
East Tennessee State University East Tennessee State University 

Digital Commons @ East Digital Commons @ East 

Tennessee State University Tennessee State University 

Electronic Theses and Dissertations Student Works 

5-2020 

Storm Sampling to Assess Inclement Weather Impacts on Water Storm Sampling to Assess Inclement Weather Impacts on Water 

Quality in a Karst Watershed: Sinking Creek, Watauga Watershed, Quality in a Karst Watershed: Sinking Creek, Watauga Watershed, 

East Tennessee East Tennessee 

Porcha McCurdy 
East Tennessee State University 

Follow this and additional works at: https://dc.etsu.edu/etd 

 Part of the Environmental Indicators and Impact Assessment Commons, Environmental Monitoring 

Commons, Geology Commons, and the Hydrology Commons 

Recommended Citation Recommended Citation 
McCurdy, Porcha, "Storm Sampling to Assess Inclement Weather Impacts on Water Quality in a Karst 
Watershed: Sinking Creek, Watauga Watershed, East Tennessee" (2020). Electronic Theses and 
Dissertations. Paper 3724. https://dc.etsu.edu/etd/3724 

This Thesis - unrestricted is brought to you for free and open access by the Student Works at Digital Commons @ 
East Tennessee State University. It has been accepted for inclusion in Electronic Theses and Dissertations by an 
authorized administrator of Digital Commons @ East Tennessee State University. For more information, please 
contact digilib@etsu.edu. 

https://dc.etsu.edu/
https://dc.etsu.edu/
https://dc.etsu.edu/etd
https://dc.etsu.edu/student-works
https://dc.etsu.edu/etd?utm_source=dc.etsu.edu%2Fetd%2F3724&utm_medium=PDF&utm_campaign=PDFCoverPages
https://network.bepress.com/hgg/discipline/1015?utm_source=dc.etsu.edu%2Fetd%2F3724&utm_medium=PDF&utm_campaign=PDFCoverPages
https://network.bepress.com/hgg/discipline/931?utm_source=dc.etsu.edu%2Fetd%2F3724&utm_medium=PDF&utm_campaign=PDFCoverPages
https://network.bepress.com/hgg/discipline/931?utm_source=dc.etsu.edu%2Fetd%2F3724&utm_medium=PDF&utm_campaign=PDFCoverPages
https://network.bepress.com/hgg/discipline/156?utm_source=dc.etsu.edu%2Fetd%2F3724&utm_medium=PDF&utm_campaign=PDFCoverPages
https://network.bepress.com/hgg/discipline/1054?utm_source=dc.etsu.edu%2Fetd%2F3724&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:digilib@etsu.edu


Storm Sampling to Assess Inclement Weather Impacts on Water Quality in a Karst Watershed:  

Sinking Creek, Watauga Watershed, East Tennessee 

________________________ 

A thesis 

presented to 

the faculty of the Department of Geosciences 

East Tennessee State University 

 

In partial fulfillment 

of the requirements for the degree 

Master of Science in Geosciences, Geospatial Analysis 

______________________ 

by 

Porcha McCurdy 

May 2020 

_____________________ 

Dr. Ingrid Luffman, Chair 

Dr. Andrew Joyner 

Dr. Kurt Maier

 

 

Keywords: E. coli, inclement weather, turbidity, electrical conductivity, karst  



2 
 

 

ABSTRACT 

Storm Sampling to Assess Inclement Weather Impacts on Water Quality in a Karst Watershed:  

Sinking Creek, Watauga Watershed, East Tennessee 

by 

Porcha McCurdy 

Escherichia coli changes in Sinking Creek, an impaired water body in the Watauga watershed of 

northeast Tennessee, were assessed during storm events using water samples collected with 

ISCO automated samplers during eight storms at two locations. Turbidity and electrical 

conductivity (EC) data loggers were deployed in the creek, and dissolved oxygen (DO) was 

measured in situ to test the stream’s water quality and reaction to inclement weather. Cotton 

fabric was deployed at both locations and sent to an external lab to test for the presence of 

Optical Brighteners (OB), which are indicators of residential wastewater. E. coli and turbidity at 

the creek generally increased within 2.5 hours of a rain event, remaining above the single sample 

standard for several hours during the storm. At the spring, E. coli became elevated within 30 

minutes of precipitation onset, but generally decreased below the standard during the event.  
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CHAPTER 1. INTRODUCTION 

Water Quality

 Water quality in the United States has been impacted by channelization, oxygen 

depletion, and agricultural runoff, resulting in the presence of fecal coliforms in various rivers 

and loss of habitat for aquatic life (USEPA 2016a). When assessing water quality of streams and 

rivers, agriculture and industry are regarded as the foremost contributors of pollution in the U.S 

resulting in sediment, pathogens, and nutrients in water bodies (USEPA 2017). Some common 

contaminants that can be present in water bodies occur in nature such as uranium and radon, but 

others such as pesticides, fertilizers, heavy metals, and pathogens have anthropogenic origins 

(Centers for Diseases Control and Prevention 2014; USEPA 2018a). 

           The two common types of impairment in Tennessee are bacterial contamination and 

sedimentation (TDEC 2014). The Watauga watershed (HUC06010103) in east Tennessee is 

impaired due to Escherichia coli (E. coli) (141 miles impaired) and excess siltation (159 miles 

impaired) (TDEC 2016). The 305(b) and 303(d) reports are required by the Clean Water Act to 

ensure all water bodies of each state are evaluated; the assessment is usually conducted every 

two years (USEPA 2018b). The 305(b) report is an assessment of water bodies within each state; 

the U.S. water bodies that do not meet water quality standards for their intended use are added to 

the 303(d) list. A Total Maximum Daily Load (TMDL) report details how much of a pollutant is 

permissible in a water body and is prepared by the state for each type of impairment in a 

watershed (USEPA 2018c). Sinking Creek was added to the 303(d) list as impaired for E. coli in 

1998 (Craig et al. 2004) and has continued to be listed to date (TDEC 2018). 
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Sinking Creek Introduction 

 The TMDL report for E. coli in the Watauga watershed indicates that 17 water bodies are 

listed as impaired due to E. coli. The Watauga watershed TMDL for sedimentation indicates that 

15 water bodies are impaired due to excess siltation. Sinking Creek is a small tributary of the 

Watauga River located in northeast Tennessee (Washington and Carter County) and is one of the 

streams impaired for E. coli (TDEC 2018). Geologically, Sinking Creek flows through karst 

topography consisting of limestone and dolomite. The dissolution of limestone in the area has 

resulted in the presence of multiple springs (Moore 2006). Karst systems occur when water from 

the surface seeps into subsurface carbonate rocks such as limestone and dolostone (Boyer and 

Pasquarell 1999). When precipitation occurs, rainfall infiltrates the soil and interacts with 

organic systems. As the water percolates into the carbonate rocks, it flows through fractures in 

the rock and the limestone is dissolved. It eventually intersects the water table or contacts an 

aquitard and flows horizontally through the overlying rocks and emerges as a spring (USGS 

2020a).  Springs travel through the subsurface and may be a reflection of groundwater quality. 

Both groundwater and surface water are related in karst regions as contaminated surface water 

may enter groundwater systems through sinkholes and openings in carbonate rocks (USGS 

2016).  

E. coli 

 E. coli is a fecal coliform, rod-shaped bacterium that lives within the digestive tract of all 

mammals (Oliver 2016), and some strains may cause illnesses such as urinary tract infections, 

respiratory issues, and foodborne illnesses (Gould 2010). E. coli can be contracted through direct 

contact, exposure to impaired water or by consumption of contaminated foods. Most research 

regarding E. coli focuses on the exposure that may be caused by swimming and other 
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recreational activities in impaired water bodies (CDC 2014), and most strains of E. coli bacteria 

are harmless and necessary for digestion. The Shiga-toxin E. coli (STEC) strain O157: H7, 

however, has been linked to illness and fatality due to kidney failure (CDC 2014). 

Approximately 265,000 cases of STEC occur each year in the U.S. and about 36% of these can 

be attributed to E. coli O157 (CDC 2014). 

Siltation 

 Siltation is the suspension of silt-sized particles in water and can result in loss of 

biological integrity (TDEC 2016). Excess siltation can lead to the death of aquatic organisms by 

interfering with filter-feeding processes, while also inhibiting aquatic vegetation from receiving 

adequate sunlight for photosynthesis (Edwards 1968). Siltation can be caused by soil erosion due 

to agricultural practices such as overgrazing (Fleischner 1994). Periods of heavy rain and 

snowmelt aid in sediment pollution via runoff in river systems (Gardner 1950; Gillespie1981; 

Owens et al. 1982) and, in combination with overgrazing, can lead to high turbidity 

concentrations in streams (Agouridis et al. 2005). 

           When analyzing water quality, testing for total suspended solids (TSS) is integral in 

assessing water quality (Wu et al. 2014). Although an efficient practice, measuring TSS can 

sometimes prove difficult, as it must be measured in a lab by filtering water samples and drying 

and weighing the constituents (Oram 2020). Turbidity, however, can easily be measured through 

the use of data loggers that operate by measuring scattered light from particles (LaMotte 2020). 

