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ABSTRACT 

 

A Novel Mode of Action of C-reactive Protein in Protecting Against Streptococcus pneumoniae 

Infection and Synergy with Antibiotics  

by 

Donald Neba Ngwa 

C-reactive protein (CRP) is a part of the innate immune system, is synthesized in the liver, its 

blood level increases in inflammatory states, and it binds to Streptococcus pneumoniae. The 

conformation of CRP is altered under conditions mimicking an inflammatory milieu and this 

non-native CRP also binds to immobilized/aggregated/pathogenic proteins. Experiments in mice 

have revealed that one of the functions of CRP is to protect against pneumococcal infection. For 

protection, CRP must be injected into mice within two hours of administering pneumococci, 

thus, CRP is protective against early-stage infection but not against late-stage infection. It is 

unknown how CRP protects or why CRP does not protect against late-stage infection. The 

hypotheses are that the protection requires complement activation by CRP-pneumococci 

complexes and that CRP cannot protect if pneumococci have time to recruit complement 

inhibitor factor H on their surface to become complement attack-resistant. To test these 

hypotheses, we generated CRP mutants by site-directed mutagenesis: a mutant that binds to 

pneumococci but does not activate complement and a mutant that binds to immobilized factor H. 

We found that mutant CRP incapable of activating complement was not protective against 

infection and that mutant CRP capable of binding to factor H was protective against both early 

and late stage infections. Additional experiments showed that CRP enhances the effects of the 

antibiotic clarithromycin in reducing bacteremia in infected mice. Moreover, we observed that 

mutant CRP capable of binding to factor H bound to several proteins immobilized on plastic, 
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suggesting that CRP recognizes a pattern, probably an amyloid-like structure, on immobilized 

proteins. Indeed, mutant CRP, after binding to amyloid  peptides, prevented the formation of 

pathogenic amyloid fibrils. Lastly, employing a hepatic cell line, we investigated the mechanism 

of CRP expression in response to pro-inflammatory cytokines. We found that the transcription 

factor C/EBP and two C/EBP-binding sites on the CRP promoter were critical for inducing 

CRP expression. We conclude that complement activation is necessary for CRP-mediated 

protection against infection, that CRP functions in two structural conformations, that CRP and 

clarithromycin act synergistically, that CRP has anti-amyloidogenic properties, and the increased 

CRP expression requires C/EBP.  
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CHAPTER 1: INTRODUCTION 

 

When the body is faced with injury or infection, inflammation is a defense mechanism it 

employs to begin the healing process. Part of this inflammatory response involves the production 

and release of an innate immune molecule called C-reactive protein (CRP) into the blood-stream 

at very high levels by the liver (Du Clos and Mold 2004). CRP was discovered in the 1920s in 

the laboratory of Oswald T. Avery during studies to develop therapies against pneumococcal 

pneumonia. A substance in fraction C was found to strongly precipitate a protein in the serum 

taken from patients during the early, acute stage of infection. The substance was later determined 

to be pneumococcal C-polysaccharide (PnC) and the protein CRP (Tillett, Francis, and Jr. 1930; 

Tillett, Goebel, and Avery 1930; Abernethy and Avery 1941). Due to the surge in CRP levels 

during inflammation, it is also used as a marker of acute general inflammation. 

Structure of CRP 

 

Wild-type (WT) CRP is a pentamer, with each of its 5, ~23 KDa subunits held in the 

same orientation by non-covalent bonds around a central pore (Fig. 1.1) (Thompson, Pepys, and 

Wood 1999). This orientation specific property of CRP gives it two faces (sometimes referred to 

as recognition and effector faces), each performing a distinct role. The ligand recognition face of 

CRP houses’ the binding site for CRP’s native ligand phosphocholine (PCh). Each of the five 

homopentameric subunits of CRP bear a PCh binding site which sits very close to its Ca2+-

binding site. For the interaction between PCh and CRP to occur, the phosphate group of PCh has 

to interact with two calcium ions in the Ca2+-binding site of CRP and the three methyl groups of 

PCh accommodated in the hydrophobic pocket of the PCh-binding site of CRP. The hydrophobic 

pocket of the PCh-binding site is made up of Leu64, Phe66, Thr76 and Glu81 among other amino 

acids. Two Ca2+ are constantly bound to WT CRP, and this is very crucial for the stability of the 
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molecule. The two Ca2+ are coordinated by several amino acids in a loop (the amino acids 

include; Asp60, Asn61, Glu138, Gln139, Asp140, Glu147, and Gln150) ( Shrive et al. 1996; Thompson, 

Pepys, and Wood 1999; Ramadan et al. 2002). When the calcium binding site is vacant, this loop 

with a proteolytic site folds outward and becomes exposed to proteolysis (Thompson, Pepys, and 

Wood 1999). 

Figure 1. 1: Structure of the CRP-PCh complex. The phosphocholine moiety is shown in ball-

and-stick and the Ca2+ ions as green spheres. ( modified from (Thompson, Pepys, and Wood 

1999)) 

 

The opposite face, or the effector face of CRP has a deep cleft necessary for the 

interaction between CRP and complement protein C1q as well as Fcγ receptors ( A Agrawal and 

Volanakis 1994; A Agrawal et al. 2001; Bang et al. 2005), two molecules necessary for CRP’s 

core effector functions.  

PCh binding site 

Ca2+ binding site 
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Functions of CRP 

 

In humans, CRP is a unique plasma protein, displaying functional characteristics specific 

for the conformational state adopted (Donald N. Ngwa and Agrawal 2019). It is a key acute 

phase protein and mediates several inflammatory responses. CRP in its native conformation 

binds substances with exposed PCh groups like, pneumococcal C-polysaccharide (PnC) on 

bacterial cell walls, low-density lipoprotein (LDL), and apoptotic or damaged cells in a Ca2+-

dependent manner (A Agrawal et al. 1997; Bhakdi et al. 1999; Volanakis 2001; Chang et al. 

2002). The CRP-PCh complex is then recognized by complement component C1q, the first 

component of the classical complement pathway, binding on the opposite side of CRP and 

activating the classical complement cascade leading to the clearance of the PCh bearing particle 

(Kaplan and Volanakis 1974). The clearance could be due to the formation of the membrane-

attack complex or due to opsonophagocytosis by macrophages. The effector Fcγ receptors on 

macrophages have been shown to bind ligand complexed CRP inducing phagocytosis ( Marnell 

et al. 1995; Bang et al. 2005). 

Human CRP is protective against lethal Streptococcus pneumoniae infections in mice by 

decreasing bacteremia and increasing survival of infected animals (Mold et al. 1981; Yother, 

Volanakis, and Briles 1982; Szalai, Briles, and Volanakis 1995; Suresh et al. 2007; Alok 

Agrawal et al. 2008; Paul Simons et al. 2014). Passively administered human CRP is only 

protective when injected 6 h before to 2 h after infecting mice with lethal pneumococci, but not 

when administered 24 h post infection. The PCh-binding pocket of CRP has been shown to be 

important for the CRP-mediated initial protection of mice against lethal pneumococcal infection 

(Suresh et al. 2006; Alok Agrawal et al. 2008; Gang et al. 2012). However, mutating the PCh 

binding site on CRP surprisingly resulted in mutants still capable (at higher dosages) of 
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providing protection against lethal pneumococcal infection. This suggest both PCh-dependent 

and independent mechanisms of protection (Suresh et al. 2007; Gang, Hanley, and Agrawal 

2015). The reason why CRP is not protective when administered during the late stages (beyond 2 

h post infection) of infection is not known. It is however thought to be related to the bacteria 

acquiring the complement inhibitory protein factor H. 

Factor H 

 

Factor H is a soluble 150 kDa single chain plasma glycoprotein and is one of the 

regulators of complement activation (Rodríguez de Córdoba et al. 2004). It is made up of 20 

short consensus repeats of 60 amino acids each, stabilized by two internal disulfide bonds 

(Sharma and Pangburn 1996). Factor H is not only constitutively expressed in the liver but also 

produced by monocytes, fibroblasts, endothelial cells, keratinocytes, and platelets ( Devine and 

Rosse 1987; Katz and Strunk 1988; Mullenix and Mortensen 1994) and has a circulating plasma 

concentration of 200-300 g/ml (Hakobyan et al. 2008, 2010). Factor H inhibits complement 

activation on surfaces by acting as a cofactor for factor I in the cleavage and inactivation of C3b. 

It also accelerates the decay of C3 convertase of the alternative pathway of complement ( Weiler 

et al. 1976; M K Pangburn, Schreiber, and Müller-Eberhard 1977). By interacting with 

polyanionic molecules such as sialic acid or glycosaminoglycans usually present on the surface 

of host cells but absent on surfaces of pathogens, it allows the complement system to selectively 

target non-host particles for complement activation (Michael K Pangburn 2000; Józsi et al. 2004; 

Rodríguez de Córdoba et al. 2004). There is no evidence of an interaction between native wild-

type (WT) CRP and factor H under conditions of infection and/or inflammation (M Mihlan et al. 

2009). However, structurally modified CRP has been shown in vitro to bind to immobilized 

factor H but not to fluid-phase factor H (Donald Neba Ngwa n.d.; Hammond et al. 2010). 
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Streptococcus pneumoniae is one bacterium known to recruit factor H to its surface to evade 

immune system recognition and attack, and therefore increasing its virulence. They make use of 

the Hic protein expressed on their cell surface to bind factor H (Jarva et al. 2002). 

 

Pneumococcus 

 

Streptococcus pneumoniae (pneumococcus) is a Gram-positive bacterium sometimes 

observed in pairs and called diplococci for that reason (Winslow et al. 1920). They are mostly 

arranged in chains (streptococcus) but can also be found singly. Pneumococcus remains the most 

common cause of community-acquired pneumonia world-wide (van der Poll and Opal 2009) and 

colonizes the respiratory tract, sinuses and the nasal cavity of healthy individuals 

asymptomatically. In immunocompromised individuals such as children and the elderly, they can 

move into the blood stream and cause disease (Hughes et al. 2014). Infections caused by these 

bacteria include bronchitis, otitis media, conjunctivitis and peritonitis to name a few (Tuomanen, 

Robert, Austrian, and Robert, Masure 1995; Dagan 2000; Jackson and Pilishvili 2015). The 

modes of transmitting these bacteria include coughing, sneezing and direct fluid transfer from an 

infected individual to a healthy one. Some pneumococci species have a capsule and the level of 

encapsulation is directly related to species pathogenicity (virulence) (Jackson and Pilishvili 

2015). Present on the cell wall of pneumococci, are protrusions of PnC with PCh moieties 

attached (Fig. 1.2). CRP is thought to bind these exposed PCh groups and activate the 

complement system. Another protein, the factor H inhibitor of complement (Hic) protein, that is 

also exposed on the surface of these bacteria is known to recruit factor H, a complement 

inhibitory protein known to help pneumococci escape complement attack (Dagan 2000). 

 

https://en.wikipedia.org/wiki/Bronchitis
https://en.wikipedia.org/wiki/Otitis_media
https://en.wikipedia.org/wiki/Conjunctivitis
https://en.wikipedia.org/wiki/Peritonitis
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Figure 1.2: Structural representation of selected immunogenic proteins of S. pneumoniae. The 

figures illustrates the binding of CRP to PCh (modified from (DeLano W. L. 2010)). 

 

CRP and Antibiotics in Pneumococcal Infections 

 

 The mechanism of the anti-pneumococcal function of CRP is not fully known (Alok 

Agrawal et al. 2008; van der Poll and Opal 2009). In mice, CRP is only a trace serum protein 

and, contrary to man, not an acute phase protein (Whitehead et al. 1990). This makes the mouse 

model very suitable to explore the in vivo functions of human CRP. Passively administered 

human CRP has been shown to be protective against lethal pneumococcal infection as 

determined by increased survival of and decreased bacteremia in the infected mice (Suresh et al. 

2007; Gang, Hanley, and Agrawal 2015; Szalai, Briles, and Volanakis 1995). However, CRP 

was most effective in protecting mice from infection only when injected within the range of 6 h 



22 
 

before to 2 h after administering pneumococci to mice (Suresh et al. 2006). The protective 

function of CRP was not observed when mice received CRP 24 h or 36 h post-infection (Suresh 

et al. 2007, 2006). Thus, CRP-mediated protection of mice requires the presence of CRP in the 

early stages of infection. Mice transgenic for human CRP were also protected from lethal 

pneumococcal infection and showed both decreased bacteremia and increased survival (Szalai, 

Briles, and Volanakis 1995). Taken together, this suggests that WT CRP has only a prophylactic 

role in pneumococcal infection. Why this is the case is not known. However, pneumococci are 

known to recruit factor H to their surface through the Hic protein, and are thus able to inhibit and 

prevent the attack by the complement system (D. Ngwa 2016). WT CRP does not bind to factor 

H. However, structurally modified CRP prepared in vitro is capable of binding to immobilized 

factor H (Donald N. Ngwa and Agrawal 2019). 

