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ABSTRACT 

Climate Variability from 1980 to 2018 and its Effect on Wind Directions,   

Wind Speeds, and Vog Dispersal in Hawaii  

by 

Mónica Y. Ayala Díaz 

Wind patterns in the Pacific Ocean fluctuate seasonally, annually, and decadally, resulting in 

changes in the dispersal of volcanic smog (vog) across the Hawaiian Islands. A variety of 

synoptic-scale weather patterns can affect the Islands, creating variability in the direction and 

intensity of wind patterns. Recent changes in wind profiles were analyzed to identify possible 

patterns that could influence and increase the dispersion of vog over time on Hawai’i Island and 

the other Hawaiian Islands to the northwest. Historically, Northeast Trade Winds prevailed for 

much of the year, shifting vog into the Pacific Ocean southwest of Hawaii and away from the 

state’s principal population centers, but Northeast Trade Winds have shown a 20+% reduction 

over the past several decades. An increase in the southerly source of prevailing wind increased 

the frequency and intensity of vog and its impacts on the environment and health and well-being 

of people across the Islands. 
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CHAPTER 1. INTRODUCTION 

Wind patterns in the Pacific Ocean fluctuate seasonally, annually, and decadally, 

resulting in changes in volcanic smog (vog) dispersion across the Hawaiian Islands. Vog is a 

volcanic hazard that causes hazy air pollution originating from volcanic eruptions on Hawai’i 

Island and is easily carried by wind currents. A variety of synoptic-scale weather patterns can 

affect the Islands, creating variability in the direction and intensity of wind patterns. 

Atmospheric patterns have recently shown changes in their dynamics, such as a reduction in the 

dominant Northeast Trade Winds. To better understand impacts on the frequency of wind speed 

and direction in the Hawaiian Islands, global/regional-scale atmospheric patterns are examined 

along with more local-scale patterns and topographic influences. Intra- and inter-annual temporal 

trends are analyzed to test possible relationships with atmospheric patterns and other potential 

climatological changes that may influence vog dispersion and, consequently, the health and well-

being of Hawaiian residents.  

Macro-scale Climate and Weather Patterns 

Changes in climate and weather patterns occur around the world with many regions 

experiencing increased extreme event frequencies (e.g., droughts, floods, etc.) and temperature 

anomalies. In the Pacific Ocean, vast wind fields and circulation patterns drive short- and long-

term trends (Wyrtki and Meyers, 1976). The mid-latitude westerlies and low latitude easterly 

trade winds are the most dominant prevailing global wind patterns. Trade winds are the result of 

Earth’s rotation, which causes the wind to move in a southwest direction in the northern 

hemisphere, and a northwest direction in the southern hemisphere. For both hemispheres, trade 

winds move towards the equator because of the deflecting force caused by the Coriolis Effect 

(Burstyn, 1966). These atmospheric wind patterns influence other major processes, including 
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oceanic circulation patterns (i.e., thermohaline circulation) and the displacement of high- and 

low-pressure systems (Wunsch, 2002). In a 60° belt across the equator (from 30° North to 30° 

South) these curved prevailing winds (trade winds) flow generally from east to west (i.e., from 

the northeast in the Northern Hemisphere and southeast in the Southern Hemisphere).  

 Teleconnections patterns refer to macro-scale pressure and atmospheric circulation 

anomalies in various regions of the world, covering large geographic areas. These patterns 

exhibit variability over a range of temporal scales, with ‘phases’ or anomalies occurring over 

days, weeks, months, years, and even decades, resulting in fluctuations in intra/inter-annual 

and/or intra/inter-decadal weather patterns. They often influence local climatic responses in 

various regions (e.g., Hansen and Mavromatis, 2001; Hardy and Henderson, 2013; Casanueva-

Vicente et al., 2014; Zhu and Li, 2016). Moreover, they reflect changes in the jet stream and 

atmospheric circulation “wave” oscillations, which in turn can affect storm tracks, the intensity 

of the jet stream, air pressure, rainfall, temperature, and wind, among others. Some 

teleconnections can span entire ocean basins and continents and are referred to as planetary-

scale. All teleconnections exhibit positive and negative phases that differ from one another in 

atmospheric geopotential height, location, pressure, intensity, variability, etc. In the Pacific 

Ocean, a variety of different teleconnections are present, however the El Niño Southern 

Oscillation (ENSO) pattern is the most well-known and predominant with various oceanic time-

series and indices developed for analysis (e.g., Niño 3.4 Index, Niño 4 Index, Multivariate ENSO 

Index V2, Bivariate ENSO Time Series, Oceanic Niño Index, and Trans-Niño Index).  The 

Pacific Decadal Oscillation (PDO) is also analyzed using an oceanic time series, while the 

Pacifica/North America (PNA) and West Pacific (WP) patterns are analyzed using atmospheric 

time-series.  
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 Various datasets and models are used to construct indices and time series.  These include 

the International Comprehensive Ocean-Atmosphere Data Set (ICOADS), National Center of 

Environmental Prediction (NCEP)/ National Center of Atmospheric Research (NCAR) 

Reanalysis 1 (R1) model, and Hadley Center sea ice and sea surface temperature (SST) model 

(HadlSST). Datasets and models can be found in variety of versions, scales, and time periods. 

The ICOADS represents the most extensive dataset, extending from 1800 to the present. The 

majority of the datasets have a global coverage (in grid format) and data subsets are available 

from the National Oceanic and Atmospheric Administration’s (NOAA) Physical Science 

Division (PSD) or Climate Prediction Center (CPC) websites (https://www.ncep.noaa.gov/; 

https://www.cpc.ncep.noaa.gov/). 

El Niño Southern Oscillation 

 El Niño Southern Oscillation is a periodic fluctuation with more distinct seasonal to inter-

annual global climate variations (Klaus and Timlin, 2011). Longer fluctuations can span two to 

seven-year intervals and the index can indicate anomalies in air pressure and sea surface 

temperature (SST). Monitoring of the ENSO focuses on SST anomalies with the Southern 

Oscillation Index (SOI) being one of the first standardized indices for observing the sea level 

pressure differences in the Pacific. Impacts from the ENSO occur throughout the year, but it was 

originally identified because of its effects in the east Pacific on equatorial South America with 

changes in water temperature and upwelling (Tedeschi et al., 2016; Wyrtki, 1975). In contrast, 

sea level barometric pressure (i.e., the force exerted by the atmosphere at sea level or zero meters 

elevation) fluctuations between stations at Tahiti, French Polynesia and Darwin, Australia are 

influenced by the Southern Oscillation indicating bimodal variations (Allan et al., 1991). 

Moreover, the SOI can measure and quantify these pressure differences.  

https://www.ncep.noaa.gov/
https://www.cpc.ncep.noaa.gov/
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The ENSO teleconnection spans the equatorial Pacific Ocean region, however its effects 

in the Pacific can affect the outcomes in the Atlantic Ocean and other regions due to the wide 

area covered by the anomalies (e.g., Herceg Bulić and Kuckarski, 2007; Ralph et al., 2003; 

Smith et al., 2007; Whan and Zwiers 2017). The changes in SST can be of +/-3ºC (~6ºF), which 

can have major impacts on global weather patterns.  Usually when Darwin exhibits a low-

pressure zone and Tahiti exhibits a high-pressure zone the atmospheric circulation flows east to 

west. This causes a westward flow of the warm surface water generating rain in the western 

Pacific, including Australia. This particular process, if strong, is associated with a La Niña event. 

The ENSO varies between positive (warm) and negative (cool) events/phases, termed El Niño or 

La Niña. In an El Niño event, the trade winds weaken and cause warm surface water to build up 

in the eastern Pacific basin. Conversely, for a strong El Niño event to occur the pressure 

difference between Darwin and Tahiti must weaken, which often causes parts of the western 

Pacific to experience harsh drought conditions (especially Australia) (Chiew et al., 1998; Wang 

and Hendon, 2007). This in turn can generate heavy rainfall in parts of equatorial South America 

(mainly the west coast) (Grimm and Tedeschi, 2009). These processes are extremely dependent 

on each other (i.e. if trade winds strengthen or weaken it can affect the pressure gradient which 

in turn affects SST, which can impact pressure gradients as well). The pressure gradient is the 

change in air pressure over distance, thus if this gradient is strong then airflow is faster between 

high- and low-pressure areas. According to Trenberth (1997), El Niño occurs approximately 31% 

of the time compared to La Niña, which occurs 23% of the time. 

The ENSO is divided in regions, first designated by dividing the regions in four over the 

equatorial Pacific from the longitudes 160º East to 80º West (Rasmusson and Carpenter, 1982) 

(Figure 1.1). Moreover, the wide variety of ENSO indices and time-series calculate specific 
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aspects and regions of this global atmospheric circulation pattern. The first region is Niño 1+2, 

which is recognized as “the traditional Niño region along the South American coast” and is the 

only region where the range of study is South of the Equator (Trenberth and Stepaniak, 2001). 

The second region is Niño 3, which has been used extensively for analysis and predictions of 

ENSO, however more recent data indicate that the ENSO interactions span further west than the 

region encompasses (Trenberth, 1997). The third region is the Niño 4 which covers the central 

equatorial Pacific. The last region is Niño 3.4, a composite of portions from the Niño 3 and Niño 

4 regions. For the purpose of this research, the focus will be on regions 3.4 and 4. 

 

Figure 1.1. The Niño Regions over the Pacific Basin. 

Barnston et al. (1997) established the Niño 3.4 region by analyzing the SSTs in the area 

comprising portions of region 3 and region 4 which maximizes the ENSO signal and makes this 

the preferred time-series currently used by the majority of researchers. This region encompasses 

the areas from longitude 170º West to 120º West and latitude 5º South to 5º North in the 

equatorial Pacific, essentially the East Central Tropical Pacific. For this time-series, if SST 

Hawaiian 

Islands 
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anomalies are ≥0.5ºC (0.9ºF) this is characteristic of warm phase conditions (El Niño/positive), 

but if the reverse SST anomalies are ≤-0.5ºC (-0.9ºF) then this is characteristic of cool phase 

conditions (La Niña/negative). This is a recognized threshold for this time-series and it is a 

standard used for most ENSO studies (NCEI, 2020). Moreover, the Niño 3.4 time-series is 

calculated using the HadlSST version 1 (HadlSST1) dataset. Data for the Niño 3.4 time-series 

spans from 1870 CE to the present. 

