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ABSTRACT 

Knot Flow Classification and its Applications in Vehicular Ad-Hoc Networks (VANET) 

by 

David Allan Schmidt 

Intrusion detection systems (IDSs) play a crucial role in the identification and mitigation for 

attacks on host systems. Of these systems, vehicular ad hoc networks (VANETs) are difficult to 

protect due to the dynamic nature of their clients and their necessity for constant interaction with 

their respective cyber-physical systems. Currently, there is a need for a VANET-specific IDS 

that meets this criterion. To this end, a spline-based intrusion detection system has been 

pioneered as a solution. By combining clustering with spline-based general linear model 

classification, this knot flow classification method (KFC) allows for robust intrusion detection to 

occur. Due its design and the manner it is constructed, KFC holds great potential for 

implementation across a distributed system. The purpose of this thesis was to explain and 

extrapolate the afore mentioned IDS, highlight its effectiveness, and discuss the conceptual 

design of the distributed system for use in future research. 
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CHAPTER 1. INTRODUCTION 

1.1 Motivation 

As the world becomes increasingly interconnected through the expansion of the internet, 

the movement from wired to wireless networks has become prominent as the next step in the 

evolution of human communication. With this wireless communication, the implementation of 

networking has evolved as well. Traditional networks, consisting of static machines and their 

respective servers, have given way to the development of modern networks comprising of mobile 

devices, appliances, and other nontraditional mediums [1] [2]. Of these mediums, autonomous 

vehicles and the study of their interlocking wireless systems have become the focus for research 

in artificial intelligence, machine-learning, and traffic-control networking [3] [4] [5] [6]. 

Specifically, the spontaneous creation of networks of these ad-hoc networks provide an 

interesting challenge when applied to a vehicular domain. These vehicular ad-hoc networks 

(VANETs) are a testament to the way in which travel, commerce, and business are to be 

conducted in the coming future [3] [7]. 

Although the means in which communication occurs has evolved, the use of an intrusion 

detection system (IDS) that classifies, validates, and verifies the integrity of the data within a 

VANET is still needed just as in static client-server network environments [8]. However, the 

VANET environment in which an IDS must operate has proved challenging due to the sheer 

volume of data that must be processed and the high speed in which this data must be completely 

and correctly verified [4] [9]. To be both effective and efficient, a VANET-focused IDS must 

handle these large amounts of data and provide expedient results, otherwise the damaging of 

property, injury of human beings, and loss of human life may occur. 
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1.2 Statement of Research Problem 

Initially, this research focused on testing the feasibility of a novel VANET specific IDS 

that utilizes basis splines for the classification of malicious network activity from normal 

network communications [10]. The research was subsequently expanded into the development of 

a VANET specific machine-learning algorithm. The success of this application, as well as the 

need for more subsequent testing of the IDS with larger and more complex sets of data, spurred 

research forward. Efforts to develop a VANET specific IDS for use in autonomous vehicles have 

been ongoing since late 2010. Unfortunately, current implementations of these systems are either 

inefficient or inaccurate for use in safety-critical systems [8]. These limitations have created a 

need for an IDS that is both effective and efficient within a VANET environment and for 

autonomous vehicle applications. 

Accordingly, the work described in this document focused on three related challenges 

and their possible solutions: 

1. Developing, testing, and analyzing the use of basis splines to classify network activity 

specific to that of a VANET environment. This application uses basis spline variants to 

classify malicious network activity. The system was tested using 120 observations from a 

VANET environment developed by E. A. Shams, A. Rizaner and A. H. Ulusoy from the 

Eastern Mediterranean University in Turkey [11] (see chapter 2). 

2. Developing, testing, and analyzing the accuracy and speed of an ensemble classification 

method that utilizes basis splines and dynamic clustering for intrusion detection. This 

challenge led to the development of a machine-learning algorithm, termed knot flow 

classification (KFC), that dynamically clusters data, contracts the clusters towards their 

respective centers, and subsequently classifies data via the basis spline IDS application. 
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The proposed algorithm uses over 22,544 observations from the KDD-NSL dataset 

created by the University of New Brunswick in Canada [12] [13] (see chapter 3). 

3. Partitioning the aforementioned classification method across a distributed system and 

analyzing its effects to the accuracy and speed of classification. The conceptualization of 

Knot Flow Classification across a distributed system using Map Reduce and Hadoop 

[14]. The proposed architecture for this system is discussed at the end of this thesis (see 

chapter 4). 

1.3 Results 

The research described in this thesis produced three novel results. 

1. Confirmation that basis splines are effective when classifying malicious network activity 

from normal VANET network data. Additionally, the comparison of data of the dataset 

utilized in this experimentation mirrored well to the NSL-KDD dataset, allowing for 

more extensive future testing.  

2. Confirmation that KFC was applicable, effective, and efficient when processing network 

traffic data from a simulated VANET environment. 

3. Confirmation that KFC was as accurate as modern classification techniques with the 

addition of being more efficient when processing datasets larger than 13,000 

observations.  

