = [a, d; b, c]23
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u

u
�
�
�
�
��� ?

A
A
A
A
AA

a

b
c

d

S0
3 = [a, d; b, c]03

Figure 5: Mixed Si
3 = [a, b; c, d]i3.

Note that S0
3 and S2

3 are converses of each other, and note that S1
3 is self converse.

Also, S0
3k and S2k

3k are converses of each other and Sk
3k is self-converse. Hence, there

are k + 1 partial-orientations up to isomorphism of Si
3k with twice as many arcs as

edges. The first encounter with a decomposition of Mv by partially oriented stars was

published in 2009, and gave the existence of a decomposition of Mv and the decom-

position of λMv by a partially oriented 3-star [1]. Recall that the λ− fold complete

mixed graph on v vertices, denoted λMv, is a mixed multi-graph where, for every pair

of distinct vertices u, v ∈ V (Mv), λMv, contains λ copies of {(u, v), (v, u), [u, v]} [1].

We have the following [1],

Theorem 3.1 [1] There exists a S1
3 or S2

3 decomposition of λMv if and only if λ(v−

1) ≡ 0 (mod 2) and v ≥ 4.

Theorem 3.2 [1] There exists a S3
3-decomposition of λMv if and only if v ≥ 4 except

when (λ, v) = (2k + 1, 4).

Now, we will give the necessary and sufficient conditions for the existence of a

decomposition of a Mv into partially oriented Si
6 where i = 0, 1, 2, 3, 4.
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There are 5 partial orientations including converses of Si
6 as shown in Figure 6.

We let [a, b, c; d, e, f, g]i6 denote Si
6 with V (G) = {a, b, c, d, e, f, g}, and the edge and

arc sets as illustrated in Figure 6.
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6 = [a, b, c; d, e, f, g]16

u
u

u

u

u

u

u
@
@
@

�
�
�

6

@
@
@I

6

�
�
��

a

b

c

d

e

f
g

S2
6 = [a, b, c; d, e, f, g]26

u
u

u

u

u

u

u
�
�
�

@
@
@

6

�
�
��

@
@
@R

6
a

b

c
d

e

f
g

S3
6 = [a, b, c; d, e, f, g]36
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S4
6 = [a, b, c; d, e, f, g]46

Figure 6: The representations of the five partial orientations of Si
6 with twice as many

arcs as edges.

Notice that S0
6 and S4

6 are converses of each other, S1
6 and S3

6 are converses of each

other, and S2
6 is self-converse.
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3.2 Si
6 decomposition results

Our technique of construction is based on the idea of difference methods. In a

cyclic decomposition of G, we take V (G) = {0, 1, 2, . . . , v − 1} where v = |V (G)|

(as described above). We associate the arc difference b − a (mod v) with arc (a, b)

and we associate the edge difference min{(b− a(mod v), (a− b)(mod v))} with edge

[a, b]. Notice that if we have an arc or edge in a particular copy of some Hi in the

decomposition with some associated difference, then the orbit of Hi (that is, the

image of Hi under the powers of the cyclic permutation) will include all edges or

arcs of G that have that same associated difference. This allows us to address the

existence question (sometimes, at least) by partitioning up the sets of distinct edge

differences and arc differences. In this cyclic case, notice that the set of arc differences

is {0, 1, 2, . . . , v − 1} and the set of edge differences is {0, 1, 2, ..., bv−1
2
c}.

In a rotational decomposition of G, we take V (G) = {∞, 0, 1, 2, . . . , v − 2} where

v = |V (G)| (as described above), we associate the arc differences (b− a) (mod v− 1)

with arc (a, b), and we associate the edge difference min{(b − a) (mod v − 1), (a −

b) (mod v)} with edge [a, b]. As with cyclic decomposition, we devise to partition the

sets of edge differences and arc differences in such a way that all arcs or edges associ-

ated with a particular difference are generated by some smaller set of special blocks

called base blocks with respect to the permutation. In the case of a rotational decom-

position, we also might address edges of the forms [a,∞] where a ∈ {0, 1, 2, . . . , v−2}

and arcs of the form (a,∞) and (∞, a) where a, b ∈ {0, 1, . . . , v − 2}. We will now
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proceed with preliminary lemmas before the presentation of the constructions. Let

us begin with the necessary conditions for S0
6 − decomposition, S4

6 − decomposition,

S1
6 − decomposition, S3

6 − decomposition, and S2
6 -decomposition of Mv.