Essentially, the Niño 4 analyzes SST anomalies. This region encompasses the areas from 

longitudes 160º East to 150º West and latitudes 5º South to 5º North, covering the central 

Equatorial/Tropical Pacific (Trenberth, 1997; Trenberth and Stepaniak, 2001). The region that 

Niño 4 covers tends to have less variance compared to the other regions of El Niño. These time-

series calculations use the HadlSST1 dataset. The Niño 4 dataset covers a time period from 1950 

to the present.  This time-series is used to analyze the Trans-Niño Index (TNI) in conjunction 

with the Niño1+2 index (Trenberth and Stepaniak, 2001; NCEI, 2020).  The Niño 4 index is 

considered a better option to define the La Niña events compared to the Niño 3.4 index based on 

SST anomalies in the area (Trenberth and Stepaniak, 2001; NCEI, 2020). In this region it is 

typical to have SSTs at or above the threshold (-0.5ºC), therefore indicating a deep convection 

annually in the tropical Pacific. An anomaly in SSTs of -0.5ºC in this region can cause water 

temperatures to be below the standard threshold, resulting in a major westward flow. This 

westward flow is the origin of the deep convection in the tropical Pacific basin. The westward 

flow is associated with the Darwin and Tahiti pressure difference with Darwin having a low-

pressure zone and Tahiti a high-pressure zone (Trenberth and Stepaniak, 2001; NCEI, 2020). 

The Oceanic Niño Index (ONI) analyzes SSTs in the region from longitudes 170º West to 

120º West and latitudes 5º South to 5º North in the equatorial Pacific, which is the same region 
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as the Niño 3.4 (NCEI, 2020). A peculiar aspect of this index is that it is closely dependent on 

the Niño 3.4 SST anomalies. The time-series uses averaged SST anomalies over a three month-

period that ends with the current month and gives a resulting value for the ONI. However, if the 

ONI displays five consecutive values with warm or cool phase conditions, then this indicates an 

El Niño or La Niña event. The ONI data cover a period from 1950 to the present. This time-

series has the same threshold as Niño 3.4, which is of +/-0.5°C (0.9°F). 

The Transitional "Trans" Niño Index is a dataset that calculates the ENSO using the 

HadlSST and the NCEP (National Center for Environmental Prediction) OI (Optimum 

Interpolation) SST datasets (Trenberth and Stepaniak, 2001). This index uses the normalized 

SST anomalies averaged in differences between the Niño 1+2 region (latitude: 0º South to 10º 

South, longitude: 90º West to 80º West) and Niño 4 (latitude: 5º South to 5º North, longitude: 

170º West to 120º West) (Trenberth and Stepaniak, 2001).  This is due to the Niño3.4 being 

“approximately thought as the sum of these two indices, N3.4 and TNI are approximately 

orthogonal at zero lag” (Trenberth and Stepaniak, 2001). This time-series measures the SST 

gradient between the central (Niño 4) and eastern equatorial (Niño 1+2) Pacific (Trenberth and 

Stepaniak, 2001). If results for this are large (positive) values, it signifies that the Niño 1+2 has 

negative values and the Niño 4 has positive values meaning this is a “central Pacific El Niño” 

event. The opposite happens if TNI has negative values, which marks a “central Pacific La Niña” 

event. This index covers a period from 1870 CE to the present.  

 The Bivariate ENSO Time-series (BEST) is modeled to analyze long periods of the 

ENSO teleconnection phases. This time-series incorporates the often neglected atmospheric 

portions that the Niño 3.4 does not measure in the eastern tropical Pacific; this is done by adding 

the SOI that measures the pressure differences between Darwin and Tahiti (Smith and 
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Sardeshmukh, 2000). The values for both time-series (Niño 3.4 and SOI) must initially be 

standardized by month. The standardization has to be calculated separately to have a mean of 

zero and a standard deviation of one. This process should include the entirety of the period that is 

being analyzed before adding the SST values of the Niño 3.4 and pressure values from the SOI 

(Smith and Sardeshmukh, 2000). These processes result in the BEST time-series; however, the 

values for the index must be averaged first for each month before running a mean over a three- or 

five-month period (Smith and Sardeshmukh, 2000). This index covers a period from 1870 CE to 

the present. 

 The Multivariate ENSO Index Version 2 (MEI V2), in contrast to other datasets, focuses 

on combining five variables (sea level pressure (SLP), SSTs, surface zonal winds (U), surface 

meridional winds (V), and Outgoing Longwave Radiation (OLR)) and then creates a single 

dataset to calculate the ENSO.  Wolter and Timlin (1993) developed the original MEI by 

acquiring data from marine ship observations derived from the Comprehensive Ocean-

Atmosphere Data Set (COADS) records, now is known as the International COADS (ICOADS). 

The original MEI calculations used six variables related to ocean-atmosphere conditions that 

included SSTs and near-surface air temperature (Wolter and Timlin, 1998). This index analyzes 

and monitors the Tropical Pacific and has data from 1979 to the present. 

Pacifica Decadal Oscillation 

 

A teleconnection pattern that has a long duration with comparable climate and weather 

impacts to ENSO is the Pacific Decadal Oscillation (PDO), which spans a region from North 

America across the northern Pacific Ocean (Mantua et al., 1997). The phases, or modes, for this 

teleconnection can last 20-30 years, however the short observational record of the time-series 

makes it difficult to define specific aspects of the PDO (Deser et al., 2012; Mantua et al., 1997). 
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PDO variability is centered in the northern Pacific basin, covering an area poleward of 20º North, 

but it is strongly correlated with patterns in the tropical and southerly regions of the Pacific 

Ocean (Mantua and Hare, 2002). Modes of the PDO are identified by SST anomalies towards the 

tropical and northeast Pacific Ocean, with warm and cool anomalies indicative of each phase. 

Both SSTs and sea level pressure (SLP) are used to analyze the PDO. According to Mantua and 

Hare (2002), the positive (warm) phase is associated with below-average SLP that spans the 

North Pacific along with warm SSTs across the North American Pacific coast and cool western 

North Pacific SSTs. This process is reversed during the negative (cool) phase with cool SSTs 

along the North America Pacific coast and above-average SLP that spans the North Pacific with 

warm western North Pacific SSTs.  

 

Figure 1.2. Region of the Pacific Decadal Oscillation over the northern Pacific basin, poleward 

from 20º North. 

 

 

Hawaiian 

Islands 
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Pacific/North American Teleconnection Pattern 

 

As the name implies, the Pacific/North American (PNA) teleconnection pattern is located 

in that region.  This teleconnection is one of the most noticeable in the extra-tropics of the 

Northern Hemisphere, with a low-frequency variability.  Strong fluctuations in the intensity and 

location of the East Asian jet stream are associated with the PNA (Franzke et al., 2011). The 

PNA’s positive phase is represented by an intensified East Asian jet stream displaced eastward 

and exiting towards the western United States. In the intermountain region of North America and 

near Hawaii, the positive phase of the PNA teleconnection exhibits an above-average height. The 

negative phase has a westward retraction of the jet stream toward eastern Asia, which blocks a 

portion of the activity in the high latitudes of the North Pacific and causes a strong split-flow in 

the central North Pacific (Franzke et al. 2011).  The PNA tends to be associated with the ENSO 

because its positive phase correlates with El Niño and its negative phase correlates with La Niña. 

The Rotated Principal Component Analysis (RCPA) is used to identify and analyze major 

teleconnection patterns in the Northern Hemisphere including the North Atlantic Oscillation 

(NAO) and the PNA. Developed and used by Barnston and Livezey (1987), this method isolates 

major macroclimatic patterns for every month to then create a time-series for the teleconnection. 

The monthly mean is analyzed, which is standardized by 500 millibars (mb) height anomalies. 

The pressure anomalies are obtained from the Climate Data Assimilation System (CDAS) for the 

region poleward of 20º North latitude; these are standardized for the base period monthly means 

and standard deviations. In this research, the base period encompasses January 1980 to 

December 2018. Moreover, the RCPA analysis is based on the entire flow field and not on 

specific locations for height anomalies. 
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West Pacific Teleconnection Pattern 

 The West Pacific (WP) teleconnection is another Northern Hemisphere pattern and it is 

analyzed with the RCPA procedure as well. The WP teleconnection influences temperature and 

precipitation anomalies. According to Wallace and Gutzler (1981) and Barnston and Livezey 

(1987), this pattern shows a low-frequency variability spanning the North Pacific in all months 

of the year.  However, in the winter and spring seasons, the teleconnections display North-South 

dipole anomalies with two centers: one over the Kamchatka Peninsula and the other over 

portions of southeast Asia and the western subtropical North Pacific. From the winter to summer 

seasons, the anomalies are associated with a strong northward shift that is equivalent to the 

prevalent northward shift of the East Asian jet stream or Pacific jet stream. Consequently, strong 

positive or negative phases for this teleconnection are linked to zonal and meridional variations 

with changes in intensity and locations in the area of the East Asian jet stream (Barnston and 

Livezey, 1987). The WP positive phase affects different locations with different anomalies. 

Higher latitudes of the Northern Hemisphere observe above-average annual precipitation, while 

in the winter and spring seasons below-average precipitation spans over the mid-latitudes of the 

North Pacific Ocean. Furthermore, in lower latitudes of the western North Pacific above-average 

temperatures in the winter and spring seasons are detected, while in eastern Siberia below-

average temperatures are detected throughout all seasons. The WP index is analyzed using the 

RCPA method at 500mb and the National Center of Environmental Prediction (NCEP)/ National 

Center of Atmospheric Research (NCAR) Reanalysis 1 dataset 

(https://www.esrl.noaa.gov/psd/data/gridded/data.ncep.reanalysis.html).  

https://www.esrl.noaa.gov/psd/data/gridded/data.ncep.reanalysis.html
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Northeast Trade Winds 

Trade winds are synoptic-scale atmospheric winds flowing from east to west generally in 

the tropics. The trade winds are located in a region between the horse latitudes and equator; the 

horse latitudes encompass an area between 30° North and 30° South.  This wind field is 

considered one of the most constant around the globe with yearly trades having minimum 

variation (Wyrtky and Meyers, 1976). Northeast (NE) trade winds, when blowing over or 

between the Hawaiian Islands, can have a speed of 5-20 knots (kn) (5.7-23 miles per hour 

(mph)), which is faster than average wind speeds over the open ocean (Chen and Nash, 1994; 

Schroeder, 1993). Conversely, these trade winds are affected by the semi-permanent North 

Pacific high-pressure zone, also known as the subtropical high-pressure ridge, located to the 

northeast of the Hawaiian Islands (Daingerfield, 1921; Garza et al., 2012). According to Wyrtky 

and Meyers (1976), in the Pacific Ocean the main wind fields are the NE trades and the 

Southeast (SE) trades with the NE trades having less overall coverage area compared to the SE 

trades. Respectively, each trade wind field is at their strongest when each is in their 

corresponding spring and winter seasons. Compared to the SE trade winds, the NE trade winds 

are stronger but cover a smaller area (Wyrtky and Meyers, 1976).  Northeast trade winds are 

influenced by climatic events such as ENSO, PDO, and others (Garza et al., 2012). Schroeder 

(1993) claims that the east to northeast trade winds have an approximate wind speed of 4-10 

meters per second (m s-1) (8.9-22 mph) that is constant during the year (about 70% of the time); 

the dominance is especially strong during the summer (e.g., 92% of winds in August are within 

this wind speed range). The trades are slightly stronger in winter seasons as well (Kauahikaua 

and Tilling, 2014).  
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A trade wind inversion layer is recognized to be present at approximately 2 km above sea 

level (ASL) (Chen and Nesh, 1994). This inversion layer is, also, known as a thermal inversion 

layer. This layer divides an area where air temperature increases or remains constant with 

increasing altitude, which is contrary to the normal pattern of temperature change with altitude 

gain. Moreover, this thermal inversion can block atmospheric flow and trap pollution, in other 

words, it separates wind directions above and below 2 kilometers (km) (Schroeder, 1993). Upper 

level winds at this height are variable and they do not always follow the same wind direction 

patterns as the dominant surface level trade winds. 

