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ABSTRACT 

Error-Related Negativity and Feedback-Related Negativity on a Reinforcement Learning Task 

by 

Elizabeth A. Ridley 

 

Event-related potentials play a significant role in error processing and attentional processes. 

Specifically, event-related negativity (ERN), feedback-related negativity (FRN), and the P300 

are related to performance monitoring. The current study examined these components in relation 

to subjective probability, or confidence, regarding response accuracy on a complicated learning 

task. Results indicated that confidence ratings were not associated with any changes in ERN, 

FRN, or P300 amplitude. P300 amplitude did not vary according to participants’ subjective 

probabilities. ERN amplitude and FRN amplitude did not change throughout the task as 

participants learned.  Future studies should consider the relationship between ERN and FRN 

using a learning task that is less difficult than the one employed in this study.  
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Chapter 1. Introduction 

 Electroencephalograms (EEGs) record neural activity at the scalp and allow us to observe 

changes associated with cognitive processing. Event-related potentials (ERPs) are neural 

responses reflected in the EEG that are time-locked to specific external or internal events 

(Hugdahl, 1995). In order to observe an ERP component, the EEG signal is averaged across 

multiple trials, resulting in a waveform time-locked to an event. Specific ERP components can 

be influenced by stimulus characteristics (e.g., emotional content of the stimulus; Olofsson et al., 

2008) or cognitive processes such as attention, memory, or error processing. ERPs have been 

used to gain a better understanding of the cognitive mechanisms related to performance 

monitoring, which allows people to modify behavior in favor of positive outcomes (e.g., 

adjusting behavior after error commission or negative feedback; Holroyd & Coles, 2002).  

Two specific ERPs have been investigated in response to error commission and feedback 

presentation. First, error-related negativity (ERN) is an ERP component observed after error 

commission on reaction time tasks. Second, feedback-related negativity (FRN) is observed after 

feedback is presented regarding the accuracy of a response. ERN and FRN amplitudes are 

affected by the reinforcement learning process which will be discussed below. The P300 is an 

ERP related to attentional processes. Largely considered to reflect context or memory updating 

(Donchin, 1981), it is also affected by subjective probability, or a person’s belief about the 

likelihood of an outcome (Horst et al., 1980). As new associations are formed throughout the 

learning process, people become more confident in their responses on cognitive decision-making 

tasks. The amplitudes of ERN and FRN are impacted as a result of learning and subjective 

probability (Heldmann et al., 2008; Krigolson et al., 2009). The current study examined the 

relationship between the above-mentioned ERP components and confidence levels throughout a 

complicated learning task.  
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The proposed study replicated the design used by Horst et al. (1980) while examining 

ERN, FRN, and the P300 in relation to subjective probability, or confidence. The original study 

examined how P300 amplitude varies according to participants’ confidence levels. This study 

used a similar experimental design with an extension of the original hypotheses to analyze the 

relationship between ERN, FRN, and subjective probability. 

Error-Related Negativity 

 Error-related negativity (ERN) is a negative deflection that occurs approximately 50-

100ms after error commission with a frontocentral scalp distribution, meaning there is increased 

neural activity throughout the frontocentral region of the brain (Falkenstein et al., 1990; Gehring 

et al., 1993). Generated in the anterior cingulate cortex (ACC), the ERN is considered to be a 

reflection of a performance monitoring system, or a system that detects errors and adjusts 

behavior accordingly (Gehring et al., 1993; Scheffers & Coles, 2000). In the context of a 

performance monitoring system, error commission reflects the discrepancy between the response 

made and the known correct response. According to the two leading theories of ERN, the error 

detection theory and the conflict-monitoring theory, this negative deflection is thought to reflect 

either the detection of an error or the degree of conflict between multiple potential responses 

(Heldmann et al., 2008). 

 Reinforcement learning theory. In the reinforcement learning model, also referred to as 

the error detection theory, proposed by Holroyd and Coles (2002), the basal ganglia continuously 

monitors ongoing events. The basal ganglia sends a positive or negative temporal difference 

(TD) signal to the ACC to indicate whether the ongoing events are better or worse than 

predicted. For example, a positive TD signal indicates that ongoing events are better than 

expected or expected, whereas a negative TD signal indicates ongoing events are worse than 
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expected. The reinforcement learning model hinges on the concept that ERN is an indicator of 

detection of an erroneous response. The dopamine signals sent to the ACC directly affect the 

amplitude of the ERN (Heldmann et al., 2008; Holroyd & Coles 2002). Specifically, decreases in 

dopamine after an incorrect response result in larger ERN amplitudes. This model suggests that 

the ACC plays a critical role in learning, as it is involved in adjusting behavior after erroneous 

responses.  