These results, together with other considerations, such as avenues for future research and 

a detailed description of the KFC distributed system architecture, are described in more detail in 

this thesis’s remaining chapters. 
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CHAPTER 2. SPLINE BASED INTRUSION DETECTION IN VEHCICULAR AD HOC 

NETWORKS (VANET) 

David A. Schmidt, Mohammad S. Khan, Brian T. Bennett 

 
2.1 Abstract 

Intrusion detection systems (IDSs) play a crucial role in the identification and mitigation 

for attacks on host systems. Of these systems, vehicular ad hoc networks (VANETs) are 

particularly difficult to protect due to the dynamic nature of their clients and their necessity for 

constant interaction with their respective cyber-physical systems. Currently, there is a need for a 

VANET-specific IDS that can satisfy these requirements. Spline function-based IDSs have 

shown to be effective in traditional network settings. By examining the various construction of 

splines and testing their robustness, the viability for a spline-based IDS can be determined.  

Keywords- Intrusion Detection, Spline, Vehicular Ad Hoc Networks, Machine Learning, Internet 

of Things, Internet of Vehicles 

2.2 Introduction 

The internet of things (IoT) has become an area of interest as society begins to connect a 

vast number of computer systems to the internet. Due to this societal switch and consequent 

volume of information becoming digitalized, intrusion detection has become a high-priority 

concern. With the implementation of so many types of computer systems, attempts have been 

made to create an optimal intrusion detection system (IDS) for each domain in IoT. Among these 

domains, the internet of vehicles (IoV), consisting of vehicular ad hoc networks (VANETs), has 

proven to be an especially difficult domain due to the dynamic nature of their clients and the 

complexity of the criteria associated with its optimal IDS. Currently, the use of spline functions 
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within IDSs has been pioneered in multiple domains with various levels of success. The purpose 

of this article is to examine the role of an IDS, the obstacles associated with VANET, and define 

a preliminary spline-based IDS configuration for a VANET. 

2.3 Purpose of an Intrusion Detection System 

An Intrusion Detection System (IDS) is an application that identifies attacks against a 

host system. IDSs identify these attacks by processing system-centric events using various 

machine learning and data mining techniques. Ideally, these techniques allow an IDS to function 

efficiently and effectively. 

The effectiveness of an IDS stems from its ability to distinguish between normal 

processing and attacks, the speed with which it identifies attacks, and how well it determines an 

attack's type. At minimum, an IDS should distinguish between denial of service attacks, probes, 

unauthorized elevation of privilege, and remote access attacks. Efficiency results from lowering 

the time required for processing and the resources required for these identifications to occur. 

Overall, an optimal IDS should balance efficiency and effectiveness to remain robust. 

2.3.1 Probing 

Sharma and Kaul state “The most common type of attack, a probing is an attack that 

monitors a target system to collect data and identify weaknesses” [15]. If an attacker can exploit 

a weakness, they can use this information to compromise the integrity of a system. A myriad of 

probing attacks exists. Often, these attacks involve the exploitation of a system’s hardware, such 

as an open-access port. More often, probing attacks are the result of a user’s incompetence and 

sensitive information is divulged to the attacker. 
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2.3.2 Denial of Service (DoS) Attacks 

Denial of Service (DoS) is a type of attack where an attacker overburdens system 

resources [15]. This prevents users from making legitimate requests from one of the 

compromised resources, thus, denying access. DoS typically occurs when an attacker abuses a 

feature of a system by exploiting bugs or poor designs within the system. “Often, these types of 

attacks are classified based on the resource that is compromised” [15]. For instance, a UPD 

socket flood is a DoS attack that floods a target with packets. This gridlocks a system because it 

is unable to process every request. 

2.3.3 User to Root (U2R) Attacks 

User to Root (U2R) attacks are a type of attack where an intruder attempts to gain root 

access to a target system” [15]. Once an attacker gains root access, they can obtain administrator 

privileges, thus compromising the system and the integrity of its contents. This type of attack 

usually occurs in conjunction with a buffer-overflow exploit but can also be found in attacks 

such as code injection techniques. 

2.3.4 Remote to User (R2U) Attacks 

“Remote to User (R2U) attacks are a type of attack where an attacker exploits a system 

over a network by sending malicious packets in order to expose the target system to 

vulnerabilities” [15]. The attacker then exploits the target system to gain user access and exploit 

vulnerabilities as a local user. Typically, this type of attack occurs as phishing; however, this 

attack may also occur if an attack alters networking control protocols. 

2.4 Obstacles Associated with Vehicular Ad-hoc Networks 

Unlike traditional networks which consist of simple static client-server relationships, 

VANET’s relationships have an increased complexity. This is due to the dynamic nature of their 
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clients, the multifaceted nature of their cyber-physical systems, and the safety-critical nature of 

the environments in which they are implemented. Within the system, fast-moving autonomous 

vehicles act as clients who, in turn, interact with a cyber-physical system consisting of cellular 

service towers, roadside units, and other clients within range. Development of an optimal IDS 

will not only need to account for the client’s safety in terms of the five types of attacks, but also 

the integrity of the cyber-physical system. Outside the realm of cyber-attacks, damage to power-

grid infrastructure and roadside units via physical attacks will need to be accounted for as well 

for a VANET IDS [16]. Any damage received by the cyber-physical system may lead to 

inconsistencies in communication. If these inconsistencies are not corrected, the resulting 

communication breakdown may result in a breach of security.   