Lemma 3.3 A necessary condition for the existence of a S0
6− decomposition of Mv is

that v ≡ 0 (mod 4). This condition is also necessary for the existence of the converse

S4
6- decomposition of Mv.

Proof. Note that every vertex of S0
6 is of out-degree four. Note that every vertex in

Mv is of out-degree v − 1. Therefore, if a S0
6−decomposition of Mv exists, then it is

necessary that v − 1 ≡ 0 (mod 4), or v ≡ 1 (mod 4). A similar argument shows that

this is also a necessary condition for the existence of a S4
6 -decomposition of Mv since

S4
6 is the converse of S0

6 . �

Lemma 3.4 If v ≡ 1(mod 4) and v ≥ 9, then there exists a S0
6−decomposition, and

there exists a S4
6-decomposition of Mv.

Proof. Let v = 4k+ 1 where k ≥ 2, and let the vertex set of Mv be {0, 1, 2, . . . , 4k}.

Consider the set of copies of S0
6 :

B = {[0, 4k − 1, 4k; 1, 2, 3, 4]06}∪

{[0, 3 + 2j, 4 + 2j; 5 + 4j, 6 + 4j, 7 + 4j, 8 + 4j]06 | j = 0, 1, ..., k − 4}.

The copies of S0
6 , along with their images under the powers of the permutation

(0, 1, 2, . . . , 4k), form a S0
6 -decomposition of Mv where v = 4k + 1, as claimed. Fur-
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thermore, since S4
6 is the converse of S0

6 , we have that there is also a S4
6 -decomposition

of Mv where v = 4k + 1. �

To confirm that the set of base blocks given in Lemma 3.4 do in fact form a

decomposition of Mv, we need to make sure that set B has arcs and edges that

correspond to each edge difference and each arc difference modulo v = 4k+ 1. Notice

that the blocks include the edge and arc differences shown in Table 1.

Table 1: The edge and arc difference of Lemma 3.4.

So all edge differences modulo 4k+ 1, namely edge differences 1, 2, . . . , 2k, and all arc

differences modulo 4k+1, namely 1, 2, . . . , 4k, are present exactly once, justifying the

construction.

Now, by Lemma 3.3, and Lemma 3.4, we obtain the following theorem.

Theorem 3.5 A S0
6−decomposition and a S4

6− decomposition of Mv exists if and

only if v ≡ 1 (mod 4) and v ≥ 9.

We now address, the existence of a S1
6− decomposition, S2

6−decomposition, and

S3
6− decompositions of Mv. We start with a necessary condition.
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Lemma 3.6 A Si
6-decomposition where i ∈ {1, 2, 3} of Mv does not exist when v ≡

2 or 3 (mod 4).

Proof. Let v = 4k+3 where k ≥ 2, and let the vertex set of Mv be {0, 1, 2, . . . , 4k+2}.

Consider the set of copies of Si
6 where i = {1, 2, 3}. However, graph Mv contains

(4k + 3)(4k + 2) arcs. Therefore, the number of arcs in Mv satisfies

(4k + 3)(4k + 2) = 16k2 + 20k + 6 ≡ 2 (mod 4).

However, Si
6 has 4 arcs. Thus, in an Si

6− decomposition of Mv we need |A(Mv)| ≡

0 (mod 4). However, we see that (4k+ 3)(4k+ 2) 6≡ 0 (mod 4). Hence, there does not

exist a set of blocks of Si
6 that decomposes M4k+3. Similarly, we see that (4k+2)(4k+

1) 6≡ 0 (mod 4). Thus, there does not exist a set of blocks of Si
6 that decomposes

M4k+2.�

Lemma 3.7 Neither a S1
6−decomposition, S2

6−decomposition, S3
6−decomposition of

Mv exists when v = 8.