Dasgupta et al. (2014) also suggest that the reinforcement learning model, based on 

operant conditioning, works in conjunction with the input correlation learning model, based on 

classical conditioning. They propose that the structures involved in each model, the basal ganglia 

and cerebellum, are linked by the thalamus in order to form a combined learning network. Other 

studies suggest that structures involved in the reinforcement learning theory, namely the ACC, 

are related to attentional processes. For example, fMRI studies involving the Cingulo-Opercular 

Network show that the dorsal ACC, medial superior frontal cortex, and bilateral anterior insula 

are activated when participants must sustain attention, specifically during speech recognition 

tasks (Dosenbach et al., 2006; Sadaghiani & D’Esposito, 2015; Vaden et al., 2013).  

Further, Lak et al. (2017) extended the reinforcement learning model by examining the 

role of midbrain dopamine neurons in perceptual uncertainty. Their results are consistent with 

the traditional reinforcement learning model in that midbrain dopamine neurons reflect a reward 

prediction error (RPE), with the addition of incorporating predictions about belief-state, or 

confidence. Therefore, the model proposed by Holroyd and Coles (2002) can be modified to 

more accurately include the component of belief states in relation to error signals 

 Conflict monitoring theory. In contrast to the error detection theory, the conflict 

monitoring theory of ERN suggests that the ACC does not necessarily detect an error, but rather 



8 

 

the conflict between correct and incorrect responses. According to this theory, the ACC’s 

response to discrepancy between the actual and correct response results in behavioral 

adjustments (Botvinick et al., 2004). In other words, ERN amplitude depends on the degree of 

conflict between competing responses. The ACC serves as a “control” that monitors and adjusts 

performance when conflict arises, such as after an erroneous response. The conflict monitoring 

theory implies that in addition to ERN elicited from erroneous responses, there should also be an 

ERP for correct responses. Indeed, Carter et al. (1998) reported increased activity in the ACC 

during both incorrect and correct responses, suggesting that the ACC may be involved in a more 

general response-conflict mechanism, as opposed to solely error detection. Multiple studies have 

also demonstrated a response-conflict effect in a potential called the N2, an ERP with a scalp 

distribution similar to ERN that peaks approximately 250 milliseconds after response inhibition, 

although not specific to error commission (Nieuwenhuis et al., 2003; Van Veen & Carter, 2002; 

Yeung et al., 2004). In go/no-go tasks designed to study inhibitory control, the N2 was believed 

to be associated with response inhibition on no-go trials. However, Nieuwenhuis et al. (2003) 

suggest that the N2 is elicited when response conflict is high, rather than as part of an inhibitory 

process. Several studies have shown a correct-related negativity after correct responses (Allain et 

al., 2004; Vidal et al., 2009). In general, this theory suggests that ERN reflects the discrepancy, 

or conflict, between possible responses so the ACC can adjust behavior accordingly. 

Other studies, such as Frank et al. (2008), support both the reinforcement learning theory 

and the conflict monitoring theory. This study examined the difference in ERN amplitude 

between positive (choosing a correct response) and negative (avoiding an incorrect response) 

learners. Results showed that negative learners had a larger ERN, which suggests that they learn 

more from their errors which supports the reinforcement learning theory. Although there was no 
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difference between high conflict and low conflict errors, positive learners had larger ERNs for 

win/win decisions, while negative learners showed increased ERN for lose/lose decisions. This 

finding lends support to the conflict monitoring theory by showing that different types of 

decisions elicit different levels of conflict, depending on learner type. Potts et al. (2011) 

examined response ERN and feedback ERN amplitudes and discovered that both components 

involve the ACC and that the error detection system was activated even in the absence of a motor 

response. This suggests that the ACC may have a more general role in error processing as 

opposed to a more specific role in error detection. Given that there is data to support both 

theories, there is increasing support for a more integrative approach to error processing.  

Additionally, ERN amplitudes are correlated with subjective judgments of response 

accuracy, as well as the subjective importance of accuracy to the participant (Gehring et al., 

1993; Scheffers & Coles, 2000). In other words, the degree to which a person knows the 

response is correct or incorrect determines the amplitude of the ERN. Variations of ERN 

amplitude reflect the subjective view of the response, or the likelihood of error commission 

(Heldmann et al., 2008). If a person does not perceive a response as an error, ERN amplitude 

will be smaller compared to the amplitude when a person believes they committed an error. The 

amplitude of the ERN component can be interpreted as a reflection of the degree to which a 

person judges a response to be incorrect. 

Typically, ERN is elicited under conditions in which accuracy is emphasized rather than 

speed (Gehring et al., 1993). As a result, the majority of studies involving ERN use a variation of 

the Flanker task (Pailing & Segalowitz, 2004; Van der Borght et al., 2016). A Flanker task 

requires a participant to respond to one stimulus that is flanked by either congruent or 

incongruent stimuli. ERN can also be examined within a learning context. For example, Frank et 
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al. (2005) demonstrated that larger ERN amplitudes are associated with learning to avoid 

maladaptive responses on a decision-making task rather than learning from positive outcomes. 