Due to the need for constant communication between a vehicle and the cyber-physical 

system, network latency is a high priority concern. There are many components that must be 

accounted for to provide a fast, responsive connection. However, the limiting factor for an 

optimal connection is in essence how fast a client can detect an attack and the speed in which it 

communicates to the corresponding system to mitigate any damage [17]. In a situation where a 

vehicle is traveling at high speeds or even at lower speeds in densely populated areas, the health 

and safety of individuals are at stake. This safety-criticality must not be taken lightly. Calculated 

decisions must be made within fractions of a second, always with preservation of life as a top 

priority. Failure to meet this criterion is a failure to meet the standards of an optimal IDS. 

2.4.1 Splines 

A spline is a mathematical depiction of a continuous function consisting of points, called 

knots, that allows the user to manipulate the shape of curves [18]. A user interfaces with a spline 

function by entering a specific number of knots. A curve is then created between each of these 
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knots. A curve that passes through one of these knots is deemed an interpolating curve and one 

that passes near them is deemed an approximation curve [19]. Due this ability, spline functions 

are useful when shaping two-dimensional and, in the case of B-Splines, three-dimensional 

depictions of functions up to the complexity of a cubic polynomial [20]. Any computation in a 

higher complexity environment can result in a loss of accuracy due to a decrease in the amount 

of interpolation corresponding with an increase in approximation [21]. Based on their continuity, 

splines can be organized into different subsets including, but not limited to, linear, quadratic, 

cubic, and basis splines. 

2.4.2 Linear Splines 

A linear spline is the simplest form of interpolation. It is constructed piece-wise from linear 

functions creating two–point interpolating polynomials.  

An example of a linear interpolating spline (Fig. 1) and an equation (1) representing a 

linear spline interpolation, as seen in [22], can be seen below. 

  

Fig. 1 Visual representation of a linear spline. Grey denotes three 
degrees of freedom. Knot placement occurs at the 0.25, 0.50, and 

0.75 packet delay quantile. 
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A linear spline g is given by 

𝑔𝑔(𝑥𝑥) =  �𝑦𝑦𝑖𝑖𝐵𝐵𝑖𝑖,𝑖𝑖(𝑥𝑥)
𝑚𝑚

𝑖𝑖=𝑖𝑖

 

 
And satisfies the interpolation conditions 

 
2.4.3 Linear Spline Interpretation 

Due to its two-point polynomial interpolation, linear splines are confined to a strict 

degree of freedom when interpolating data. These degrees of freedom are derived from the 

variable placement of knots during the spline’s construction which, in turn, are confined by its 

interpolation conditions [18]. As demonstrated in Fig. 1, these conditions allow polynomials only 

of the second degree to be utilized, thus restricting the possible spline variations.  This variation, 

although minimal, is key to the spline’s robustness when classifying data as it allows for 

placement of the best fit linear spline. 

2.4.4 Quadratic Splines 

Increasing in complexity, quadratic spline construction is like that of linear splines. 

However, rather than consisting of piece-wise linear functions, it is constructed from piece-wise 

quadratic functions. An example of a quadratic spline (Fig. 2) and an equation (2) representing 

its piece-wise construction, as demonstrated in [23], can be seen below.  

The quadratic spline 𝑆𝑆2,2(𝑥𝑥) is constructed as:  
 

𝑃𝑃1(𝑥𝑥) =  𝑎𝑎1 + 𝑏𝑏1𝑥𝑥 + 𝑐𝑐1𝑥𝑥2, 𝑜𝑜𝑜𝑜     [−1, 0] 
𝑃𝑃2(𝑥𝑥) =  𝑎𝑎1 + 𝑏𝑏1𝑥𝑥 + 𝑐𝑐1𝑥𝑥2, 𝑜𝑜𝑜𝑜        [0, 1] 

 
 
And 𝑆𝑆2,2(𝑥𝑥) interpolates the given data points, 
  

 𝑔𝑔(𝑥𝑥𝑖𝑖) = 𝑦𝑦𝑖𝑖, for i = 1, …, m – 1 and   
lim
𝑥𝑥→𝑥𝑥𝑚𝑚−

𝑔𝑔(𝑥𝑥) = 𝑦𝑦𝑚𝑚 

(1) [22] 
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𝑃𝑃1(−1) =  𝑎𝑎1 + 𝑏𝑏1 + 𝑐𝑐1 = 0 
𝑃𝑃1(0) =  𝑎𝑎1 = 1 
𝑃𝑃1(0) =  𝑎𝑎2 = 1 