Turbidity and TSS are related in that they both access solids that may be in a waterbody. They 

have been shown to have a positive correlation (Wu et al. 2014), therefore, measuring turbidity is 

a suitable surrogate for measuring suspended particles in water (Göransson et al. 2012, USGS 

2020b). Under normal river flow conditions, turbidity concentrations are usually no more than 10 
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Nephelometric Turbidity Units (NTU, a standard of measuring turbidity equal to Formazin 

Turbidity Units (FTU), which are used in this study). During precipitation events, turbidity may 

increase to 1,000 NTU due to the high influx of surface water runoff and the transport of 

sediment from the stream channel (USGS 2020b; USEPA 2012). 

Runoff Effects 

 During inclement weather, pollutants such as sediment and pathogens are more prone to 

being washed into surface water such as rivers and streams via runoff. Runoff may result from 

excess precipitation, melting ice/snow from mountains, or residual water from irrigation that 

flows into bodies of water and drainage systems (USGS 2020c). A factor influenced by runoff is 

the ‘first flush’ which is when the highest amount of a constituent, such as nitrates, E. coli, or 

turbidity, is expected to be present in a waterbody during an inclement weather event (Lee et al. 

2002). In addition to runoff, the first flush is dependent upon rainfall amount, duration of the 

storm event, temperature, antecedent precipitation, land use, and topographic slope (Lee et al. 

2002; USGS 2020c). Precipitation and antecedent precipitation influence runoff differently, 

antecedent conditions control how saturated or unsaturated the soil is which influences the soil 

infiltration capacity (Chen and Chang 2014). Alterations in land use such as deforestation, 

increasing agricultural areas, and urbanization influence runoff (Sajikumar and Remya 2015). 

The relationship between slope and runoff depends on the slope incline and soil permeability; 

therefore, if there is low infiltration due to an impermeable soil, higher runoff can be expected 

(Mu et al. 2015).  

           Water quality concerns arise when contaminants such as fertilizers, excess sediment, and 

pathogens from the surrounding areas are incorporated into the runoff and enter the surface and 

groundwater. A common misconception is that once water passes through the ground and 
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emerges at springs, it has been filtered and “purified” by the minerals in the rock, making it safe. 

Filtration through the rock may remove some particles from the water, but chemicals from 

anthropogenic origins such as fertilizers and bacteria can still be present (Waller 1982). 

           E. coli may be transported to streams from impaired surface runoff during inclement 

weather events. Nonpoint sources of E. coli include agricultural and urban runoff (Teague et al. 

2009). Urban runoff consists of stormwater from residential areas or developed locations that 

enter streams through storm sewer outfalls or direct surface runoff; fecal coliform bacteria from 

humans, pets, or wild animals are usually components (Benham et al. 2006). Agricultural land 

use in Northeast Tennessee mainly consists of pastures for cows; during precipitation events 

runoff from pastures may flow into streams, contributing fecal bacterial (Boyer and Pasquarell 

1999). 

           Surface runoff may also contain high concentrations of nitrates in streams that affect 

aquatic plants and algae by increasing growth rates and altering dissolved oxygen (DO) 

concentrations. Excessive concentrations of algae limit the amount of sunlight that can penetrate 

water, which in turn can result in plant decay (Senn et al. 2017). Bacteria present in the runoff 

may also feed on plant decay and multiply, while also consuming the available DO. Negative 

impacts of lower DO concentrations are that aquatic species experience stress, and their ability to 

reproduce is limited (USEPA 2016b). 

Storm Sampling 

 Storm sampling refers to a process when a designated flow or precipitation threshold is 

used to initiate the collection of water samples over certain time intervals (Harmel et al. 2003). 

Two methods of storm sampling are manual and automated. First, manual sampling involves 

collecting grab or integrated samples. Grab samples are usually taken in triplicate and consist of 
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sample collection in a chosen location of the water body. Grab sampling provides more 

flexibility with regard to sample collection intervals (Harmel et al. 2010) because it is dependent 

on when the person decides to collect samples, and it also allows one to observe temporal 

changes in the water quality. Unless grab samples are collected in multiple locations across the 

stream, limitations in spatial variability can occur (Harmel et al. 2010). Grab sampling can also 

pose safety risks as personnel may be subjected to dangerous weather conditions and high stream 

flows while sampling (Harmel et al. 2006).  

The other method of manual sampling is integrated sampling, which involves collecting 

samples across the river channel; it offers a way to capture cross-sectional variations in water 

quality. This method, however, is very time-consuming and may be more difficult because of the 

locations of the collection points; this can be mitigated by utilizing specifically designated 

samplers such as the DH- 81(USGS Instrument) (Harmel et al. 2010), which operates by taking 

constant water samples while the instrument is navigated through the cross-section. Cross-

sectional variability from integrated sampling is useful for larger rivers due to the greater influx 

of constituents (Harmel et al. 2010) and is the best technique to provide cross-sectional stream 

variability when sampling sediment concentrations (Harmel et al. 2006). Difficulties associated 

with integrated sampling are that it usually requires at least eight cross-sectional samples to be 

collected to obtain the most accurate results (Harmel et al. 2010), and during storm events, this 

could be challenging due to weather conditions.  

           The second method, automated sampling, is the most predominant storm sampling 

technique because it doesn’t require high personnel involvement (Harmel et al. 2010). 

Automated sampling works by deploying the sampler at a fixed location and by programming it 

to begin collection at a certain time or volumetric flow. With this method, temporal variations in 
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samples are easily identified as each sample comes from the same location, however, spatial 

variations across and along a stream reach cannot be captured due to the samplers fixed location 

unless multiple samplers are used (Harmel et al. 2010). A suggestion for mitigating spatial 

variation losses are to utilize a vertical intake and place it in a location with representative flow; 

the problem with this is that vertical intakes are not very accessible (Harmel et al. 2010). 

Automated sampling is a more convenient method than manual sampling because the samplers 

can be set for specific start times and sampling intervals, and it is appropriate for small streams 

that have fluctuations in flow (Robertson and Roerish 1999). Automated sampling has been used 

to sample for dissolved material (Ging 1999), urban stormwater runoff (Leecaster et al. 2002), 

and inorganic nitrogen content in wetlands during inclement weather conditions (Kearney et al. 

2013).  

           To ensure proper functionality when deploying the automated sampler for collection, it 

should be positioned in a location to collect well-mixed flow in the stream, possibly at the 

midpoint of the stream cross-section (Harmel et al. 2006) or at the thalweg. ISCO automated 

samplers are very flexible and allow many different sampling strategies, therefore, a method of 

sampling must be selected. Sampling options may include selecting a minimum flow threshold to 

collect flow interval samples or choosing a time interval approach (Harmel et al. 2003). A 

minimum flow threshold is developed to trigger the ISCO to collect samples depending on a pre-

determined minimum flow value. Problems related to minimum flow involve possible difficulties 

with keeping the intake submerged below water level during minimum flow conditions. Time 

and flow interval methods involve programming the sampler to collect at timed intervals or by 

utilizing the minimum flow threshold (Harmel et al. 2003). The benefit of using the flow interval 

approach is that more samples will be taken during storm events as water levels increase. The 
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time interval approach has an easier setup and doesn’t require hydrologic inputs; however, 

downfalls of this method are that depending on the sample collection frequency, the number of 

samples collected can greatly vary (Harmel et al. 2003). 

           Once a time or flow interval has been chosen, a method of discrete or composite sampling 

must be selected. Discrete sampling involves collecting only one water sample in each bottle and 

follows either the time-interval or volumetric flow approach (King and Harmel 2003). The 

benefit of discrete sampling is that the samples are not combined, and each sample is collected in 

a single ISCO bottle; the drawback, however, is that for a given sampling interval, the maximum 

sampling duration will be reduced as each bottle is only used once (King and Harmel 2003). 

Composite sampling means that multiple samples are included in each bottle which permits an 

extended sampling duration; it can be either time-based or flow-based (King and Harmel 2003). 

A downfall of this method, however, is that it is more difficult to associate the concentration of 

constituents in the water sample to specific time periods of the events because samples are 

combined (King and Harmel 2003). Storm sampling intervals for automated samplers are 

typically 15 minutes (Leecaster et al. 2002; King and Harmel 2003), or 30 minutes (Harmel et al. 

2006; Harmel 2010).  

           Automated storm sampling for E. coli is complex because of the potential for cross-

contamination. When water samples are collected with automated samplers, each sample travels 

through the ISCO tubing and is dispensed into one of the sample bottles. During sampling 

events, the same equipment tubing is utilized and could result in residual E. coli concentrations 

left behind (Hathaway et al. 2014). In an effort to assess the potential for and degree of cross-

contamination of samples through the sampler tubing and intake, Line et al. (2008) collected 

samples of distilled water with the automated sampler after a fecal coliform collection event. 
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Results indicated 12 cfu/100 mL of fecal coliforms were present in the distilled water samples 

(EPA standard for a single sample is 941cfu/100 mL). Positioning the ISCO sampler so that the 

tubing is sloped toward the intake during sample collection aids in tube drainage and limits 

contamination of tubing with fecal bacteria (Hathaway et al. 2014). Before and after each sample 

collection, the ISCO automated sampler purges the tubing line (Harmel et al. 2003) and this is 

useful in decreasing bacterial cross-contamination (Hathaway et al. 2014).  