Heldmann et al. (2008) concluded that increased ERN amplitudes are related to judgment about 

the accuracy of the response. Pailing and Segalowitz (2004) found that when there is a high 

degree of uncertainty, errors and correct responses are processed similarly. If a participant is 

unsure of the correct response, (e.g., at the beginning of a learning task before the correct 

response is known), the ERN amplitude will be much smaller, or not appear at all, compared to 

errors committed when the correct response is known (Scheffers & Coles, 2002). As people learn 

a task, the ERN amplitude should increase as they develop the associations required to recognize 

when they commit an error. Consequently, ERN should be smaller at the beginning of learning 

tasks, as there is a higher degree of uncertainty about the correct response. 

Feedback-Related Negativity 

Feedback-related negativity (FRN) is another ERP related to error processing that occurs 

between 200-350ms after feedback indicating an erroneous response (Miltner et al., 1997). Like 

the ERN, FRN originates in the ACC and has a frontocentral scalp distribution. This negativity is 

thought to reflect a reward prediction error (Holroyd & Coles, 2002). Reward prediction errors 

(RPEs) are violations of a prediction (e.g., outcome is better or worse than expected) that are 

coded in midbrain dopamine neurons (Schultz et al., 1997). The RPE that is sent from the basal 

ganglia to the ACC is considered to code the outcome evaluation (Philiastides et al., 2010). This 

signal is what tells the ACC whether the outcome was better or worse than expected. If the RPE 

is positive (i.e., outcome is better than expected), then FRN amplitude should decrease, because 

the positive feedback will trigger an increase in dopaminergic activity. On the other hand, if the 

RPE is negative (i.e., outcome is worse than expected), then FRN amplitude should be larger, as 



11 

 

negative feedback produces inhibition of dopaminergic activity. Several studies have interpreted 

this increase in FRN amplitude in response to negative feedback as a reflection of a reward 

prediction error (Bismark et al., 2013; Hajcak et al., 2007; Pfabigan et al., 2010). 

Generally, FRN amplitudes are larger for negative feedback than positive feedback 

suggesting FRN amplitude is sensitive to feedback valence (Bellebaum & Daum, 2008; Ichikawa 

et al. 2010; Martín, 2012; Potts et al., 2011). However, some studies report that FRN is not 

necessarily dependent on outcome valence but rather on the discrepancy between actual and 

expected feedback (Oliveira et al., 2007; Yu et al., 2011). Hajcak et al. (2007) also concluded 

that FRN amplitude is influenced by an interaction of feedback expectancy and valence. It is 

determined by the value of the outcome as compared to the other possible outcomes (Holroyd et 

al., 2004). In other words, it is context dependent and a positive outcome, such as a monetary 

reward, may still elicit an FRN if it were the worst possible outcome among a range of outcomes 

(e.g., lowest monetary reward available). 

Furthermore, FRN will only be observed in instances where expectations are allowed to 

develop. Bismark et al. (2013) found that there was no FRN response for trials in which feedback 

and answer selection were presented simultaneously, but there was an FRN response when 

participants received feedback 750ms after response selection. They concluded that if feedback 

is presented at the time of response, there is no time for an outcome expectation to develop and 

an FRN response will not be generated. If FRN is a reflection of the reward prediction error, then 

there must be sufficient time for a prediction to develop in order for FRN to occur.  

According to Potts et al. (2011), FRN is elicited when the correct response on a task is 

unknown. Most of the studies examining FRN amplitude use a probabilistic gambling paradigm 

in order to manipulate feedback expectancy (Foti et al., 2011; Hajcak et al., 2007; Pfabigan et al., 
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2010). However, several studies have considered FRN amplitude in the context of a 

reinforcement learning task, with results indicating that as participants learn response-outcome 

associations FRN amplitude decreases (Holroyd & Coles, 2002; Krigolson et al., 2009). As 

participants learn a task the amplitudes of FRN should decrease on trials where there is no 

outcome expectancy violation. FRN is elicited as a result of feedback that contains new 

information; as a task is learned, this feedback becomes less novel, causing amplitude to 

decrease (Gentsch et al., 2009; Heldmann et al., 2008). However, Bultena et al. (2017) reported 

that FRN was still elicited across trials, though amplitude was decreased, suggesting that 

feedback may still serve to update memory throughout learning. Although feedback becomes 

less surprising as learning occurs, it may still be useful to reinforce new associations.  

Larger FRN amplitudes may result in faster learning (Schmid et al., 2017). This could be 

due in part to a more salient “surprise” effect from the negative feedback. A larger FRN 

amplitude would be indicative of a larger violation of expectation. This may in turn generate a 

more salient association, resulting in a greater likelihood of remembering the association. van der 

Helden et al. (2010) also showed that larger FRN amplitudes in response to negative feedback 

were predictive of future performance on a learning task.  

