12-1-2009

The Acute Effects of Whole Body Vibration on Isometric Mid-Thigh Pull Performance

W. Guy Hornsby
West Virginia University, ramseym@etsu.edu

Mark A. South
East Tennessee State University, southma@etsu.edu

Ashley Kavanaugh

Andrew S. Layne
Tennessee State University

G. Gregory Haff
Edith Cowan University

See next page for additional authors

Follow this and additional works at: https://dc.etsu.edu/etsu-works

Part of the Exercise Physiology Commons, Sports Medicine Commons, and the Sports Sciences Commons

Citation Information

Hornsby, W. Guy; South, Mark A.; Kavanaugh, Ashley; Layne, Andrew S.; Haff, G. Gregory; Sands, William A.; Cardinale, Marco; Ramsey, Michael W.; and Stone, Michael H.. 2009. The Acute Effects of Whole Body Vibration on Isometric Mid-Thigh Pull Performance. CESSCE Coaches College, Johnson City, TN. https://www.researchgate.net/publication/311680411_The_Acute_Effects_of_Whole_Body_Vibration_on_Isometric_Mid-Thigh_Pull_Performance

This Presentation is brought to you for free and open access by the Faculty Works at Digital Commons @ East Tennessee State University. It has been accepted for inclusion in ETSU Faculty Works by an authorized administrator of Digital Commons @ East Tennessee State University. For more information, please contact digilib@etsu.edu.
The Acute Effects of Whole Body Vibration on Isometric Mid-Thigh Pull Performance

Copyright Statement
Copyright The Authors.

Creator(s)
W. Guy Hornsby, Mark A. South, Ashley Kavanaugh, Andrew S. Layne, G. Gregory Haff, William A. Sands, Marco Cardinale, Michael W. Ramsey, and Michael H. Stone

This presentation is available at Digital Commons @ East Tennessee State University: https://dc.etsu.edu/etsu-works/4110
The Acute Effects of Whole Body Vibration on Isometric Mid-Thigh Pull Performance

Center of Excellence for Sport Science and Coach Education, Sports Science Laboratory, East Tennessee State University, Johnson City, TN

Introduction

Acute exposure to vibration has been suggested to produce transient increases in muscular strength (1,2,3), vertical jump displacement (4,5), and power output (6,7) recorded while performing vertical tasks. It has been hypothesized that the reported acute vibration induced increases in performance occur as a result of alterations in neuromuscular stimulation (1,3,4). Specifically, most studies have ascribed the observed improvements to the thickness of Whole Body Vibration (WBV) in producing a “tonic vibration reflex” (TVR) in which the primary nerve endings of the la afferents of the muscle spindles are activated. This is thought to result in the excitation of the alpha motor neurons and activation of the central fibers (4) which likely leads to a greater synchronization of motor units as a result of homonymous motor unit contractions. However, not all investigations report improvements in muscular strength (4), vertical jump (7), and power production in response to acute vibration (4).

While the current body of scientific knowledge offers conflicting evidence on the effectiveness of WBV in augmenting neuromuscular performance it is possible that WBV may result in alterations to specific aspects of the force-time curve during the performance of a maximal isometric contraction. Therefore, the primary purpose of this investigation was to examine the effects of WBV performed using 30 Hz frequency and 24 mm amplitude on the force-time curves of an isometric mid-thigh pull.

Methods

Subjects: Eleven (4 women and 7 men) recreationally trained individuals served as subjects in the present investigation which was approved by the East Tennessee State University Institutional Review Board (IRB). All subjects read and signed informed consent documents in accordance with the East Tennessee State IRB.

The first testing session was used to perform all preliminary testing. This testing included the collection of the subject’s subjective characteristics. A summary of the subject’s characteristics is presented in Table 1. Additionally during this session each subject was familiarized with the WBV protocol (Figure 1) and the isometric mid-thigh pull testing protocol (Figure 2). Seven days after the completion of the familiarization session and 48 hours after their last exercise bout, the subjects performed one of the three randomly assigned treatment conditions. A summary of the testing protocol is presented in Figure 3.