Identifying Sources of E. coli 

Determining the source of anthropogenic pollutants like E. coli can be difficult due to 

various origins of the bacteria. Optical brighteners (OB) are synthetic chemicals and are good 

indicators used to identify anthropogenic sources of E. coli. They are included in detergents to 

enhance colors and are also utilized in textiles and paper manufacturing (Poiger et al. 1998; 

Floreguerra 2003). OB from detergents are discharged in effluent and can be released into 

surface and groundwater from septic tank leaks (Hartel et al. 2007a, b) or direct discharge. 

Runoff originating from residential areas may contain OBs from laundry wastewater, while 

surface runoff from agricultural areas generally does not contain OBs. Optical brighteners can, 

therefore, serve as an indicator of an anthropogenic source of impairment. Tavares et al. (2008) 

conducted a study to measure tidal creeks (North Carolina) in an area undergoing urbanization 

and found a significant correlation (p = 0.0248) between the fecal coliforms and OBs. When 

observed under a black light, OBs fluoresce. Complications identifying the presence of OBs exist 

because other material, such as residuals from paper production and organic material, may also 

fluoresce (Gregor et al. 2002). Because OB fluoresce at a wavelength of 415 – 445 nm, a 

spectrofluorophotometer may be used to distinguish between the presence of OB and other 

fluorescent materials (Tavares et al. 2008), and an even narrower range of 415 – 422 nm has 
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been used by Ozark Underground Laboratories, Inc., a Missouri-based company that specializes 

in groundwater dye tracing.  

 Other methods to identify origins of E. coli include DNA ribo-typing and assessment of 

antibiotic resistance. DNA ribo-typing involves characterizing E. coli strains based on their 

serotypes, which are distinguishing variations among a species (Martin et al. 1996). E. coli 

strains are divided into O (~183 antigens), K (~80 antigens), and H (~53 antigens) (Delannoy et 

al. 2017); and differentiation of the serotypes within these groups can help determine the source 

of E. coli contamination in water bodies. After strains are determined, they can be combined in 

an E. coli library. An E. coli library is a database of wildlife within the watershed, and although 

it can be a very intensive method, it may help determine origins of the E. coli (Lu et al. 2005; 

Wilkison and Davis 2010). Antibiotic resistance patterns have also been used to distinguish 

between human and non-human sources; limitations with this method are that it is difficult to 

account for all species in a location, and therefore some strains identified in water samples are 

left unaccounted for (Hagedorn et al. 1999). 

 E. coli and Precipitation 

Increased runoff during periods of heavy precipitation has been linked to decreased water 

quality. Subsequently, after inclement weather events more waterborne outbreaks have been 

documented globally (Cann et al. 2012; Tornevi et al. 2014). This is a problem in all countries 

regardless of developmental status (Cann et al. 2012, Gleason and Fagliano 2017). During 

intense inclement weather events water treatment facilities can be inundated and lead to 

contamination of drinking water supplies. Locations that utilize non-disinfected groundwater as a 

source of drinking water have also been affected by elevated gastrointestinal (GI) outbreaks after 
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a rainfall event, further proof that the rocks are not sufficient in filtering out the bacteria 

(Gleason and Fagliano 2017). 

 In particular, E. coli concentrations in surface water have been correlated to 7-day 

antecedent precipitation (Chen and Chang 2014), and wet conditions (Wittman et al. 2013). A 

peak in E. coli was observed two days after an inclement weather event began (Tornevi et al. 

2014). Land use is also a determining factor in the relationship between precipitation and E. coli. 

In forested and residential areas, E. coli is more highly correlated to precipitation during the dry 

season, while in urban, forested, and agricultural lands the highest correlation between E. coli 

and precipitation occurs during the wet season (Chen and Chang 2014). E. coli concentrations 

are also influenced by temperature; during the summer when temperatures are higher, lower 

concentrations have been recorded; however, low rainfall amounts during the summer in some 

locations have also resulted in higher concentrations of E. coli (Chen and Chang 2014). Even 

during normal precipitation and runoff conditions, E. coli concentrations may be high enough to 

have adverse effects on the population (Wittman et al. 2013). 

 Precipitation and Turbidity 

 Turbidity in a small watershed in Tennessee, USA, peaked approximately 3 to 4 hours 

after a precipitation event had begun (Luffman 2016), and there was a positive correlation 

between turbidity and precipitation (Hamilton and Luffman 2009). In forested areas, the turbidity 

was affected by infiltration, therefore decreasing the sediment load in surface water (Chen and 

Chang 2014). Higher turbidity has been associated with a region’s wet season (Maillard and 

Santos 2008). Turbidity concentration during inclement weather events is influenced by 

discharge as well, with more intensive storm events causing increased turbidity concentrations 

(Göransson et al. 2013).  
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Study Area 

 The Watauga watershed is located in northeastern Tennessee and northwestern North 

Carolina; it extends throughout parts of Washington, Unicoi, Sullivan, Johnson, and Carter 

counties (TDEC 2015). Sinking Creek (TN06010103046) flows through both Washington and 

Carter counties, and in both counties, 10 river miles are impaired due to E. coli from municipal 

areas and grazing in riparian zones (TDEC 2018) (Figure 1). The location has a Cfa, or humid 

subtropical, climate type (Kottek et al. 2006), receiving an average of 104 cm (41 in.) of rainfall 

annually (National Weather Service 2020). Approximately 3.3 miles from the East Tennessee 

State University (ETSU) campus, Sinking Creek flows through Jacob’s Nature Park (36.32°N, 

82.32°W), a Johnson City park. In 2014 the Boone Watershed Partnership (local nonprofit) was 

awarded an EPA 319 grant that would be used to tackle sources of impairment at Sinking Creek 

(TDEC 2015). The project was divided into two phases, with the first focusing on connecting 

residents who were on separate sewer systems to the cities’ sewer system; it also involved repairs 

made to existing septic systems and one cattle exclusion project (TDEC 2015). The second phase 

of the project involved transforming the wetland area of Sinking Creek into a natural arboretum 

that could be used for recreation as well as scientific learning, which is now known as Jacob’s 

Nature Park at Sinking Creek. Within the park, a spring has been located and will be analyzed 

along with the creek during inclement weather events to better understand the water quality and 

its variability under these conditions. 
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Figure 1. Study site and impaired water bodies within the Watauga watershed (HUC 06010103) 
 

Sinking Creek Studies 

 This study area was selected, in part, because of a wealth of prior research on Sinking 

Creek. Dulaney (2003) identified locations in Sinking Creek with high concentrations of fecal 

coliform bacteria. The highest concentrations of fecal coliform in water were measured at sites 

with the largest amount of agricultural land cover (Dulaney 2003). Mitigation strategies such as 

creating vegetation buffer zones to limit the transport of fecal coliforms to water bodies and 

streams were suggested (Dulaney 2003). Floresguerra (2003) identified parameters influencing 

water quality in Sinking Creek. These parameters included E. coli, nitrates, and OB with the 

objective of locating non-point sources of pollution. Floresguerra (2003) also analyzed water 
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samples for OB; results indicated possible OB presence in highly forested areas, with higher 

concentrations during the fall months. The variables were selected for their utility in 

distinguishing point and nonpoint sources of E. coli. The OB results were not conclusive as the 

concentrations measured could have been be attributed to the breakdown of organic material 

such as chlorophyll and fulvic acids (Alhjjar et al. 1990).  

 Luffman (2016) completed a pilot study in Sinking Creek to analyze the relationship 

between precipitation and turbidity. Data were collected over three inclement weather events. 

Turbidity peaked three to four hours after onset of precipitation. Due to the short sampling 

period, a longer sampling duration was suggested to adequately analyze the relationship between 

the variables (Luffman 2016).  

 Models predicting the presence of fecal indicators based on ecological drivers in Sinking 

Creek were developed using MaxEnt (maximum entropy modelling) to understand if chemical 

and microbial variables could predetermine if an area may be impaired by E. coli (Gilfillan et al. 

2018a, b). Research by Hall et al. (2014) aimed to determine if the presence of E. coli O157:H7 

could be confirmed at Sinking Creek. She was, however, unable to confirm the presence of the 

pathogen, and explained that it was likely due to the interference of the soil water chemistry of 

the stream with her testing methods. 

Previous research at Sinking Creek from Gilfillan (2018a, b) and Hall et al. (2011) has 

indicated that E. coli concentrations in Sinking Creek were impacted by seasonal variations as 

well as surface run off from pastoral areas. Gilfillan (2018b) concluded that summer months, 

specifically August, resulted in the highest concentration of fecal coliforms, but stressed that 

bacterial counts during other months should not be neglected because concentrations may still be 

high. Gilfillan (2018b) indicated that seasonality and agriculture in the watershed were the main 
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contributors of E. coli despite the fact that developed land made up a larger portion of the 

watershed. E. coli concentrations were higher in downstream regions, consistent with the results 

from Floresguerra (2003) research indicated higher E. coli concentrations in downstream 

regions, where were likely influenced by organic pollution. Similarly, to Gilfillan (2018a, b), her 

research concluded that E. coli concentrations were higher in the summer months, and that they 

were likely due to agricultural activity and seasonally lower rainfall.  