P300 

 An additional ERP, the P300, is also related to learning and attention-based cognitive 

tasks. The P300 is a positive deflection that occurs approximately 300ms after stimulus 

presentation. The P300 is elicited when participants are asked to attend to a certain stimulus and 

ignore another, as in the oddball task. Yeung and Sanfey (2004) propose that in relation to errors 

and feedback, the P300 is sensitive to magnitude (large vs. small rewards or punishments), 

whereas FRN is sensitive to valence (positive or negative rewards or punishments). The 
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amplitude of the P300 depends on the magnitude of the outcome, with large magnitude 

alternative outcomes reflecting increased amplitudes. Essentially, larger rewards or punishments 

elicit greater amplitudes compared to smaller rewards or punishments. 

The P300 also has an inverse relationship with subjective probability. Outcomes that are 

highly expected by the participant elicit a small P300; events that occur less frequently, however, 

elicit a much larger P300 (Horst et al., 1980). In relation to learning, the P300 would have larger 

amplitudes when outcomes are unexpected and smaller amplitudes when the outcome matches 

the participant’s subjective probability toward the outcome. If feedback aligns with participants' 

expectations of the outcome (e.g., correct or incorrect) then the amplitude of the P300 will 

decrease because the outcome will be highly expected. On the other hand, if the outcome is 

unknown or uncertain, the P300 amplitude will increase because the outcome was not expected. 

Unknown outcomes receive more attention and thus generate larger P300 amplitudes (Martín, 

2012). 

Subjective probability is a reflection of outcome expectation when making decisions. 

Before learning occurs, subjective probability is relatively low regarding the correct response. As 

new associations form, outcome expectations become more solidified. In terms of ERP 

components, subjective probability can be measured by assessing confidence levels after each 

trial throughout a task (Horst et al., 1980). Confidence levels represent the degree to which 

outcomes are expected. This is reflected by the shift from feedback-related negativity to error-

related negativity across trials (Krigolson et al., 2009). As learning occurs, the feedback becomes 

less surprising and results in a decrease in FRN amplitude (Heldmann et al., 2008). Conversely, 

the ERN amplitude should increase as learning occurs because new associations result in the 

ability to discern whether an error was committed. 
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Current Study 

 Horst et al. (1980) examined the relationship between subjective probability and P300 

amplitude. P300 amplitude varied as confidence changed throughout a complex learning task. As 

ERN was not discovered until the 1990s (Falkenstein et al., 1990; Gehring et al., 1993), the 

original study focused only on P300 amplitude. Since the discovery of the ERN, studies have 

concluded that errors committed due to uncertainty result in smaller amplitudes for ERN and 

larger amplitudes for FRN (Scheffers & Coles, 2000; Potts et al., 2011). Several studies 

analyzing both ERN and FRN report a “shift” from FRN to ERN as learning occurs (Holroyd & 

Coles, 2002; Krigolson et al., 2009; Nieuwenhuis et al., 2002).  Studies that include both ERN 

and FRN typically either modify a Flanker task by incorporating feedback, or use a 

reinforcement learning task (Heldmann et al., 2008; Krigolson et al., 2009). A replication and 

extension of the Horst et al. (1980) study using a reinforcement learning task should reveal that 

in addition to the P300 component, both ERN and FRN should be elicited by error commission 

and feedback presentation, respectively, and the responses should be related to subjective 

probability.  

Consistent with the reinforcement learning theory, the present study sought to replicate 

and extend the design used by Horst et al. (1980) in an attempt to elicit both ERN and FRN 

responses throughout a learning task. To date, no study has looked at both ERN and FRN in 

conjunction with subjective probability throughout a difficult reinforcement learning task. 

Participants were asked to report their confidence levels after each trial of a learning task. During 

the task participants learned five stimulus-response pairs of nonsense syllables, with each 

syllable consisting of a consonant, vowel, and consonant (CVC). The confidence ratings served 

as an indication of learning in that higher confidence ratings reflected that participants believed 

they had learned the task. We expected the confidence ratings to predict both ERN and FRN 
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amplitude, with lower ratings predicting greater amplitudes for ERN on incorrect trials, and 

higher ratings predicting greater FRN amplitudes on incorrect trials. 

Hypotheses 

ERN. ERN amplitude will be higher when participants commit errors than when they are 

correct. In addition, ERN amplitude on incorrect trials will be higher when the 

participant’s confidence ratings are low. 

a. Overall ERN amplitude will be greater on incorrect trials at the end of the 

experiment than incorrect trials at the beginning of the experiment, as 

participants will be able to recognize that they have committed an error. 

FRN. FRN amplitude will be greater after erroneous feedback when confidence ratings 

are high. 

a. Overall FRN amplitude will be higher for incorrect trials at the beginning of 

the experiment than incorrect trials at the end of the experiment because 

feedback will become less salient.  