Table 3: Subject Physical Characteristics (n = 11)

<table>
<thead>
<tr>
<th>Variable</th>
<th>Males</th>
<th>Females</th>
<th>Combined</th>
</tr>
</thead>
<tbody>
<tr>
<td>Age (y)</td>
<td>24.7</td>
<td>18.3</td>
<td>21.8</td>
</tr>
<tr>
<td>Height (cm)</td>
<td>179.2</td>
<td>62.0</td>
<td>64.8</td>
</tr>
<tr>
<td>Weight (kg)</td>
<td>70.7</td>
<td>12.9</td>
<td>65.3</td>
</tr>
</tbody>
</table>

Note: SD = standard deviation; BMI = body mass index

Results

There were no statistically significant differences between any of the treatment groups for force-time curve parameters analyzed in the present investigation.

Table 2: Coefficient of Variation, Intraclass Correlations, and Interclass Correlations between Treatment Conditions

<table>
<thead>
<tr>
<th>Variable</th>
<th>Peak Force @ 50 ms</th>
<th>Peak Force @ 200 ms</th>
<th>Peak Force @ 500 ms</th>
<th>Peak Force @ 1000 ms</th>
<th>RFD @ 0 ms</th>
<th>RFD @ 50 ms</th>
<th>RFD @ 100 ms</th>
</tr>
</thead>
<tbody>
<tr>
<td>CV %</td>
<td>2.1</td>
<td>2.5</td>
<td>2.8</td>
<td>2.3</td>
<td>2.1</td>
<td>2.0</td>
<td>2.5</td>
</tr>
<tr>
<td>ICC 1</td>
<td>0.99</td>
<td>0.99</td>
<td>0.99</td>
<td>0.99</td>
<td>0.99</td>
<td>0.99</td>
<td>0.99</td>
</tr>
<tr>
<td>ICC 2</td>
<td>0.99</td>
<td>0.99</td>
<td>0.99</td>
<td>0.99</td>
<td>0.99</td>
<td>0.99</td>
<td>0.99</td>
</tr>
</tbody>
</table>

Figure 3: Testing Protocol

Figure 4: Percent Change for Peak Force between Sham and Vibration Treatments:

Figure 5: Percent Change for Peak Rate of Force Development between Sham and Vibration Treatments:

Summary & Conclusions

Based upon the current research the application of a 30 Hz 2.4 mm amplitude vibration does not result in any statistically significant alterations in isometric mid-thigh pull performance. Even though there are no significant differences in the outcome measures used in this study, it is still possible that the changes in performance noted by the coefficient of variance and the 95% confidence intervals suggest that there is a possible positive effect of WBV. This finding is somewhat consistent with that suggests the application of WBV can be used as a warm-up protocol for jumping activities. However, the positive benefits that may occur in response to a WBV protocol are likely related to the training of the athlete’s ability to perform after the warm-up protocol. More research is needed in order to determine the optimal application of WBV in field based settings.

Future Research

While there were no statistically significant increases in the variables measured in the present study, it is possible that there is still a positive effect in response to the vibration protocol. Hopkins et al. (5) suggest that an absolute increase of 10% should be considered as the minimum worthwhile increase in a treatment-induced alteration. Additionally, a coefficient of variance of 0.3-0.6% appears to be an important change for elite athletes. For example, increasing the coefficient of variance by 0.6% increases the chance of winning a competitive event by 99-99%. Therefore, based upon the changes in the coefficient of variance noted in this study, it is possible that the difference between the Sham and WBV protocol may have a meaningful result when applied to an athletic population. In the present study the application of a WBV protocol resulted in increases in the coefficients of variance when compared to the Sham protocol on the magnitude of 3.0% depending upon the variable analyzed (Table 2). With such high coefficients of variance it is likely that there is some acute ergogenic benefit of the WBV protocol, but more research, especially with high level athletes, and possibly with larger sample sizes is warranted to further investigate this hypothesis.

Acknowledgements

The authors would like to thank, Kate Powell, Dawn Thomas and Zach Enoir for their assistance with data collection and PowerPlate Inc. for partially funding the present project.

References