Research Questions 

 Previous research at Sinking Creek has provided relevant information about the water 

quality such as when turbidity can be expected to increase, possible locations of where OB are 

present, as well as locations along the creek that have the highest runoff input from agricultural 

areas. There are, however, still unanswered questions about the stream. Although the previous 

methods focus on water quality indicators, there is not a substantial amount of information 

regarding how E. coli, EC, turbidity, and DO vary during inclement weather events. There is also 

uncertainty as to whether OB are present in the stream. Therefore, the research questions to be 

evaluated in this study are: 

1. What is the relationship between inclement weather events and water quality [E. coli, 

turbidity, DO, EC] in surface and groundwater at Sinking Creek?  

2. What is the relationship between water quality parameters [E. coli, turbidity, and EC]?  

3. What is the timing of the first flush for E. coli, turbidity, and EC? 

4. Can anthropogenic sources of E. coli (spring and creek) be confirmed through the 

presence of Optical Brighteners? 
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CHAPTER 2. METHODOLOGY 

Overview  

Storm sampling involves the collection of water samples during inclement weather events 

to understand how water quality parameters respond to precipitation. Inclement weather events 

with an expected precipitation duration of four to five hours were chosen. Storm sampling was 

conducted at two locations in Jacob’s Nature Park in Johnson City TN, a spring and Sinking 

Creek which flows through the park. The two locations were chosen because storm runoff into 

the creek would be indicative of surface water quality while the spring would provide insight on 

the water quality of groundwater. Sampling locations were based on finding sites where 

automated samplers could be safely deployed, with preference for locations that concealed the 

samplers from most foot traffic at the park to limit the potential for tampering. 

At the creek where water samples were collected to analyze for E. coli, turbidity, and EC, 

data loggers were deployed and DO measurements were taken in situ. In the spring, water 

samples were collected to test for E. coli and DO measurements were taken in situ. The E. 

coli samples were compared to 941 colony-forming units/100 mL (cfu/100 mL), which is the 

maximum water quality standard for E. coli in surface water. OB were examined at both sites to 

determine if effluent from anthropogenic sources are the origin of E. coli at the creek and spring. 

In addition to OB analysis, land cover assessment was conducted for the Sinking Creek 

watershed upstream of the study sites. The objective was to quantify agricultural, residential 

(developed), and forested land use, to help determine which areas may be contributing to E. coli 

concentrations at the study sites. 

Storm Selection 

 Eight storm events were sampled, and the selection of storm events was dependent on the 

expected duration of precipitation. At least four to five hours of continuous precipitation was 
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desired to trigger storm sampling based on Luffman (2016), which indicated that turbidity in 

Sinking Creek peaked between three and four hours after precipitation began. The ETSU 

Geosciences weather station (https://www.wunderground.com/weather/us/tn/johnson-

city/KTNJOHNS46), located ~3.3 miles away, was utilized for meteorological data such as 

forecast, radar, and precipitation rate and precipitation accumulations.  

Data Loggers 

 An Aquatec AQUAlogger 210 turbidity data logger and a HOBO ONSET Fresh Water 

Conductivity Data Logger (U24-001) were deployed in the creek bed and were securely tied to a 

tree along the bank of the creek. The turbidity data logger was stabilized with rocks to keep it in 

an upright position so that the sensor would be near the top of the stream; therefore, reducing 

deposition of sediment on the optical window which would skew results. The conductivity data 

logger was placed in PVC housing for protection. Both data loggers were programmed to collect 

measurements at 15-minute intervals. Dissolved oxygen was measured in situ at both study sites 

for storms 1 – 6 with an Oakton DO 6+ Dissolved Oxygen Meter with NIST – Traceable 

Calibrations. After experiencing calibration issues following replacement of the electrode 

solution in the meter’s probe, a HACH Dissolved Oxygen test kit (0-15 mg/L Model AV) was 

used for storms 7 and 8.  

 Water samples were collected using ISCO 6712 automated samplers at the two sites. At 

the creek site, an ISCO sampler with a 25 ft. hose was placed on a ledge adjacent to a bridge that 

spans the creek (Figure 2 A). This enabled the sampler to be elevated above the flood zone. At 

the creek location, the ISCO’s polypropylene strainer was placed in the middle of the creek.  It 

was elevated from the channel bed with rocks to limit sediment intake from the creek bed and 

weighted down with rocks to keep it stable during high velocity flow events. At the spring site, 
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an ISCO sampler with a 6 ft. hose was placed immediately adjacent to the spring and was 

concealed by vegetation (Figure 2 B). Due to a much lower water discharge at the spring than at 

the creek, water samples drawn from the spring were noticeably more turbid. A small trench was 

dug to provide sufficient water depth to allow placement of rocks to elevate the strainer and limit 

sediment intake, while keeping the intake below water. Rocks were also placed on top of the 

strainer to restrict mobility during storm events.  

 
Figure 2. Sinking Creek ISCO sampler location. A) ISCO location at creek. B) ISCO location at 
spring. 

 
 For most storms, the ISCOs were transported to Jacob’s Nature Park a day prior to the 

inclement weather event. If the forecast changed, only slight adjustments in timing would be 

needed since the equipment was already on site. Two car batteries were charged before each 

sampling event and were used as the power source for the ISCOs. Shortly before the start of 
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sampling, ice was added to each ISCO tub to ensure the water samples remained cold and to 

preserve the samples by limiting the growth of E. coli bacteria (Anderson and Rounds 2010). 

Following the methods of Harmel and King (2003), samplers were programmed to start at a 

specific time and collect discrete, 1000 mL samples every 30 minutes sequentially. The full 

volumetric capacity of the sample bottles (1000 mL), was chosen to acquire a representative 

sample and of the 1000 mL collected. Sampling events ranged from 5 hours to 16 hours 

depending on storm duration. For longer storms, at the 5-hour mark of sample collection, 

samples were retrieved from both locations and transported to the East Tennessee State 

University Department of Geosciences Hydrology Laboratory so that they could be processed 

within 6 hours. The samplers were then reset and restocked with clean sterile bottles and ice. For 

each round of sampling, the water samples for the creek and spring were transported to the lab in 

separate ice-filled coolers to prevent cross-contamination (Tavares et al. 2008). 

Laboratory Analysis  

 Water samples were processed for E. coli using the Colilert Quanti-Tray method. The 

Colilert method uses a reagent that contains two enzymes that can metabolize carbon sources in 

both coliforms and more specifically E. coli. The metabolization from the reagent causes the 

water samples to turn yellow if coliforms are present and a fluorescent cell indicates the presence 

of E. coli (IDEXX 2020). For each sample, one packet of reagent was added to 100 mL of water 

in a glass Erlenmeyer flask that was triple washed in a 10% bleach solution, triple rinsed in tap 

water, and triple rinsed with Deionized water. Each sample was swirled to dissolve the reagent 

before pouring it into the foil Quanti-Trays. Each tray was labeled with the date, time processed, 

site location, and storm event, and sealed in a Quanti-Tray sealer. Trays were incubated in a 

Fisher Scientific Isotemp oven at 35°C for 24 hours. At the end of the incubation period, trays 



29 
 
 

were retrieved from the oven and an ultra-violet light was used to count the number of large and 

small cells that fluoresced, indicating the presence of E. coli. A Colilert Most Probable Number 

(MPN) table was consulted to obtain the number of E. coli colony forming units present per 100 

mL.  

OA/QC 

 Quality Assurance and Quality Control (QA/QC) methods involved filling two ISCO 

bottles with approximately 500 mL of deionized (DI) water to serve as lab and trip blanks. An 

approximate volume of 500 mL was chosen because this was the amount of water to be 

transported to the lab during storm sampling events. The lab blank remained in the hydrology lab 

refrigerator, while the trip blank was placed in a cooler along with ice and transported to Jacob’s 

Park during equipment deployment and sample collection events. Both the lab and trip blank 

were tested for fecal coliforms and E. coli using the same methods as the samples collected with 

the ISCOs.  

           The QA/QC procedure for the 48 1-liter polyethylene ISCO bottles involved triple 

washing each bottle with a 10% bleach and tap water solution, triple rinsing with tap water, and 

lastly triple rinsing with DI water. This was done between each sampling event as the bottles 

were reused. The lower tub of the automatic samplers was sanitized with tap water and a 10% 

bleach solution and after cleansing, each ISCO tub was filled with 24 clean bottles, for water 

sample collection. Other equipment essentials included gloves that were used to decrease cross-

contamination between water sample retrieval at the spring and creek.  

Optical Brighteners 

 Optical brightener samples were collected for two separate storm events on November 

18, 2019 and December 15, 2019, using eight squares of cotton test fabric provided by Ozark 
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Underground Laboratory, Inc. During each of the two storms, four pieces of the fabric were 

placed at Sinking Creek, two were anchored together at the creek, and two at the spring by 

tightening cable ties around the fabric. The fabric was placed in locations that would receive 

representative stream flow for both the creek and spring. Following instructions provided by 

Ozark Underground Laboratory, the fabric squares were deployed at the sites between four to 

seven days. During retrieval, the fabric squares were rinsed in creek or spring water according to 

the location of deployment. Both fabrics from the creek were placed in a single whirl-pak bag, 

this was also done for the spring. Pertinent information such as site name, date, and time of 

deployment and collection were recorded on the bag. 