Kona Winds 

 

“Kona” Winds are a term given by Hawaiian residents when prevailing winds are from 

the opposite direction to the trade winds. These are otherwise known as southerly or 

southwesterly winds and they influence local and regional weather patterns across the Hawaiian 

Islands (Daingerfield, 1921). Kona is a word of Polynesian origin that means “leeward”. 

However, Kona Winds are given their name when the typically leeward side becomes the 

windward side (Daingerfield, 1921). In Hawaii, the windward eastern side of the Islands is 

wetter with much higher annual rainfall compared to the western leeward side, which is 

generally drier. Some areas on the windward side of Hawai’i Island receive over 200 inches of 

rain annually, while some areas on the leeward side receive less than 10 inches of rain annually 

(http://climate.geography.hawaii.edu/). 

http://climate.geography.hawaii.edu/
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Figure 1.3. Map showing Kona Winds and Trade Winds over the Hawaiian Islands and the 

occurrence of wetter conditions on the Windward side of islands and dryer condition on the 

Leeward side. Infrequent Kona winds bring rain to the Leeward side. 

Kona Winds on the island of Oʻahu are considered “volcano weather” due to the wind 

pattern generating increased precipitation conditions and hazy conditions at times due to the 

presence of vog during volcanic eruptions on the Island of Hawai’i (Lyons, 1899). These Kona 

Winds strengthen when the subtropical high-pressure zone in the NE weakens typically in the 

winter months (Daingerfield, 1921). This indicates a reversal in the pressure gradient in the area 

(Daingerfield, 1921). Nevertheless, the strengthening of the Kona Winds is dependent on another 

pressure system—namely the nearly permanent Aleutian low-pressure zone located in the 

northwest Pacific (Daingerfield, 1921).  
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Role of Topography on Local Wind Patterns 

Hawai’i Island is a volcanic island located in the North Pacific Ocean and is part of the 

Hawaiian Islands Chain, located approximately between 19º North to 22º North and 154º West to 

160º West (Garza et al., 2012). These islands are located in the southwest and south of the 

widely known subtropical high-pressure zone, resulting in persistent NE trade winds over the 

islands in the summer season and variable winds in the winter season (Daingerfield, 1921; Garza 

et al., 2012). Disturbances during the winter season are caused by various synoptic phenomena 

such as mid-latitude frontal systems and Kona storms, among others (Garza et al., 2012). 

Hawai’i Island, otherwise known as the “Big Island” due to its large size compared to the 

remaining occupied islands (Maui, Molokaʻi, Kaho‘olawe, O‘ahu, Kauaʻi and Ni‘ihau), is 

located at 19°34′North 155°30′West and consists of five subaerially exposed volcanoes (Kīlauea, 

Mauna Loa, Hualālai, Mauna Kea, and Kohala).  Only three of the volcanoes are currently 

considered active (Kīlauea, Hualālai, and Mauna Loa). The island has a diameter of 

approximately 140 km with topography dominated by its shield volcanoes (Yang et al., 2008). 

The last major volcanic activity on Hawai’i Island was from Kīlauea volcano, when 24 fissures 

opened along the volcano’s Lower East Rift Zone from May to August, 2018. During this time 

there was also collapse of the summit region of the volcano and demise of a lava lake that was 

active since 2008. The highest elevations on the island are the summits of Mauna Kea with an 

elevation of 13,796 feet (ft) (4,205 meters (m)) ASL and Mauna Loa with an elevation of 13,681 

ft (4,170 m) ASL (GVP, 2013b; GVP, 2013c). Moreover, these two volcanic peaks are above the 

trade wind inversion layer and cause orographic blocking (Cheng and Feng, 2001). Additionally, 

Mauna Loa covers approximately half of the surface area of the island.   
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Figure 1.4. Locations and elevations of the four southernmost most volcanoes on Hawai’i Island 

and weather stations at the two international airports. Contour interval is 200m. 

Volcanic eruptions are largely driven by the gas phase in magmas and may be explosive 

or effusive, or both. Pyroclasts erupted during explosive volcanism may span grain sizes ranging 

from ash (<2 millimeters (mm)) to lapilli (2-64mm) and larger blocks and bombs (>6mm). 

However, for this research the focus will be on volcanic gas emissions, which occur during both 

effusive and explosive volcanism. The gasses can vary in composition and can accompany an 

eruption or precede it (Kauahikaua and Tilling, 2014).  Importantly, the majority of Mauna Loa’s 

vents are above 2 km (2000 m) while Kīlauea vents are all at or below the summit (1.2 km ASL, 

4,009 ft ASL) (Kauahikaua and Tilling, 2014).  
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Volcanic emissions of gasses during effusive and explosive eruptions are then circulated 

in the atmosphere and, depending on the wind patterns and topography, these can be broadly 

dispersed (Kauahikaua and Tilling, 2014; Sutton et al., 2000). According to Swanson et al. 

(2011), plume emissions that are below 2 km are typically dispersed to the southwest by the NE 

trade winds. In contrast, if the plume emissions occur above 2 km, these are normally dispersed 

east and/or northeast by the jet stream. This is associated with the trade wind inversion layer 

located approximately 2 km ASL.  

Compared to the other islands in Hawaii, Hawai’i Island experiences flow splitting of the 

trade winds that is attributed to the topography of the island, where trade winds move around the 

island (Garza et al., 2012; Chen and Nash, 1994). Due to the mountain heights being above the 

common height of trade wind inversions (approx. 2 km) wind flow below 2 km is forced to split 

on the windward side and move around the island (Yang et al., 2008). However, two counter-

rotating vortices (“eddy” currents) to the leeward side of the Kona coast from the dominant flow 

of the NE trade winds cause a massive wake in that area that is unable to drift over Mauna Loa 

and Mauna Kea (Yang et al., 2008). This “eddy” current allows vog to be dispersed north along 

the Kona coast. In this pattern the vog drifts clockwise from Kīlauea to the south of Mauna Loa 

and up the west (Kona) side and toward Maui, O‘ahu and Kauaʻi. 

Mauna Loa volcano erupts more frequently than Kīlauea, most recently in 1984. Similar 

to gasses erupted at Kilauea, emissions from Mauna Loa have also been reported throughout the 

entire island chain. The gas emission distribution is attributed to emittance above 2 km and 

above the inversion layer, which causes the gasses to be propelled northeast (Kauahikaua and 

Tilling, 2014). After the volcanic gas emissions drift below 2 km, these are then propelled back 

to the islands by the NE trade winds (Kauahikaua and Tilling, 2014). 
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Volcanic Smog (vog) 

The term “pyroclast” can be applied to air fall deposits and pyroclastic flow and surge 

deposits (Schmid, 1981). Pyroclastic deposits are an accumulation of pyroclasts that can be 

unconsolidated (tephra) or consolidated (pyroclastic rock) (Schmid, 1981). Pyroclasts are erupted 

during explosive and effusive volcanism are generally referred to as “tephra” and particles with a 

grain size of <2mm (2000 micrometers (µm)) in diameter are characterized as volcanic ash 

(Horwell and Baxter, 2006). Particulate matter (PM) <2.5µm is finer than a human hair (Camara 

and Lagunzad, 2011) and combines with a variety of volcanic gasses to create vog (e.g. sulfuric 

acid aerosols, sodium sulfate, and sulfur compounds, among other chemicals) (Camara and 

Lagunzad, 2011).  The volcanic gas emissions of Kīlauea volcano are composed primarily of 

water vapor (H2O), carbon dioxide (CO2), and sulphur dioxide (SO2). SO2 emissions accompany 

all eruptions however vog contains these gas and acid particles with toxic contaminants such as 

ozone and hydrocarbons that are easily transportable by the wind (Poland et al., 2014). Vog can 

result in acid rain due to interactions with the atmosphere and cause damage to agricultural crops 

(Poland et al., 2014). Additionally, Sutton et al. (2000), reported that this acid rain “can leach 

lead from metal roofs into household water supplies”, and that in 1988 some 40% of residential 

drinking water sources on rain catchment systems in the Kona Districts were contaminated (Elias 

and Sutton, 2017).  

Some of the major health hazards due to long-term exposure of vog is concurrent 

pulmonary effects, which include: sore throat, cough, breathlessness; and eye symptoms such as 

irritation, itchiness, tearing, etc. with signs of conjunctival injection, papillary reaction, eyelid 

swelling, etc. (Halliday et. al, 2018; Camara and Lagunzad, 2011). Moreover, some studies of 

residents from areas not affected by vog have reported an increase in pulmonary, nasal and eye 
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problems (Longo et al., 2008). This can be attributed to a combination of the prevailing wind 

directions over Hawai’i and the terrain, which causes the exposure of volcanic emissions at 

different rates across the island (Chow et al., 2010).   

Hawai’i Island, with its mountainous terrain, experiences orographic blocking that affects 

local-scale circulations on the island, especially in areas with weak trade wind flow like Kona 

(Yang et al., 2008; Chen and Nash, 1994). Hilo, located in the east of the island, and Kohala, 

located in the northern end of the island, are usually protected by prevailing NE trade winds 

(Chow et al. 2010).  Hilo is affected by katabatic flows as well; these flows are descending cold 

dense bodies of air (Garza et al., 2012).  Kohala is, additionally, protected from wind reversals 

by Mauna Kea, the tallest point on the island (Chow et al., 2010). In contrast, the Kona coast, 

located along the west flanks of Mauna Loa and Hualālai volcanoes, receives vog particles from 

the NE trade winds, which carries it clockwise around the southern part of the island (Chow et 

al., 2010). Kona Winds can combine with the diurnal offshore and onshore wind patterns 

associated with sea and land breezes causing the vog particles to remain on the Kona coast for 

extended periods of time (Chow et al., 2010).  

Objectives and Research Questions 

The goal of this thesis is to analyze weather station data in Hawai’i (specifically in Hilo 

and Kona) and teleconnection indices to determine if a noticeable change in wind patterns has 

occurred over time and how these changes may be related to larger oscillations, phases, and 

patterns.  For example, global, regional, and local atmospheric patterns influence hazard 

potential in Hawai’i, particularly hazards related to vog.  Possible long-term changes in wind 

patterns may result in increased exposure to vog across the Hawaiian Islands during future 

eruptions.  Research questions for this thesis are as follows: 
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1. While Garza et al. (2012) identified a decrease in Northeast Trade Winds, to what extent 

have those trends continued over the most recent decade and are data collected by land-

based weather stations in Hawai’i representative of this trend? 