P300. P300 amplitude will increase on trials in which the trial outcome violates the 

participant’s subjective probability of the outcome. 
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Chapter 2. Methods 

Participants 

 31 undergraduate students from East Tennessee State University participated in the study 

following approval from ETSU’s Institutional Review Board. Students received three SONA 

credits for participation. All participants were recruited from undergraduate courses through the 

institution’s SONA website and were over 18 years of age (mean age = 20.1 years, SD = 3.85). 

63.3% of the participants identified as female and 36.67% identified as male. All participants 

were right-handed with normal or corrected to normal vision. Approximately 77.4% of the 

participants identified as white, 6.4% as Asian, 3.2% as American Indian/Alaska Native, 3.2% as 

African American, 3.2% Native Hawaiian/Pacific Island, and 3.2% as other; 10% of participants 

identified as Hispanic/Latino. Data was collected in the Spring 2019 and Fall 2019 semesters at 

East Tennessee State University.  

Materials 

 Participants wore a 32-channel electrode cap (Electro-Cap International, Inc.) throughout 

the task to record brain activity. The stimuli were presented on the monitor using E-Prime 3.0 

(Psychology Software Tools, USA). EEG signal was digitized at 256 Hz with bandpass-filter 

settings at [.5Hz, 30Hz]. Data was collected using two 16 channel g.tec g.USBamp amplifiers. 

Impedance for each channel was no greater than 20k. Data was analyzed using the EEGLAB 

plugin for Matlab and right-mastoid referenced (Matlab 2016b, The MathWorks, Inc., Natick, 

Massachusetts, USA).  

Procedure 

 All participants signed an informed consent document and completed a demographic 

questionnaire asking for age, gender, race, ethnicity, and handedness prior to the start of the task. 
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During the session, the participants completed a complex paired associate task in which they 

were required to learn three lists, each consisting of five pairs of nonsense syllables. Pairs were 

made up of two consonant-vowel-consonant (CVC) nonsense syllables. In order to terminate a 

block of trials participants were required to make eight correct CVC pairings in a row. As in the 

original paper, the CVC syllables had a meaningfulness scale rating no higher than 1.5 according 

to the Noble (1961) norms; thus, the syllables did not resemble words from the English language. 

The experimental task is shown in Figure 1. Each trial began with a ‘Ready’ slide that was 

shown for 1500ms.  Following the ‘Ready’ slide, participants were shown a CVC stimulus and 

prompted to make their response of which CVC they believed to be correct. Then, participants 

typed their confidence ratings on a scale from 0-100. Following the response and confidence 

rating, the correct answer was presented on the screen along with feedback regarding the 

accuracy of the response. The stimulus CVC and the correct corresponding CVC were each 

presented for 1500ms. The block ended when the participant responded correctly on eight 

consecutive trials, indicating that learning has occurred. All participants completed a practice 

block that included three CVC pairs, which did not appear in the main experiment, to ensure 

understanding of the task. Next, all participants started the three experimental blocks, the order 

of which was counterbalanced across participants. 
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 Following the design of Horst et al. (1980), participants were presented with a stimulus 

CVC, a 1000ms interval, then three question marks prompting participants to make a response. 

Then, participants entered their confidence levels. Following a 1000ms interval, the correct CVC 

was presented, along with whether the participant’s response was correct. After the feedback, 

there was a 1000ms intertrial interval before the next trial began. 

 

 

 

  

 

Get Ready 

 

Stimulus CVC 

  

??? 

 

Confidence 

Level 

  

[Feedback] 

Correct CVC 

 

3000 ms 1500 ms 1000 ms Interval [Response] 

1000 ms Interval 1500 ms 1000 ms 

Intertrial 

Interval 

Figure 1.  

Example of One Complete Trial 
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Chapter 3. Results 

Determining Confidence Intervals 

Participants rated their confidence for each trial on a scale of 0-100. Each participant’s 

ratings were categorized into either high or low confidence. Ratings of 0-49 were considered low 

confidence and ratings of 50-100 were considered high confidence. In the Horst et al. (1980) 

study, confidence data were collapsed into four separate confidence ranges; however, in the 

current study, confidence ratings were mainly near the extremes (0 and 100) of the 101-point 

scale. Therefore, ratings were dichotomized into either high or low confidence. Consequently, 

there were four possible trial outcome categories: incorrect/low confidence, incorrect/high 

confidence, correct/low confidence, and correct/high confidence. 