 CRP may exist in more than one structural form in humans. This will include native and 

structurally altered pentameric forms. We propose that under inflammatory conditions, CRP is 

structurally modified, and this structurally altered CRP is capable of binding to even those 

pneumococci which have recruited factor H on their surface. Binding of structurally altered CRP 

to factor H-covered pneumococci will relieve the inhibitory effects of factor H leading to the 

activation of the complement system and subsequent killing of pneumococci. 

 Antibiotics are usually employed in treatment measures against pneumococcal infections. 

Some antibiotics that were commonly used included penicillins, macrolides, clindamycin, 

cephalosporins, rifampin, vancomycin, and trimethoprim-sulfamethoxazole (“Pneumococcal 

Infections (Streptococcus Pneumoniae) Medication: Antibiotics, Vaccines” n.d.). However, from 

the 1990s many pneumococcal isolates showed decreased susceptibility to penicillin and other 

commonly used antibiotics (Fenoll et al. 1998; Postma et al. 2015). This gave rise to a rush to 
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develop new antibiotics to combat resistant strains. However, the past two decades has seen the 

introduction of only two new classes of antibiotics to which resistance is already emerging and 

therefore requiring the development of new treatment strategies. One of these strategies involves 

the use of drug combination therapies (antibiotic-antibiotic combinations and antibiotic and non-

antibiotic adjuvant molecule combinations) (Caballero and Rello 2011; Worthington and 

Melander 2013). This has been shown not only to be more effective against resistant bacteria but 

also significantly reduces any risk of bacteria developing resistance as seen in monotherapy 

(Fox, Sutherland, and Daniels 1954; Caballero and Rello 2011). 

Rationale and Hypothesis 

Pneumococci have been demonstrated to recruit factor H onto their surface (D. Ngwa 

2016). We hypothesize that the bacteria recruit factor H in vivo and exploit its complement 

regulatory property to prevent killing through complement activation. It has been determined that 

the administration of native CRP into mice later during infection does not provide protection 

(Suresh et al. 2007). Factor H has been shown to bind to modified forms of CRP ( Bíró et al. 

2007; Hakobyan et al. 2008; M Mihlan et al. 2009; Michael Mihlan et al. 2009; Okemefuna et al. 

2010; Hammond et al. 2010). We have described the E42Q/F66A/T76Y/E81A CRP mutant 

which has lost its binding ability to PCh but has acquired factor H binding ability (D. Ngwa 

2016). We suggest that a CRP mutant that does not bind to PCh but binds to factor H will allow 

investigation of the potential involvement of factor H in bacterial resistance. If the above 

hypothesis is supported, we propose that this CRP mutant will bind to factor H on the bacterial 

surface and neutralize its complement regulating activity. This would allow WT CRP bound to 

the bacteria to facilitate complement activation and deposition (Fig. 1.3). However, if complete 

protection is not achieved by using a combination of WT and mutant CRPs in the late stages of 
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infection, this would lead to the hypothesis that using an antibiotic at low dose in combination 

with mutant CRP may confer complete protection. 

 

Figure 1. 3: Site-directed mutagenesis of CRP to generate a CRP mutant which binds to 

immobilized factor H. 

 

Structure/Function Relationship of CRP 

 

 The dissociation of native pentameric CRP to monomeric CRP goes through a third non-

native pentameric state or conformation ( Thiele et al. 2014; Braig et al. 2017; Singh et al. 2017; 

McFadyen et al. 2018). Therefore, CRP can adopt either native pentameric, non-native 

pentameric or monomeric forms. Each of these forms of CRP show different ligand binding 

functions in vitro ( Suresh, Singh, and Agrawal 2004; Alok Agrawal, Gang, and Rusiñol 2014; 

Wu et al. 2015; Donald N. Ngwa and Agrawal 2019). These structural modifications arise when 

CRP is exposed to acidic pH, high salt concentration, and oxidation (Singh et al. 2012, 2017). 
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CRP in its native conformation does not bind immobilized proteins including factor H, however, 

acidic pH-induced structurally modified CRP does (Hammond et al. 2010). CRP is not 

monomerized at acidic pH, but assumes a loosened pentameric conformation (Mold, Kingzette, 

and Gewurz 1984; Sjöberg et al. 2007; Hakobyan et al. 2008; Hammond et al. 2010). A single 

sequence motif known as the cholesterol binding sequence (CBS; amino acids 35-47) has been 

shown to mediate the interactions of monomerized CRP with multiple protein ligands (Li et al. 

2016). However, monomeric CRP is not free in circulation and always found deposited. This 

implies an intermediate state exists between native pentameric and monomeric CRP that can 

freely circulate and has the binding characteristics of monomeric CRP. The structural changes 

introduced to CRP by an acidic milieu or oxidation are lost upon neutralization as the molecule 

reverts to its native conformation. This makes acidic pH-treated CRP unsuitable for in vivo 

experiments due to the buffering effects of blood. Hence, stable CRP mutants generated by 

mutagenesis suitable for in vivo experiments are used (Singh et al. 2012; D. Ngwa 2016). Some 

of the ligands non-native pentameric CRP is known to interact with include Ox-LDL, IgG, 

amyloid-β (Aβ) and factor H to name a few (Hammond et al. 2010; D. Ngwa 2016; Singh et al. 

2017). 

Rationale and Hypothesis 

 WT CRP does not bind to factor H, but structurally modified mutant CRP or acidic pH-

treated CRP have been reported to do so (D. Ngwa 2016; Hammond et al. 2010). The binding of 

modified CRP to factor H has been shown to be inhibited by a CRP derived, 9-amino acid long, 

peptide known as the cholesterol binding sequence (CBS). The property of modified CRP to bind 

to immobilized proteins has also been seen with CRP mutants with mutations in the Ca2+-binding 

site, in the intersubunit region, and in the lysophosphatidylcholine (LPC)-binding site. It is 
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possible that certain mutations in CRP expose an otherwise hidden binding site for protein 

ligands on CRP. Therefore, mutating residues in this otherwise hidden multiple ligand binding 

site should abolish the binding property of CRP even in an acidic environment. Hence, we aimed 

at generating a CRP mutant which does not bind to protein ligands in acidic conditions. 

We hypothesize that the interaction of modified CRP with its ligands is specific and that 

mutating one or more amino acids in the CBS region of CRP will abolish this interaction. We 

also hypothesize that immobilized proteins expose amyloid-like structures which are the moieties 

on aggregated and immobilized proteins recognized by modified CRP. 

CRP Gene Expression 

The healthy median CRP serum concentration in humans is 0.8 μg/ml (Pepys and 

Hirschfield 2003). The level is seen to increase in individuals with chronic inflammation and to 

rise by several hundred fold in acute inflammation (Pepys and Hirschfield 2003). CRP levels 

have also been seen to rise in some non-inflammatory conditions such as stress ( Gabay and 

Kushner 1999; Shivpuri et al. 2012). This has made measuring CRP levels a diagnostic tool to 

determine systemic inflammation. As with the rapid rise of CRP levels following inflammation, 

there equally is a rapid reduction to basal levels after the inflammation is resolved (Fig. 1.4) 

(Gabay and Kushner 1999).  
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Figure 1. 4: Changes in plasma concentration of several acute phase proteins including CRP, 

following an inflammatory stimulus (adapted from (Gabay and Kushner 1999)). 

 

 Due to the involvement of CRP in various pathological conditions, its gene regulation 

becomes highly significant to understand how its expression is modulated during and after 

inflammation. CRP is produced mainly by hepatocytes primarily in response to inflammatory 

cytokines (Gabay and Kushner 1999). The cytokines come from a variety of cell types, but the 

most common sources are macrophages and monocytes at inflammatory sites. Cytokines that are 

produced during and which participate in the inflammatory process are the main stimulants in the 

production of acute phase proteins like CRP. Some of these inflammation-associated cytokines 

include interleukin-6 (IL-6), interleukin-1β (IL-1β), tumor necrosis factor α (TNF- α), interferon-

γ (INF- γ), and interleukin-8 (IL-8) (Wigmore et al. 1997; Kushner 1993). In the human 

hepatoma Hep3B cell line, the cytokine IL-6 induces CRP gene expression by activating the 

transcription factors C/EBPβ and STAT3 (Ochrietor et al. 2000; Poli and Cortese 1989; Ramji et 

al. 1993; Wang et al. 1999). Cytokine IL-1β alone cannot induce CRP expression, but 

synergistically enhances the effects of IL-6 by activating the transcription factor NF-κB 
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(Ganapathi et al. 1988; Darlington, Wilson, and Lachman 1986; Alok Agrawal et al. 2003). It has 

been shown that the proximal 157 bp of the CRP promoter are sufficient for the synergistic 

effects of IL-6 and IL-1β (Zhang et al. 1995). This region of the CRP promoter has binding sites 

for multiple transcription factors, and previous studies have identified the binding sites at which 

the transcription factors C/EBPβ, STAT3 and NF-κB bind and induce CRP gene expression 

(Cha-Molstad et al. 2007; Alok Agrawal et al. 2003).  

 The 157 bp proximal promoter region of the CRP gene also has binding sites for 

constitutively expressed transcription factors HNF-1, HNF-3, C/EBP and Oct-1 (Fig. 1.5). IL-6 

activates the C/EBP family of transcription factors. There are six members in the C/EBP family 

of transcription factors that homodimerize or heterodimerize with each other and influence gene 

transcription (Artavanis-Tsakonas, Rand, and Lake 1999). C/EBPβ binds to its site centered at -

52 and -219 on the CRP promoter. The binding site positioned at -52 overlaps with the binding 

sites for NF-kB (p50-p50) and HNF-3 transcription factors (Fig. 1.5). In this context, it is not 

known how C/EBPβ regulates CRP gene transcription and also not much is known about how 

the C/EBPβ site at -219 works to regulate the transcription of the CRP gene. Therefore, the 

mechanisms involved in C/EBPβ mediated regulation are not properly understood. 

Rationale and Hypothesis 

The 300 bp promoter region of the CRP gene shows a significantly better induction of CRP 

gene expression than the 157 bp promoter region even though the 157 bp region is sufficient for 

the synergy seen between IL-6 and IL-1β (Voleti and Agrawal 2005). Therefore, investigating the 

role of the C/EBPβ site at -219 is of importance. Given that the C/EBPβ site at -52 overlaps with 

other constitutively activated transcription factors (Fig. 1.5), we hypothesize that the relative 

concentrations of constitutively active and cytokine-activated transcription factors determine the 
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activity of the CRP promoter and that the additional C/EBP site at -219 is responsible for the 

enhanced induction of the CRP gene seen with the 300 bp CRP promoter. 

Figure 1. 5: The -300 to +3 region of the proximal promoter region of the CRP gene is shown. 

The binding sites of various transcription factors on the promoter are boxed (adapted from 

(Voleti and Agrawal 2005)) 

 

In order to test these hypotheses, the following specific aims were developed: 

 

Specific Aims 

 

1. To determine the role of complement in CRP mediated protection against pneumococcal 

infection in mice. 

a. Identify a CRP mutant that does not activate the mouse complement system.  

b. Investigate the protective effects of this CRP mutant in a mouse model of 

pneumococcal infection. 

 

2. To determine the efficacy of a CRP mutant capable of binding to factor H in protection 

against pneumococcal infection. 
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a. Investigate the efficacy in a late-stage infection model in which native CRP has 

been shown to be ineffective.  

b. Investigate the protective effects of the CRP mutant when combined with an 

antibiotic in both early-stage and late-stage infection models. 

 

3. To investigate the mechanism of binding of CRP to aggregated and immobilized proteins 

including factor H. 

a. To define the ligand-binding site on CRP when CRP is in its alternate pentameric 

structural conformation. 

b. To evaluate the significance of the interaction of modified CRP with aggregated 

and immobilized protein ligands. 

 

4. To define the role of the transcription factor C/EBPβ in IL-6-induced CRP expression in 

hepatic cells. 

a. Investigate the role of the C/EBP-binding sites located at positions -52 and -219 

on the CRP promoter.  

b. Investigate the interactions of C/EBPβ with other transcription factors bound to 

the nearby and overlapping sites on the promoter. 
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Abstract 

 

C-reactive protein (CRP), a component of the innate immune system, is an anti-pneumococcal 

plasma protein. It has been shown that human CRP protects mice against infection with lethal 

doses of Streptococcus pneumoniae; the protection is due to decrease in bacteremia and increase 

in survival time. CRP binds to phosphocholine-containing substances, such as pneumococcal C-

polysaccharide, in a Ca2+-dependent manner. Phosphocholine-complexed human CRP activates 

the complement system in both human and murine sera. The mechanism of anti-pneumococcal 

action of CRP in vivo, however, has not been defined. In this study, we tested a decades-old 

hypothesis that the complement-activating property of ligand-complexed CRP contributes to 

protection of mice against pneumococcal infection. We employed site-directed mutagenesis of 

CRP, guided by its three-dimensional structure, and identified a mutant H38R which, unlike 

wild-type CRP, did not activate complement C3 in murine serum. Substitution of His38 with Arg 

in H38R CRP did not affect the Ca2+-dependent binding of CRP to pneumococci, did not affect 

the stability of CRP in vivo, and did not affect the overall pentameric structure of CRP. 