𝑃𝑃1(1) =  𝑎𝑎2 + 𝑏𝑏2 + 𝑐𝑐2 = 3 
 
The quadratic spline function is given as 
 

𝑆𝑆2,2(𝑥𝑥) = �1 + 2𝑥𝑥 + 𝑥𝑥2, 𝑜𝑜𝑜𝑜 [−1,0] 
1 + 2𝑥𝑥,            𝑜𝑜𝑜𝑜 [−1,0]           (2) [23] 

  
2.4.5 Quadratic Spline Interpretation 

Like linear splines, quadratic splines also possess a varying degree of freedom. However, 

due to the nature of their construction, quadratic splines can interpolate knots at a second degree 

which increases the possible interpolant variations for the spline [18]. As seen in Fig. 2, the 

quadratic spline contains a much wider area of coverage than the linear spline with identical 

degrees of freedom. Based on the placement of its knots, the increased freedom of the quadratic 

spline can specify the way it interpolates knots, thus increasing its robustness when classifying 

data. 

Fig. 2 Visual representation of a quadratic spline. Grey shading 
denotes three degrees of freedom. Knot placement occurs at the 

0.25, 0.50, and 0.75 packet delay quantile. 
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2.4.6 Cubic Splines 

The highest level of complexity cubic spline construction is like that of linear splines, but 

rather than consisting of piece-wise linear functions, it is constructed from piece-wise cubic 

functions. An example of a cubic spline (Fig. 3) and an equation (3) representing a cubic spline’s 

construction, as seen in [23], can be seen below. 

Assuming the data used for construction is {(𝑥𝑥𝑖𝑖 , 𝑓𝑓𝑖𝑖)}𝑖𝑖=0𝑛𝑛 , and 𝑆𝑆3,𝑛𝑛(𝑥𝑥) is a cubic spline constructed 
as: 

𝑃𝑃1(𝑥𝑥) =  𝑎𝑎1 + 𝑏𝑏1𝑥𝑥 + 𝑐𝑐1𝑥𝑥2 + 𝑑𝑑1𝑥𝑥3, 𝑥𝑥 ∈ [𝑥𝑥0, 𝑥𝑥1],  
𝑃𝑃2(𝑥𝑥) =  𝑎𝑎2 + 𝑏𝑏2𝑥𝑥 + 𝑐𝑐2𝑥𝑥2 + 𝑑𝑑2𝑥𝑥3, 𝑥𝑥 ∈ [𝑥𝑥1, 𝑥𝑥2],   

              . 
              . 
     𝑃𝑃𝑛𝑛(𝑥𝑥) =  𝑎𝑎𝑛𝑛 + 𝑏𝑏𝑛𝑛𝑥𝑥 + 𝑐𝑐𝑛𝑛𝑥𝑥2 + 𝑑𝑑𝑛𝑛𝑥𝑥3, 𝑥𝑥 ∈ [𝑥𝑥𝑛𝑛−1, 𝑥𝑥𝑛𝑛];  

 
 
which interpolates the given data points 
 

𝑆𝑆3,𝑛𝑛(𝑥𝑥) = 𝑓𝑓𝑖𝑖 , 𝑖𝑖 = 0, 1, … ,𝑛𝑛 
 

Fig. 3 Visual representation of a cubic spline. In this instance. Grey 
shading denotes three degrees of freedom. Knot placement occurs at the 

0.25, 0.50, and 0.75 packet delay quantile 
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𝑆𝑆3,𝑛𝑛(𝑥𝑥) =

⎩
⎪
⎨

⎪
⎧ 𝑃𝑃1(𝑥𝑥) =  𝑎𝑎1 + 𝑏𝑏1𝑥𝑥 + 𝑐𝑐1𝑥𝑥2 + 𝑑𝑑1𝑥𝑥3,   𝑥𝑥 ∈ [𝑥𝑥0, 𝑥𝑥1]

𝑃𝑃2(𝑥𝑥) =  𝑎𝑎2 + 𝑏𝑏2𝑥𝑥 + 𝑐𝑐2𝑥𝑥2 + 𝑑𝑑2𝑥𝑥3,   𝑥𝑥 ∈ [𝑥𝑥1, 𝑥𝑥2],
.                                                                

           
𝑃𝑃𝑛𝑛(𝑥𝑥) =  𝑎𝑎𝑛𝑛 + 𝑏𝑏𝑛𝑛𝑥𝑥 + 𝑐𝑐𝑛𝑛𝑥𝑥2 + 𝑑𝑑𝑛𝑛𝑥𝑥3,      𝑥𝑥 ∈ [𝑥𝑥𝑛𝑛−1, 𝑥𝑥𝑛𝑛]

     (3) [23] 

the cubic spline function is given as  
 
 
 
 

              .                                                                             . 

 
2.4.7 Cubic Spline Interpretation 

In comparison to the previously mentioned splines, cubic splines demonstrate the highest 

level of variation within the same degree of freedom. This is due to the spline’s piecewise cubic 

construction which allows interpolation between knots to occur at the third degree, further 

increasing the number of possible variations for the spline [18]. With this expanded variation, 

cubic splines can further manipulate the manner in which they interpolate knots and further 

increasing its robustness when classifying data. 