2. Considering the reported reduction in Northeast Trade Winds over time, how are these 

changes connected to atmospheric patterns and, importantly, how may these changes alter 

the impacts of vog and other hazards in the Hawaiian Islands? 
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CHAPTER 2. DATA AND METHODS 

Data Acquisition and Processing 

All teleconnection patterns and time-series data were acquired from the National Oceanic 

and Atmospheric Administration (NOAA)’s Climate Prediction Center (CPC). Monthly wind 

data were acquired from NOAA’s Climate Data Online (CDO) portal selecting the Global 

Summary of the Month (GSOM) in CSV format with geographic location and atmospheric 

variables of wind speed (WS) and wind direction (WD) in standard units. Wind data were 

recorded at two airport weather stations in Hawai’i: Hilo International Airport and Ellison 

Onizuka Kona International Airport at Keāhole. For purposes of this research, the weather 

stations were labeled as Hilo and Kona. Hilo wind data range from 1980 to the present and the 

weather station elevation is 11.6 m above mean sea level (MSL). Kona wind data range from 

1998 to the present while the weather station is 13.1 m above MSL. The elevation for both of the 

weather stations had no changes throughout the studied years (i.e., the stations were not moved 

or altered). The anemometer pole height (in meters) for Hilo was 6 m prior to 1998 and from 

1998-present it has been 10 m according to Garza et al. (2012). The Kona station has recorded 

data since 1998 and experienced no change in the anemometer height. According to Cardone et 

al. (1990), a +/-5m shift in the anemometer height results in variability of less than 5%. 

Following Cardone et al. (1990), a correction of the data is unnecessary for the anemometer 

height change at the Hilo weather station considering the minimal change in variability that 

occurs.  Prior to 1998, wind speed and direction were measured using 1-minute intervals 

(identified as WS/WD 1), while wind speed and direction measured 1998-present are recorded 

using 2-minute and 5-second intervals (identified as WS/WD 2 and WS/WD 5). The data 
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provided for WD was in azimuth degrees (0°-360°) where 0° and 360°=north, 90°=east, etc. In 

the case of WS, the standard unit of measurement was miles per hour (mph). 

Table 2.1. Teleconnection Index Names and Acronyms, Dataset used, Date Ranges, and Region 

they Cover. 

Teleconnection 

Indices 
Acronym Dataset Used Region Data Date Range 

East Central Tropical 

Pacific SST Index 
Niño3.4 HadlSST1 

5N-5S, 170W-

120W 
1870-present 

Pacific Decadal 

Oscillation Index 
PDO Various 

Poleward of 20N in 

the Pacific basin 
1900-present 

West Pacific Index WP NCEP R1  1950-present 

Pacific/North Atlantic 

Index 
PNA NCEP R1  1950-present 

Bivariate ENSO 

Time-series Index 
BEST HadlSST1  1870-present 

Multivariate ENSO 

Time-series Index 
MEI V2 ICOADS Tropical Pacific 1979-present 

Central Tropical 

Pacific SST Index 
Niño4 HadlSST1 5N-5S, 160E-150W 1870-present 

Oceanic Niño Index ONI 
NOAA ERSST 

V5 

5N-5S, 170W-

120W 
1950-present 

Trans-Niño Index TNI HadlSST1 
Difference Niño 1.2 

and Niño 4 
1870-present 

 

The teleconnection time-series data had different neutral points where some were neutral 

at zero and others were neutral at twenty-seven. The SST values are in degrees Celsius (ºC) for 

all teleconnections. In this research, the neutral was changed and calculated to be thirty for all 

time-series, to create a standard central value across all time-series. This method avoids negative 

values and varying neutral points and is better for statistical analysis and interpretation. 

Analysis 

Wind roses for wind direction and speed were generated using Microsoft Excel, along 

with additional box and whisker graphs to further analyze and visualize the data. First, wind 

direction variables were changed from degree direction to one of eight cardinal directions using 

the following formula:  
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= 𝐿𝑂𝑂𝐾𝑈𝑃(𝑀𝑂𝐷(𝐴1,360), {0,45,90,135,180,225,270,315,360},

{"𝑁", "𝑁𝐸", "𝐸", "𝑆𝐸", "𝑆", "𝑆𝑊", "𝑊", "𝑁𝑊", "𝑁"}) 

According to Garza et al. (2012), the wind rose plot with the eight-point compass is the 

most standard method for expressing the WD. It uses the four cardinal points (north, east, south, 

and west) in conjunction with the four ordinal points (northeast, southeast, southwest, and 

northwest). This research uses the defined wind observations between 22.5° and 67.5° to identify 

prevailing NE trade winds and observations between 67.9º and 112.5º to identify dominant east 

trade winds over the Hawaiian Islands following Garza et al. (2012). Each wind observation 

encompasses a 45º angle.  

Afterward, wind roses were created from 1980 to 2018 using both wind direction and 

speed in a pivot table and then grouping the WS into three categories and showing the values in 

their grand-total. Values were then organized in a radar chart to visualize the directions and 

create a wind rose. These wind roses were generated for each station. Data were further divided 

by five-year interval to examine possible variability in more detail. For the five-year periods, 

wind roses were created with WD according to each month and compared to verify dominant 

WD. Then the data were further divided by year to investigate trends and dominant wind 

directions; wind roses were generated for each case as well. WS was graphed for both stations 

throughout the time period. 

All teleconnections patterns were graphed using Microsoft Excel as well. These were 

graphed using a custom combination chart with the WD (in degree direction) along the y-axis, 

and the date along the x-axis. Additionally, the neutral point “30” (equivalent to 0ºC) was 

indicated in all graphs. As previously mentioned in the El Niño Southern Oscillation section 

these time-series have thresholds. For the Niño 3.4, Niño 4 and ONI teleconnection graphs these 

thresholds were added to indicate El Niño values (>30.5) equivalent to 0.5ºC and La Niña values 
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(<29.5) equivalent to -0.5ºC. Another two thresholds were added designate Strong El Niño 

values (>31.5) equivalent to 1.5ºC and Strong La Niña values (<28.5), equivalent to -1.5ºC.  

Table 2.2. Wind Direction in their Degree and Cardinal Direction at 45º angles. 

Wind Direction 

Degree Direction Cardinal Direction 

0 – 22.5 N 

22.6 – 67.5 NE 

67.6-112.5 E 

112.6-157.5 SE 

157.6-202.5 S 

202.6-247.5 SW 

247.6-292.5 W 

292.5-337.5 NW 

337.5 – 360 N 

 

The IBM Statistical Product and Service Solutions (SPSS) Statistics program version 25 

was used for statistical analysis (IBM, 2017). All statistical analysis was performed for Hilo and 

Kona respectively. First, a correlation diagnostic was performed on all variables (all 

teleconnections, WS, and WD) to verify if a parametric or non-parametric correlation exist. Then 

a Spearman rank-order correlation coefficient (Spearman’s correlation), which is a non-

parametric correlation, is tested between all teleconnections using bivariate correlations analysis. 

This test calculates the direction and strength of the relationship between two variables. For the 

analysis, it is specified to give flags (asterisk-*) beside values that are significant (p<0.05). As a 

result, the test gives a correlation table where the correlation coefficient values with asterisks are 

the most important. 
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Next, an Ordinary Least Square (OLS) Regression (OLS Regression) of WS was 

conducted; this method was used to assess teleconnection indices as well. An OLS Regression is 

used when the value of a variable may be used to predict the value of another variable. For the 

OLS Regression model, WS was the dependent variable and teleconnection index values served 

as the independent variables. Three tables were produced from this analysis: Model Summary, 

ANOVA (which generates a report on how well the regression analysis fits the data, more 

specifically the dependent variable), and Coefficients (which provides information on the 

predicted variable from the independent variables).  

A Multinomial Logistic Regression (MLR) was used to predict a nominal dependent 

variable (WD in this study) based on independent variables (index values). The MLR was 

processed eight times, once for each WD. Some advantages of the MLR is its flexibility in using 

nominal or continuous independent variables and allowing variables to interact with one another 

to improve prediction of the nominal dependent variable. This analysis results in five important 

tables.  

The first is a Goodness-of-Fit table that provides two measures that are used to assess 

how well the model fits the data by presenting significance using a Pearson and a Deviance chi-

square statistic. The chi-square statistic is used to identify the relationship between two 

categorical variables and test for independence. The second table provides the Model Fitting 

Information. The third table displays various pseudo R-square (R2) measurements (Cox and 

Snell, Nagelkerke, and McFadden) in which MLR considers these similar to R2 values from an 

OLS Regression which analyzes the proportion of variance explained by a model. The fourth 

table is the Likelihood Ratio Test that demonstrates which of the independent variables 

(teleconnection indices) are statistically significant. The final table shows the Parameters 
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Estimates or Coefficient of the Model and includes the significance (sig.) and the coefficient in 

exponentiated values. 

An OLS Regression analysis was conducted for WS vs time wherewere the dependent 

variable is WS and the independent variable is the studied years for Hilo 1- and 2-minute (1980 

to 2018), Hilo 5-secondseconds (1998 to 2018), Kona 2-minute (1998 to 2018),) and Kona 5-

secondseconds (1999 to 2018) wind observations to examine the magnitude of time coefficient 

and the statistical significance of these  values. Finally, an OLS Regression analysis was 

conducted for frequency of NE trade winds vs. time. The dependent variable was frequency of 

NE trade winds in days in the studied years for Hilo 1- and 2-minute, Hilo 5-secondseconds, 

Kona 2-minute, and Kona 5-second,seconds and the independent variable is time (studied years). 
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CHAPTER 3. RESULTS 

Wind roses showing wind speed and direction were created for each weather station and 

each observation type (1- and 2-minute and 5-second) over their entire periods of record. In 

Figure 3.1, a wind rose (A) shows combined 1-minute and 2-minute wind observations 

(WS/WD1+2) from 1980 to 2018 in Hilo indicating that ~44% of prevailing winds originated 

from the east. Southeast winds had approximately ~13% prevalence. North winds recorded the 

second highest prevalence at ~22%. Northeast winds were prevalent over ~14% of the period of 

record. And winds from all other directions (South, Southwest, West, and Northwest) 

experienced less than ~5% over the period of record. A second wind rose (B) shows 5-second 

wind observations (WS/WD5) from 1998 to 2018 in Hilo indicating that 41% of prevailing 

winds originated from the east. North winds recorded the second highest prevalence at 21%. 

Northeast winds occurred 16% over the period of record and southeast winds occurred 12% over 

the period of record. South and northwest winds were observed less than 5% over the period of 

record, while no west winds were recorded. A third wind rose (C) shows 2-minute wind 

observations (WS/WD2) from 1998 to 2018 in Kona indicating that 44% of prevailing winds 

originated from the northeast. North winds recorded the second highest prevalence at 24%. South 

winds occurred 11% over the period of record and east winds had minimal wind dominance with 

8% prevalence. Southeast, southwest, west, and northwest winds were observed less than 5% 

over the period of record. A fourth wind rose (D) shows 5-second wind observations (WS/WD5) 

from 1999 to 2018 in Kona indicated that 45% of prevailing winds originated from the northeast. 