Employing a murine model of pneumococcal infection, we found that passively administered 

H38R CRP failed to protect mice against infection. Infected mice injected with H38R CRP 

showed no reduction in bacteremia and did not survive longer, as opposed to infected mice 

treated with wild-type CRP. Thus, the hypothesis that complement activation by ligand-

complexed CRP is an anti-pneumococcal effector function was supported. We conclude that 

complement activation by ligand-complexed CRP is essential for CRP-mediated protection 

against pneumococcal infection. 
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Introduction 

 

C-reactive protein (CRP) is a multifunctional component of the acute phase response and innate 

host defense machinery (1, 2). CRP is composed of five identical subunits arranged as a cyclic 

pentamer (3, 4). Each subunit has a phosphocholine (PCh)-binding site through which CRP binds 

to PCh-containing substances such as C-polysaccharide (PnC) of the cell wall of Streptococcus 

pneumoniae, in a Ca2+-dependent manner (3-6). After complexing with a ligand such as PnC, 

CRP activates the complement system (7, 8). Human CRP activates complement in both human 

and murine sera (9, 10). In human serum, CRP binds to C1q and activates the classical pathway 

of complement (7). Since human CRP does not interact with murine C1q, it is not known which 

pathway is utilized by human CRP to activate murine complement (9). 

The C1q-binding site of CRP is formed in and around a cleft that is located on the opposite 

side of the PCh-binding site of the CRP pentamer (3, 4). The amino acid residues which 

contribute to the formation of the C1q-binding site of CRP are His38, Glu88, Asp112, Asn158 and 

Tyr175 from one subunit and Lys114 from the neighboring subunit. Mutational analysis of these 

amino acids revealed that His38, Asp112 and Tyr175 were critical for binding to C1q and activating 

C3 in human serum (11, 12). Asp112 and Tyr175 appeared to be the C1q contact residues. Three 

CRP mutants, H38R, D112N and Y175A have been previously identified as the mutants which 

displayed reduced binding to C1q and did not activate C3 in human serum (12).  

Human CRP has been shown to protect mice against lethal pneumococcal infection (13-16). 

Although a functioning complement system is required for full CRP-mediated protection, the 

exact mechanism of action of CRP in protecting mice against pneumococcal infection is not 

known (17-19). Decades ago, it was hypothesized that complement activation by pneumococcus-

bound CRP was responsible for CRP-mediated protection of mice against pneumococcal 
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infection (20). This hypothesis could not be tested experimentally at the time due to the 

unavailability of a CRP mutant which would bind to pneumococci but would not activate 

complement in murine serum. 

Previously, we tested the Y175A CRP mutant for activation of murine C3. We reported that 

Y175A CRP did not activate human C3 but activated murine C3 (9). Other CRP mutants, H38R 

and D112N, that did not activate human C3 were not tested for murine C3 activation earlier. 

Here, we report that the CRP mutant H38R does not activate murine C3 either. The availability 

of H38R CRP provided us with the needed tool to test the hypothesis that complement activation 

by ligand-complexed CRP is critical for CRP for protection against pneumococcal infection. 
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Materials and Methods 

 

Construction and expression of CRP mutants 

The construction of H38A and H38R CRP mutants has been described earlier (12). CRP mutants 

were expressed in CHO cells using the ExpiCHO Expression System (ThermoFisher Scientific) 

according to the manufacturer’s instructions. In brief, non-adherent ExpiCHO-S cells (Gibco) 

were cultured in a shaker flask at 37°C with 5% CO2. Cells (6 x 106 cells/ml) were then 

transfected with mutant CRP cDNA (1 µg) using Expifectamine reagent (3.2 µl/ml). Transfected 

cells were cultured for 20 h at 37°C with 5% CO2. At 20 h post-transfection, ExpiCHO enhancer 

(6 µl/ml) and ExpiCHO feed (240 µl/ml) were added to the transfected cells and the culture was 

then transferred to 32°C with 8% CO2. The culture media containing expressed CRP mutants 

were harvested 14 d post-transfection. 

 

Purification of CRP 

WT CRP was purified exactly as described previously, and the same method was used to purify 

CRP mutants H38A and H38R (21). In brief, CRP was purified by Ca2+-dependent affinity 

chromatography on a PCh-Sepharose column (Pierce), followed by gel filtration on a Superose12 

column (GE Healthcare) using the Biologic Duo Flow Protein Purification System (Bio-Rad). 

Purified CRP was stored in TBS containing 2 mM CaCl2 at 4°C and was used within 10 d. The 

purity and pentameric structure of CRP mutants were determined by SDS-PAGE and gel 

filtration. 

For use in mice, purified CRP was treated with the Detoxi-Gel Endotoxin Removing Gel 

(ThermoFisher Scientific) according to the manufacturer’s instructions. The concentration of 
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endotoxin in all CRP preparations, as determined by using the Limulus Amebocyte Lysate kit 

QCL-1000 (Lonza), was <2.2 endotoxin units per 25 g CRP. 

 

Murine C3 activation assay 

First, poly-L-lysine-PnC (P-PnC) was synthesized, as described previously (22), with slight 

modifications. Briefly, 200 µl of 1 mg/ml PnC (Statens Serum Institute, 3459) was slowly added 

to 10 ml of 10 mM NaOH. Then, 10 mg of cyanuric chloride (Sigma, C95501) was added, 

followed by the addition of 2 ml of poly-L-lysine (200 g/ml in H2O), to the mixture. After 

adjusting the pH to 8.2 using NaOH, the mixture was incubated for 2 h at 4°C with occasional 

stirring. The resulting P-PnC (poly-L-lysine ~20 µg/ml and PnC ~100 µg/ml) was stored at 4°C; 

a 1:4 dilution of this preparation was used to coat microtiter wells for the following assays. 

Binding of CRP to the PCh ligand P-PnC was evaluated as follows: Microtiter wells were 

coated with P-PnC in 100 l TBS, overnight at 4ºC. The unreacted sites were blocked with TBS 

containing 0.5% gelatin for 1 h at room temperature. CRP, diluted in TBS containing 2 mM 

CaCl2, 0.1% gelatin and 0.02 % Tween 20 (TBS-Ca), was then added in duplicate wells and 

incubated for 2 h at 37°C. After washing the wells with TBS-Ca, bound CRP was detected by 

using anti-CRP mAb HD2.4 diluted in TBS-Ca. HRP-conjugated goat anti-mouse IgG diluted in 

TBS-Ca was used as the secondary antibody. Color was developed using ABTS substrate and the 

OD was read at 405 nm in a plate reader. 

Deposition of activated murine C3 on P-PnC-complexed CRP was evaluated as follows: 

Microtiter wells were coated with P-PnC in 100 l PBS overnight at 4°C. The unreacted sites 

were blocked with PBS containing 1% BSA for 1 h at room temperature, followed by rinsing the 

wells with buffer A (PBS containing 0.1% BSA and 1 mM CaC12). CRP diluted in buffer B 
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(buffer A containing 0.01% Tween 20) was then added in duplicate wells and incubated for 1 h 

at 37°C. The wells were washed with buffer B and then with buffer C (PBS containing 1% BSA, 

0.15 mM CaC12 and 0.5 mM MgC12). Normal mouse serum (Innovative Research, 

IGMSC57SER), diluted 1/30 in chilled buffer C, was added to each well and incubated for 30 

min at 37°C, followed by washing with buffer C. Goat anti-mouse C3 antibody (Cappel; 1/750), 

diluted in buffer C, was added to each well. After 1 h at 37°C, the wells were washed, and 

developed with HRP-conjugated bovine anti-goat IgG (Santa Cruz Biotechnology). Color was 

developed using ABTS substrate and the OD was read at 405 nm in a plate reader. 

 

Pneumococcus binding assay 

The pneumococcus binding assay was performed exactly as described previously (16, 23). 

Briefly, microtiter wells were coated with 107 CFU of pneumococci overnight at 4ºC. The 

unreacted sites in the wells were blocked with TBS containing 0.5% gelatin. CRP, diluted in 

TBS-Ca, was then added to the wells for 2 h at 37 °C. After washing the wells with TBS-Ca, 

bound CRP was detected by using anti-CRP mAb HD2.4. HRP-conjugated goat-anti mouse IgG 

was used as the secondary antibody. Color was developed using ABTS substrate and the OD was 

read at 405 nm in a plate reader.  

 

Clearance of H38R CRP from mouse circulation 

The clearance rate of H38R CRP from the mouse blood was determined as described previously 

(23). Briefly, five mice were injected i.v. with 50 µg of H38R CRP in 100 µl TBS containing 2 

mM CaCl2 through the tail vein. Blood samples were collected from the tip of the tail after 12, 
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16, 20 and 24 h, and sera were separated. The concentration of CRP in the sera was measured by 

ELISA.  

 

Mice 

Male C57BL/6J mice, 8-10 wk old, were purchased from Jackson Laboratories and used in the 

protection experiments. All animal studies have been reviewed and approved by the University 

Committee on Animal Care.  

 

Pneumococci 

Virulent S. pneumoniae type 3, strain WU2 (obtained from Dr. David Briles, University of 

Alabama, Birmingham, AL), was cultured as described previously (23). A single use bacterial 

aliquot (1 ml) of virulent stock was prepared and stored at -80°C. For each experiment, an 

aliquot of frozen pneumococci was thawed in 50 ml Todd-Hewitt broth containing 0.5% yeast 

extract and incubated at 37°C with shaking at 125 rpm for 4.5 h and collected from mid-log 

phase cultures. The culture was centrifuged at 7,500 rpm for 15 min. The bacterial pellet was 

washed and resuspended in 10 ml normal saline and the volume adjusted to an absorbance A600 = 

0.29 (3.5 x 108 CFU/ml). The concentration, purity, and viability of pneumococci was confirmed 

by plating on sheep blood agar plates.  

 

Mouse protection experiments 

Mouse protection experiments were performed exactly as described previously (24). In brief, 

mice were injected i.v. with 25 μg CRP. After 30 min, 100 μl of 3.4 x 108 CFU/ml of 

pneumococci was injected. Survival of mice was recorded three times per day for 7 d. To 
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determine bacteremia (CFU/ml), blood samples were collected from each surviving mouse twice 

daily for the first 3 d, followed by once daily for next 2 d. Blood was diluted and plated on blood 

agar plates, and incubated for 18 h at 37°C before the colonies were counted. The plotting and 

statistical analyses of the data were done using the GraphPad Prism 4 software. Statistical 

significance for survival among the groups was determined by Log-rank test and differences in 

bacteremia were analyzed by Mann-Whitney test. 
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Results 

H38R CRP does not activate murine C3 

Previously, for murine C3 deposition assays, we used CRP-PnC complexes to activate 

complement (9). However, we failed to generate a reliable C3 deposition assay using 

commercially available batch of PnC at this time. Instead of using CRP-PnC complexes, we used 

CRP-P-PnC complexes for murine C3 activation. As shown (Fig. 2.1A), H38A and H38R CRP 

mutants bound to P-PnC as well as WT CRP did. In the C3 activation assay (Fig. 2.1B), WT 

CRP activated murine C3 in a CRP concentration-dependent manner. Like WT CRP, H38A CRP 

also activated murine C3 in a CRP concentration-dependent manner. Even if the binding of WT 

CRP and H38A CRP to P-PnC did not differ from each other, H38A CRP was more efficient 

than WT CRP in activating murine C3. However, H38R CRP did not result in any C3 deposition 

on CRP-P-PnC, suggesting that H38R CRP did not activate murine C3. 