Proof. Let v = 8, and let the vertex set of Mv be {0, 1, 2, . . . , 7}. Now, note that M8

has
(8
2

)
= 28 edges; and a Si

6 where i = 1, 2, 3 has two edges in an Si
6-decomposition

of M8. Then there are 28/2 = 14 copies of Si
6 in such a decomposition. Note, that

by definition, two vertices are incident with an edge if and only if either a or b is

the center of Si
6. Now, for any pair of disjoint vertices a and b of M8 to get edge

[a, b], arc (a, b), and arc (b, a), we need the sum of the number of times vertex a and

24



the number of times vertex b is the center of a copy of Si
6 to be at least 3. However,

for M8 we have that there are 8 vertices and 14 copies of Si
6 in a decomposition.

This implies that each vertex cannot be the center twice (since this would require a

minimum of 16 blocks). Therefore, at least two vertices cannot be the center of Si
6

more than once. Therefore, no such Si
6− decomposition of M8 exists.�

Lemma 3.8 A S1
6−decomposition and a S3

6−decomposition of Mv exist when v ≡

0 (mod 4), v ≥ 12.

Proof. Let v = 4k where k ≥ 3, and let the vertex set ofMv be {0, 1, 2, . . . , 4k−2,∞}.

Consider the set of copies of S1
6 :

B = {[0,∞, 1; 4k − 2, 2, 3, 4]16, [0, 2, 3;∞, 5, 6, 7]16, [0, 4, 5; 1, 8, 9,∞]16}

∪{[0, 6 + j, 2k − 1− j; 2 + 4j, 10 + 4j, 11 + 4j, 12 + 4j]16 | j = 0, 1, ..., k − 4}.

The copies of S1
6 , along with their images under the powers of the permutation

(∞)(0, 1, 2, . . . , 4k− 2), form a S1
6 -decomposition of Mv where v = 4k, as claimed. �

To confirm that the set of base blocks given in Lemma 3.8 do in fact form a

decomposition of Mv, we need to make sure that set B has arcs and edges that

correspond to each edge difference and each arc difference modulo v = 4k − 1, along

with an edge of the form [a,∞], and arcs of the form (∞, b) and (c,∞) for some

a, b, c ∈ {0, 1, 2, . . . , 4k − 1}. Notice that:
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• [0,∞, 1; 4k−2, 2, 3, 4]16 contains an edge of the form [a,∞] where a ∈ {0, 1, . . . , 4k−

2},

• [0, 2, 3;∞, 5, 6, 7]16 contains an arc of the form (∞, b) where b ∈ {0, 1, . . . , 4k − 2},

and

• [0, 4, 5; 1, 8, 9,∞]16 contains an arc of the form (c,∞) where c ∈ {0, 1, . . . , 4k − 2}.

Notice that the blocks include the edge and arc differences shown in Table 2.

Table 2: The edge and arc differences of Lemma 3.8.

So all edge differences modulo 4k − 1, namely 1, 2, . . . , 2k − 1, and all arc differ-

ences module 4k − 1, namely 1, 2, . . . , 4k − 2, are present exactly once, justifying the

construction.
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Lemma 3.9 A S1
6−decomposition, S3

6−decomposition of Mv exists when v ≡ 1 (mod 4

), v ≥ 9.

Proof. Let v = 4k + 1 where k ≥ 2, and let the vertex set of Mv be {0, 1, 2, ..., 4k}.

Consider the set of copies of S1
6

B = {[0, 1, 4k − 1; 4k, 2, 3, 4]16}

∪{[0, 3 + 2j, 4 + 2j; 1 + j, 5 + 3j, 6 + 3j, 7 + 3j]16 | j = 0, 1, ..., k − 2}.

The copies of S1
6 along with their images under the powers of the permutation

(0, 1, 2, ..., 4k − 1). Form a S1
6 decomposition of Mv where v = 4k, as claimed.

�

To confirm that the set of base blocks given in Lemma 3.9 do in fact form a

decomposition of Mv, we need to make sure that set B has arcs and edges that

correspond to each edge difference and each arc difference modulo v = 4k+ 1. Notice

that the blocks include the edge and arc differences shown in Table 3.

Table 3: The edge and arc differences of Lemma 3.9.

So all edge differences modulo 4k+1, namely 1, 2, . . . , 2k, and all arc differences mod-
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ulo 4k + 1, namely 1, 2, . . . , 4k, are present exactly once, justifying the construction.