North winds recorded the second highest prevalence at 22%. South and east winds occurred 10% 

over the period of record. Southeast, southwest, west, and northwest winds were observed less 

than 5% over the period of record.   
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Figure 3.1. Wind roses for Hilo show 1-minute and 2-minute wind speeds and directions from 

1980-2018 (A) and 5-second wind speeds and directions from 1998 to 2018 (B) based on the 

eight primary cardinal directions. Wind roses for Kona show 2-minute wind speeds and 

directions from 1998-2018 (C) and 5-second wind speeds and directions from 1999-2018 (D) 

based on eight primary cardinal directions.  
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Additional wind roses were created from Hilo weather station data (1- and 2-minute 

observations) after partitioning the data into ~5-year time intervals (Figure 3.2). Approximately 

50% of prevailing winds originated from the east in 1980-1984, 23% originated from the 

southeast, and ~12% originated from the north (Figure 3.2A). In the subsequent 5-year period 

(1985-1989), approximately 23% of prevailing winds originated from the east, 23% originated 

from the southeast, and 25% originated from the north (Figure 3.2B).  From 1990-1994, 

approximately 33% of winds originated from the east, 25% originated from the northeast, and 

32% originated from the north (Figure 3.2C). In the subsequent 5-year period (1995-1999), 

approximately 55% of winds originated from the east and 27% originated from the north (Figure 

3.2D). From 2000-2004, approximately 47% of winds originated from the east, 25% originated 

from the north, and 22% originated from the northeast (Figure 3.2E). In the subsequent 5-year 

period (2005-2009), approximately 53% of winds originated from the east, 18% originated from 

the north, and 17% originated from the northeast (Figure 3.2F). From 2010-2014, approximately 

52% of winds originated from the east, 12% originated from the north, and 15% originated from 

the southeast (Figure 3.2G).  In the subsquent 4-year period (2015-2018), approximately 42% of 

winds orignated from the east, 27% originated from the north, and 21% originated from the 

southeast (Figure 3.2H).   
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Figure 3.2. Wind roses for Hilo showing 1-minute and 2-minute wind direction and wind speed 

observations subset into ~5-year time periods.  
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 Using 5-second observation data, wind roses were also created for time periods that 

overlapped with the previous Hilo time periods (Figure 3.3) Approximately 63% of prevailing 

winds originated from the east in 1998-1999 and ~17% originated from the northeast (Figure 

3.3A). In the subsequent 5-year period (2000-2004), approximately 32% of prevailing winds 

originated from the east, 23% originated from the north, and 25% originated from the northeast 

(Figure 3.3B).  From 2005-2009, approximately 47% of winds originated from the east, 15% 

originated from the northeast, and 17% originated from the north (Figure 3.3C). In the 

subsequent 5-year period (2010-2014), approximately 41% of winds originated from the east, 

17% originated from the northeast, and 17% originated from the north (Figure 3.3D). From 

2015-2018, approximately 38% of winds originated from the east, 29% originated from the 

north, and 21% originated from the southeast (Figure 3.3E).   



 

43 

 

 

 
Figure 3.3. Wind roses for Hilo showing 5-second wind direction and wind speed observations 

subset into ~5-year time periods (overlapping with the time periods in Figure 3.2).  
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Data subsets were also created for Kona using 1- and 2-minute observation data to create 

wind roses (Figure 3.4) Approximately 58% of prevailing winds originated from the northeast in 

1998-1999, 13% originated from the north, and 13% originated from the east (Figure 3.4A). In 

the subsequent 5-year period (2000-2004), approximately 47% of prevailing winds originated 

from the northeast, 18% originated from the north, 18% originated from the east, and 12% 

originated from the south (Figure 3.4B).  From 2005-2009, approximately 50% of winds 

originated from the northeast, 20% originated from the north, and 10% originated from the south 

(Figure 3.4C). In the subsequent 5-year period (2010-2014), approximately 40% of winds 

originated from the northeast, 28% originated from the north, and 13% originated from the south 

(Figure 3.4D). From 2015-2018, approximately 40% of winds originated from the north, 31% 

originated from the northeast, and 13% originated from the south (Figure 3.4E).  
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Figure 3.4. Wind roses for Kona showing 1-minute and 2-minute wind direction and wind speed 

observations subset into ~5-year time periods.  
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Additional data subsets were created for Kona using 5-second observation data to create 

wind roses (Figure 3.5) Approximately 83% of prevailing winds originated from the northeast in 

1998-1999 and 17% originated from the east (Figure 3.5A). In the subsequent 5-year period 

(2000-2004), approximately 48% of prevailing winds originated from the northeast, 17% 

originated from the east, and 12% originated from the south (Figure 3.5B).  From 2005-2009, 

approximately 50% of winds originated from the northeast, 15% originated from the north, and 

7% originated from the east (Figure 3.4C). In the subsequent 5-year period (2010-2014), 

approximately 39% of winds originated from the northeast, 31% originated from the north, and 

12% originated from the east (Figure 3.5D). From 2015-2018, approximately 39% of winds 

originated from the northeast, 34% originated from the north, and 14% originated from the south 

(Figure 3.5E).  
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Figure 3.5. Wind roses for Kona showing 5-second wind direction and wind speed observations 

subset into ~5-year time periods (overlapping with the time periods in Figure 3.4).  
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 The Spearman rank-order correlation coefficient results (Table 3.1) have cells with 

dashes meaning that there is no significance (p>0.05). The TNI time-series shows negative 

results between TNI and other time-series signifying a moderate negative correlation. 

Conversely, the other teleconnections show positive correlation between the time-series. Some 

have high R-values but other have low R-values (i.e. Best vs. PNA shows r=0.146). The WP 

index only has a positive correlation with the MEI V2 index. In contrast, MEI V2 has 

correlations with all time-series. 

Table 3.1. Results of SPSS Spearman Correlation between All Teleconnections. 

 

 

 

 

Correlation Coefficients --- Spearman’s rho 

Teleconnections 
Indices 

Niño3.4 
Index 

PDO 
Index 
CPC 

WP 
Index 

PNA 
Index 

BEST 
Index 

MEI V2 
Index 

Niño4 
Index 

ONI 
Index 

TNI 
Index 

Niño3.4 - .423** - .107* .810** .749** .799** .874** -.288** 

PDO .423** - - .249** .429** .498** .328** .426** - 

WP - - - - - .118* - - - 

PNA .107* .249** - - .146** .141** - .136** - 

BEST .810** .429** - .146** - .901** .817** .914** -.352** 

MEI V2 .749** .498** .118* .141** .901** - .776** .911** -.301** 

Niño4 .799** .328** - - .817** .776** - .868** -.577** 

ONI .874** .426** - .136** .914** .911** .868** - -.382** 

TNI -.288** - - - -.352** -.301** -.577** -.382** - 

**. Correlation is significant at the 0.01 level (2-tailed). 

*. Correlation is significant at the 0.05 level (2-tailed). 
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The results for the OLS Regression of WS vs. all teleconnections are shown in Tables 

3.2-3.5 with values in red (in the significance column) indicating a statistically significant 

coefficient (p ≤0.05), while values in black were not statistically significant (p>0.05). Table 3.2 

shows a significant relationship between the WS and four teleconnection indices (Niño 3.4, Niño 

4, ONI, and TNI indices). Table 3.3 shows a significant relationship with four teleconnection 

indices (Niño 3.4, PDO, Niño 4, and ONI indices). Table 3.4 shows a significant relationship 

with five teleconnection indices (Niño 3.4, PDO, Niño 4, ONI, and TNI indices). Lastly, in Table 

3.5 a significant relationship is identified with four teleconnection indices (Niño 3.4, PDO, WP, 

and ONI indices). 

Table 3.2. Results of SPSS OLS Regression between All Teleconnections and Hilo 1- and 2-

Minute Wind Speed. 

Coefficients 
 Unstandardized 

Coefficients 
Sig. 

(Constant) 49.763 0.001 

Niño3.4 Index -1.374 0.000 

PDO Index  0.148 0.418 

WP Index 0.247 0.132 

PNA Index 0.151 0.376 

BEST Index -0.067 0.875 

MEI V2 Index -0.509 0.286 

Niño4 Index -2.531 0.000 

ONI Index 3.395 0.000 

TNI Index -0.351 0.026 

a. Dependent Variable: WSF1+2 
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Table 3.3. Results of SPSS OLS Regression between All Teleconnections and Hilo 5-Seconds 

Wind Speed. 

Coefficients 

 Unstandardized 
Coefficients 

Sig. 

(Constant) 51.929 0.065 

Niño3.4 Index -2.828 0.000 

PDO Index  0.900 0.010 

WP Index 0.320 0.272 

PNA Index -0.361 0.259 

BEST Index -0.297 0.659 

MEI V2 Index 0.234 0.793 

Niño4 Index -3.074 0.004 

ONI Index 4.928 0.000 

TNI Index -0.534 0.066 

a. Dependent Variable: WSF5  
 

Table 3.4. Results of SPSS OLS Regression between All Teleconnections and Kona 2-Minute 

Wind Speed. 

Coefficients 
 Unstandardized 

Coefficients 
Sig. 

(Constant) 55.882 0.163 

Niño3.4 Index -2.476 0.013 

PDO Index  1.016 0.040 

WP Index 0.507 0.217 

PNA Index -0.668 0.138 

BEST Index -0.132 0.890 

MEI V2 Index 0.392 0.756 

Niño4 Index -6.942 0.000 

ONI Index 8.554 0.000 

TNI Index -1.033 0.014 

a. Dependent Variable: WSF2  
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Table 3.5. Results of SPSS OLS Regression between All Teleconnections and Kona 5-Seconds 

Wind Speed. 

Coefficients 
 Unstandardized 

Coefficients 
Sig. 

(Constant) -20.131 0.630 

Niño3.4 Index -4.140 0.000 

PDO Index  1.631 0.001 

WP Index 0.955 0.016 

PNA Index -0.758 0.081 

BEST Index -1.104 0.241 

MEI V2 Index 0.812 0.567 

Niño4 Index -2.890 0.064 

ONI Index 7.584 0.000 

TNI Index -0.220 0.624 

a. Dependent Variable: WSF5  
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The results for the MLR are shown in Tables 3.6-3.9 with an “x” indicating a statistically 

significant coefficient (p ≤0.05), while those with no “x” were not statistically significant 

(p>0.05). Table 3.6 shows a major relationship between the WD and three teleconnections (Niño 

3.4, Niño 4, and ONI indices). Table 3.7 shows a major relationship with five teleconnections 

(Niño 3.4, WP, BEST, ONI and TNI indices). Table 3.8 shows a relationship with three 

teleconnections (Niño 3.4, PNA, and TNI indices). Lastly, in Table 3.9 a major relationship is 

identified with three teleconnections (PNA, MEI V2, and ONI indices). 

Table 3.6. Results of a Multinomial Logistic Regression of Wind Direction for Hilo1+2 and All 

Teleconnection Indices in the Pacific. Red Indices showed significance for most of the 8-

Cardinal Compass Directions. 