Analyses 

 We removed electrodes FP1 and FP2 from data analysis for seven participants due to 

excessive channel noise. Independent component analysis (EEGLab toolbox) was used to 

remove eyeblink components and, after the data were segmented, excessively noisy epochs were 

removed via visual inspection. Previous studies have used independent component analysis, 

principal component analysis, or frequency cut-off to remove artifacts (Di Gregorio et al., 2016; 

Philiastides et al., 2010). ERN amplitude was examined 0-150ms after error commission, 

measured from the time the participants entered their responses during the task; FRN amplitude 

was examined 200-350ms after feedback presentation; P300 amplitude was examined 250-

400ms after feedback presentation. ERPs were examined at electrode sites Fz, FCz, Cz, Pz, and 

POz. Averages at each site were computed for each of the four conditions. The amplitudes of the 

P300, ERN, and FRN were analyzed in each category using analysis of variance.  
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 FRN analysis. Feedback-related negativity was examined at electrode sites Fz, FCz, and 

Cz 200-350ms after feedback presentation. We hypothesized that amplitude would be greatest 

after erroneous feedback when confidence was high compared to low. Figure 2 shows the 

waveforms for electrodes Fz, FCz, and Cz. At Fz, results revealed no significant differences in 

amplitude between the incorrect low (M = 2.66 µV, SD = 5.73), incorrect high (M = 3.31 µV, SD 

= 6.42), correct low (M = 3.84 µV, SD = 6.59), and correct high (M = 4.24 µV, SD = 5.83) 

conditions, F(3, 120) = 0.384, p = 0.765. FRN amplitude at FCz also showed no significant 

differences between conditions: incorrect low (M = 3.34 µV, SD = 4.86), incorrect high (M = 

4.30 µV, SD = 5.75), correct low (M = 4.38 µV, SD = 5.39), correct high (M = 4.86 µV, SD = 

5.21), F(3, 120) = 0.441, p = 0.724. There was no significant difference in amplitude between 

conditions at electrode site Cz: incorrect low (M = 3.69 µV, SD = 5.39), incorrect high (M = 4.28 

µV, SD = 6.13), correct low (M = 5.05 µV, SD = 5.16), correct high (M = 5.24 µV, SD = 5.79), 

F(3, 120) = 0.494, p = 0.687. Feedback-related negativity at electrode sites Fz, FCz, and Cz is 

greatest at approximately 280ms. Amplitude was greatest for the incorrect low condition, 

although there was no significant difference between conditions. 
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 P300 analysis. P300 amplitude was examined at electrode sites Pz and POz, 250-400ms 

after feedback presentation. We hypothesized that amplitude would be greatest for trials in which 

the outcome violated participants’ expectation (e.g. incorrect response, high confidence). Figure 

3 shows the waveforms for electrodes Pz and POz. At Pz there was not a significant difference in 

amplitude between conditions: incorrect low (M = 7.008 µV, SD = 5.09), incorrect high (M = 

8.98 µV, SD = 5.96), correct low (M = 9.89 µV, SD = 6.31), correct high (M = 10.61 µV, SD = 

7.27), F(3, 120) = 1.96, p = 0.124. At POz, there was no significant difference in amplitude 

between conditions: incorrect low (M = 6.14 µV, SD = 3.81), incorrect high (M = 7.27 µV, SD = 

4.61), correct low (M = 7.76 µV, SD = 5.24), correct high (M = 8.24 µV, SD = 5.63) F(3, 120) = 

1.05, p = 0.373. P300 amplitude was greatest for the correct high condition and smallest for the 

incorrect low condition. 

 

 

Figure 2.  

FRN Amplitude at Electrode Sites Fz, FCz, and Cz 
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 ERN analyses. Error-related negativity was measured at electrode sites Fz, FCz, and Cz 

0-150ms after a response was entered. We hypothesized that there would be greater negativity 

for incorrect trials than correct trials. Waveforms for electrodes Fz, FCz, and Cz are shown in 

Figure 4. A paired samples t-test revealed no significant difference between incorrect (M = .006 

µV, SD = 3.24) and correct (M = .503 µV, SD = 4.052) trials at Fz, t(30) = -1.334, p = .192. At 

electrode FCz, there was no significant difference in amplitude between incorrect (M = .77 µV, 

SD = 2.31) and correct (M = .66 µV, SD = 2.83) trials, t(30) = -.379, p = .707. There was also no 

significant difference in amplitude at electrode site Cz between incorrect (M = .39 µV, SD = 

2.96) and correct (M = .65 µV, SD = 3.62) trials, t(30) = -.771, p = .447. Amplitude was more 

negative for incorrect trials than correct trials at approximately 75ms although the difference was 

not significant. 

Figure 3.  

P300 Amplitude for Each Condition at Electrode Sites Pz and POz 
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  We also examined ERN amplitude in each condition at electrode sites Fz, FCz, and Cz. 

We hypothesized that amplitude for incorrect trials would be greatest when confidence is low. 