  The cotton test fabrics were frozen and mailed to Ozark Underground Laboratory for 

processing and analysis. Duplicate cotton test fabrics were deployed at each site so that the fabric 

piece with the best fluorescence intensity within the appropriate wavelength for OBs was 

analyzed. The lab utilized a black light to determine areas on the cotton test fabric with high OB 

intensity. A solid sample holder in a Shimadzu RF 5301 spectrofluorophotometer was used to 

analyze the samples behind quartz glass using the following settings: a 17 nm bandwidth 

separation with synchronous scan, excitation slits at 5 nm, and emission slits at 2 nm. 

Statistical Methods 

 EC and turbidity data were collected at intervals of 15 minutes, therefore, prior to 

analysis the data were aggregated to 30 minutes in Microsoft Excel to match the water samples 

collected for E. coli analysis. Similarly, to EC and turbidity data, precipitation data downloaded 

from the ETSU weather station were aggregated from the collection interval of 5 minutes to 30 

minutes. After the data were aggregated, up to six hours of antecedent precipitation prior to 

storm sampling was used to create at table that would allow cross-correlation of the water quality 
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parameters with antecedent precipitation. The relationships between E. coli, turbidity, and EC 

were analyzed using the Spearman correlation coefficient in IBM SPSS Statistics 25 (IBM 

2017). The Spearman correlation coefficient was selected because the data were non-parametric. 

The Spearman test was run for the parameters during each individual storm as well as the 

combined storms and they were tested for two-tailed significance. To compare variability in E. 

coli and DO at both the creek and spring, Mann Whitney U tests were conducted to compare 

means and determine statistical significance.  
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CHAPTER 3. RESULTS 

Description of Storms 

 During storm 1 on June 18, 2019 precipitation began at 2:45 pm (Figure 3), and storm 

sampling began at 1:00 pm. Turbidity initially was very low, <10 FTU, one hour after the storm 

began it increased and peaked at 125 FTU. EC had a baseline of ~270 µS/cm prior to 

precipitation and decreased to 150 µS/cm 1.5 hours after the storm began. E. coli at the creek 

was initially between 200 to 400 cfu/100 mL, concentrations dramatically increased 

approximately one hour after the start of precipitation and reached the upper limit of 1011 

cfu/100 mL for the Colilert Quanti-tray method. E. coli at the creek remained elevated for the 

duration of storm sampling, a total of approximately four hours. E. coli at the spring began at a 

baseline of 40 cfu/100 mL and began increasing 30 minutes after precipitation began. E. coli at 

the spring peaked at 960 cfu/ 100 mL, one hour after the storm began and after peaking, the 

concentrations steadily declined for the remainder of the storm. Both E. coli at the creek and 

spring increased beyond 941 cfu/100 mL, which is the single sample standard for a non-

recreational body of water. 
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Figure 3. Sinking Creek Storm 1 – June 18, 2019. Precipitation begins around 2:45 pm and is 
measured on the secondary y-axis. Turbidity peaks ~1 hour after precipitation while EC begins 
decreasing 30 minutes after precipitation. E. coli concentrations at the creek and spring peak 30 
minutes following inclement weather. 
 
 
 Storm sampling for storm 2 (Figure 4) began at 12:00 pm on July 17, 2019, and 

precipitation started at 12:30 pm. Turbidity concentrations remained between 2 to 5 FTU 

throughout the storm. Similar to turbidity, electrical conductivity was constant at ~ 320 µS/cm. 

E. coli at the creek initially had values near ~180 cfu/100 mL and began increasing at the onset 

of precipitation. Within 2.5 hours of the storm, E. coli at the creek peaked at 870 cfu/100 mL and 

fluctuated throughout the remainder of the storm.  E. coli at the spring peaked at 137 cfu/100 mL 

as the storm began. Thirty minutes after precipitation began, the concentrations decreased and 

remained <25 cfu/100 mL for the duration of the storm. E. coli at both the creek and spring 

remained below the single sample standard throughout the storm. 
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Figure 4. Sinking Creek Storm 2 – July 17, 2019. Precipitation began around 12:30 pm and is 
measured on the secondary y-axis. Turbidity and EC remained at consistent concentrations. E. 
coli concentrations at the creek fluctuated throughout the inclement weather and peaked 3 hours 
after rainfall initially began. E. coli at the spring peaked approximately the same time 
precipitation began. 
 
 
 Precipitation for Storm 3 (Figure 5) began at 3:30 pm on August 2, 2019. Storm sampling 

began at 3:00 pm. Turbidity peaked 30 minutes later at 45 FTU before decreasing and remaining 

below <10 FTU for the remainder of the storm. EC began at ~ 320 µS/cm and after one hour of 

rainfall, decreased to 217 µS/cm. As the precipitation ended, conductivity concentrations began 

returning to baseline. E. coli at the creek peaked at 1011 cfu/100 mL one hour after the storm 

began. E. coli concentrations at the spring became slightly elevated at 48 cfu/100 mL and then 

decreased to <10 cfu/100 mL. E. coli at the creek was above the single sample standard for the 

majority of the storm event, while concentrations at the spring remained below the standard. 
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Figure 5. Sinking Creek Storm 3 – August 2, 2019. Precipitation began at 3:30 pm and is 
measured on the secondary y-axis. Turbidity peaked 30 minutes after precipitation began. EC 
began decreasing 30 minutes after precipitation. E. coli concentrations at the creek peaked 1 hour 
after rainfall began and concentrations at the spring peaked 30 minutes after rainfall. 
 
 
 On August 13, 2019 rainfall and storm sampling began at 2:00 pm for storm 4 (Figure 6). 

Turbidity concentrations increased to 70 FTU within 30 minutes of precipitation and then 

decreased to <10 FTU for the remainder of the storm. EC began at ~320 µS/cm and decreased to 

217 µS/cm, 1.5 hours after precipitation began. E. coli at the creek began increasing directly after 

precipitation began. It peaked at 1011 cfu/100 mL one hour after precipitation started and 

concentrations remained at 1011 cfu/100 mL three hours before decreasing. E. coli at the spring 

peaked at a concentration of 173 cfu/100 mL, 30 minutes after the beginning of the storm, 

decreasing to low values near 1 cfu/100 mL for the duration of storm sampling. E. coli at the 
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creek were above the single sample standard for about 2.5 hours after the storm while 

concentrations at the spring were below the standard throughout the storm. 

 
 
Figure 6. Sinking Creek Storm 4 – August 13, 2019. Precipitation began at 2:00 pm and is 
measured on the secondary y-axis. Turbidity peaked 30 minutes after precipitation began. EC 
began decreasing less than 30 minutes after precipitation. E. coli concentrations at the creek peak 
1 hour after rainfall began and concentrations at the spring peaked 30 minutes after rainfall. 

 
 Precipitation began at 12:00 pm for storm 5 (Figure 7) on August 22, 2019. Storm 

sampling began at 10:00 am. Turbidity was low throughout the duration of the storm and only 

marginally responded to rainfall by increasing to 17 FTU. EC baseline was ~325 µS/cm prior to 

the storm, and within 1.5 hours of precipitation it dropped to 250 µS/cm. After precipitation 

ended, conductivity began to rise to baseline. E. coli at the creek peaked at 1011 cfu/100 mL one 
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hour after the storm began. E. coli remained at 1011 cfu/100 mL for 1.5 hours after rainfall 

subsided, before decreasing. E. coli concentrations at the spring became elevated at 1011 cfu/100 

mL as rainfall began. At the spring, the E. coli steadily decreased within 1.5 hours of the storm; 

eventually settling near 25 cfu/100 mL. Initial E. coli concentrations at the spring were above the 

single sample standard while the creek had concentrations over the standard for about 1.5 hours 

during the beginning of the storm. 

 
 
Figure 7. Sinking Creek Storm 5 – August 22, 2019. Precipitation began at 12:00 pm and is 
measured on the secondary y-axis. Turbidity remained consistent throughout the storm.EC 
slightly decreased 1 hour after precipitation started and concentrations quickly returned to 
baseline. E. coli concentrations at the creek peaked 1 hour after rainfall began and concentrations 
at the spring were highest at the beginning of the rainfall. 
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 On September 26, 2019, precipitation for Storm 6 (Figure 8) began at 6:00 pm and 

sampling began at 4:30 pm. No rainfall was recorded at the ETSU Geoscience weather station; 

however, precipitation was recorded at the Garland Acres weather station (Figure 2, 

https://www.wunderground.com/dashboard/pws/KTNJOHNS41), which is within the Sinking 

Creek watershed (~2 miles from the creek). Electrical conductivity remained at consistent 

concentrations near 340 µS/cm throughout the storm. E. coli at the creek had a baseline range of 

100 to 130 cfu/100 mL. E. coli quickly spiked to 755 cfu/100 mL ~30 minutes before rainfall 

began and fluctuated as storm sampling continued and peaked at 913 cfu/100 mL. During the 

beginning of the storm, E. coli at the spring were elevated at 436 cfu/100 mL, before decreasing 

to 79 cfu/100 mL 30 minutes before rainfall. Thirty minutes after precipitation began, E. coli 

spiked to 1011 cfu/100 mL before decreasing. During this storm E. coli concentrations at the 

creek were below the single sample standard, while only one sample from the spring peaked 

above the concentration. 
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Figure 8. Sinking Creek Storm 6 – September 26, 2019. Precipitation began at 6:00 pm and is 
measured on the secondary y-axis. EC concentrations were consistent throughout the inclement 
weather event. E. coli concentrations at the creek peaked at 6:30 pm, and at the spring it peaked 
at 8:30 pm. 
 