2.4.8 Basis Splines (B-Splines) 

A B-spline is a special case of spline function in which a spline of order n in a piece-wise 

constructed function of the degree n – 1 in terms of a variable x [19]. If a B-spline of this order is 

equivalent among all knots, all possible spline functions for the set of polynomials pertaining to 

the B-spline can be constructed using a combination of linear B-splines with only a single unique 

combination for each spline [19]. An equation (4) depicting a mathematical representation of a 

B-spline and its construction, as demonstrated in [24], can be seen below. 

A B-spline curve P(t) is defined by 

 
 

𝑃𝑃(𝑡𝑡) =  �𝑃𝑃𝑖𝑖𝑁𝑁𝑖𝑖,𝑘𝑘(𝑡𝑡)
𝑛𝑛

𝑖𝑖=0

 
 
 

Where: 
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• the control points are {𝑃𝑃𝑖𝑖 ∶ 𝑖𝑖 = 0, 1, … ,𝑛𝑛}, 

• k is the order of polynomial segments within the curve, 

• the 𝑁𝑁𝑖𝑖,𝑘𝑘(𝑡𝑡)  are the normalized B-spline blending functions described by the order k and by a 

non-decreasing order of real numbers 

{𝑡𝑡𝑖𝑖 : 𝑖𝑖 = 0, … ,𝑛𝑛 + 𝑘𝑘}. 

The 𝑁𝑁𝑖𝑖,𝑘𝑘 component functions are 

𝑁𝑁_(𝑖𝑖, 1) (𝑡𝑡) �         1 if 𝑢𝑢 ∈  [𝑡𝑡𝑖𝑖 , 𝑡𝑡𝑖𝑖+1),
0   otherwise

 

Where, if k > 1, 

𝑁𝑁𝑖𝑖,𝑘𝑘(𝑡𝑡) =  𝑡𝑡−𝑡𝑡𝑖𝑖
𝑡𝑡𝑖𝑖+𝑘𝑘−𝑖𝑖−𝑡𝑡𝑡𝑡

 𝑁𝑁𝑖𝑖,𝑘𝑘−1(𝑡𝑡) +  𝑡𝑡𝑖𝑖+𝑘𝑘−𝑡𝑡
𝑡𝑡𝑖𝑖+𝑘𝑘−𝑡𝑡𝑖𝑖+1

𝑁𝑁𝑖𝑖+1,𝑘𝑘−1(𝑡𝑡) (4) [23]. 

2.5 Concept for VANET Splined-Based IDS 

Although the concept of a spline-based IDSs has been  implemented using traditional 

client-to-sever relationships [20] [21], there are limited cases of its use in IoT and few, if any, 

utilized within the realm of IoV. Recently, experimentation within the domain of IoV conducted 

by Shams, Rizaner, and Ulusoy [11] has provided a novel approach for intrusion detection using 

a support vector machine (SVM) in combination with a trust value table (TVT). Due to the 

success of this approach, the implementation of splines to this framework may further optimize 

the IDS. This optimization stems from the nature of the SVM where a hyper-plane is created at 

an optimal distance between adjacent data points [25]. It is speculated that the addition of splines 

may further optimize this process, increasing the accuracy when identifying malicious attacks. 

2.6 Experimentation 

In order to demonstrate the viability of a spline-based IDS in an IoV environment, several 

spline regressions, as well as a logistic regression, were implemented on an IoV dataset provided 
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by Shams et al. [11] (Fig 4). The data consisted of network traffic between fifty-two simulated 

autonomous vehicles that monitored packet delay, the number of packets dropped, and the 

frequency of transfer interval in both congested and non-congested environment [15]. Of these 

data, packet delay was selected as the independent variable due to its ability to perform as an 

attack predictor. Six hundred observations were randomly selected and split into subsets with an 

80:20 ratio for training and testing. Confusion-matrix analysis for the splines demonstrated 

accuracies greater than 94%, with the B-spline holding an accuracy of 95.83% like that of the 

96.67% accuracy of the logistic regression (Table 1). 

 

 

Fig 4 Prediction of attack, indiscriminate of type, using various splines and 
logistic regression. Knot placement occurs at the 0.25, 0.50, and 0.75 packet 

delay quantile 
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2.7 Conclusion 

IDSs designed for vehicular ad hoc networks must be able to compensate for the dynamic 

nature of their clients, their associated safety criticality, and the multifaceted nature of their 

cyber-physical systems in order to be effective. Due to their ability to interpolate curves, their 

high levels of efficiency, and their success in traditional network environments, spline functions 

may prove to be vital component for an optimal VANET IDS. The use of B-splines and their 

ability to form unique combinations of linear functions are of extreme interest as they may 

provide a robust solution to mediate these obstacles. In conjunction with the ensemble of  SVM 

and TVT, other techniques such as association and clustering analysis may also provide valuable 

insight for the construction of an optimal IDS, as they may allow the grouping of specific types 

of attacks, leading to faster classification and, therefore, more robust decision making. 