Indices N NE E SE S SW W NW 

H
ILO

 W
D

1
+2

 
 

Niño3.4 Index X X X X  X  X 

PDO Index CPC X X X      

WP Index X X  X    X 

PNA Index  X X X     

BEST Index X X X      

MEI V2 Index         

Niño4 Index X X X X    X 

ONI Index X X X X  X X X 

TNI Index   X     X 

 

Table 3.7. Results of a Multinomial Logistic Regression of Wind Direction for Hilo5 and All 

Teleconnection Indices in the Pacific. Red Indices showed significance for most of the 8-

Cardinal Compass Directions. 

Indices N NE E SE S SW W NW 

H
ILO

 W
D

5
 

Niño3.4 Index X X X X    X 

PDO Index CPC         

WP Index X X X X X   X 

PNA Index X X       

BEST Index X X X X X   X 

MEI V2 Index         

Niño4 Index  X      X 

ONI Index X X X X  X  X 

TNI Index X X X X    X 
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Table 3.8. Results of a Multinomial Logistic Regression of Wind Direction for Kona2 and All 

Teleconnection Indices in the Pacific. Red Indices showed significance for most of the 8-

Cardinal Compass Directions. 

Indices N NE E SE S SW W NW 

K
O

N
A

 W
D

2
 

Niño3.4 Index X X  X   X X 

PDO Index CPC         

WP Index X   X    X 

PNA Index  X X X   X X 

BEST Index         

MEI V2 Index         

Niño4 Index         

ONI Index X X  X   X  

TNI Index X X  X X   X 

 

Table 3.9. Results of a Multinomial Logistic Regression of Wind Direction for Kona5 and All 

Teleconnection Indices in the Pacific. Red Indices showed significance for most of the 8-

Cardinal Compass Directions. 

Indices N NE E SE S SW W NW 

K
O

N
A

 W
D

5
 

Niño3.4 Index X X  X   X  

PDO Index CPC X X      X 

WP Index         

PNA Index X X X  X  X  

BEST Index         

MEI V2 Index X X  X   X X 

Niño4 Index         

ONI Index X X  X  X X X 

TNI Index         
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Wind direction observations from 1- and 2-minute recordings in Hilo were plotted and 

compared to various teleconnection index values and thresholds in Figures 3.6-3.9 (Niño3.4, 

PNA, ONI, and TNI respectively). Values below the neutral threshold, 30 in the index, are 

indicative of colder SSTs while values above the neutral threshold are indicative of warmer 

SSTs. Values above the red line for Figures 3.6 and 3.9 indicate a positive value for El Niño, 

while values below the blue line indicate a positive value for La Niña. Typically, if values are 

over 31.5 in the index these are considered to be strong El Niño events. Conversely, the opposite 

is true if values are below 28.5 in the index, these are considered to be strong La Niña events. 

According to the results from Hilo WD1+2 observations in Figures 3.6-3.9, easterly winds (67.6-

112.5 degrees) are predominant. Results for other teleconnections (PDO, WP, BEST, MEI V2, 

and Niño4) are presented in Appendix B. 

 
Figure 3.6. Hilo WD1+2 from 1980-2018 shows the wind direction in comparison with the 

index. The primary y-axis (left) shows wind direction values in degrees and the secondary y–axis 

(right) shows the Niño3.4 index values while the date is shown on the x-axis. The Neutral 

threshold is at 30 according to the index value.  
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Figure 3.7. Hilo WD1+2 from 1980-2018 shows the wind direction in comparison with the 

index. The primary y-axis (left) shows wind direction values and the secondary y–axis (right) 

shows the PNA index values while the date is shown on the x-axis. The Neutral threshold is at 30 

according to the index value.  

 
Figure 3.8. Hilo WD1+2 from 1980-2018 shows the wind direction in comparison with the 

index. The primary y-axis (left) shows wind direction values and the secondary y–axis (right) 

shows the ONI index values while the date is shown on the x-axis. The Neutral threshold is at 30 

according to the index value. 
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Figure 3.9. Hilo WD1+2 from 1980-2018 shows the wind direction in comparison with the 

index. The primary y-axis (left) shows wind direction values and the secondary y–axis (right) 

shows the TNI index values while the date is shown on the x-axis. The Neutral threshold is at 30 

according to the index value.  
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Wind direction observations from 5-second recordings in Hilo were also plotted and 

compared to various teleconnection index values and thresholds in Figures 3.10-3.13 (Niño3.4, 

PNA, ONI, and TNI respectively). Results for other teleconnections (PDO, WP, BEST, MEI V2, 

and Niño4) are presented in Appendix B. 

 
Figure 3.10. Hilo WD5 from 1998-2018 shows the wind direction in comparison with the index. 

The primary y-axis (left) shows wind direction values and the secondary y–axis (right) shows the 

Niño3.4 index values while the date is shown on the x-axis. The Neutral threshold is at 30 

according to the index value. 
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Figure 3.11. Hilo WD5 from 1998-2018 shows the wind direction in comparison with the index. 

The primary y-axis (left) shows wind direction values and the secondary y–axis (right) shows the 

PNA index values while the date is shown on the x-axis. The Neutral threshold is at 30 according 

to the index value.  

 
Figure 3.12. Hilo WD5 from 1998-2018 shows the wind direction in comparison with the index. 

The primary y-axis (left) shows wind direction values and the secondary y–axis (right) shows the 

ONI index values while the date is shown on the x-axis. The Neutral threshold is at 30 according 

to the index value.  
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Figure 3.13. Hilo WD5 from 1998-2018 shows the wind direction in comparison with the index. 

The primary y-axis (left) shows wind direction values and the secondary y–axis (right) shows the 

TNI index values while the date is shown on the x-axis. The Neutral threshold is at 30 according 

to the index value. 
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Wind direction observations from 2-minute recordings in Kona were plotted and 

compared to various teleconnection index values and thresholds in Figures 3.14-3.17 (Niño3.4, 

PNA, ONI, and TNI respectively). Results for other teleconnections (PDO, WP, BEST, MEI V2, 

and Niño4) are presented in Appendix B. 

 
Figure 3.14. Kona WD2 from 1998-2018 shows the wind direction in comparison with the index. 

The primary y-axis (left) shows wind direction values and the secondary y–axis (right) shows the 

Niño3.4 index values while the date is shown on the x-axis. The Neutral threshold is at 30 

according to the index value.  
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Figure 3.15. Kona WD2 from 1998-2018 shows the wind direction in comparison with the index. 

The primary y-axis (left) shows wind direction values and the secondary y–axis (right) shows the 

PNA index values while the date is shown on the x-axis. The Neutral threshold is at 30 according 

to the index value.  

 
Figure 3.16. Kona WD2 from 1998-2018 shows the wind direction in comparison with the index. 

The primary y-axis (left) shows wind direction values and the secondary y–axis (right) shows the 

ONI index values while the date is shown on the x-axis. The Neutral threshold is at 30 according 

to the index value.  

26
26.5
27
27.5
28
28.5
29
29.5
30
30.5
31
31.5
32
32.5
33
33.5
34

0

45

90

135

180

225

270

315

360

Ja
n

-9
8

Fe
b

-9
9

M
ar

-0
0

A
p

r-
0

1

M
ay

-0
2

Ju
n

-0
3

Ju
l-

0
4

A
u

g-
0

5

Se
p

-0
6

O
ct

-0
7

N
o

v-
0

8

D
ec

-0
9

Ja
n

-1
1

Fe
b

-1
2

M
ar

-1
3

A
p

r-
1

4

M
ay

-1
5

Ju
n

-1
6

Ju
l-

1
7

A
u

g-
1

8

P
N

A

W
IN

D
 D

IR
EC

TI
O

N

DATE

WDF2 PNA Index Neutral

26
26.5
27
27.5
28
28.5
29
29.5
30
30.5
31
31.5
32
32.5
33
33.5
34

0

45

90

135

180

225

270

315

360

Ja
n

-9
8

Fe
b

-9
9

M
ar

-0
0

A
p

r-
0

1

M
ay

-0
2

Ju
n

-0
3

Ju
l-

0
4

A
u

g-
0

5

Se
p

-0
6

O
ct

-0
7

N
o

v-
0

8

D
ec

-0
9

Ja
n

-1
1

Fe
b

-1
2

M
ar

-1
3

A
p

r-
1

4

M
ay

-1
5

Ju
n

-1
6

Ju
l-

1
7

A
u

g-
1

8

O
N

I

W
IN

D
 D

IR
EC

TI
O

N

DATE

WDF2 ONI Index Neutral >El Niño

<La Niña > Strong El Niño <Strong La Niña



 

62 

 

 
Figure 3.17. Kona WD2 from 1998-2018 shows the wind direction in comparison with the index. 

The primary y-axis (left) shows wind direction values and the secondary y–axis (right) shows the 

TNI index values while the date is shown on the x-axis. The Neutral threshold is at 30 according 

to the index value.  
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Wind direction observations from 5-second recordings in Kona were plotted and 

compared to various teleconnection index values and thresholds in Figures 3.18-3.21 (Niño3.4, 

PNA, ONI, and TNI respectively). Results for other teleconnections (PDO, WP, BEST, MEI V2, 

and Niño4) are presented in Appendix B. 

 
Figure 3.18. Kona WD5 from 1998-2018 shows the wind direction in comparison with the index. 

The primary y-axis (left) shows wind direction values and the secondary y–axis (right) shows the 

Niño3.4 index values while the date is shown on the x-axis. The Neutral threshold is at 30 

according to the index value.  
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Figure 3.19. Kona WD5 from 1998-2018 shows the wind direction in comparison with the index. 

The primary y-axis (left) shows wind direction values and the secondary y–axis (right) shows the 

PNA index values while the date is shown on the x-axis. The Neutral threshold is at 30 according 

to the index value.  

 
Figure 3.20. Kona WD5 from 1998-2018 shows the wind direction in comparison with the index. 

The primary y-axis (left) shows wind direction values and the secondary y–axis (right) shows the 

ONI index values while the date is shown on the x-axis. The Neutral threshold is at 30 according 

to the index value.  

26
26.5
27
27.5
28
28.5
29
29.5
30
30.5
31
31.5
32
32.5
33
33.5
34

0

45

90

135

180

225

270

315

360

Ja
n

-9
9

Fe
b

-0
0

M
ar

-0
1

A
p

r-
0

2

M
ay

-0
3

Ju
n

-0
4

Ju
l-

0
5

A
u

g-
0

6

Se
p

-0
7

O
ct

-0
8

N
o

v-
0

9

D
ec

-1
0

Ja
n

-1
2

Fe
b

-1
3

M
ar

-1
4

A
p

r-
1

5

M
ay

-1
6

Ju
n

-1
7

Ju
l-

1
8

P
N

A

W
IN

D
 D

IR
EC

TI
O

N

DATE

WDF5 PNA Index Neutral

26
26.5
27
27.5
28
28.5
29
29.5
30
30.5
31
31.5
32
32.5
33
33.5
34

0

45

90

135

180

225

270

315

360

Ja
n

-9
9

Fe
b

-0
0

M
ar

-0
1

A
p

r-
0

2

M
ay

-0
3

Ju
n

-0
4

Ju
l-

0
5

A
u

g-
0

6

Se
p

-0
7

O
ct

-0
8

N
o

v-
0

9

D
ec

-1
0

Ja
n

-1
2

Fe
b

-1
3

M
ar

-1
4

A
p

r-
1

5

M
ay

-1
6

Ju
n

-1
7

Ju
l-

1
8

O
N

I

W
IN

D
 D

IR
EC

TI
O

N

DATE

WDF5 ONI Index Neutral >El Niño

<La Niña > Strong El Niño <Strong La Niña



 

65 

 

 
Figure 3.21. Kona WD5 from 1998-2018 shows the wind direction in comparison with the index. 