 On October 7, 2019, storm 7 (Figure 9) was recorded and precipitation began at 4:00 pm. 

Turbidity concentrations were initially very low at concentrations <10 FTU and then increased 

30 minutes after rainfall began. Turbidity peaked at 222 FTU, 1.5 hours after rainfall began 

before decreasing. The onset of precipitation at 8:00 pm resulted in a turbidity spike to 106 FTU. 

EC values during the first two hours of the storm were low near 10 µS/cm before increasing and 

peaking at 283 µS/cm, one hour after precipitation. Two hours after precipitation began, 

conductivity dropped to 198 µS/cm. EC remained near~285 µS/cm during intermittent rainfall 

that occurred over the next two hours before settling near 230 µS/cm for the remainder of the 

storm. E. coli at the creek began at <100 cfu/100 mL. E. coli at the creek peaked at 1011 cfu/100 

mL, 30 minutes after the onset of precipitation. The concentrations were elevated for 2.5 hours of 
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the storm. E. coli at the spring fluctuated prior to precipitation and peaked at 1011 cfu/100 mL 

30 minutes before rainfall. Concentrations were elevated for ~5 hours before decreasing after 

precipitation ended. E. coli concentrations at the creek and spring were elevated above the single 

sample standard for the majority of the storm. 

 
 
Figure 9. Sinking Creek Storm 7 – October 7, 2019. Precipitation began at 4:00 pm and is 
measured on the secondary y-axis. Turbidity peaked 1.5 hours after rainfall.EC decreased 1 hour 
after precipitation began. E. coli at the creek peaked as soon as precipitation began and 
concentrations at the spring increased 30 minutes after precipitation. 

 
 Storm 8 (Figure 10) occurred on October 16, 2019, and storm sampling began at 1:00 am. 

EC concentrations were ~300 µS/cm and decreased to 233 µS/cm after 3 hours of rainfall. EC 

continuously fluctuated as rainfall started and stopped throughout the storm; the concentrations 
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dropped to their lowest concentration of 134 µS/cm after intense rainfall occurred between 8:00 

and 10:00 am. E. coli at the creek began low with values near 140 cfu/100 mL during the first 

hour of rainfall. Three hours after the storm began, E. coli peaked at 1011 cfu/100 mL before 

steeply dropping to ~210 cfu/100 mL after rainfall accumulations decreased and as rainfall 

continued intermittently, E. coli at the creek continued to fluctuate. E. coli at the spring began at 

460 cfu/100 mL and, 1.5 hours after precipitation began, it decreased to 68 cfu/100 mL. The 

concentrations fluctuated for the next few hours during the storm before peaking at 689 cfu/ 100 

mL following a significant accumulation of rainfall. E. coli concentrations at the creek peaked 

above the single sample standard for the later duration of the storm while concentrations at the 

spring remained below the standard for the entire storm.   
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Figure 10. Sinking Creek Storm 8 – October 16, 2019. Precipitation began at 1:00 am and is 
measured on the secondary y-axis. EC decreased 3 hours after precipitation started and continued 
to fluctuate during intermittent rainfall. E. coli at the creek peaked 3 hours after precipitation 
began. E. coli at the spring began high and then fluctuated throughout the storm. 

 
 There were several trends that occurred during the storm sampling events. E. coli at the 

spring during all storms apart from storm 6, began with a peak before decreasing and remaining 

low until there was another onset of precipitation. E. coli at the creek began low and upon 

precipitation it increased with concentrations remaining above the single sample standard for 

several hours of the storm. During storm 6, even when there was very little precipitation, E. coli 

at both the creek and spring continuously fluctuated. Turbidity was usually observed to increase 

within 1.5 hours of precipitation and during storms with low rainfall accumulations. EC 

decreased within 1.5 hours or rainfall and, like turbidity, when rainfall accumulations were low. 
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Analytical Results: Creek vs. Spring 

 E. coli at the spring increased more quickly than the creek in all storms. At the spring, E. 

coli concentrations began elevated and then decreased as the storm progressed, noticeably this 

occurred in storm 5 (Figure 7), storm 7 (Figure 9), and storm 8 (Figure 10). In storm 2 (Figure 4) 

and storm 4 (Figure 6) E. coli at the spring peaked within 30 minutes of precipitation before 

decreasing. Concentrations at the spring were below the single sample standard for most storms, 

however, during more intense storm events concentrations exceeded the standard (Figure 3, 

Figure 7, Figure 9).  At the creek, E. coli began at low base concentrations before increasing 

within 30 minutes of onset precipitation (Figure 5). The concentrations remained elevated for 

several hours of the storm before decreasing as evidenced in storms 3 and 4. E. coli at the creek 

increased with low rainfall accumulations (<0.25 inches) (Figure 4), while at the spring 

concentrations remained low. Mann-Whitney U-Test for E. coli at the creek and spring revealed 

that the concentration of E. coli at the creek (�̅� = 676.5 cfu/100 mL) was significantly higher 

than at the spring ( �̅� = 252.3 cfu/100 mL). Similarly, the Mann-Whitney U-Test for DO revealed 

that DO was significantly higher at the creek (�̅� = 8.05 mg/L) than at the spring (�̅� = 6.77 mg/L). 

 OB analysis for the two storms revealed a moderately positive peak as the spring location 

during one of the storms (Table 1). Land cover for the watershed upstream of Jacob’s Nature 

Park (Figure 11) was downloaded. All developed land was aggregated, forest land was 

aggregated, and shrubland, herbaceous, and pasture was combined.  Analysis of the watershed 

indicates that majority of the watershed consists of developed, forested, and pasture (agricultural) 

areas (Table 2).  
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Table 1. Optical Brightener Results 

    Optical Brighteners 

Station 
Date/Time 

Placed  
Date/Time 
Collected  

Peak 
(nm) 

Height of peak on 
16X ordinate scale Results 

Creek 11/11/19 1700 11/18/19 1100   - 

Spring 11/11/19 1700 11/18/19 1100 417.0 42 
Moderately 

Positive 
Creek 12/9/19 1400 12/15/19 1200   - 
Spring 12/9/19 1400 12/15/19 1200   - 

Laboratory control cotton 
blank     

 

 

Figure 11. Sinking Creek land cover upstream of Jacob’s Nature Park 
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Table 2. Sinking Creek Upstream Watershed Land Cover 

Landcover Percentages 
Developed 38.30 

Barren 0.02 
Forest 53.22 
Pasture 8.46 

Wetlands 0.01 
Total 100.00 

 

Analytical Results: Precipitation vs. Water Quality 

 Antecedent precipitation at lags of 30-minute increments (Precip-1 to Precip-12) was 

correlated to water quality parameters (Table 3). E. coli at the creek was negatively correlated to 

EC (r = -0.352), while the E. coli at the spring was positively correlated with turbidity (r = 0.520) 

and negativity correlated to EC (r = -0.211). Antecedent precipitation affected water quality at 

both the creek and spring. E. coli at the creek was cross-correlated to Precips-2 through Precip-7, 

with the highest cross-correlation occurring at Precip-5 (r = .391) (Figure 12). This positive 

cross-correlation indicated that as precipitation increased at the creek, the amount of E. coli 

bacteria increased as well.  E. coli at the spring was positively cross-correlated to Precip-1 

through Precip-3, and its highest cross-correlation occurred at Precip-2 (r = .355) (Figure 12). 

Turbidity was cross-correlated to Precip-2 (r = .126). E. coli at the creek were more significantly 

correlated to antecedent precipitation than any of the other water quality parameters. 
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Table 3. Correlations and Cross – Correlation: Storms 1-8 

Variables E. coli Creek E. coli Spring Turbidity EC 
Correlation 
Coefficient 

Correlation 
Coefficient 

Correlation 
Coefficient 

Correlation 
Coefficient 

E. coli Creek - - - -.352** 
E. coli Spring - - .520** -.211* 
Turbidity - .520** - - 
EC -.352** -.211* - - 
Precip-1 - .338** - - 
Precip-2 .303** .355** .126* - 
Precip-3 .365** .245** - - 
Precip-4 .371** - - - 
Precip-5 .391** - - - 
Precip-6 .357** - - - 
Precip-7 .229** - - - 
Precip-8 - - - - 
Precip-9 - - - - 
Precip-10 - - - - 
Precip-11 - - - - 
Precip-12 - - - - 
Precip-13 - - - - 

*Correlation is significant at the 0.05 concentration (2-tailed). 
** Correlation is significant at the 0.01 concentration (2-tailed).  
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Figure 12. Cross-Correlogram of Storms 1-8 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

0.303

0.365 0.371
0.391

0.357

0.229

0.338

0.355

0.245

Precip-1 Precip-2 Precip-3 Precip-4 Precip-5 Precip-6 Precip-7

E.coli Cross-Correlogram

E.coli Creek E.coli Spring



48 
 
 

CHAPTER 4. DISCUSSION 

Water Quality Parameters 

The negative correlation between E. coli and EC at the creek may be related to storm 

discharge. Before the inclement weather events, EC was relatively stable, remaining near 

baselines of ~320 µS/cm. However, EC decreased when inclement weather occurred, which is 

attributed to lower amounts of dissolved ions in the water due to dilution from increased runoff 

(Shrestha and Kazama 2007). Turbidity increased via increased sediment erosion. The positive 

correlation between E. coli and turbidity at the spring suggests that as precipitation increases, E. 

coli concentrations and turbidity levels increase as well. The positive correlation between E. 

coli and turbidity at the spring may be indicating that when precipitation occurs bacteria is being 

adsorbed on to soil particles. The E. coli bacteria may be carried into the stream by sediment 

from runoff originating from nearby agriculture or residential areas. Fecal coliforms have been 

found to have significant positive relationships with agricultural and residential locations (Tong 

and Chen 2002), with strong correlations occurring within 24 hours of precipitation (Mallin et al. 