Figure 2. 1. Activation of C3 in murine serum by P-PnC ligand-bound CRP. A representative of 

three experiments is shown. (A) Binding of CRP to P-PnC. Microtiter wells were coated with P-

PnC. CRP diluted in TBS-Ca was added to the wells. Bound CRP was detected by using anti-

CRP mAb HD2.4. Color was developed and the OD was read at 405 nm. (B) Activation of C3 by 

CRP complexed with P-PnC. Microtiter wells were coated with P-PnC. CRP diluted in TBS-Ca 

was added to the wells. Normal mouse serum was then added to the wells. Deposited C3 was 

detected by using goat anti-mouse C3 antibody. Color was developed and the OD was read at 

405 nm. 
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H38R CRP is pentameric and binds to pneumococci  

The elution volume of H38R CRP from the gel filtration column was identical to that of WT 

CRP (Fig. 2.2A), indicating that the m.w. of H38R CRP was same as WT CRP. Thus, H38R 

CRP was pentameric. SDS-PAGE analysis (Fig. 2.2B) of H38R CRP confirmed the purity of the 

preparation and showed that there was no difference in the m.w. of the subunuits of WT and 

H38R CRP. Also, the Ca2+-dependent binding of H38R CRP to pneumococci was similar to that 

of WT CRP. We have reported previously that the Ca2+-dependent binding of H38R CRP to PnC 

and PCh-BSA was also similar to that of WT CRP (12). 

Figure 2. 2.  Overall pentameric structure of H38R CRP. A representative of three experiments is 

shown. (A) Elution profiles of CRP from the gel filtration column are shown. CRP in TBS 

containing 2 mM CaCl2 was applied to the column and eluted with the same buffer. Sixty 

fractions (0.25 ml) were collected and protein measured (A280) to determine the elution volume 

of CRP. (B) Denaturing SDS-PAGE of CRP. A Coomassie brilliant blue-stained gel (lane 2, WT 

CRP; lane 3, H38R CRP), is shown. (C) Binding of CRP to pneumococci. Microtiter wells were 

coated with pneumococci. CRP diluted in TBS-Ca was added to the wells. Bound CRP was 

detected by using anti-CRP mAb HD2.4. Color was developed and the OD was read at 405 nm. 
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Clearance rate of H38R CRP is similar to that of WT CRP 

We have reported previously that the the rate of clearance of WT CRP from mouse circulation 

was 0.67 g/ml/h (23). To determine the dose of H38R CRP for in vivo use, we evaluated the 

rate of clearance of H38R CRP from mouse circulation (Fig. 2.3). The clearance rate of H38R 

CRP was found to be 0.20 g/ml/h, suggesting that the the clearance of H38R CRP was not 

faster than that of WT CRP and that the substitution of His38 with Arg did not reduce the stability 

of H38R CRP in vivo. 

 

Figure 2. 3.  Clearance of H38R CRP from mouse circulation. Mice were injected with 50 µg of 

CRP. Blood was collected at various time points, sera separated, and the concentration of CRP 

measured.  

 

 

 

H38R CRP does not protect mice against pneumococcal infection 

Fig. 2.4 shows the combined results from two separate mouse protection experiments. H38A 

CRP, which was not different from WT CRP in activating murine C3, was included as a control 

in the experiment.  
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Figure 2. 4.  Survival curves of mice infected with pneumococci with and without CRP. CRP 

was injected first; pneumococci were injected 30 min later. The data are combined from two 

separate experiments with 7 mice in each group in each experiment. The p values for the 

differences in the survival curves between groups A B, A D, B C and C D were <0.05. The p 

values for the differences in the survival curves between groups A C and B D were >0.05. 

 

 

The median survival time (MST, the time taken for the death of 50% of mice) for mice injected 

with bacteria alone was 56 h. The MST for mice injected with H38R CRP was 72 h. There was 

no statistically significant difference between mice receiving H38R CRP and mice not receiving 

any CRP. The MST for mice injected with either WT CRP or H38A CRP could not be 

determined since >50% mice survived in both groups. There was no statistically significant 

difference between mice receiving either WT or H38A CRP. Next, we determined bacteremia in 

each surviving mouse (Fig. 2.5). In mice receiving H38A CRP, bacteremia decreased, like in WT 
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CRP-treated mice. There was no statistically significant difference in bacteremia in WT CRP-

treated and H38A CRP-treated mice. However, bacteremia continued to increase in H38R CRP-

treated mice, like in untreated mice, and mice died once bacteremia was >108 CFU/ml. There 

was no statistically significant difference in bacteremia in untreated and H38R CRP-treated 

mice. Combined data from survival of mice and bacteremia suggested H38R CRP was not 

protective against infection and that the lethality of H38R CRP-treated mice was due to increased 

bacteremia. 

 

 

Figure 2. 5.  Bacteremia in mice infected with pneumococci with and without CRP. (A) Blood 

was collected from each surviving mouse shown in Fig. 2.4. Bacteremia was determined by 

plating. Each dot represents one mouse. The horizontal line in each group of mice represents 

median bacteremia. A bacteremia value of >108 indicates a dead mouse. The p values for the 

differences between groups A B and A D were <0.05. The p value for the difference between 

groups A C was >0.05. (B) The median bacteremia values for each group shown in A are plotted. 
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Discussion 

 

Our major findings in this study were: 1. The H38R CRP mutant, which did not activate 

complement in human serum as reported previously (12), did not activate complement in murine 

serum either. 2. The H38R CRP mutant incapable of activating murine complement failed to 

protect mice against lethal pneumococcal infection. These findings confirm that complement 

activation by CRP-PCh complexes constitute the mechanism of CRP-mediated protection 

(decrease in bacteremia and increase in survival time) of mice against lethal pneumococcal 

infection. 

Human CRP does not interact with murine C1q and, therefore, the activation of murine C3 

by human CRP was not through the classical pathway (9). The pathway through which human 

CRP activates murine C3 remains unknown (9, 10). Based on the known crosstalk among CRP, 

lectins, ficolins and pneumococci, it has been proposed earlier that human CRP activates murine 

complement through the lectin pathway (9, 10, 25, 26). Irrespective of the pathway through 

which human CRP activated murine C3, our data suggest that the cleft on CRP, that 

accommodates the C1q-binding site, was critical for human CRP to activate murine C3. 

However, all three amino acid residues, His38, Asp112 and Tyr175, critical for the formation of the 

C1q-binding site and human C3 activation, were not critical for murine C3 activation. The 

Y175A CRP does not activate human C3 but activates murine C3. The H38R does not activate 

C3 in both human and murine sera. The D112N CRP does not activate human C3, and has not 

been tested for murine C3 activation yet. The role of the other amino acid residues, Glu88 and 

Asn158, present in the CRP cleft in activating murine C3 is also unknown.  

Previously, employing CRP mutants, we investigated the role of the PCh-binding site, and 

indirectly the role of CRP-dependent complement activation, in protection of mice against 



46 
 

pneumococcal infection (15, 22, 23, 27). We used two CRP mutants, F66A/E81A and 

F66A/T76Y/E81A, both incapable of binding to PCh. Different animal models provided 

different results (24). Later, we found out that the F66A/T76Y/E81A CRP mutant, like acidic 

pH-treated WT CRP, had inadvertently gained the capability to bind to immobilized complement 

factor H which is an inhibitor of complement activation (28-31) (unpublished observations). Our 

current finding that complement activation is the mechanism through which CRP is protective 

suggests that in all the previously published protection experiments, at some point in time, 

endogenous murine CRP participated in protection by binding to PCh on pneumococci and 

activating the complement system (9, 16, 23, 24). Since endogenous murine CRP has been 

shown to be protective against pneumococcal infection, we propose that the experiments on 

structure-function relationships of CRP in pneumococcal infection should be conducted 

employing CRP knockout mice (2, 32). 
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Summary 

C-reactive protein (CRP), whose blood level increases in inflammatory states in humans, binds 

to several species of bacterial pathogens1-3. Experiments in mice have revealed that one of the 

functions of CRP is to protect against Streptococcus pneumoniae infection4-6. For protection, 

however, CRP must be injected into mice within two hours of administering pneumococci, that 

is, CRP is protective against early-stage infection but not against late-stage infection7. It is not 

known why CRP is not protective against late-stage pneumococcal infection. The hypothesis is 

that the protection requires activation of the complement system by CRP-pneumococci 

complexes and that CRP cannot protect if pneumococci have time to recruit complement 

inhibitor factor H on their surface to become complement attack-resistant8,9. We have reported 

previously that the conformation of CRP is altered under conditions mimicking an inflammatory 

milieu and that CRP, in a non-native conformation, also binds to immobilized factor H10,11. 

Accordingly, we engineered CRP molecules (E-CRP), which bind to factor H on pneumococci 

but do not bind to factor H or any other host cell in the blood. Here, we show that E-CRP is 

protective against both early-stage and late-stage infections by reducing bacteremia. We also 

show that E-CRP functions synergistically with the antibiotic clarithromycin and reduces 

bacteremia drastically. The preclinical results presented here suggest that pre-modified CRP, 

such as E-CRP, is therapeutically beneficial to enhance survival. Our findings also have 

implications for infections with antibiotic-resistant pneumococcal strains and possibly for 

infections with other bacterial species that use host proteins to evade complement-mediated 

killing12-14. 
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Introduction 

C-reactive protein (CRP) is a component of the acute phase response and a critical host defense 

molecule of the innate immune system against Stretococcus pneumoniae infection15,16. CRP 

binds to pneumococci by recognizing the phosphocholine (PCh) molecules present on the 

pneumococcal cell wall C-polysaccharide (PnC)17. The binding of CRP to PCh requires two Ca2+ 

ions. CRP is made of five identical subunits arranged as a cyclic pentamer18,19. Each subunit has 

a PCh-binding site consisting of Phe66, Thr76 and Glu81. Through the PCh-binding site, CRP can 

also interact with phosphoethanolamine (PEt)20,21. It has been shown that the structure of CRP is 

altered in a reversible manner under conditions mimicking an inflammatory milieu and that non-

native CRP can bind to immobilized complement inhibitor factor H10,11,22. 

In mouse models of pneumococcal infection, human CRP has been shown to be protective 

against lethality; however, the mechanism of anti-pneumococcal action of CRP remains 

undefined4-6,16,23. Interestingly, CRP is protective against pneumococcal infection only when 

injected 6 h before to 2 h after administering pneumococci into mice7. CRP was not protective 

against late-stage infection in murine models. This 36-year old observation7 provided us with an 

experimental strategy to define the mechanism of anti-pneumococcal functions of CRP. It is 

assumed that CRP is protective because of the ability of CRP-PCh complexes to activate the 

complement system and is not protective against late-stage infection because, by then, 

pneumococci recruit the complement inhibitory protein factor H on their surface to escape the 

attack of complement8,9,24-29. We hypothesize that in order to protect mice against late-stage 

infection, a structural change in CRP is needed, followed by the interaction between structurally 

altered CRP and factor H-bound pneumococci, and that was not happening in mice. We further 

hypothesize that non-native CRP prepared exogenously would bind to factor H on pneumococci 
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in vivo, mask its complement inhibitory activity, and therefore should be able to protect against 

complement-resistant pneumococci. To test this hypothesis, we engineered CRP (E-CRP) by 

site-directed mutagenesis and produced two types of E-CRP: One, E42Q/F66A/T76Y/E81A, that 

binds to immobilized factor H but does not bind to PCh (E-CRP-1) and another, Y40F/E42Q, 

that binds to both immobilized factor H and to PCh (E-CRP-2). 

 

E-CRP-1 and E-CRP-2 have desired ligand-binding properties 

We previously reported a triple mutant of CRP, F66A/T76Y/E81A, which does not bind to PCh, 

and a single mutant of CRP, E42Q, which, unlike wild-type (WT) CRP, binds to immobilized 

factor H11,21,30. By employing site-directed mutagenesis, we constructed a quadruple mutant of 

CRP (E-CRP-1), E42Q/F66A/T76Y/E81A, in which the E42Q/F66A/T76Y mutations were 

introduced to abolish PCh-binding and E42Q mutation was added to insert the factor H-binding 

ability. E-CRP-1 was expressed in CHO cells and purified by PEt-affinity chromatography. The 

elution profiles of WT CRP and E-CRP-1 from the gel filtration column were almost 

overlapping; both proteins eluted at 11 ml (Fig. 3.1a). SDS-PAGE of purified E-CRP-1 showed a 

single band and the molecular weight of the E-CRP-1 subunits was same as WT CRP (Fig. 3.1b). 

We assessed the PCh-binding ability of E-CRP-1 by using PnC and broth-grown pneumococci 

(Pn-broth). WT CRP bound to both ligands. However, for equivalent binding to either PnC or 

Pn-broth, ~100-times more of E-CRP-1 was required compared to that of WT CRP, indicating 

that the PCh-binding ability of E-CRP was ~99% less than that of WT CRP (Fig. 3.1c, d). In 

contrast, E-CRP-1 bound to PEt more efficiently than WT CRP (Fig. 3.1e), which facilitated 

purification of E-CRP-1 by PEt-affinity chromatography. In factor H-binding assays, unlike WT 

CRP, E-CRP-1 bound readily to immobilized human and murine factor H (Fig. 3.1f). 
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Surprisingly, triple mutant CRP, which was not investigated before for factor H binding21, also 

bound to factor H. 