By Lemma 3.6, Lemma 3.7, Lemma 3.8, and Lemma 3.9 we have the following

theorem.

Theorem 3.10 A S1
6−decomposition, S3

6−decomposition of Mv exists if and only if

v ≡ 0, or 1 (mod 4) and v ≥ 9.

Finally, we will address S2
6−decompositions of Mv. We start with a special case.

Lemma 3.11 A S2
6-decomposition of Mv exists when v = 12.

Proof. Let v = 12, and let the vertex set of M12 be {0, 1, 2, . . . , 10,∞}. Consider

the set of copies of S2
6 :

B = {[0,∞, 1; 10, 2, 3, 4]26, [0, 2, 3;∞, 1, 5, 6]26, [0, 4, 5; 3, 9, 7,∞]26}.

The copies of S2
6 , along with their images under the powers of the permutation

(∞)(0, 1, 2, . . . , 10), form a S2
6 -decomposition of Mv where v = 12, as claimed. �

Lemma 3.12 A S2
6-decomposition of Mv exists when v ≡ 0 (mod 4), v ≥ 16.

Proof. Let v = 4k where k ≥ 4, and let the vertex set ofMv be {0, 1, 2, . . . , 4k−2,∞}.

Consider the set of copies of S2
6 :

B = {[0,∞, 1; 4k − 2, 2, 3, 4]26, [0, 2, 3;∞, 1, 5, 6]26, [0, 4, 5; 7, 8, 2,∞]26}

∪{[0, 6 + 2j, 7 + 2j; 4k − 6− 4j, 4k − 5− 4j, 9 + 4j, 12 + 4j]26 | j = 0, 1, ..., k − 4}.
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The copies of S2
6 , along with their images under the powers of the permutation

(∞)(0, 1, 2, . . . , 4k− 2), form a S2
6 -decomposition of Mv where v = 4k, as claimed. �

To confirm that the set of base blocks given in Lemma 3.12 do in fact form a

decomposition of Mv, we need to make sure that set B has arcs and edges that

correspond to each edge difference and each arc difference modulo v = 4k − 1, along

with an edge of the form [a,∞], and arcs of the forms (∞, b) and (c,∞) for some

a, b, c ∈ {0, 1, 2, . . . , 4k − 1}. Notice that:

• [0,∞, 1; 4k−2, 2, 3, 4]26 contains an edge of the form [a,∞] where a ∈ {0, 1, . . . , 4k−

2},

• [0, 2, 3;∞, 1, 5, 6]26 contains an arc of the form (∞, b) where b ∈ {0, 1, . . . , 4k − 2},

and

• [0, 4, 5; 7, 8, 2,∞]26 contains an arc of the form (c,∞) where c ∈ {0, 1, . . . , 4k − 2}.

Notice that the blocks include the edge and arc differences shown in Table 4.

Table 4: The edge and arc differences of Lemma 3.12.
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So all edge differences modulo 4k − 1, namely 1, 2, . . . , 2k − 1, and all arc differ-

ences modulo 4k− 1, namely 1, 2, . . . , 4k− 2, are present exactly once, justifying the

construction.

Lemma 3.13 A S2
6-decomposition of Mv exists when v ≡ 1 (mod 4), v ≥ 9.

Proof. Let v = 4k + 1, where k ≥ 2, and let the vertex set Mv be {0, 1, ..., 4k}. Let

us consider the set of copies of S2
6

B = {[0, 4k − 1, 4k; 2, 3, 1, 4]26}

∪{[0, 3 + 2j, 4 + 2j; 6 + 4j, 7 + 4j, 5 + 4j, 8 + 4j]26 | j = 0, 1, ..., k − 2}.

The copies of S2
6 along with their images under the powers of the permutation

(0, 1, 2, 3, ..., 4k), form a S2
6 decomposition of Mv where v = 4k + 1, as claimed.

�

To confirm that the set of base blocks given in Lemma 3.13 do in fact form a

decomposition of Mv, we need to make sure that set B has arcs and edges that

correspond to each edge difference and each arc difference modulo v = 4k+ 1. Notice

that the blocks include the edge and arc differences shown in Table 5.