2001), which is within the range of antecedent precipitation used in this study. 

           A possible explanation for the increase in E. coli concentrations during low rainfall events 

could be attributed to possible naturalized E. coli in the stream soil/sediment. E. coli bacteria are 

capable of thriving in environments with limited sunlight, without interaction from humans or 

wildlife (Myers 2006). Because E. coli is an indicator of water quality, more recent studies have 

investigated how E. coli may be resident in certain soils and is not completely indicative of 

runoff from agricultural or residential areas. This could explain conditions during storm 6 in 

which there was very little rainfall (0.03 in.), but E. coli concentrations in both the creek and 

spring fluctuated. Fine sediment along the channel bottom could be adsorbing E. coli, indicating 

that some bacteria may already be present in the water and/or soil and not completely caused by 
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agricultural or residential runoff during inclement weather events. A soil’s sorption and ability to 

transport fecal bacteria relies on factors such as the pH and pore size (Hall et al. 2014). Prior 

research by Hall et al. (2014) indicates that the sandy soil and organic material in the Sinking 

Creek watershed do influence E. coli concentrations at the stream. Finer soils adsorb more 

microorganisms, therefore low percentages of clay and silt in the top-soil layers have aided in E. 

coli concentrations at the creek (Hall et al. 2014).  

           These storm sampling events took place from June to October, extending through both 

summer and fall months. Higher E. coli concentrations have been linked with summer months, 

and warmer temperatures (Chen and Chang 2014)High fecal coliforms have been found during 

winter and spring months (Tong and Chen 2002), however, in a study in karst regions, E. 

coli increased during all storm events and was not controlled by seasonal variations (Knierim et 

al. 2015). E. coli concentrations during the summer months may also be influenced by land-use 

practices in the surrounding communities (Chen and Chang 2014). Storm 1 (Figure 3) was 

conducted in June, and the warm season in east Tennessee begins in May and extends to 

September. E. coli concentrations at the creek were elevated for the entire storm, these results 

may be attributed to the warmer temperatures during the summer, however, elevated E. 

coli concentrations were also apparent during storm 3 (Figure 5), storm 4 (Figure 6), storm 7 

(Figure 9), and storm 8 (Figure 10) which was the only storm sampled during the fall 

season. This lack of observed change might have been due to only sampling during one month of 

the fall; concentrations may have been different during November and December.  

Creek vs. Spring 

 Storm sampling at Sinking Creek and a tributary spring shows that E. coli concentration 

at both sites is correlated to antecedent precipitation. The spring responded more quickly than the 
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creek: a short peak at onset or within 30 minutes of precipitation for the spring versus an 

elongated period of high E. coli concentrations beginning within one hour of onset and 

continuing throughout the storm for the creek. DO at the creek was higher, indicating that 

turbulence of the stream created more dissolved oxygen as opposed to low turbulence at the 

spring.  

The 30-minute lag time between precipitation and increased E. coli concentrations at the 

spring is likely related to the karst topography of the area (Knierim et al. 2015) and suggest a 

connection between the E. coli source and the spring outlet. Moreover, the positive OB sample at 

the spring coupled with the initial high concentration of E. coli at the spring implicate residential 

wastewaters as a source of E. coli at this site. Failing septic systems along Sinking Creek have 

been proposed as one source of E. coli in Sinking Creek (Dulaney 2003) and a study by Knierim 

et al. (2015) investigating E. coli and precipitation at a spring in Arkansas found a similar result. 

Epikarst in the area is a possible explanation for the peak observed at the spring during most 

storms. Epikarst systems occur in carbonate rocks that are extensively weathered near the 

surface; it represents an area of the vadose zone in which groundwater or contaminants may be 

stored in a separate aquifer before infiltrating the carbonate rocks below (Klimchouk 2004). 

Effluent from failing septic systems may be “ponding” in this epikarst area (Knierim et al. 2015), 

and during storm events the effluent may be washed into the underlying fractured carbonate 

rocks, likely causing the immediate spike that is apparent at the spring.  

Prolonged high concentrations of E. coli at the creek and the later arrival of peak 

concentrations relative to the onset of precipitation indicate that upstream agricultural areas may 

be responsible for high concentrations in the creek (Floresguerra 2003). Dye tracing may be a 

suitable method to discern water flowpaths or origins, and it has been utilized in several 
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groundwater flow studies in northeast Tennessee (Wilson et al. 2016; Doyka 2017). Most dye 

tracing procedures work by injecting fluorescent dye into a water source and observing possible 

downgradient locations to determine where the dye will emerge. The method may be suitable, 

along with geologic mapping and geospatial analysis similar to the methods of Burnham et al. 

(2016), to identify the water source for the spring at Sinking Creek. 

Precipitation vs. Water Quality 

 The effects of precipitation on water quality can be linked to storm intensity, duration, 

and location in the watershed. During several sampling events, turbidity did not respond to low 

rainfall accumulation (< 0.25 in.), however, when storm intensity was higher with accumulations 

>0.25 in., turbidity increased within 30 minutes. This increase in turbidity during higher rainfall 

intensities is likely a result of increased sediment erosion rates. Hamilton and Luffman (2009), 

also found positive correlation between precipitation and turbidity. EC decreased within 1.5 

hours of precipitation, and like turbidity, EC also exhibited only slight responses to low rainfall 

amounts.  

Peak concentrations for E. coli at the creek usually occurred within the first 2.5 hours of 

the storms, indicating that this is the first flush for E. coli. Turbidity at the creek began increasing 

at the onset of precipitation and, like E. coli, it too peaked within the first 2.5 hours. Observing 

EC values during the storms showed that as turbidity began increasing, EC would begin to 

decrease; both parameters begin responding at the same time. EC can be expected to decrease to 

its minimum within the first 2.5 hours.   

Peak concentrations for E. coli at the spring occurred prior to the storm sampling event or 

during the onset of precipitation. Unlike the creek location in which E. coli concentrations were 

highly variable depending on precipitation, at the spring the concentrations only have slight 
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responses to continued precipitation during the storm apart from storm 7 (Figure 9) and storm 8 

(Figure 10). From August 22, 2019 through October 7, 2019, there were very few rainfall events; 

and when precipitation did occur (storm 6), accumulations were very low (<0.10 in.). E. coli 

concentrations at the spring were elevated for several hours of storm 7 (Figure 9), the first 

substantial rainfall event after the period of dry weather. The elevated E. coli concentrations at 

the spring during storm 7 may be indicative of septic tank leaks, with the contaminated 

groundwater remaining in the epikarst boundary of the subsurface. A possibly contaminated 

vadose zone along with the prolonged period of low rainfall (August 22, 2019 through October 

7, 2019) could have resulted in such high concentrations in the spring due to insufficient rain to 

flush and dilute the system. The spring location produced positive results for optical brighteners 

during one of the storms, reiterating that anthropogenic sources, possibly failing septic systems, 

could be a source of contamination at the spring. 

Limitations 

 Data from this research provided information about surface water and groundwater 

quality at the stream and spring, but there were limitations that may have impacted the results. 

There were only 8 storm events that were sampled and although similar trends were observed 

throughout the storms, variations in location of the watershed and storm intensities may have 

resulted in several different storm outputs. Another limitation was the location of the weather 

station; the ETSU weather stations is 3.3 miles from Sinking Creek and is not located in the 

watershed, therefore some rain estimates may have been slightly different from the values in the 

watershed. Since the ETSU weather station is maintained by faculty in the Dept. of Geoscience, 

it was deemed a reliable source to use. Research grant funding was important in determining how 

many storm events could be sampled as well as the duration of sampling, materials were 
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allocated to allow storm sampling for approximately 10 storms depending on sampling duration. 