 

Figure 3. 1: Characterization of E-CRP-1. a. Elution profiles of CRP from gel filtration column. 

b. SDS-PAGE of WT CRP (lane 2) and E-CRP-1 (lane 3). c. Binding of CRP to PnC. d. Binding 

of CRP to broth-cultured pneumococci (Pn-broth). e. Binding of CRP to PEt. f. Binding of CRP 

to human (left) and murine (right) factor H immobilized on microtiter wells. g. Clearance of CRP 

from mouse circulation. h. Re-purification of E-CRP-1 from purified E-CRP-1-spiked mouse 

serum. SDS-PAGE of re-purified E-CRP-1 is shown. Lane 1, purified E-CRP-1 (5 µg); Lane 2, 

EDTA eluate (25 µl, A280 1.13) from the PEt-affinity chromatography column through which 

mouse serum containing E-CRP-1 was passed in the presence of Ca2+; Lane 3, EDTA eluate (25 

µl, A280 0.29) from the PEt-column through which mouse serum alone was passed. i. Presence of 

murine factor H on pneumococci isolated from the blood of infected mice (Pn-mice). j. Binding of 

CRP to Pn-broth and Pn-mice in the presence and absence of Ca2+. A representative of three 

experiments is shown for a-j, except for i.  
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Similar results were obtained for E-CRP-2, except that E-CRP-2 retained its PCh-binding 

property (Extended Data Fig. 3.1). Thus, the overall structure of WT CRP, E-CRP-1 and E-CRP-

2 were similar and both E-CRP-1 and E-CRP-2 had the desired ligand-binding properties to test 

our hypothesis. 

 

E-CRP-1 and E-CRP-2 are suitable for in vivo use  

We determined the T1/2 of CRP from mouse circulation. Based on the data obtained from four 

mice (Fig. 3.1g), the average T1/2 of WT CRP and E-CRP-1 were 4.9 and 8.0 h, respectively. 

Thus, the clearance of E-CRP-1 was not markedly faster than that of WT CRP. In another 

approach to confirm that E-CRP-1 was free in the mouse serum, we performed an experiment 

where E-CRP-1 could be re-purified from E-CRP-1-spiked mouse serum (Fig. 3.1h). As shown, 

E-CRP-1 present in the mouse serum bound to PEt in a Ca2+-dependent manner and could be 

eluted with EDTA (lane 2). The recovery of E-CRP-1 was 96%. Besides CRP, no additional 

protein bands were found when compared with the nonspecific bands seen with the serum alone 

control (lanes 2 and 3). Thus, E-CRP-1 stayed free in the mouse serum, was not sequestered by 

any other serum protein, and the mutations did not confer instability to E-CRP-1 in vivo. 

Next, we tested whether E-CRP-1 binds to pneumococci which have recruited factor H. We 

isolated pneumococci (Pn-mice) from infected mice and first tested for the presence of murine 

factor H on pneumococci. As shown (Fig. 3.1i), factor H was present on Pn-mice. WT CRP 

bound to both Pn-broth and Pn-mice but only in the presence of Ca2+, suggesting that the binding 

of WT CRP to Pn-mice was through PCh (Fig. 3.1j). In contrast, E-CRP-1 bound to Pn-mice in 

the absence of Ca2+ also, suggesting that E-CRP-1 bound to a molecule other than PCh, and that 

molecule could be factor H recruited in vivo. Surprisingly, in EDTA, E-CRP-1 also bound to Pn-
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broth suggesting that E-CRP-1 bound to a pneumococcal surface protein. Similar results were 

obtained for E-CRP-2 (Extended Data Fig. 3.1). The T1/2 of E-CRP-2 was 7.5 h. Thus, both E-

CRP-1 and E-CRP-2 were suitable for use in mouse models of infection to test our hypothesis. 

 

E-CRP-1 protects mice against late-stage infection 

All the data presented in this study show the combined results of two separate protection 

experiments using six to eight mice in each group in each experiment. Protection experiments 

shown in Fig. 3.2a, c and e were performed together. Fig. 3.2a shows the results of experiments 

in which CRP was injected into mice within 30 min of administering pneumococci. The median 

survival time (MST, the time taken for the death of 50% of mice) for mice injected with bacteria 

alone (group A) was 60 h. The MST for mice injected with bacteria and either WT CRP (group 

B) or E-CRP-1 (group C) could not be calculated because >50% of mice survived. WT CRP and 

E-CRP-1 were not significantly different in protecting mice against lethality. Increase in survival 

was due to decrease in bacteremia (Fig. 3.2b, Extended Data Fig. 3.2). By 44 h, in group A, 

median bacteremia increased dramatically, and mice died once bacteremia reached 109 cfu/ml; 

however, in groups B and C, median bacteremia reached only ~105 cfu/ml and then decreased 

dramatically afterwards. There was >99% reduction in bacteremia in CRP-treated mice. Since E-

CRP-1 does not bind to PCh, these results indicated that the increased resistance to infection in 

E-CRP-1-treated mice was due to combined actions of E-CRP-1 and endogenous mouse CRP. E-

CRP-1 bound to a protein ligand on the pneumococcal surface and, once bacteremia was already 

lower, endogenous mouse CRP bound to PCh to activate the complement system to reduce 

bacteremia. Since the dose of E-CRP-1 was same as that of WT CRP, it is unlikely that the 

protection depended upon the residual PCh-binding activity of E-CRP-1.  
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Figure 3. 2: Unlike WT CRP, E-CRP-1 is protective against late-stage infection. The data are 

combined from two separate experiments with 6-8 mice in each group in each experiment. a. 

Survival curves. CRP was injected first; pneumococci were injected 30 min later. The p values 

for the differences in the survival curves between groups A B, A C, and B C were <0.001, 

<0.001 and 0.43, respectively. b. Bacteremia. Blood was collected from each surviving mouse 

shown in a. The median bacteremia values are plotted. For 36-116 h, the p values for the 

difference between groups A B and A C were <0.001. c. Same as a, except that CRP was 

injected 12 h after injecting pneumococci. The p values for the difference in the survival curves 

between groups A B, A C, A D, B C, B D and C D are 0.28, <0.01, <0.001, <0.001, <0.001 and 

0.31, respectively. d. Bacteremia. Blood was collected from each surviving mouse shown in c. 

The median bacteremia values are plotted. For 44-92 h, the p values for the difference between 

groups B C and B D were <0.001. e. Same as a, except that CRP was injected four times: 6, 12, 

24 and 48 h after injecting pneumococci. The p values for the differences in the survival curves 

between groups A B, A D, B C, and C D were <0.001. f. Bacteremia. Blood was collected from 

each surviving mouse shown in e. The median bacteremia values are plotted. For 36-116 h, the p 

values for the difference between groups A B, B C, and A D were <0.01. 
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Next, we injected E-CRP-1 into mice 12 h after administering pneumococci, a time point for 

CRP injection when WT CRP does not confer protection (Fig. 3.2c). A gap of 12 h is clinically 

significant because all strategies for a sepsis drug have so far failed in human clinical trials31,32. 

We included WT CRP, 30 min regimen, in all experiments to ensure that the animal model was 

comparable from experiment to experiment. The MST for mice injected with either bacteria 

alone or with bacteria and WT CRP was 60 h. In contrast, the MST for mice injected with 

bacteria and E-CRP-1 was 90 h and the MST for mice injected with bacteria and both WT CRP 

and E-CRP-1 was 108 h. In the WT CRP-treated group, all mice died by 66 h. However, in the 

E-CRP-1-treated groups, it took 4 days until 60-70% mice died, and 30-40% mice survived up to 

7 days. As reported previously7, WT CRP was not protective. These data again suggested that 

endogenous mouse CRP participated and that’s why E-CRP-1 alone was not different from the 

combination of E-CRP-1 and WT CRP. In groups receiving E-CRP-1, median bacteremia was 

reduced by ~99% as early as 44 h and lower bacteremia was maintained for up to 92 h (Fig. 3.2d, 

Extended Data Fig. 3.2). Also, the injection of E-CRP-1 at 12 h was as effective as it was when 

administered within 30 min (Extended Data Fig. 3.3a, b). These data raise the possibility that E-

CRP-1 may protect mice against infection regardless of the time point of injecting E-CRP-1, as 

long the time falls within 44 h in our animal model. 

Next, we injected CRP into mice four times, at 6, 12, 24, and 48 h after administering 

pneumococci, to determine whether multiple injections of E-CRP-1 were better than a single 

injection at 12 h (Fig. 3.2e). The MST for mice injected with either bacteria alone or with 

bacteria and four doses of WT CRP was 60 h. Like a single dose of WT CRP at 12 h, multiple 

doses of WT CRP were also not protective. In contrast, the MST for mice injected with bacteria 

and multiple doses of E-CRP-1 was 108 h. In E-CRP-1-treated mice, median bacteremia was 
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reduced by ~99% as early as 36 h and the reduction lasted for up to 72 h. There was ~48 h gain 

over WT CRP for bacteremia to reach the deadly levels (Fig. 3.2f, Extended Data Fig. 3.2). Four 

injections of E-CRP-1 were more effective than one injection of E-CRP-1 in reducing bacteremia 

(Extended Data Fig. 3.3c, d), although there was no significant difference in survival of these 

two groups of mice. It took another 24 h for bacteremia to reach the highest level in mice 

receiving four injections and we think, based on the half-life of CRP, that the fourth injection was 

critical. 

 

E-CRP-2 also protects against late-stage infection  

Fig. 3.3a shows the results of protection experiments with E-CRP-2. The MST for mice injected 

with bacteria alone was 54 h. The MST for mice injected with E-CRP-2, 12 h after administering 

pneumococci, was extended to 132 h. The MST for mice injected with E-CRP-2, 30 min after 

administering pneumococci, could not be calculated because >50% of mice survived, as 

expected. There was >99% reduction in bacteremia even when E-CRP-2 was given to mice 12 h 

after administering pneumococci and the lower bacteremia stayed as such for >96 h (Fig. 3.3b, 

Extended Data Fig. 3.4). Since E-CRP-2 binds to PCh, like WT CRP does, we do not know the 

involvement of mouse endogenous CRP in this case. However, the animal model we employed 

in this study indicates that mouse endogenous CRP is enough to protect if mice were otherwise 

administered with only ~107 cfu of pneumococci (Fig. 3.3c). These data also suggest that if mice 

are administered with, for example, >109 cfu bacteria, mouse CRP can be protective once 

bacteremia is lowered by ~99% and E-CRP is present to cover the virulence factors. 
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Figure 3. 3: Like E-CRP-1, E-CRP-2 also protective against late-stage infection. a-c. The data 

are combined from two separate experiments with 6-8 mice in each group in each experiment. a. 

Survival curves. CRP was injected first; pneumococci were injected either 30 min or 12 h later. 

The p values for the difference in the survival curves between groups A C and A B were <0.001 

and between groups B C was 0.01. b. Bacteremia in each surviving mouse shown in a. The 

median value of bacteremia are plotted. For 36-116 h, the p values for the difference between 

groups A B and A C are <0.001. The p values for the difference between groups B C was >0.05 

till 60 h and <0.05 after 60 h. c. The animal model. Survival curves of mice infected with 

different doses of pneumococci. d. A proposed model for the mechanism of action of CRP in 

pneumococcal infection. moCRP, mouse CRP; hCRP, human CRP. 

 

Based on these results, we propose a model for how WT CRP and E-CRP work together to 

protect mice against lethality (Fig. 3.3d): The killing of bacteria is due to the binding of WT CRP 

(human or murine or both) to PCh on pneumococci and subsequent activation of the complement 
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system. If bacteremia is overwhelming, then WT CRP is not enough to protect and, as a result, 

bacteria have time to recruit host proteins to become resistant to complement attack. The role of 

E-CRP is to bind and cover the recruited proteins, or to bind and cover the surface virulence 

factors themselves, so that WT CRP can activate complement to continue killing bacteria. 

Previously21,30,33, unaware of the fact that the CRP triple mutant can also bind to immobilized 

factor H, we proposed that CRP protects mice against pneumococcal infection without binding to 

PCh and, therefore, without binding to pneumococci. However, the current data suggest that in 

all previously published experiments, endogenous murine CRP had also participated in 

protection.   