Table 5: The edge and arc differences of Lemma 3.13.
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So all edge differences modulo 4k+1, namely 1, 2, . . . , 2k, and all arc differences mod-

ulo 4k + 1, namely 1, 2, . . . , 4k, are present exactly once, justifying the construction.

Then by Lemma 3.11, Lemma 3.12, and Lemma 3.13 we obtain the following theorem.

Theorem 3.14 A S2
6 decomposition of Mv exists if and only if

v ≡ 0 or 1 (mod 4), and v ≥ 9.

In conclusion, by Theorem 3.5, Theorem 3.10, and Theorem 3.14, we have the main

result of this thesis.

Theorem 3.15 A Si
6 decomposition of Mv exists

• for i = 0 or 4 if and only if v ≡ 1 (mod 4), and v ≥ 9.

• for i = 1 or 3 if and only if v ≡ 0, 1, (mod 4), and v ≥ 9.

• for i = 2 if and only if v ≡ 0, 1 (mod 4), and v ≥ 9.
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4 Si
3k DECOMPOSITIONS

We now give a few results concerning Si
3k− decompositions of Mv for k > 2.

4.1 Introduction

We now explore a few additional results concerning Si
3k−decomposition of Mv

where Si
3k is a partial orientation of S3k where the center has edge degree k, in-degree

i, and out-degree 2k − i (as defined in Chapter 1). We use the notation

Si
3k = [c, e1, e2, . . . , ek; a1, a2, . . . , ai, ai+1, . . . , a2k]i3k

for the partial orientation of Si
3k with edge set E(Si

3k) = {[c, e1], [c, e2], . . . , [c, ek]}

and arc set A(Si
3k) = {(c, a1), (c, a2), . . . , (c, ai), (ai+1, c), (ai+2, c), . . . , (a3k, c)}, where

i ∈ {0, 1, 2, . . . , 2k}, shown in Figure 7.

Figure 7: The representation we use for the partial orientation of Si
3k
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Similarly, as in Chapter 3 there are k+ 1 partial orientations of S3k with twice as

many arcs as edges; namely Si
3k for i = [0, 1, . . . , 2k]. Now, we will give the sufficient

conditions for the existence of a decomposition of a Mv into some partial oriented Si
3k

where k ≥ 2.

4.2 Si
3k− decomposition results

Our first result is as follows.

Theorem 4.1 There exists a S0
3k− decomposition of Mv when v = 4k + 1.

Proof. Lets denote a Si
3k as [v0, v1, v2, . . . , vk; vk+1, vk+2, . . . , v3k] where the edges set

is E(Mv) = [v0, v1], [v0, v2], . . . , [v0, vk] and the arcs set is A(Mv) = (v0, vk+1), (v0, vk+2)

, . . . , (v0, v3k). Therefore, let the vertex set V (M4k+1) = {0, 1, 2, . . . , 4k}. Consider

the set of copies of S0
3k:

B = {[0, 4k, 4k − 1, . . . , 3k + 1; 1, 2, 3, . . . , 2k]03k}∪

{[0, 2k, 2k − 1, . . . , k + 1; 2k + 1, 2k + 2, . . . , 4k]03k}.

The copies of S0
3k, along with their images under the powers of the permutation

(0, 1, 2, . . . , 4k), form a S0
3k-decomposition of Mv where v = 4k + 1, as claimed.

Furthermore, since S2k
3k is the converse of S0

3k we have that there is also a S2k
3k -

decomposition of Mv where v = 4k + 1. �

To confirm that the set of base blocks given in the Theorem 4.1 do in fact form

a decomposition of Mv, we need to make sure that set B has arcs and edges that
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correspond to each edge difference and each arc difference modulo v = 4k + 1, since

we have fixed a point. Notice that: the blocks include the edge and arc differences

shown in Table 6.

Table 6: The edge and arc difference of Theorem 4.1
Base Block Edge Differences Arc Differences

[0, 4k, 4k − 1, . . . , 3k + 1; 1, 2, 3, . . . , 2k]03k 1, 2, . . . , k 1, 2, . . . , 2k

[0, 2k, 2k − 1, . . . , k + 1; 2k + 1, 2k + 2, . . . , 4k]03k k + 1, k + 2, . . . , 2k 2k + 1, 2k + 2, . . . , 4k.