  

N = 120 True 
Positive 

False 
Positive 

True 
Negative 

False 
Negative 

Prediction 
Accuracy 

      
Logistic Regression 58 2 58 2 96.67% 
Linear Spline 57 1 58 4 95.83% 
Quadratic Spline 57 3 56 4 94.17% 
Cubic Spline 57 1 58 4 95.83% 
B-Spline 56 3 57 4 95.83% 

Table 1 Confusion matrix analysis for logistic and spline regressions, where N denotes the 
number of observations. 
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CHAPTER 3. SPLINE-BASED INTRUSION DETECTION FOR VANET UTILIZING KNOT 

FLOW CLASSIFICATION 

David A. Schmidt, Mohammad S. Khan, Brian T. Bennett 

3.1 Abstract 

Intrusion detection systems (IDSs) are an integral component for the identification and 

mitigation of attacks on computing systems. Of these systems, vehicular ad hoc networks 

(VANETs) are particularly difficult to protect due to the dynamic nature of their clients and the 

volume of information passed between them and their respective infrastructure. To meet these 

requirements, a spline-based intrusion detection system has been pioneered as a prospective 

solution. By combining clustering with spline based general linear model classification, this knot 

flow classification method (KFC) allows robust intrusion detection to occur. 

Keywords- Internet of Things, Vehicular Ad Hoc Networks, Intrusion Detection, Internet of 

Vehicles, Clustering, Splines, Machine Learning, NSL-KDD, Knot Flow Classification 

3.2 Introduction 

With an ever-increasing number of computer systems and devices becoming 

interconnected, the internet of things automated network system has become an area of study for 

a variety of domains [2]. Often, the data associated within these domains is sensitive in nature 

and must be protected through the use of an intrusion detection system (IDS) [8]. Intrusion 

detection systems have been implemented using a variety of statistical, machine-learning, or 

other artificial intelligence techniques to identify, contain, and prevent potential malicious events 

[9] [15]. However, these techniques can be limited by the dynamic nature of their domains 

causing complications during computation which diminish efficiency and effectiveness. Of these 

domains, vehicular ad hoc networks (VANETs) offer a unique environment where computation 
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time, accuracy, and reliability of the IDS are paramount to human safety. Previous studies have 

noted that spline based intrusion detection for VANET environments are viable, however, highly 

complex splines may diminish the efficiency of an IDS, thus reducing its effectiveness [10]. The 

purpose of this article is to address this concern and demonstrate the use of knot flow 

classification (KFC) as a means to mediate this pitfall. 

3.1 Ensemble Classification 

Knot flow classification is conducted as a form of ensemble classification, where the 

result of dynamic clustering provides the basis for spline implementation [26]. The reasoning 

behind this process is two-fold. Data originating from real-time environments is often dense and 

unruly to work with. When a spline is implemented in this type of environment, it is forced to 

make a variety of complex curves in order to perform accurate classification. As the complexity 

of a spline increases (e.g. the spline increases in dimensionality), the computation time needed 

for classification grows in tandem [27]. By first segregating the data into clusters, these 

curvatures can be reduced thus decreasing computation time. 

3.2 Spline Utilization and Computation Time 

Spline implementation utilizes the placement of interconnected points providing a means 

of classification. These points, also known as knots, are placed either statically or dynamically to 

best fit the data [18].With either types of placement, there are both advantages and 

disadvantages. Static placement of knots may result increased robustness during classification, 

keeping the computation time low at the cost of accuracy [27]. Dynamic placement of knots 

maintains a high level of robustness. However, the nature of dynamic knot placement may lead 

to an overabundance of knots being placed, increasing computation time. Dynamic knot 
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placement may also create what is known as a "false" knot which may lead to a substantial loss 

in classification accuracy [18] [28]. 

3.3 Dynamic Clustering 

Dynamic clustering within KFC utilizes the k-means clustering algorithm to perform 

vector quantization. K-means partitions data into a number of specified clusters in which each 

data point belongs to the cluster with the nearest mean [13]. The number of clusters is 

predetermined by using the "Elbow" method allowing for the optimal number of clusters to be 

selected [28]. The standard algorithm in which k-means clustering occurs consists of two altering 

steps. The assignment step where, given an initial set of k-means clusters 𝑐𝑐𝑖𝑖 each observation is 

assigned to a cluster who means is the least squared Euclidean distance: 

 

where every observation 𝑥𝑥𝑝𝑝 is assigned to a single cluster 𝑆𝑆(𝑡𝑡). The update step then calculates 

the new mean distance from the new mean distance of the observations to their respective cluster 

centers: 

 

until observation assignment no longer alters the means of any cluster [13]. 
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3.4 Cluster Contraction 

One of the novel facets of KFC is the ability to contract the points of each cluster towards 

their designated cluster centers:  

 

Where 𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑥𝑥 is the x coordinate for the cluster center, 𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑦𝑦 is the y coordinate for the 

cluster center, a is the percentage of reduction, 𝑥𝑥𝑖𝑖 and 𝑦𝑦𝑖𝑖 represent each point of that cluster. 