 

E-CRP acts synergistically with clarithromycin  

To compare the effects of E-CRP with that of an antibiotic, clarithromycin34,35, in protecting 

mice, we first titrated the dose of clarithromycin in our animal model. As seen in Fig. 3.4a, it was 

clear that a dose of 0.02 mg/mouse should be used to evaluate the effects of the combination of 

clarithromycin and E-CRP. Fig. 3.4b shows the results of experiments on clarithromycin and E-

CRP-1. The MST for mice injected with either E-CRP-1 alone or clarithromycin alone were 84 h 

and 96 h, respectively. The MST for mice injected with both E-CRP-1 and clarithromycin could 

not be calculated because >50% of mice survived. Addition of WT CRP to clarithromycin did 

not change the efficacy of clarithromycin. The dramatic increase in survival by the combination 

of E-CRP-1 and clarithromycin was due to drastic decrease in bacteremia (Fig. 3.4c, Extended 

Data Fig. 3.5). Bacteremia could not rise beyond 105 cfu/ml in mice treated with both E-CRP-1 

and clarithromycin. Similar results were seen with the combination of clarithromycin and E-
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CRP-2 (Fig. 3.4d, Extended Data Fig. 3.5). We were not prepared for the data suggesting that an 

antibiotic can potentiate the effects of E-CRP; we were not testing any hypothesis. 

Figure 3. 4: E-CRP and clarithromycin act synergistically. The data are combined from two 

separate experiments with 6-8 mice in each group in each experiment. a. Survival curves of mice 

treated with clarithromycin. b. Survival curves of mice with E-CRP-1 and clarithromycin. The p 

values for the difference in the survival curves between groups B D and C E were <0.001 and 

0.23, respectively. c. Bacteremia. Blood was collected from each surviving mouse shown in b. 

The median bacteremia values are plotted. For 44-116 h, the p values for the difference between 

groups B D and C D were <0.001. d. Survival curves of mice with E-CRP-2 and clarithromycin. 

The p values for the difference in the survival curves between groups B D was 0.01. e. 

Bacteremia. Blood was collected from each surviving mouse shown in d. The median bacteremia 

values are plotted. The p values for the difference between groups B D and C D were <0.01.  
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Topological differences between WT CRP and E-CRP-1   

Data obtained from ligand inhibition experiments (Extended Data Fig. 6a-d, Extended Data Fig. 

3.7) suggested that the residual binding of E-CRP-1 to PCh at higher concentrations of E-CRP-1 

was probably due to the Ca2+-dependent binding of E-CRP-1 to the phosphate group of PCh. The 

inability of PCh and dAMP to inhibit E-CRP-1-Pn-broth interaction suggested that the binding of 

E-CRP-1 to Pn-broth was not via PCh but mainly due to a surface protein. Data obtained from 

MonoQ ion-exchange chromatography experiments suggested that the overall charge on WT 

CRP was different from E-CRP-1 (Extended Data Fig. 3.6e). The two proteins also had different 

mobility in a native PAGE gel (Extended Data Fig. 3.6f). The migration of E-CRP was slower 

than that of WT CRP and not affected by the absence or presence of Ca2+. Protease cleavage 

experiment suggested that E-CRP-1 might also have lost one of the two Ca2+ (Extended Data 

Fig. 3.6g)36,37. We performed molecular modelling of E-CRP-1; the model suggested that T76Y 

mutation affects Ca2+-binding and the E42Q mutation affects intersubunit contact region. We 

have not performed similar studies with E-CRP-2 yet, and the binding site for factor H on E-

CRP-1 remains undefined. 

 

 

Discussion 

Our data provide an explanation for the mechanism of CRP-mediated protection of mice against 

pneumococcal infection. Our data also provide a proof of concept that the structure of CRP is 

subtly modified in vivo to execute full anti-pneumococcal activities (Fig. 3.3d): native CRP binds 

to pneumococci through PCh groups and activates the complement system while structurally-

modified CRP binds to factor H recruited by pneumococci8,38. Indeed, it has been shown that the 

presence of modified pentameric CRP, designated as either pCRPm or pCRP*, is a feature of the 
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inflamed sites39,40. We hypothesize that in individuals in whom the conformation of CRP remains 

unchanged, perhaps due to inappropriate inflammatory conditions around CRP, CRP is not fully 

functional during infection. If this hypothesis is correct, then our data provides a new strategy to 

treat infection by injecting exogenously prepared pre-modified CRP. A single dose of E-CRP 

combined with a tiny amount of clarithromycin was the best prescription among all others in this 

study for nearly complete protection of our experimental mice. Neither E-CRP nor 

clarithromycin could do it singly; indicating a previously unknown pathway through which the 

innate immune system responds to antibiotic-resistant bacteria. The approach to use E-CRP may 

also result in reducing the antibiotic treatment and preventing the development of antibiotic 

resistance. 

Since E-CRP binds to a variety of different proteins immobilized on microtiter wells (data 

not shown), and not just to immobilized factor H, and because many other pathogens, including 

pneumococci recruit serum proteins to their surface, such as factor H, C1q and C4BP, E-CRP 

these findings may be applicable to infections with a wide range of bacterial pathogens which 

evade the immune system by recruiting host proteins12. In addition, because our strategy is 

dependent on the recruited proteins and not on the serotype, and since it is also likely that E-CRP 

binds to pneumococcal surface virulence factors (Fig. 3.1j), such as PspC itself, the proposed 

strategy should also work against other strains of pneumococci13,14. Our data is also  relevant to 

other inflammatory diseases, such as age-related macular degeneration, where both CRP and 

factor H have been implicated41-43. 
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Methods 

Construction of mutant CRP cDNAs 

The template for construction of the CRP quadruple mutant E42Q/F66A/T76Y/E81A (E-CRP-1) 

was a cDNA for the CRP triple mutant F66A/T76Y/E81A cDNA (substitution of Phe66 with Ala, 

Thr76 with Tyr, and Glu81 with Ala). Mutagenic oligonucleotides, 5’-C CAC TTC TAC ACG 

CAA CTG TCC TCG ACC-3’ and 5’-GGT CGA GGA CAG TTG CGT GTA GAA GTG G-3’, 

to substitute Glu42 with Gln (codons shown in bold and italicized letters), were designed 

according to the sequence of the template cDNA and obtained from Integrated DNA 

Technologies. Mutagenesis was conducted using the QuickChange site-directed mutagenesis kit 

(Stratagene). Mutations were verified by nucleotide sequencing, utilizing the services of the 

Molecular Biology Core Facility of the university. The construction of cDNAs for CRP mutants 

E42Q, F66A/T76Y/E81A and Y40F/E42Q (E-CRP-2) has been reported earlier11,21,44. 

 

Expression and purification of CRP 

All CRP mutants were expressed in CHO cells using the ExpiCHO Expression System 

(ThermoFisher Scientific). Purification of E-CRP-1 from culture supernatants involved Ca2+-

dependent affinity chromatography on a PEt-conjugated Sepharose column, followed by ion-

exchange chromatography on a MonoQ column, and gel filtration on a Superose12 column, as 

reported previously for F66A/T76Y/E81A CRP mutant21. PEt-conjugated Sepharose was 

prepared as described previously21. Briefly, CHO cell culture media was diluted (1:1) in 0.1 M 

borate buffer saline, pH 8.3, containing 3 mM CaCl2, and passed through the PEt-sepharose 

column. After collecting the flow-through and washing the column with the same buffer, bound 

E-CRP was eluted with 0.1 M borate buffer saline, pH 8.3, containing 5 mM EDTA. E-CRP-1 
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was then subjected to ion-exchange chromatography and bound E-CRP-1 was eluted with an 

NaCl gradiant. E-CRP-1 containing fractions were pooled, concentrated, and further purified by 

gel filtration. The gel filtration column was equilibrated and eluted with TBS (10 mM Tris-HCl, 

150 mM NaCl, pH 7.2) containing 5 mM EDTA. Eluted E-CRP-1 was immediately dialyzed 

against TBS containing 2 mM CaCl2, stored at 4°C, and was used within a week. WT CRP and 

all other CRP mutants including E-CRP-2 were purified as described previously45. The purity of 

CRP preparations was confirmed by denaturing 4-20% SDS-PAGE under reducing conditions. 

For in vivo experiments, purified CRP was treated with Detoxi-Gel Endotoxin Removing Gel 

(ThermoFisher Scientific). The concentration of endotoxin in CRP preparations was determined 

by using the Limulus Amebocyte Lysate kit QCL-1000 (Lonza). 

 

Determination of pentameric structure of E-CRP 

The pentameric structure of E-CRP was confirmed by employing gel filtration and denaturing 

SDS-PAGE. The gel filtration column was equilibrated with TBS containing 5 mM EDTA. E-

CRP was injected into the column and eluted with TBS containing 5 mM EDTA at a flow rate of 

0.3 ml/min. Fractions (60 fractions, 250 l each) were collected and absorbance at 280 nm 

measured to locate the elution volume of E-CRP. Gel filtration of WT CRP was carried out on 

the same column to determine the elution volume of pentameric CRP. 

 

Pneumococci (Pn-broth) 

Streptococcus pneumoniae type 3, strain WU2 (obtained from Dr. David E. Briles, University of 

Alabama at Birmingham, USA), were made virulent by sequential i.v. passages in mice, and 

were stored in 1 ml aliquots at -80 °C in Todd-Hewitt broth containing 0.5% yeast extract and 
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10% glycerol, as described previously30. For each experiment, a separate 1 ml aliquot of 

pneumococci was thawed. Pneumococci were then grown in 50 ml Todd-Hewitt broth containing 

0.5% yeast extract and incubated at 37 °C with 125 rpm for 3 h (mid-log phase culture). The 

culture was centrifuged at 7,500 rpm for 15 min. The bacterial pellet was washed and 

resuspended in 5 ml normal saline and adjusted the volume until OD600 was 0.29 to give a 

concentration of 3.5 x 108 cfu/ml (OD600 = 1.00 = 1.2 x 109 cfu/ml). This preparation of 

pneumococci cultured in broth was called as Pn-broth. The concentration, purity, and viability of 

pneumococci were confirmed by plating on sheep blood agar plates. 

 

Isolation of pneumococci (Pn-mice) from infected mice 

Mice were injected i.v. with 3.5 x 107 cfu of Pn-broth. After 40 h, blood was collected by cardiac 

puncture, in tubes containing 10% EDTA (1% v/v of blood). Blood was diluted with an equal 

volume of normal saline and centrifuged at 2,200 rpm for 2 min. The supernatant was recovered. 

The bacterial pellet was washed four times with normal saline, centrifuged at 2,200 rpm for 2 

min after each wash, and continued to recover the supernatant. All recovered supernatants were 

then pooled and centrifuged at 11,000 rpm for 5 min. This time the supernatant was discarded, 

and the pellet was resuspended in normal saline for immediate use or resuspended in Todd-

Hewitt broth containing 0.5% yeast extract and 10% glycerol for storage at -80 °C. This 

preparation of pneumococci isolated from infected mice was called as Pn-mice. The 

concentration, purity, and viability of pneumococci were confirmed by plating on sheep blood 

agar plates.  
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PCh-binding, PEt-binding, and pneumococcus-binding assays 

Binding activity of CRP for PCh was evaluated by using pneumococcal C-polysaccharide (PnC, 

from Statens Serum Institut) as the ligand, exactly as described previously33. Binding activity of 

CRP for PEt was evaluated by using biotinylated-PEt as the ligand, exactly as described 

previously21. Binding activity of CRP for whole pneumococci, Pn-broth, was evaluated exactly 

as described previously21. Binding activity of CRP for whole pneumococci, Pn-mice, was 

evaluated both in the presence and absence of Ca2+. 

 

Factor H-binding assay 

The binding activity of CRP for factor H was evaluated by using both human factor H 

(Complement Technology) and murine factor H (R&D). Microtiter wells were coated with 2 

g/ml of factor H in TBS (100 µl/well), overnight at 4 °C. The unreacted sites in the wells were 

blocked with TBS containing 0.5% gelatin for 45 min at room temperature. CRP diluted in TBS-

Ca (TBS containing 2 mM CaCl2, 0.1% gelatin and 0.02% Tween 20) was added in duplicate 

wells. After incubating the plates for 2 h at 37 °C, the wells were washed with TBS-Ca. 

Polyclonal rabbit anti-human CRP antibody (1g/ml) (EMD Millipore Corp., 235752), diluted in 

TBS-Ca, was used (1 h at 37°C) to detect bound CRP. HRP-conjugated donkey anti-rabbit IgG 

(GE Healthcare), diluted in TBS-Ca, was used (1 h at 37 °C) as the secondary antibody. Colour 

was developed and the OD405 read in a microtiter plate reader (Molecular Devices). 

 

Detection of factor H on the surface of Pn-mice 

Microtiter wells were coated with Pn-mice in TBS (107 cfu/100 l/well) overnight at 4 °C. The 

unreacted sites in the wells were blocked with TBS containing 0.5% gelatin for 45 min at room 
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temperature. Murine factor H present on the surface of Pn-mice was detected by using sheep 

polyclonal anti-mouse factor H antibody (R&D, AF4999) diluted in TBS-Ca. HRP-conjugated 

rabbit anti-sheep IgG (ThermoFisher Scientific), in TBS-Ca, was used as the secondary antibody. 

Colour was developed and the OD405 read in a microtiter plate reader. 