The primary y-axis (left) shows wind direction values and the secondary y–axis (right) shows the 

TNI index values while the date is shown on the x-axis. The Neutral threshold is at 30 according 

to the index value.  
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The wind speed time series graphs (Figures 3.22-3.25) display the OLSOLS regression 

results of wind speed (y, dependent variable) versus time (x, independent variable). Positive and 

statistically significant coefficients in the regression equations indicate a significant increase in 

WS throughout the years. The smallest increase in WS is from Hilo WS1+2, while the largest 

increase in WS is from Kona WS5. There is a peak in WS in all graphs for the year 2014, while 

in Kona WS2 displays a major peak for the year 2016. 

 

Figure 3.22. Graph for Hilo WS1+2 from 1980-2018 shows wind speed in miles per hour (mph) 

with linear trendline and R-square in the upper right corner. 
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Figure 3.23. Graph for Hilo WS5 from 1998-2018 shows wind speed in miles per hour (mph) 

with linear trendline and R-square in the upper right corner. 

 

 

Figure 3.24. Graph for Kona WS2 from 1998-2018 shows wind speed in miles per hour (mph) 

with linear trendline and R-square in the upper right corner. 
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Figure 3.25. Graph for Kona WS5 from 1999-2018 shows wind speed in miles per hour (mph) 

with linear trendline and R-square in the upper right corner. 

 

  

y = 0.0186x + 31.339
R² = 0.0379

0

10

20

30

40

50

60

1
9

9
9

-0
1

1
9

9
9

-0
9

2
0

0
0

-0
5

2
0

0
1

-0
1

2
0

0
1

-0
9

2
0

0
2

-0
5

2
0

0
3

-0
1

2
0

0
3

-0
9

2
0

0
4

-0
5

2
0

0
5

-0
1

2
0

0
5

-0
9

2
0

0
6

-0
5

2
0

0
7

-0
1

2
0

0
7

-0
9

2
0

0
8

-0
5

2
0

0
9

-0
1

2
0

0
9

-0
9

2
0

1
0

-0
5

2
0

1
1

-0
1

2
0

1
1

-0
9

2
0

1
2

-0
5

2
0

1
3

-0
1

2
0

1
3

-0
9

2
0

1
4

-0
5

2
0

1
5

-0
1

2
0

1
5

-0
9

2
0

1
6

-0
5

2
0

1
7

-0
1

2
0

1
7

-0
9

2
0

1
8

-0
5

W
in

d
 S

p
ee

d

Year

Kona WS5 1999-2018



 

69 

 

CHAPTER 4. DISCUSSION 

Results clearly indicate that trade wind dynamics over Hawai’i have changed over time, 

corroborating previous findings from Garza et al. (2012). This thesis also finds that the trend has 

continued since 2010. Data from land-based weather stations located at Hilo and Kona allowed 

for surface-level analysis of wind speeds and directions, revealing variability especially in recent 

decades. Compared to Garza et al. (2012), however, there are differences with the amount of data 

and the locations where data were collected. Garza et al. (2012) used a weather station on each of 

the Hawaiian Islands and four ocean buoy stations. The weather stations and islands included 

Kauai with the Lihue station, Oahu with the Honolulu station, Maui with the Kahului station, and 

Hawaii with the Hilo station, while this thesis focuses only on Hawai'i Island and used two 

weather stations - Hilo on the east side and Kona on the west side of the island to primarily 

examine low-level emissions from Kilauea. 

The 5-year interval wind roses from Hilo show dominant prevailing east winds with the 

second-most prevalent winds being from the north, confirming that generally north and east 

‘trade’ winds drive weather patterns in the region. However, wind directions on the Island of 

Hawai’i are influenced and altered by topography. According to Garza et al. (2012), Hilo 

experiences katabatic flows due to the location of Mauna Kea, which also forces the NE trade 

winds to flow split and move around the island. Figures 3.2 to 3.3 the wind flow from the East is 

easily identified. Another important factor is that with the presence of the trade wind inversion 

the vog particles dispersed to the east of Mauna Loa can drift out away from the island when 

above 2 km but when these particles are low enough (below 2 km) they are then blown back by 

the trade winds and then dispersed in multiple directions by the flow splitting that occurs in and 

around Hilo. 
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The Kona 5-year interval wind roses, in contrast to Hilo, have a distinct northeast 

dominant wind pattern. Kona is not as affected by flow splitting as Hilo, however the resulting 

flow splitting from Mauna Loa and Mauna Kea cause the windward trade winds under 2 km to 

move around the volcanoes. In the north, the wind passes over the Kohala Mountains located 

over northern Hawaii, which are below the trade wind inversion, and then flow “south” towards 

the Kona region. This wind flow, when combined with the Kona leeward side winds, forms one 

of the counter-rotating vortices in the northwestern area, which are more prominent when trades 

winds are stronger. The other counter-rotating vortex is fueled by winds passing in the area 

below 2 km south of Mauna Kea. These south winds can in turn pick-up vog particles from 

Kīlauea and spread them to the southern areas of the island.  

The wind roses confirm that Hilo is dominated by easterly winds which is expected. 

These easterly winds encounter flow-splitting and katabatic flows that are common on the east 

side of the island. Moreover, the flow of the trade winds towards the islands tends to be 

“trapped” due to higher elevations and the trade wind inversion layer, which causes this area of 

the island to experience more precipitation. Topography impacts the climate and related hazards 

on the Island of Hawai’i more than the other Hawaiian Islands, where almost all mountain 

elevations are below 2 km. 

In addition to the changes in wind direction, wind speeds have gradually increased 

throughout the years, which was alluded to by Garza et al. (2012).Statistical analysis with the 

OLS Regression indicated that these changes are significant (p<0.05), which reinforce the results 

for the R2 in the Figures 3.22-25. These results indicate small increase in WS for Hilo and Kona 

stations (for both minutes and second data) with highly significant values in correspondence to 

the years. In accordance with wind speed and teleconnection relationships, the teleconnections is 
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seems that the changes can be attributed primarily to four indices overall. Similar to the results 

for WD, the ENSO fluctuations (Niño3.4, Niño 4, and ONI) have a more noticeable impact on 

wind variations. The PDO teleconnection also shows a high impact on wind speed. These 

teleconnection results are statistically significant with Niño3.4 and Niño 4 being related to a 

slight decrease in wind speed, while ONI and PDO indicates a slight increase in wind speed. 

An overall gradual decline, which can be seen in the annual results, is observed in the NE 

trade winds and, especially for the Kona weather station in Table 4.1. A slight increase of NE 

winds is seen from 2000-2009 in Kona with a more prominent decrease afterwards; this change 

is minimal when observed in Hilo. For Hilo 1- and 2-minute wind direction observations, a low 

presence for NE winds is observed throughout the studied years but a trend is observed with a 

gradual increase from 1980 to 1994, a short-term decrease from 1995 to 1999, followed by a 

minimal increase from 2000-2009, and finally a decrease from 2010-2018. This general trend is 

observed using 2-minute wind direction observations at both Hilo and Kona and 5-second wind 

direction observations at Kona as well from 1998-2018. Using 5-year intervals, these fluctuations 

in NE winds are easier to identify Table 4.5. 

According to Garza et al., (2012) there is a decrease in northeast winds and an increase in 

east winds. They attribute this to shift in location of the subtropical high-pressure zone and to 

teleconnections like the ENSO. They give an example of Honolulu, which had the most 

noticeable decrease in NE trade winds since 1973 when they typically experienced 291 days of 

NE trade winds per year (79%), but by 2009 the trade winds transpired for only 210 days per 

year (57%). They mention that Lihue and Kahului also experienced decreases in annual NE trade 

winds and that Hilo did not reveal significant change in regards to wind frequency. Nevertheless, 

in this research if we compare the frequency of NE trade winds for the years 1999, 2009, and 
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2018 in Kona and Hilo the results show a difference between the east and west side of the main 

island (Table 4.1). In Hilo, located on the east side of Hawai’i, the NE trade winds occurrence 

from 1999 had an average of 60 days per year (17%), for 2009 they had an average of 60 days 

per year (17%) as well, and for 2018 they had a 0 days per year (0%). In contrast, for Kona 

which is situated on the west side of Hawai’i the NE trade winds occurrence for 1999 had an 

average of 243 days per year (67%), for 2009 they had an average of 181 days per year (50%), 

and for 2018 they experienced 124 days (34%). Statistical analysis using with the OLS 

Regression for Hilo 5-secondseconds, Kona 2-minute, and Kona 5-seconds winds indicate a 

statistically significant decrease of yearly NE trade winds of approximately 2-4 days per year. 

However, the observed decrease in NE trade winds was not statistically significant for Hilo 

1Hilo1- and 2-minute winds. 

In relation to the teleconnections, the changes in wind direction are likely attributed to 

ENSO fluctuations (based on the Niño 3.4, ONI and TNI); however, this can be related to the 

PNA and WP patterns as well.  The results for the correlations between all teleconnections 

indicate that the TNI has a moderate negative correlation to all other indices, which is indicative 

that when another teleconnection is active the TNI does not strengthen it. This could be because 

the time-series takes into account the influence of teleconnection patterns over larger areas 

(tropical equatorial Pacific). Multiple weather observation records were correlated to 

teleconnection indices for both Kona and Hilo. The PNA and WP also influence local patterns in 

Hawaii since those patterns displace the jet stream in certain directions depending on the phase 

they exhibit (positive or negative). Moreover, WD and vog dispersal are further influenced by 

weather patterns and this research found that Niño 3.4, ONI, TNI, and PNA indices have 

noticeable impact on these factors. For example during the years that ENSO (El Niño) is active 



 

73 

 

(Table 4.2) the NE trades winds are more constant over the island and can disperse vog more 

efficiently compared to years were the ENSO is neutral (Table 4.4), which shows that NE trade 

winds are less constant and dispersal of vog is more variable. Another important factor is that 

when La Niña is active (Table 4.3) the NE trade winds are stronger that when El Niño is active 

and can spread vog across a wider distance. 

The decline in NE trade winds can be slightly associated to a shift in the PDO from 

positive to negative. The PDO is a long-term teleconnection often remaining within a cold or 

warm mode for 20-30 years and it is fairly different compared to the other studied weather 

patterns in this thesis because of its prolonged length.  Even though this index is not shown to be 

as significant as other teleconnections, it is known to impact the location of the Pacific jet stream 

and associated weather patterns.  
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Table 4.1. Results of Yearly Wind Direction for Hilo and Kona with predominant NE Direction 

Winds showing their days and percent. Red years showed an active El Niño event while blue 

years showed an active La Niña event. Light yellow highlights show 50% or more of 

predominant NE Winds in Kona. Dark yellow highlights show 30% or more of predominant NE 

Winds in Hilo. 