This contraction can also be performed in a three-dimensional space: 

 

contraction in this manner results in the formation of a perimeter of empty space between each 

cluster. When used in tandem with splines, this perimeter provides a pathway that can be utilized 

by the spline, reducing the need for complex twists and turns. With this reduction in complexity, 

knot placement for a spline can be reduced. Moreover, this "knot horizon" removes the need for 

dynamic knot selection and static knot selection can be applied to quantiles of measurement. 

3.5 Materials and Methods 

Consisting of 1,074,992 distinct observations and 41 attributes, the NSL-KDD dataset has 

been regarded as a viable benchmark for the study of intrusion detection amongst a variety of 

networks due to its exclusion of duplicate records for both its test and training sets and a 

distribution of observation of classification difficulties inversely proportional to its size [29]. For 

this study specifically, the labeled data was utilized in order to measure classification accuracy 

𝑁𝑁 > 22,544. Processing for this experimentation was utilized on a single system. All 

computation occurred using an Intel i9-9900K CPU at 3.60 GHz using 32 GB of DDR5 RAM. 
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Primary component analysis was conducted for the dataset prior to implementation, resulting in 

the selection of three attributes (Table 2). Normalization of all non-numeric fields was 

implemented in order to utilize k-means clustering. Elbow method implementation for denotes 

the optimal number of clusters for this dataset shown below (Fig. 5). 

3.6 Data Observations and Extrapolation 

The attributes derived from the principal component analysis were visualized in three-

dimensions after k-means processing (Fig. 6). Three-dimensional visualization was also 

performed after cluster contraction with both a cluster view (Fig. 7) and an anomalous data point 

view (Fig. 8). Dimensionality reduction was also performed in the same manner for comparison 

and later spline implementation.  

Fig. 5 The optimal number of clusters used for this dataset is four based on the summation 
of each cluster's distance between their centroids and their respective points (WCSS) 

Table 2 Selected attributes from NSL-KDD dataset 
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Fig.6  Visualization of NSL-KDD data before cluster contraction,. 
Each color represents an indivisual cluster 

Fig. 7 Visualization of NSL-KDD data after cluster contraction. 
Each color represents an indivisual cluster 
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3.7 Observations 

Upon observing the three-dimensional visualizations, it can be noted that the majority of 

the pre-contraction data tends to cluster towards either the minimum or maximum for the range 

of each attribute (Fig 6). After contraction, the majority of anomalous data tends to form pillars 

or small groups that which reside toward the exterior of their respective cluster (Fig. 8) 

3.8 Dimensionality Reduction 

In order to visualize the data splines are implemented in, the previous three-dimensional 

depictions were reduced to second dimension visualizations. For the purpose of this 

experimentation, the dst_host_same_srv_rate attribute was removed (Fig. 8). Upon observing the 

two-dimensional visualization, it can be noted that a portion of the anomalous and normal data 

Fig. 6 Visualization of NSL-KDD data after cluster contraction. 
Red colored datapoints denote anamalous data and green 

denotes normal network traffic 
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now overlap after contraction (Fig. 9) which may lead to inaccuracies during classification  

(Fig. 10). 

 

 

 

 

 

Fig. 7 Visualization of dynamic clustering before contraction. Black dots denote 
cluster centers. Each color is representatative of single cluster 
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Fig. 9 Visualization of dynamic clustering after contraction. Black dots denote 
cluster centers. Red dots denote anamalous data. Green dots denote normal network 

traffic 

Fig. 8 Visualization of dynamic clustering after contraction. Black dots denote 
cluster centers. Each color is representatative of single cluster 
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3.9 Classification Implementation 

K-means clustering was implemented using Python version 3.7.3's sklearn library [30]. 

Knot placement and spline application was implemented using R standard libraries in an RStudio 

environment. For run-time analysis, knot placement and spline application was implemented 

with Python using the stats models package. Splines were fit to the data based on a 20:80 test-

train ratio of the NSL-KDD dataset. Accuracy readings for each spline were derived via 

confusion matrix analysis where classification of a malicious attack had a 𝑝𝑝 > 0.5. 

Implementation protocol for spline-based classification can be seen in Algorithm 1 shown below. 

A range of knots spaced equidistant from one another was utilized for each calculation in order 

to understand their effects on classification accuracy and to identify an optimal number of knots 

for this dataset (Table 3). A logistic regression, and several support vector machines (SVM) 

using differing kernels were performed for comparison of classification accuracy (Table 4). The 

run time of the top performer from this comparison was then compared to KFC using a scaling 

number of observations. 

 

 

Algorithm 1 Knot Flow Classification Algorithm 
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3.10 Classification Results and Discussion 

Confusion matrix analysis denoted a classification accuracy greater than 73 percent for 

all splines. Splines utilizing three or more knots held a average accuracy of 79.37, as well as 

similar false negative and false positive counts (Table 4). The logistic regression scored an 

accuracy of 73.43 percent. The Naive Bayes classification scored an accuracy of 74.55 percent. 