 

Determination of T1/2 of E-CRP in mouse circulation 

Mice were injected i.v. with 100 g of CRP in TBS containing 2 mM CaCl2 through the tail. 

Four mice were used for WT CRP and four mice were used for E-CRP. After 8 h, blood was 

collected from the tip of the tail vein at four different time points up to 24 h. The concentration 

of CRP in the serum was measured by ELISA. The concentration of CRP in the serum at the first 

bleed was plotted as the 100% value. 

 

Repurification of E-CRP from E-CRP-spiked mouse serum 

Purified E-CRP (400 g) was added to 2 ml C57BL/6 mouse serum (Innovative Research) and 

the final volume was made to 10 ml by adding 0.1 M borate buffered saline, pH 8.3, containing 3 

mM CaCl2. The mixture was incubated for 30 min at 37 °C. E-CRP was repurified by Ca2+-

dependent affinity chromatography on PEt-Sepharose beads whose capacity to bind E-CRP was 

>400 g. After collecting the flow-through and washing the column with the same buffer, bound 

E-CRP was eluted with 0.1 M borate buffered saline, pH 8.3, containing 5 mM EDTA. To 

control the experiment, mouse serum alone (2 ml), without spiking with E-CRP, was used. The 

EDTA eluates were subjected to SDS-PAGE. The concentration of CRP in the EDTA eluates 

was measured by ELISA to calculate percent recovery. 
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Sequestration of E-CRP in mouse blood 

To test the possibility that E-CRP could be sequestered by cells in the mouse blood, E-CRP-

spiked mouse blood was centrifuged at 8000 rpm for 5 min and the serum recovered. The 

concentration of E-CRP in the recovered serum was determined by ELISA. 

 

Mice 

Male C57BL/6J mice (Jackson ImmunoResearch Laboratories) were brought up and maintained 

according to protocols approved by the University Committee on Animal Care. Mice were 8-10 

weeks old when used in experiments. 

 

Mouse protection experiments with CRP 

Separate mouse protection experiments were performed using at least two different preparations 

of purified WT CRP and E-CRP. The endotoxin content in 25 g all CRP preparations was <1.5 

endotoxin units. Mice were first injected i.v. with 3.5 x 107 cfu (based on A600) of pneumococci 

in 100 l normal saline. The actual number of pneumococci injected, based on the plating results 

obtained on the next day, for all in vivo experiments, was 3.53±0.21 x 107 cfu. In the first set of 

experiments, mice were injected i.v. with either WT CRP or E-CRP, 30 min after the 

administration of pneumococci. In the second set of experiments, mice were injected i.v. with 

either WT CRP or E-CRP or both (WT CRP first and, an hour later, E-CRP), 12 h after the 

administration of pneumococci. In the third set of experiments, mice were injected i.v. with 

either WT CRP or E-CRP, four times (6, 12, 24 and 48 h) after the administration of 

pneumococci. CRP (25 µg) was injected in 100 l TBS containing 2 mM CaCl2. The dose of 25 

µg of CRP with 3.5 x 107 cfu bacteria was chosen because, under these conditions, the protection 
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of mice with WT CRP injected 30 min apart from the administration of pneumococci was same 

as reported previously30. Survival of mice was recorded three times per day for 7 days. To 

determine bacteremia (cfu/ml) in the surviving mice, blood was collected daily for 5 days from 

the tip of the tail vein, diluted in normal saline, and plated on sheep blood agar for colony 

counting. The bacteremia value for dead mice was recorded as 109 cfu/ml because mice died 

when the bacteremia exceeded 108 cfu/ml.  

 

Mouse protection experiments with clarithromycin  

The antibiotic clarithromycin (Santa Cruz Biotechnology, sc-205634) was reconstituted in 

acetone to a stock concentration of 50 mg/ml and stored at 4 °C for a maximum of 5 days. To 

evaluate the efficacy of clarithromycin, the stock solution was diluted in acetone to final 

concentrations of 40, 4, 0.4 and 0.04 mg/ml, and 50 µl of each dose was injected i.v. per mouse 

at 12, 36, 60 and 84 h after the administration of pneumococci. For protection experiments 

involving the combination of CRP and clarithromycin, the stock clarithromycin solution was 

diluted in normal saline to a final concentration of 0.2 mg/ml, and 100 µl was injected i.v. per 

mouse at 12, 36, 60 and 84 h after the administration of pneumococci. 

 

PCh inhibition assays 

Microtiter wells were coated with either 10 g/ml of PCh-BSA or PnC, or with 107 cfu of Pn-

broth, in TBS, overnight at 4 °C. The unreacted sites in the wells were blocked with TBS 

containing 0.5% gelatin for 45 min at room temperature. In one set of inhibition assays, CRP 

diluted at a fixed concentration in TBS-Ca was added to duplicate wells. To determine the effects 

of PCh (Sigma-Aldrich) and dAMP (Chem-Implex International, 00406) on the binding of CRP 
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to PCh-BSA, PnC and Pn-broth, CRP was added in the presence of increasing concentrations of 

either PCh or dAMP. In another set of inhibition assays, CRP diluted in TBS-Ca, at increasing 

concentrations, was added to duplicate wells. To determine the effects of PCh and dAMP on the 

binding of CRP to ligands, CRP was added in the presence of either 10 mM PCh or 100 mM 

dAMP. After incubating the plates for 2 h at 37 °C, unbound CRP was aspirated, followed by 

washing the wells with TBS-Ca. The plates were then processed exactly as described previously. 

 

Ca++-site proteolytic cleavage assay 

The Ca++-binding site-dependent proteolytic cleavage assay of CRP was conducted as described 

previously with modifications37. CRP (4 g) in TBS was incubated with 1 g protease (Sigma-

Aldrich, P6911), with and without 5 mM CaCl2, for 2 h at 37 °C, and subjected to 4-20% 

denaturing SDS-PAGE under reducing conditions. The gels were stained with Coommassie 

Brilliant Blue. BioRad’s broad-range marker was used as the molecular weight standard. 

 

Molecular modeling of CRP 

Molecular modeling was based on the X-ray crystal structure of WT CRP-PCh complex. The 

PDB file, 1BO9.pdb, was imported into Swiss-PdbViewer (also known as DeepView) and used 

to substitute the mutated amino acids. The in silico mutated structure was saved as a PDB file 

and opened with the help of PYMOL graphics software for measuring distances and for creating 

the figure. On-screen images were captured with Snagit 10 (TechSmith) and saved as Portable 

Network Graphic files. 
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Statistical analysis 

All experiments were performed three times and comparable results were obtained each time. 

Results of a representative experiment are shown in the figures where the raw data (OD405) were 

used to plot the curves. Survival curves were generated using the GraphPad Prism 4 software. To 

determine p values for the differences in the survival curves among various groups, the survival 

curves were compared using the software’s Logrank (Mantel-Cox) test. For plotting bacteremia 

data, bacteremia values of 0-100 were plotted as 100 and bacteremia values of >108 were plotted 

as 109. The calculation of the median values for bacteremia in each group of mice and the 

statistical analyses of the bacteremia data were performed by using the GraphPad Prism 4 

software and Mann-Whitney test. 

 

Data availability 

 

Source Data for all figures are available from the corresponding author. 
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Extended Data Figures 

 

 

Extended Data Figure 3. 1: Characterization of E-CRP-2. a. Elution profiles of CRP from the gel 

filtration column. b. SDS-PAGE of WT CRP (lane 2) and E-CRP-2 (lane 3). c. Binding of CRP 

to PnC. d. Binding of CRP to broth-cultured pneumococci (Pn-broth). e. Binding of CRP to 

human (left) and murine (right) factor H. f. Clearance of CRP from mouse circulation. g. Re-

purification of E-CRP-2 from purified E-CRP-2-spiked mouse serum. SDS-PAGE of re-purified 

E-CRP-2 is shown. Lane 1, purified E-CRP-2 (5 µg); Lane 2, EDTA eluate from the PCh-

affinity column through which mouse serum containing E-CRP-2 was passed in the presence of 

Ca2+; Lane 3, EDTA eluate from the PCh-column through which mouse serum alone was passed; 

Lane 4, mol. wt. markers. h. Binding of CRP to Pn-broth and Pn-mice in the presence and 

absence of Ca2+. A representative of three experiments is shown for a-h, except for g.  
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Extended Data Figure 3. 2: Scatter plots of the bacteremia data shown in Fig. 3.2b, d and f. The 

horizontal line in each group of mice represents the median value of bacteremia. a. CRP was 

injected first; pneumococci were injected 30 min later. For 36-116h, the p values for the 

difference between groups A B and A C are <0.001. The p values for the difference between 

groups B C are >0.05 at all time points. b. Same as a, except that CRP was injected 12 h after 

injecting pneumococci. The p values for the difference between groups A B and C D are >0.05 at 

all time points. For 44-92 h, the p values for the difference between groups B C and B D were 

<0.01. c. Same as a, except that CRP was injected four times (6, 12, 24 and 48 h after injecting 

pneumococci). The p values for the difference between groups A C was >0.05 at all time points. 

For 36-116 h, the p values for the difference between groups B C are <0.001. For 44-116 h, the p 

values for the difference between groups B D and C D were <0.05. For 44-116 h, the p values for 

the difference between groups A D was <0.01.  
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Extended Data Figure 3. 3: Additional comparisons of the data shown in Fig. 3.2. a, Survival 

curves. The p values for the difference between 30 min and 12 h was 0.09. b, Bacteremia in each 

surviving mouse shown in a. The median bacteremia values are plotted. For 36-116 h, the p 

values for the difference either between groups A B or A C were <0.001. c, Survival curves. The 

p values for the difference between one dose and four doses survival curves was 0.41. d, 

Bacteremia in each surviving mouse shown in c. The median bacteremia values are plotted. For 

36-116 h, the p values for the difference either between groups A B or A C were <0.001.  
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Extended Data Figure 3. 4: Scatter plots of the bacteremia data shown in Fig. 3.3b. The 

horizontal line in each group of mice represents median bacteremia. For 36-116 h, the p values 

for the differences between groups A B and A C were <0.001. The p values for the difference 

between groups B C was >0.05 till 60 h and <0.05 after 60 h. 
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Extended Data Figure 3. 5: Scatter plots of the bacteremia data shown in Fig. 3.4. The horizontal 

line in each group of mice represents median bacteremia. a. For 44-116 h, the p values for the 

difference between groups B D was <0.001. The median bacteremia values are plotted. For 44-

116 h, the p values for the difference between groups C D was <0.005. b, The p values for the 

difference between groups B D was <0.05 only at 116 h. The median bacteremia values are 

plotted. For 44-116 h, the p values for the difference between groups C D was <0.05.  

 

 



87 
 

Extended Data Figure 3. 6: Further characterization of E-CRP-1. a. Inhibition of binding of CRP 

to PnC (left panel) and Pn-broth (right panel) by PCh. b. Inhibition of binding of CRP to PnC 

(left panel) and Pn-broth (right panel) by dAMP. Average ± SEM of three experiments is shown 

in a, b. c. Inhibition of binding of WT CRP (left panel) and E-CRP-1 (right panel) to PnC by 

PCh and dAMP. d. Inhibition of binding of WT CRP (left panel) and E-CRP (right panel) to Pn-

broth by PCh and dAMP. A representative of three experiments is shown in c, d. e. MonoQ 

anion exchange chromatography of WT CRP (left) and E-CRP-1 (right). f. Native PAGE of CRP 

(lane 1; WT CRP in the presence Ca2+, lane 2; E-CRP-1 in the presence Ca2+, lane 3; WT CRP in 

the absence Ca2+, lane 4; E-CRP-1 in the absence Ca2+). A representative of two Coomassie blue-

stained gels is shown. g. Ca++-site-dependent proteolytic cleavage of CRP. Reducing SDS-PAGE 

of CRP treated with protease in the absence and presence of Ca++. h. Molecular modelling of E-

CRP-1. The side chains of Phe66, Thr76 and Glu81 involved in the formation of the PCh-binding 

pocket and E42 are highlighted. Ca++ are shown as yellow balls. The PDB coordinates of E-CRP-

1 were generated from the PDB file 1B09 using SYBYL (Tripos, Inc.). The side chains of Phe66, 

Thr76 and Glu81 are substituted with Ala, Tyr and Ala, respectively. One of the five subunits is 

shown.  
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Extended Data Figure 3. 7: Further characterization of E-CRP-1 (continued). a. Inhibition of 

binding of CRP to PCh-BSA by PCh. b. Inhibition of binding of CRP to PCh-BSA by dAMP. c. 

Inhibition of binding of WT CRP to PCh-BSA by PCh and dAMP. d. Inhibition of binding of E-

CRP-1 to PCh-BSA by PCh and dAMP. A representative of three experiments is shown in c, d.  
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Abstract 

 

CRP is a prominent pattern recognition molecule of the innate immune system, recognizing 

phosphocholine (PCh) containing substances and activating the classical complement pathway. 