From analyzing the storms captured, it became apparent that at the spring, there was a response 

prior to sampling that was not fully captured, as this trend was not expected storm sampling was 

unable to capture these values. The prior response at the spring may have been due to influences 

from precipitation occurring at different locations of the watershed and were therefore not 

captured at the ETSU weather station.  
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CHAPTER 5. CONCLUSION 

 Sinking Creek of the Watauga watershed is impaired for E. coli (TDEC 2018). During 

June 2019 to October 2019 eight storm sampling events were conducted at Sinking Creek to 

understand how precipitation affects E. coli at both the creek and a feeder spring, along with 

turbidity and EC. Other objectives were to understand when the first flush occurred at both the 

creek and spring and to understand how DO concentrations may have varied at the creek and 

spring location. OB analysis was conducted to determine the origin of the E. coli. E. coli at the 

creek, turbidity, and EC respond to precipitation within 30 minutes and the first flush for the 

parameters occurs within 2.5 hours of precipitation. Variations in water quality are dependent on 

storm intensity as well as rainfall accumulations. DO at the creek was higher than at the spring 

due to increased turbulence and circulation of oxygen at the creek. OB analysis revealed that the 

origin of E. coli at the spring could be due to anthropogenic sources. This conclusion provided 

helpful answers to better understand water quality in Sinking Creek, but more storm events 

should be sampled, and more OB analysis should be performed before mitigation can begin in 

the area. 

Future Recommendations (Inclement Weather) 

• Decreasing sampling collection to 15 minutes and increasing the number of sampling 

events to have more robust understanding of the water quality. 

• Place multiple weather stations in the watershed to provide more accurate data. 

Future Recommendations (Identifying Sources) 

• Compare E. coli present at the creek and spring to E. coli that would be found from either 

humans or wildlife (Perchec-Merien and Lewis 2013) through the process of Microbial 

Source Tracking (MST) or DNA-ribo typing.  
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• Test for OB during more storm events. 

• Dye tracing in the Sinking Creek watershed may help determine where the spring water 

originates. 
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APPENDIX: Correlation and Cross-Correlation Tables 

A1. Storm 1. Correlation and Cross-Correlation 

Variables 
E. coli Creek E. coli Spring Turbidity EC 
Correlation 
Coefficient 

Correlation 
Coefficient 

Correlation 
Coefficient 

Correlation 
Coefficient 

E. coli Creek - .720* .671* -.834** 
E. coli Spring .720* - .884** - 
Turbidity .671* .884** - - 
EC -.834** - - - 
Precip-1 - .707* .543** - 
Precip-2 - .860** .561** - 
Precip-3 - - .514** - 
Precip-4 - - .509** - 
Precip-5 - - .444* - 
Precip-6 - - - - 
Precip-7 - - - - 
Precip-8 - - - - 
Precip-9 - - - - 
Precip-10 - - - - 
Precip-11 - - - - 
Precip-12 - - - - 
Precip-13 - - - - 

*Correlation is significant at the 0.05 concentration (2-tailed). 
** Correlation is significant at the 0.01 concentration (2-tailed).  
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A 2. Storm 2. Correlations and Cross-Correlations 

 
Variables 

 

E. coli Creek E. coli Spring Turbidity EC 
Correlation 
Coefficient 

Correlation 
Coefficient 

Correlation 
Coefficient 

Correlation 
Coefficient 

E. coli Creek - - .589** -.548* 
E. coli Spring - - - - 
Turbidity .589** - - -.837** 
EC -.548* - -.837** - 
Precip-1 - - - - 
Precip-2 - - - - 
Precip-3 - -.450* - - 
Precip-4 - - - - 
Precip-5 - - - - 
Precip-6 .760** - - - 
Precip-7 .495* - - - 
Precip-8 - - - - 
Precip-9 - - - - 
Precip-10 - - - - 
Precip-11 - - - - 
Precip-12 - - - - 
Precip-13 - - - - 

*Correlation is significant at the 0.05 concentration (2-tailed). 
** Correlation is significant at the 0.01 concentration (2-tailed). 
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A 3. Storm 3. Correlations and Cross-Correlations 

Variables 
 

E. coli Creek E. coli Spring Turbidity EC 
Correlation 
Coefficient 

Correlation 
Coefficient 

Correlation 
Coefficient 

Correlation 
Coefficient 

E. coli Creek - - - - 
E. coli Spring - - - - 
Turbidity - - - - 
EC - - - - 
Precip-1 - - - - 
Precip-2 - - - - 
Precip-3 - - - - 
Precip-4 - - -.491* - 
Precip-5 - - - - 
Precip-6 - - - - 
Precip-7 -.640* - - - 
Precip-8 -.600* - - - 
Precip-9 - - - -.463* 
Precip-10 - - - - 
Precip-11 - - .411* - 
Precip-12 - - - - 
Precip-13 - - - - 

*Correlation is significant at the 0.05 concentration (2-tailed). 
** Correlation is significant at the 0.01 concentration (2-tailed). 
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A 4. Storm 4. Correlations and Cross-Correlations 

Variables 
E. coli Creek E. coli Spring Turbidity EC 
Correlation 
Coefficient 

Correlation 
Coefficient 

Correlation 
Coefficient 

Correlation 
Coefficient 

E. coli Creek - - -.582* - 
E. coli Spring - - .836** - 
Turbidity -.582* .836** - - 
EC - - - - 
Precip-1 -.582* .595* - .397* 
Precip-2 - .592* .387* - 
Precip-3 - - - - 
Precip-4 - - - -.429* 
Precip-5 - - - - 
Precip-6 - - - - 
Precip-7 - - - - 
Precip-8 - - - - 
Precip-9 - - - - 
Precip-10 - - - - 
Precip-11 - - - - 
Precip-12 - - - - 
Precip-13 - - - - 

*Correlation is significant at the 0.05 concentration (2-tailed). 
** Correlation is significant at the 0.01 concentration (2-tailed). 
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A 5. Storm 5 Correlation and Cross-Correlations 

Variables 
E. coli Creek E. coli Spring Turbidity EC 
Correlation 
Coefficient 

Correlation 
Coefficient 

Correlation 
Coefficient 

Correlation 
Coefficient 

E. coli Creek - - - -.494* 
E. coli Spring - - - - 
Turbidity - - - -.468** 
EC -.494* - -.468** - 
Precip-1 - .665** .358* - 
Precip-2 .519* .571* - -.370* 
Precip-3 .660** - - -.647** 
Precip-4 .604* - - -.639** 
Precip-5 - - - -.526** 
Precip-6 - - - -.375* 
Precip-7 - - - - 
Precip-8 - - -.358* - 
Precip-9 - - -.358* - 
Precip-10 - - -.358* .434* 
Precip-11 - - -.358* .498** 
Precip-12 - -.549* -.358* .513** 
Precip-13 - - - .454* 

*Correlation is significant at the 0.05 concentration (2-tailed). 
** Correlation is significant at the 0.01 concentration (2-tailed). 
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A 6. Storm 6 Correlations and Cross-Correlation 

Variables 
E. coli Creek E. coli Spring Turbidity EC 
Correlation 
Coefficient 

Correlation 
Coefficient 

Correlation 
Coefficient 

Correlation 
Coefficient 

E. coli Creek - - - - 
E. coli Spring - - - .630* 
Turbidity - - - -.776** 
EC - .630* -.776** - 
Precip-1 - - .389* - 
Precip-2 - - .406* - 
Precip-3 - - - - 
Precip-4 - - - - 
Precip-5 - - - - 
Precip-6 - - - - 
Precip-7 - - - - 
Precip-8 - - - - 
Precip-9 - - - - 
Precip-10 - - - - 
Precip-11 - - - - 
Precip-12 - - - - 
Precip-13 - - - - 

*Correlation is significant at the 0.05 concentration (2-tailed). 
** Correlation is significant at the 0.01 concentration (2-tailed). 
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A 7. Storm 7 Correlations and Cross-Correlations 

Variables 
 

E. coli Creek E. coli Spring Turbidity EC 
Correlation 
Coefficient 

Correlation 
Coefficient 

Correlation 
Coefficient 

Correlation 
Coefficient 

E. coli Creek - .850** .820** .828** 
E. coli Spring .850** - - .584* 
Turbidity .820** - - .376* 
EC .828** .584* .376* - 
Precip-1 .556 .721** - .395* 
Precip-2 .745** .602** - .466** 
Precip-3 .745** - .490** .452* 
Precip-4 .632* - .613** .451* 
Precip-5 - - .447* .541** 
Precip-6 - - - .610** 
Precip-7 - - - .586** 
Precip-8 - - - .504** 
Precip-9 - - - .378* 
Precip-10 - - - - 
Precip-11 - - .366* - 
Precip-12 - - .481** - 
Precip-13 - - .395* - 

*Correlation is significant at the 0.05 concentration (2-tailed). 
** Correlation is significant at the 0.01 concentration (2-tailed).  
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A 8. Storm 8 Correlations and Cross-Correlation 

Variables 
 

E. coli Creek E. coli Spring EC 
Correlation Coefficient Correlation Coefficient Correlation Coefficient 

E. coli Creek - - -.719** 
E. coli Spring - - - 
EC -.719** - - 
Precip-1 - - - 
Precip-2 - - - 
Precip-3 - - - 
Precip-4 - - - 
Precip-5 .404* - - 
Precip-6 .497** - -.478** 
Precip-7 .500** - -.623** 
Precip-8 .475** - -.552** 
Precip-9 .432* - -.411** 
Precip-10 .422* - -.411** 
Precip-11 .353* - -.536** 
Precip-12 - - -.651** 
Precip-13 - - -.597** 

*Correlation is significant at the 0.05 concentration (2-tailed). 
** Correlation is significant at the 0.01 concentration (2-tailed). 
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