Results suggested that there was no difference in amplitude between incorrect high (M = -.063 

µV, SD = 3.466), incorrect low (M = -.66 µV, SD = 3.46), correct high (M = -.044 µV, SD = 

3.98) and correct low (M = .71 µV, SD = 4.48) at Fz, F(3, 120) = .656, p = 0.581, as shown in 

Figure 5. At FCz, there was also no significant difference in amplitude between incorrect high 

(M = -.704 µV, SD = 2.46), incorrect low (M = -1.62 µV, SD = 2.82), correct high (M = -1.02 

µV, SD = 2.85), and correct low (M = -.867 µV, SD = 3.51), F(3, 120) = .568, p = .637. At Cz, 

we did not observe any difference in amplitude between incorrect high (M = .313 µV, SD = 

3.17), incorrect low (M = -.12 µV, SD = 3.25), correct high (M = .332 µV, SD = 3.54), and 

correct low (M = .76 µV, SD = 3.93), F(3, 120) = .326, p = .806. Amplitude was greatest for the 

incorrect high condition and lowest for the correct high condition. 

 

Figure 4.  

Average ERN at Electrode Sites Fz, FCz, and Cz for Correct and Incorrect trials. 
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ERN and FRN across time. To determine how the amplitudes of ERN and FRN change 

throughout the learning process, we divided each list into quartiles based on the number of 

incorrect trials throughout that list, then averaged across each list. This created four “time bins” 

each containing an equal number of incorrect responses. We compared the amplitudes for ERN 

and FRN in each bin by using a one-way analysis of variance. 

 We hypothesized that ERN amplitude would be greatest for incorrect responses made 

during the last time bin and that amplitude would be smallest for incorrect responses made 

during the first time bin. Figure 6 shows waveforms at Fz, FCz, and Cz. The ERN analysis at Fz 

revealed no significant difference in amplitude between time 1 (M = .772 µV, SD = 3.34), time 2 

(M = .80 µV, SD = 3.84), time 3 (M = .91 µV, SD = 4.74) and time 4 (M = .24 µV, SD = 4.57), 

F(3,120) = 0.517, p = .672. At FCz, there was no significant difference in amplitude between 

time 1 (M = 1.52 µV, SD = 2.58), time 2 (M = 1.24 µV, SD = 3.06), time 3 (M = 1.52 µV, SD = 

3.35), and time 4 (M = 0.66 µV, SD = 3.37), F(3, 120) = 0.528, p = 0.664. At Cz there was not a 

significant difference in amplitude between time 1 (M = .12 µV, SD = 3.14), time 2 (M = .56 µV, 

SD = 3.56), time 3 (M = .28 µV, SD = 4.25), and time 4 (M = .59 µV, SD = 3.68), F(3, 120) = 

Figure 5.  

Average ERN Amplitude for Each Condition at Fz, FCz, and Cz 
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.551, p = .648. ERN amplitude was most negative during Time 2 and least negative during Time 

4.  

 

 

For FRN, we hypothesized that amplitude for incorrect trials would be greatest at the beginning 

of the blocks during time bin 1 and that amplitude would be smallest during time bin 4. As 

shown in Figure 7, the FRN analysis at Fz showed no significant difference in amplitude 

between time 1 (M = 2.25 µV, SD = 5.89), time 2 (M = 3.99 µV, SD = 5.92), time 3 (M = 3.72 

µV, SD = 6.09), and time 4 (M = 3.61 µV, SD = 7.00), F(3, 120) = .484, p = .694. At FCz there 

was no significant difference in amplitude between time 1 (M = 3.25 µV, SD = 5.05), time 2 (M 

= 4.48 µV, SD = 4.91), time 3 (M = 4.49 µV, SD = 5.22), and time 4 (M = 4.39 µV, SD = 6.15), 

F(3, 120) = .395, p = .757. We also did not find a significant difference in amplitude at Cz 

between time 1 (M = 3.20 µV, SD = 5.04), time 2 (M = 4.79 µV, SD = 5.79), time 3 (M = 4.71 

µV, SD = 5.14), and time 4 (M = 4.73 µV, SD = 6.55), F(3, 120) = .579, p = .630. FRN 

amplitude was greatest for Time 1 and smallest for Time 2. 

 

Figure 6.  

ERN Amplitude for Each Time Period at Electrode Sites Fz, FCz, and Cz 
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Figure 7.  

FRN Amplitude for Each Time Period at Electrode Sites Fz, FCz, and Cz 
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Chapter 4. Discussion 

Performance feedback, as well as internal error monitoring are essential to improve and 

adapt behavior. This study examined the relationship between multiple event-related potentials 

and subjective probability. Our goal was to replicate and extend the findings reported by Horst et 

al., (1980) that found a relationship between P300 amplitude and the subjective probability of 

participants. By extending the analyses to include ERN and FRN, we expected to find a 

relationship between the ERP components, as well as a relationship between the components and 

subjective probability. Specifically, we expected both ERN and FRN to vary with respect to 

confidence. ERN was expected to be smallest at the beginning of the blocks before learning 

occurred and greatest at the end of the blocks after learning occurred. FRN was expected to be 

greatest at the beginning of the blocks and smallest at the end, showing a tradeoff relationship 

with ERN. Additionally, we hypothesized that ERN amplitude would be smallest for incorrect 

trials when confidence was low and FRN would be greatest for incorrect trials when confidence 

was high.  