So all edge differences modulo 4k+ 1, namely edge differences 1, 2, . . . , 2k, and all arc

differences modulo 4k, namely 1, 2, . . . , 4k, are present exactly once, justifying the

construction.

Corollary 4.2 There exists a Si
3k− decomposition of Mv when v = 4k + 1 for each

i = 0, 1, 2, . . . , 2k.

Proof Note, given the set B from Theorem 4.1, we have

B = {[0, 4k, 4k − 1, . . . , 3k + 1; 1, 2, . . . , 2k]03k}

∪{[0, 2k, 2k − 1, . . . , k + 1; 2k + 1, 2k + 2, ..., 4k]03k}

as shown in the construction above the edge differences generated by base block one

{[0, 4k, 4k − 1, . . . , 3k + 1; 1, 2, . . . , 2k]03k} are −1,−2, . . . ,−k ≡ 1, 2, . . . , k. The edge

differences generated by base block two {[0, 2k, 2k−1, . . . , k+1; 2k+1, 2k+2, ..., 4k]03k}
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are k+ 1, k+ 2, . . . , 2k. Therefore, as we seen in Theorem 4.1 no edges are generated

twice. Now, we focus on the arc difference. The arc differences generated by base

block 1, are 1, 2, . . . , 2k, and the arc differences generated by base block 2 are −(2k+

1),−(2k + 2), . . . ,−(4k) ≡ 2k + 1, 2k + 2, . . . , 4k. Since the arc differences in block

two are the negatives of block one. We can the reverse each pair (1, 2k + 1), (2, 2k +

2), . . . , (2k, 4k) to generate the remaining Si
3k− decompositions of the M4k+1 for all

i = {0, 1, 2, . . . , 2k}. Namely, an Si
3k−decomposition of Mv where v = 4k + 1 is given

is given by considering the set of copies of Si
3k whose base set:

B = {[0, 4k, 4k − 1, . . . , 3k + 1; 1, 2, 3, . . . , 2k]i3k}∪

{[0, 2k, 2k − 1, . . . , k + 1; 2k + 1, 2k + 2, . . . , 4k]i3k}.

The copies of Si
3k, along with their images under the powers of the permutation

(0, 1, 2, . . . , 4k), form a Si
3k-decomposition of Mv where v = 4k + 1, as claimed. �

Theorem 4.3 There exists a Si
6k+3− decomposition of Mv when v = 12k+ 7 and for

each i = 0, 2, . . . , 4k + 2

Proof Let us denote a Si
6k+3 as [v0, v1, v2, . . . , v2k+1; v2k+2, v2k+3, . . . , v4k+2] where

the edges set is E(Mv) = {[v0, v1], [v0, v2], . . . , [v0, v2k+1]} and the arcs set is A(Mv) =

{(v0, v2k+2), (v0, v2k+3), . . . , (v0, v4k+2)}, and vertex set V (M12k+7) = {0, 1, 2, . . . , 12k+

6}. Consider the set of copies of Si
6k+3:

B = {[0, 12k+6, 12k+5, . . . , 10k+6; 1, 2, 3, . . . , 4k+2]i6k+3, [0, 8k+4, 8k+3, . . . , 6k+4;
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8k+5, 8k+6, . . . , 12k+6]i6k+3}, [0, 10k+5, 10k+4, . . . 8k+5; 4k+3, 4k+4, . . . , 8k+4]i6k+3.

The copies of Si
6k+3, along with their images under the powers of the permutation

(0, 1, 2, . . . , 12k+6), form a Si
6k+3-decomposition of Mv where v = 12k+7, as claimed.

Furthermore, since S4k+2
6k+3 is the converse of S0

6k+3, we have that there is also a Si
6k+3-

decomposition of Mv where v = 12k + 7. �

To confirm that the set of base blocks given in Theorem 4.3 do in fact form a

decomposition of Mv, we need to make sure that set B has arcs and edges that

correspond to each edge difference and each arc difference modulo v = 12k + 7.

Notice that the blocks include the edge and arc differences shown in Table 7.

Table 7: The edge and arc differences of Lemma 4.3.