NE TRADE WINDS YEARLY 

 HILO WD1+2 HILO WD5 KONA WD2 KONA WD5 

Days Percent Days Percent Days Percent Days Percent 

1980 0 0%       

1981 31 8%       

1982 0 0%       

1983 31 8%       

1984 31 8%       

1985 30 8%       

1986 60 16%       

1987 60 16%       

1988 92 25%       

1989 91 25%       

1990 31 8%       

1991 60 16%       

1992 154 42%       

1993 61 17%       

1994 150 41%       

1995 0 0%       

1996 0 0%       

1997 30 8%       

1998 0 0% 30 8% 245 67%   

1999 30 8% 91 25% 182 50% 304 83% 

2000 62 17% 60 16% 153 42% 212 58% 

2001 58 16% 89 24% 182 50% 151 41% 

2002 123 34% 61 17% 181 50% 242 66% 

2003 92 25% 121 33% 182 50% 152 42% 

2004 61 17% 92 25% 154 42% 123 34% 

2005 61 17% 0 0% 210 58% 152 42% 

2006 61 17% 124 34% 153 42% 153 42% 

2007 92 25% 30 8% 153 42% 214 59% 

2008 0 0% 123 34% 215 59% 216 59% 

2009 91 25% 30 8% 180 49% 183 50% 

2010 92 25% 93 25% 123 34% 61 17% 

2011 91 25% 60 16% 153 42% 184 50% 

2012 31 8% 61 17% 213 58% 184 50% 

2013 30 8% 30 8% 118 32% 179 49% 

2014 30 8% 30 8% 123 34% 92 25% 

2015 0 0% 30 8% 121 33% 91 25% 

2016 90 25% 30 8% 91 25% 122 33% 

2017 31 8% 31 8% 122 33% 183 50% 

2018 0 0% 0 0% 124 34% 124 34% 
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Table 4.2. Results of Wind Direction in the active El Niño event years for Hilo and Kona with 

predominant NE Direction Winds showing their days and percent. Light yellow highlights show 

50% or more of predominant NE Winds in Kona. Dark yellow highlights show 30% or more of 

predominant NE Winds in Hilo. 

NE TRADE WINDS YEARLY 

 HILO WD1+2 HILO WD5 KONA WD2 KONA WD5 

Days Percent Days Percent Days Percent Days Percent 

1980 0 0%       

1983 31 8%       

1987 60 16%       

1988 92 25%       

1992 154 42%       

1995 0 0%       

1998 0 0% 30 8% 245 67%   

2003 92 25% 121 33% 182 50% 152 42% 

2007 92 25% 30 8% 153 42% 214 59% 

2010 92 25% 93 25% 123 34% 61 17% 

2016 90 25% 30 8% 91 25% 122 33% 

 

Table 4.3. Results of Wind Direction in the active La Niña event years for Hilo and Kona with 

predominant NE Direction Winds showing their days and percent. Light yellow highlights show 

50% or more of predominant NE Winds in Kona. Dark yellow highlights show 30% or more of 

predominant NE Winds in Hilo. 

NE TRADE WINDS YEARLY 

 HILO WD1+2 HILO WD5 KONA WD2 KONA WD5 

Days Percent Days Percent Days Percent Days Percent 

1989 91 25%       

1996 0 0%       

1999 30 8% 91 25% 182 50% 304 83% 

2000 62 17% 60 16% 153 42% 212 58% 

2008 0 0% 123 34% 215 59% 216 59% 

2011 91 25% 60 16% 153 42% 184 50% 

2012 31 8% 61 17% 213 58% 184 50% 
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Table 4.4. Results of Wind Direction in the neutral ENSO years for Hilo and Kona with 

predominant NE Direction Winds showing their days and percent. Light yellow highlights show 

50% or more of predominant NE Winds in Kona. Dark yellow highlights show 30% or more of 

predominant NE Winds in Hilo. 

NE TRADE WINDS YEARLY 

 HILO WD1+2 HILO WD5 KONA WD2 KONA WD5 

Days Percent Days Percent Days Percent Days Percent 

1981 31 8%       

1982 0 0%       

1984 31 8%       

1985 30 8%       

1986 60 16%       

1990 31 8%       

1991 60 16%       

1993 61 17%       

1994 150 41%       

1997 30 8%       

2001 58 16% 89 24% 182 50% 151 41% 

2002 123 34% 61 17% 181 50% 242 66% 

2004 61 17% 92 25% 154 42% 123 34% 

2005 61 17% 0 0% 210 58% 152 42% 

2006 61 17% 124 34% 153 42% 153 42% 

2009 91 25% 30 8% 180 49% 183 50% 

2013 30 8% 30 8% 118 32% 179 49% 

2014 30 8% 30 8% 123 34% 92 25% 

2015 0 0% 30 8% 121 33% 91 25% 

2017 31 8% 31 8% 122 33% 183 50% 

2018 0 0% 0 0% 124 34% 124 34% 

 

Table 4.5. Results of 5-Year Interval Wind Direction for Hilo and Kona with prevailing NE 

Direction Winds. 

 

NE TRADE WINDS – 5YR INTERVALS 

YEARS HILO WD1+2 YEARS HILO WD5 KONA WD2 YEARS KONA WD5 

 Days Percent  Days Percent Days Percent  Days Percent 

1980-84 31 8%         

1985-89 121 33%         

1990-94 92 25%         

1995-99 0 0% 1998-99 125 34% 306 84% 1999 304 83% 

2000-04 61 17% 2000-04 150 41% 303 83% 2000-04 334 92% 

2005-09 91 25% 2005-09 61 17% 334 92% 2005-09 307 84% 

2010-14 61 17% 2010-14 122 33% 242 66% 2010-14 273 75% 

2015-18 30 8% 2015-18 61 17% 183 50% 2015-18 275 75% 
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CHAPTER 5. CONCLUSIONS AND FUTURE RESEARCH 

The wind variation results for Hawai’i display a difference throughout the years. 

Specifically, these results just consider the island of Hawai’i compared to previous research (e.g., 

Garza et al., 2012), which generalizes the region. The results for the weather stations in the east 

(Hilo) and west (Kona) sides of the island indicate that there has been a reduction in the numbers 

of days that NE trade winds were experienced. Kona in 1999 had an occurrence average of 243 

days per year (67%), but in 2018 it had only a 124 days per year (34%) occurrence. Hilo 

displayed similar results but with less general dominance by one wind direction; therefore, the 

occurrence for 1999 had an average of 60 days per year (17%) but for 2018 Hilo experienced 0 

days per year (0%) occurrence of NE trade winds, however easterly winds were dominant.  

Overall, several outcomes have been identified for the predominant trade winds over 

Hawaii. In general, the decrease in NE trade winds is visible yearly and in 5-year intervals, 

however, this decrease is not as substantial when considering only land-based weather stations. 

The changes in these trends can be attributed to several teleconnections but this research 

concludes that the ENSO time-series (ONI, Niño 3.4, TNI) and the PNA are the most relevant 

patterns for these changes. A possible shift of these teleconnections may be the source of 

decreasing trade winds and the gradual increase of WS over the tropical/central Pacific. 

For future research, wind variations above and below the 2 km inversion layer in Hawai’i 

should be explored more. This would allow researchers to further investigate the dispersion of 

vog more accurately in relation to different elevations in Hawai’i. The addition of more weather 

stations throughout the main island, especially in the southern, central, and northern areas, may 

provide new insights to the wind direction dynamics on the island. Ground weather stations and 

buoy stations close to the island can be studied separately and then compared to examine trade 
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wind dominance. Another aspect that would be beneficial to research is cloud cover considering 

the decrease of NE trade winds and the slight increase of Kona winds this can affect the cloud 

cover over the islands. Additionally, with the high demand for electricity (more specifically air 

conditioners) in recent years due to a more humid climate (also related to Kona winds and wind 

direction changes) residents are opting to install solar panels; and cloud coverage as well as acid 

rain are factors that need to be kept in mind. The cloud coverage can be studied as well 

throughout the years to corroborate the change of wind directions over Hawai’i. 
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APPENDICES 

Appendix A:  Acronyms 

• volcanic fog (vog) 

• El Niño-Southern Oscillation (ENSO) 

• Pacific Decadal Oscillation (PDO) 

• Pacific/North American (PNA) 

• West Pacific (WP) 

• International Comprehensive Ocean-Atmosphere Data Set (ICOADS) 

• National Center for Environmental Prediction (NCEP) 

• National Center of Atmospheric Research (NCAR) 

• Reanalysis 1 (R1) 

• sea surface temperature (SST) 

• Hadley Center sea ice and sea surface temperature (HadlSST) 

• National Oceanic and Atmospheric Administration (NOAA) 

• Physical Science Division (PSD) 

• Climate Prediction Center (CPC) 

• Southern Oscillation Index (SOI) 

• Hadley Center sea ice and sea surface temperature version 1 (HadlSST1) 

• East Central Tropical Pacific SST (Niño3.4) 

• Central Tropical Pacific SST (Niño4) 

• Transitional “Trans” Niño Index (TNI) 

• Oceanic Niño Index (ONI) 

• Optimum Interpolation (OI) 

• Bivariate ENSO Time-series (BEST) 

• Multivariate ENSO Index Version 2 (MEI v2) 

• sea-level pressure (SLP) 

• surface zonal winds (U) 

• meridional winds (V) 

• Outgoing Longwave Radiation (OLR) 

• Comprehensive Ocean-Atmosphere Data Set (COADS) 

• Rotated Principal Component Analysis (RCPA) 

• North Atlantic Oscillation (NAO) 

• millibar (mb) 

• Climate Data Assimilation System (CDAS) 

• Northeast (NE) 

• Southeast (SE) 

• knots (kn) 

• miles per hour (mph) 

• meters per second (m s-1) 
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• above sea level (ASL) 

• kilometer (km) 

• feet (ft) 

• meters (m) 

• millimeters (mm) 

• micrometers (µm) 

• particulate matter (PM) 

• water vapor (H2O) 

• carbon dioxide (CO2) 

• sulphur dioxide (SO2) 

• Climate Data Online (CDO) 

• Global Summary of the Month (GSOM) 

• wind speed (WS) 

• wind direction (WD) 

• mean sea level (MSL) 

• wind speed 1 minute (WS1) 

• wind direction 1 minute (WD1) 

• wind speed 2 minutes (WS2) 

• wind direction 2 minutes (WD2) 

• wind speed 5 seconds (WS5) 

• wind direction 5 seconds (WD5) 

• Celsius (ºC) 

• Statistical Product and Service Solutions (SPSS) 

• Ordinary Least Square (OLS) Regression 

• Multinomial Logistic Regression (MLR) 

• R-square (R2) 
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Appendix B:  Supplemental Figures 

HILO WD1+2 
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HILO WD5 
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KONA WD2 
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KONA WD5 
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