The SVMs scored accuracy comparable to that of the splines with an approximate average 

accuracy of 78.76, with comparable false negative and false positive counts (Table 4). Accuracy 

findings for spline-based classification demonstrate nominal findings for the optimal number of 

knots. As demonstrated in Table 2, increases in accuracy stagnate for any spline with three or 

greater knots. False positive and false negative rates also remained relatively stable for this 

subset of splines, with an average false positive rate of 10.99 percent and an average false 

negative rate of 27.87 percent. Two of the biggest points of contention for this experimentation 

are the false positive and negative rates. As noted previously in this text, it is likely that these 

misclassifications are due to the dimensionality reduction needed to implement spline-based 

classification. In comparison with Fig. 8 and Fig 9, we can see that the splines correctly classify 

the anomalous data but, due to the overlapping data from the contraction, misclassify the 

underlying normal data. Run-time analysis demonstrated that KFC is marginally slower than an 

SVM when working with data consisting of less than 14,000 observations (Fig. 8). However, 

when working with data sets larger than 14,000 observations it outpaces the SVM. This out-

pacing occurs due to the fact the KFC does not need calculate a hyper-plane between all of the 

test observations for to make a prediction and instead uses the newly formulated knot-horizon as 

a guide. 
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Table 3 Confusion matrix analysis and common classification techniques on pre-clustered data (N=4508) 

Table 4 Confusion matrix analysis and common classification techniques on clustered data (N=4508) 
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Fig. 10 Visualization of spline-based classifcation, using 3 knots (pink-dashed line) 
and 9 knots (blue solid line) in comparison to a logistic regression (yellow dotted 
line). Anamalous data points are denoted in orange and normal network traffic in 

green 

Fig. 11 Run-time compoarion of KFC to an SVM using RBF kernel. Runtime includes, 
loading of data, contraction of points and classifcation for both KFC and SVM 
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3.11 Classification Conclusion 

Spline based intrusion detection demonstrates viable results when classifying anomalous 

network data. For this dataset, splines consisting of three knots a robust conduit for 

classification, allowing for a decreased amount of computation time when processing data. 

However, spline based dynamic clustering does have a major point of contention due to the need 

for dimensional reduction. In order to be used in a safety critical system within IoT, this point 

will be rectified in future research. 
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CHAPTER 4. CONCLUSION AND FUTURE RESEARCH 

5.1 Conclusion 

The emergence of IoT and its subsequent expansion into vehicular ad-hoc networks 

(VANETs) has created opportunities for a variety of researchers, engineers, and city planners to 

create applications that provide autonomous vehicles with preventative and mitigative safety 

measures built around an intrusion detection system (IDS). Due to the practical and ethical 

constraints associated with conducting IDS experimentation, these applications will need to be 

tested and validated in a laboratory setting before they are to be used in real-life situations. If 

IDS-centered simulations are to find a practical use in the validation and verification of VANET 

data, approaches like those described in this thesis will need to be developed. Moreover, these 

approaches will also need to be tested with a high rate of data processing, the management of 

massive volumes of this data, and the maintenance of highly accurate classification in mind. 

On account this need, the research described in this thesis developed an intrusion 

detection system for vehicular ad-hoc networks. In my current understanding, this is one of the 

first implementations of an ensemble classification technique using basis splines and dynamic 

clustering, not only in the domain of IoT and VANETs, but in the realm of machine learning. 

Although the experiments conducted in this thesis display an effective and efficient means of 

classification, additional research is needed to fully understand the limitations of Knot Flow 

Classification. Furthermore, the full implementation of the KFC distributed system is needed to 

further inquire about its performance in a more realistic VANET environment. Lastly, the use of 

a highly specific VANET data is needed to fully encompass these claims. 
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5.2 Future Research 

Future research based on the findings of this thesis could include the use of thin-plate 

tensor products for managing data of a higher dimensionality [31] [32]. Additionally, an 

automated principal component analysis for this data could be used as a form of data pre-

processing of VANET data within the KFC distributed system using MapReduce and parallel 

processing concepts [14]. A conceptual design for this can be seen below (Fig. 14). 

 
 

5.2.1 Suggested Implementation 

A tensor product is the block matrix result of two vectors. For example, if A is an m × n 

matrix and B is a p × q matrix then A ⊗ B is the pm × qn block matrix [31]. We can use these 

products to implement our primary component analysis by utilizing a matrix A to host our input 

data and a matrix B to host probabilities corresponding to each element in matrix A. The 

resulting attribute-probability pairs will allow us to select the features based on the probability of 

them denoting anomalous data. These tensor products can then be mapped across multiple 

instances of KFC and reduced to a sum of accuracies. These accuracies can then compare data 

point classifications resulting in an overall classification result.   

Fig. 12 Depiction of a distrbuted design concept for  knot flow classification using thin-plate tensor products and 
MapReduce 



42 
 
 
 

5.2.2 Implications of Future Research 

It is important note that the implications of this research extended to not only use in 

VANETs and the realm of IoT. If found to be applicable, the concepts introduced in this thesis 

can be expanded to many other fields of research where the management of large amounts of 

data and subsequent classification is needed. KFC could theoretically be applied to any type of 

data, with any number of attributes, to any number of observations (large or small). The only 

stipulation is that the attributes being processed are quantitative with any qualitative attribute 

being converted. 
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