So all edge differences modulo 12k + 7, namely edge differences 1, 2, . . . , 6k + 3, and

all arc differences modulo 12k+ 6, namely 1, 2, . . . , 12k+ 6, are present exactly once,

justifying the construction.

Corollary 4.4 There exists a Si
6k+3− decomposition of Mv when v = 12k + 7 for

each i = 0, 2, 4, . . . , 4k + 2.
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Proof Note, given the set B from Theorem 4.3, we have

B = {[0, 12k + 6, 12k + 5, . . . , 10k + 6; 1, 2, 3, . . . , 4k + 2]06k+3,

[0, 10k + 5, 10k + 4, . . . 8k + 5; 4k + 3, 4k + 4, . . . , 8k + 4]06k+3,

[0, 8k + 4, 8k + 3, . . . , 6k + 4; 8k + 5, 8k + 6, . . . , 12k + 6]06k+3}.

As we see from Theorem 4.3, the edge differences do not interfere with each other.

Now we want to see if by changing i will the arc differences interfere with the con-

struction. Base block one {[0, 12k + 6, 12k + 5, . . . , 10k + 6; 1, 2, 3, . . . , 4k + 2]i6k+3}

generates arc differences −1,−2, . . . ,−(4k + 2) ≡ 1, 2, . . . , 4k + 2, base block two

{[0, 10k + 5, 10k + 4, . . . 8k + 5; 4k + 3, 4k + 4, . . . , 8k + 4]i6k+3} generates arc differ-

ences, 4k+3, 4k+4, . . . , 8k+4, and base block three {[0, 8k+4, 8k+3, . . . , 6k+4; 8k+

5, 8k+ 6, . . . , 12k+ 6]i6k+3} generates arc differences 8k+ 5, 8k+ 6, . . . , 12k+ 6. How-

ever, since base block 1 is the negative differences of base block 3, we then can reverse

grouped pairs [(1, 8k+5), (2, 8k+6)], . . . , [(4k+1, 12k+5), (4k+2, 12k+6)] to generate

the remaining Si
6k+3−decompositions of the M12k+7 for all i = {0, 2, 4, . . . , 4k + 2}.

Namely, an Si
6k+3−decomposition of Mv where v = 12k + 7 is given by considering

the set of copies of Si
6k+3 whose base set:

B = {[0, 12k + 6, 12k + 5, . . . , 10k + 6; 1, 2, 3, . . . , 4k + 2]i6k+3,

[0, 10k + 5, 10k + 4, . . . 8k + 5; 4k + 3, 4k + 4, . . . , 8k + 4]i6k+3,

[0, 8k + 4, 8k + 3, . . . , 6k + 4; 8k + 5, 8k + 6, . . . , 12k + 6]i6k+3}.
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Where the copies of Si
6k+3, along with their images under the powers of the permu-

tation (0, 1, 2, . . . , 12k + 6), form a Si
6k+3-decomposition of Mv where v = 12k + 7, as

claimed.�
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5 FUTURE RESEARCH

The world of mathematics is ever expanding and new avenues of graph design are

being discovered each day. Some of the new questions that arise in the the field of

mixed graph decomposition by Si
3k of Mv are: Does there exist a decomposition of

λ(Mv) where λ > 1? When an Si
3k−decomposition of Mv does not exist, we can ask

“Can we efficiently remove isomorphic copies of a given Si
3k from Mv such that the

leave, denoted as L is minimized, where

L = E(G) \ ·
t⋃

i=1

E(Hi)?”

This is called a Si
3k-packing of the complete mixed graph on v vertices. We can also

ask: “Can we efficiently place isomorphic copies of Si
3k into Mv such that the padding

P is minimized, where

|P | = ·
t⋃

i=1

E(Hi) \E(G)/”

This is called a Si
3k−covering of the complete mixed graph on v vertices [2].

We defined the automorphism of a decomposition in Section 3.1. Since we have

used cyclic and rotational decompositions in several of our constructions in Chap-

ter 3, we have sufficient conditions for the existence of some cyclic and rotational

Si
6−decompositions of Mv. One could address the more general question of necessary

and sufficient conditions for the existence of cyclic and rotational Si
3k−decompositions

of Mv. In addition, the permutation of the vertex set could be explored in connection

with the automorphism question.
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