The results showed no difference in P300, FRN or ERN across conditions based on 

confidence levels. In line with previous findings, we expected to observe an increase in P300 

amplitude at parietal locations for trials on which the outcome violated participants’ expectations 

(e.g. incorrect response, high confidence; correct response, low confidence). However, the 

current results revealed no differences of P300 amplitude between conditions, regardless of 

outcome expectations. We also expected a decrease in FRN and an increase in ERN amplitude 

across trials. The results showed no significant change across trials, suggesting that ERN and 

FRN may not be as sensitive to the learning process as hypothesized. 
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Limitations 

 There are several factors to consider as to why significant results were not obtained. First, 

ERN is typically elicited during timed reaction tasks that emphasize accuracy. The task in this 

study was not timed; therefore, participants did not experience any time pressure. Another 

possibility for why we did not observe any changes in ERN could be due to higher physical 

demands during the task. Studies examining ERN usually involve a Flanker task, which requires 

one button press as a response. The current task required four button presses, three for the 

response and one for submission. ERN was analyzed after the fourth button press, the 

participant’s submission of the response. However, participants could commit an error at various 

stages of their response. For example, error commission could occur at button press one when 

participants type the first letter of the response, button press two for the second letter, or button 

press three for the third letter. Inconsistency of the timing of error commission could account for 

a less pronounced ERN in comparison with ERN elicited by the one-button response during a 

Flanker task. Future studies examining the relationship between ERN and FRN should consider a 

task that requires only one response from the participant to minimize motor movement. In fact, 

Liu and Huo (2020) used a probabilistic forced choice task that only required one button press as 

a response and observed a tradeoff effect between ERN and FRN amplitude throughout the task. 

Specifically, ERN amplitude increased and FRN amplitude decreased as learning occurred.  

The original study used a 101-point confidence scale and collapsed the scale into four 

ranges for each participant. The ratings obtained in the current sample were only reflective of the 

extremes of the scale (e.g. 0, 100). We were not able to divide the ratings into the appropriate 

ranges and instead dichotomized the ratings into low and high. Ideally, we would have been able 

to use the entire 101-point scale, as dichotomizing the confidence variable may not accurately 

reflect the participants’ subjective probability. Due to the nature of the task, each participant 
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completed a different number of trials throughout the task. Future studies should consider using a 

task for which each participant completes the same number of trials. For example, an 

experimental design that uses a probabilistic forced choice task would allow for all of the 

participants to complete the same number of trials. For instance, a study published by Liu and 

Huo (2020) utilized a forced choice paradigm that required participants to learn which symbol 

provided correct feedback the majority of the time for a set number of trials. Their results 

showed the tradeoff relationship between ERN and FRN that we expected to observe in the 

current study, perhaps due to the more appropriate nature of the forced choice paradigm.   

 Another possible reason we did not obtain significant results could be due to the 

age/educational level of the participants in this sample. The original study had only six 

participants, but each participant was a graduate student. Conversely, although the current study 

included 31 participants, the majority of participants were college freshmen. As P300 amplitude 

is modulated by the amount of attentional resources available for the task (Polich, 2007), the 

significant difference in educational level could also be accompanied by a difference in 

attentional abilities, with graduate students able to devote more attention to the task at hand. 

Velanova et al. (2008) also observed that adolescents and young adults showed differences in 

ACC activity, suggesting that as the ACC develops, error processing and inhibitory control 

improve. This development may account for the more pronounced P300 response reported in the 

original study with older participants. 

Conclusion 

Overall, the current study did not replicate the results obtained by Horst et al. (1980). We 

hypothesized that in addition to the P300, ERN and FRN would also be influenced by 

participants’ subjective probability. We also expected to observe a tradeoff relationship between 
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ERN and FRN, with ERN amplitude increasing across time and FRN decreasing across time, 

consistent with the reinforcement learning theory. Our results showed no significant P300 

response for trials that violated participants’ subjective probability. We did not observe a change 

in ERN and FRN throughout the blocks, nor did we observe any changes in amplitude across 

conditions relating to subjective probability. Although our hypotheses were not supported, other 

studies have reported a relationship between ERN and FRN (Krigolson et al., 2009; Liu & Huo, 

2020), suggesting that task difficulty may play a significant role in error monitoring (Pailing & 

Segalowitz, 2004). Overall, results indicated that there is not a significant relationship between 

ERN, FRN, and subjective probability. However, future studies should use a more appropriate 

experimental task in order to more accurately examine the relationship between ERN and FRN.  
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