Mild acidic or redox conditions modify WT CRP into a non-native pentameric form (modified 

CRP) with new binding properties to various immobilized and denatured protein ligands. The 

binding of modified CRP to these many denatured and aggregated protein ligands has raised 

questions about the specificity of these interactions. Based on the affinity of modified CRP for 

amyloid β (Aβ), we hypothesized that immobilized proteins expose common amyloid-like 

structures that are recognized by CRP in its modified pentameric state. Therefore, there must 

exist a site (Aβ binding site) on CRP responsible for its interaction with these many denatured 

protein ligands. Our attempts to identify this site was unfruitful. However, further investigations 

into the significance of modified CRP interaction with Aβ in the formation of amyloid fibrils 

were done. Mutant CRP which has similar binding characteristics as acidic pH-treated or H2O2-

treated CRP was used. We found that the mutant CRP prevents the formation of amyloid fibrils 

by Aβ 1-42. Taken together, we conclude that immobilizing proteins denatures them and cause 

them to present common (amyloid-like) structures which are recognized by CRP in its modified 

pentameric conformation. Therefore, modifications of CRP into its non-native pentameric 

conformation causes it to expose an otherwise hidden (Aβ) site giving it anti-amyloidogenic 

properties. 

 

 

Key Words: C-reactive protein, Amyloid β, Amyloid fibrils 
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Introduction 

 

Human C-reactive protein (CRP) is a soluble, pentameric, pattern recognition molecule of 

the innate immune system. Each of the 5 subunits of CRP are held together in a symmetric planar 

conformation by noncovalent bonds and possess two binding sites for calcium ions (1,2). CRP is 

a potent acute phase protein with levels that rise dramatically during infections or inflammation 

by up to a thousand fold. At  physiological pH, CRP recognizes and binds phosphocholine 

containing substances of pathogenic bacteria and damaged cells in a Ca2+-dependent manner 

(1,4,3). The ligand-binding properties of CRP have previously been shown to be regulated by pH 

and redox conditions (5–7). CRP acquires enhanced or novel binding capabilities under mild 

oxidative and acidic conditions to a multitude of immobilized/denatured ligands including 

oxidized LDL (ox-LDL), factor H, and amyloid β (Aβ) (9,8,5–7).  

Amyloid β are peptides of 36-43 amino acids long and are normal components of both 

plasma and cerebrospinal fluid (10,11). The aggregation of these peptides into oligomers or fibrils 

is implicated with the development and progression of Alzheimer’s disease (AD) (12,13). Two 

main variants of this peptide exist in humans and include Aβ40 and Aβ42 which are 40 and 42 

amino acids long respectively (14). The most prevalent circulating amyloid β variant is Aβ40, 

however, Aβ42 (Aβ) has been shown to nucleate faster, forming fibrils more rapidly (15) and was 

the species used in this study.  

CRP is synthesized primarily in the liver, but can also be produced in other organ cells 

such as neurons (16). Denatured (monomeric) CRP has been shown to be present (deposited) at 

the sites of many types of inflammatory diseases including in senile plaques and neurofibrillary 

tangles of AD (18,17,20,21,19). The role of CRP at these sites remains unknown but likely involve 

its non-native state, as native WT CRP does not interact with fluid phase or immobilized Aβ (5). 
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Clinical studies have linked high levels of plasma CRP with the risk of developing AD (23,22). 

However, these elevated CRP levels may just be indicative of inflammation and not necessarily a 

causal factor because CRP does not cross the blood brain barrier. Inflammatory sites are generally 

characterized by acidic conditions and increased presence of reactive oxygen species (ROS) which 

have been linked with the generation of amyloid plaques and the development of AD (24–

26,28,27). As earlier stated, CRP can be modified by these conditions (or by mutations of the 

protein) causing it to acquire a non-native pentameric structure with new ligand binding properties 

(5–7). These changes in the conformation of CRP can occur at sites of inflammation (29).  

We have previously reported that H2O2-treated (H2O2 serving as a prototype for ROS) and 

acidic pH-treated pentameric CRP bound many different types of immobilized proteins including 

Aβ in an H2O2 concentration and pH dependent manner (8,5,7). Native WT CRP did not bind to 

these immobilized protein ligands even when the immobilized proteins were treated with acidic 

pH (5). This suggests that CRP acquires this new binding capability only when CRP is exposed to 

acidic or redox conditions, meaning when CRP is in its modified pentameric conformation and 

should involve a site which is hidden on WT CRP but exposed on modified CRP.  The interaction 

of CRP with many diverse protein ligands at inflammatory sites may therefore be due to the ROS 

rich and acidic microenvironment at inflammatory sites that cause modifications to proteins in the 

area including to CRP itself. This gives CRP the role of protecting against the toxicity of denatured 

proteins in inflammatory microenvironments. However, the binding of modified CRP to these 

many protein ligands may seem nonspecific unless they all exposed a common structure or pattern 

that is recognized by modified CRP. We therefore hypothesize that denatured, aggregated and 

immobilized proteins expose amyloid-like structures recognized by modified CRP. 
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In this study we investigate whether immobilizing proteins, which denatures them (30), 

also causes them to expose amyloid-like structures recognized and bound by acidic pH treated or 

mutated CRP. We also try to identify the site on modified CRP responsible for theses novel ligand 

binding capabilities by screening our library of CRP mutants with mutations in the Ca2+-binding 

site, the intersubunit region and the cholesterol-binding site (CBS). Using mutant CRP, which 

binds to Aβ without the need for acidic pH, we explored the significance of this interaction in fibril 

formation assays. While we were unable to identify the site on modified CRP responsible for 

interacting with immobilized protein ligands, we found that the interaction between mutant CRP 

and Aβ prevented the formation of amyloid fibrils de novo and stopped further fibril growth. 

 

 

Figure 4. 1:  Pairs of mutagenic oligonucleotides used in constructing CRP mutants. The 

sequences were designed based on the published sequence for WT CRP (51). Triplet codons of 

the mutated amino acids are boxed. Mutated bases are in red and bold. 
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Methods 

 

Construction and expression of mutant CRP cDNA 

We constructed CRP cDNA encoding the Y40A, L37A/H38A, L37F/H38A, H38A/F39A, 

H38A/Y40F, H38A/Y40A, and H38A/Y40F/E42Q mutants. The WT human CRP cDNA in the 

expression vector p91023 (31) was used as the template for the construction of Y40A CRP 

cDNA. H38A mutant CRP cDNA was used as a template to construct cDNAs for L37A/H38A, 

L37F/H38A, H38A/F39A, H38A/Y40F, and H38A/Y40A CRP mutants and Y40F/E42Q mutant 

CRP cDNA was used as a template to construct the cDNA for H38A/Y40F/E42Q. Site-directed 

mutagenesis was conducted using the QuikChange mutagenesis kit (Stratagene). Mutagenic 

oligonucleotides (Fig. 4.1) were designed according to the kit instructions and obtained from 

Integrated DNA Technologies. Mutations were verified by sequencing performed in our Core 

Facility. Two clones for each mutant were purified using the maxiprep plasmid isolation kit 

(Eppendorf). Mutant CRP cDNA constructs H38A, Y40F, E42Q, E147A, E147K, E147Q, 

Y40F/E42Q, F66A/E81A, and Y40F/P115A have been reported previously (33,34,32,5). CRP 

was expressed using the ExpiCHO-S expression system (Gibco) and following manufacturer’s 

instructions. Purification of mutant CRP from the culture media supernatant was done as 

described below. 

 

Purification of CRP 

Native WT CRP was purified from discarded human pleural fluid in a three step process 

previously described (35). Briefly, the first step involved a Ca2+-dependent affinity 

chromatography on a phosphocholine-Sepharose column (Pierce), followed by anion-exchange 

chromatography on a MonoQ column and gel filtration on a Superose12 column (GE Healthcare) 
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using the Biologic Duo Flow Protein Purification System (Bio-Rad). CRP mutants were purified 

from cell culture supernatants in two steps which involved a Ca2+-dependent affinity 

chromatography on a PCh-Sepharose column (Pierce) followed by gel filtration on a Superose12 

column (GE Healthcare). Purified CRP was stored frozen and on the day of the experiment CRP 

was repurified by gel filtration on a Superose12 column to remove any monomeric CRP that 

might have been generated due to storage. Repurified CRP was stored in 10 mm TBS (pH 7.2), 

containing 2 mm CaCl2 at 4 °C, and was used within a week. 

 

pH dependent protein ligand-binding assay 

To evaluate the binding activity of WT and mutant CRP to various ligands under different pH 

conditions, microtiter wells were coated either with 10 μg/ml amyloid β (fragment 1–42, catalog 

no. H-1368 1000, Bachem) or 2 μg/ml complement factor H ( Catalog no. A137, Complement 

Technology, inc.) diluted in TBS (100 μl/well) overnight at 4 °C. The unreacted sites in the wells 

were blocked with TBS containing 0.5% gelatin. Purified CRP was diluted to 10 μg/ml in TBS 

(pH 7.2 to 4.6) containing 0.1% gelatin, 0.02% Tween 20, and 2 mm CaCl2 (TBS-Ca) and added 

in duplicate wells (100 μl/well), then incubated for 2 h at 37 °C. The wells were washed with 

TBS-Ca and Rabbit anti-CRP antibody (Sigma), diluted 1/1000 in TBS-Ca, was used (100 

μl/well, 1 h at 37 °C) to detect bound CRP. HRP-conjugated donkey anti-rabbit IgG (GE 

Healthcare), diluted in TBS-Ca, was used as the secondary antibody (100 μl/well, 1 h at 37 °C). 

Color was developed, and the absorbance was read at 405 nm in a microtiter plate reader 

(Molecular Devices). 
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Amyloid-β / factor H binding assay 

This assay was used to determine the dose dependent binding of CRP to amyloid β and factor H. 

It was performed as described for the pH dependent protein ligand-binding assay, except that 

CRP was diluted either in pH 7.2 (WT and mutant CRP) or pH 4.6 (WT CRP) TBS-Ca buffers. 

 

Preparation of amyloid-β monomers 

The vial of lyophilized stock of synthetic amyloid β stored at -20 °C was equilibrated at room 

temperature for 30mins. Then a 1 mM amyloid β stock was prepared by adding 

hexafluoroisopropanol (HFIP) and incubating the solution at 37 °C for 1 h (221.7 µl of HFIP was 

used per mg amyloid β powder). After incubation, aliquots of 25 µl (0.1128 mg) where made in 

glass vials and HFIP removed by evaporation inside a fume hood overnight. The resulting 

peptide film was stored with desiccant at -20 °C until needed. 

 

Amyloid-β fibril formation and thioflavin T (ThT) Assay 

To begin, the amyloid β peptide film was taken out from -20 °C and allowed to come to room 

temperature. Then the peptide was resuspended in 50 µl of 10 mM Tris-HCl (0.5 mM amyloid β) 

and used to prepare an 800 µl reaction mix (30 µM amyloid β final concentration) by adding 10 

mM Tris-HCl, 150 mM NaCl, and 10 µM ThT with or without 4.3 µM CRP on ice. The reaction 

mix was then vortexed and 260 µl aliquots transferred in triplicate wells in a 96-well plate (266, 

Corning Costar, Immunochemistry Technologies). An initial reading was taken using the 

Synergy H1 microplate reader (BioTek) with excitation at 440 nm and emission at 480 nm. Then 

the plate was incubated at 37 °C with 300 rpm shaking for 24 h, taking additional readings every 

hour. 
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Results 

 

All experiments were performed at least three times with comparable results obtained each time. 

A representative figure is shown where the data used to plot the figures was in A405 absorbance 

units. 

 

Binding of CRP mutants to immobilized Aβ as a function of pH  

  In our quest to find CRP mutants that have lost the ability to bind immobilized protein 

ligands (Aβ as prototype) even at acidic pH; implying mutations to the multiple ligand binding 

(Aβ) site, or CRP mutants that are able to bind Aβ at physiological pH; to study the significance 

of this interaction, we screened our library of CRP mutants with mutations in the Ca2+-binding 

site, the intersubunit region, and the cholesterol-binding site (CBS). It is believed that CRP 

circulates in the body in its Ca2+-bound form and this helps protect the molecule from proteolytic 

cleavage as in the absence of Ca2+, a loop it hides that is prone to proteolysis moves out and is 

exposed to cleavage (36,37). Equally, the other putative sites were selected because they are 

buried within the WT CRP molecule and can only be exposed when CRP is modified.  

Fig. 4.2 shows the results of protein ligand-binding assays in which we determined the binding 

of CRP to immobilized Aβ as a function of pH (7.0–4.6). As seen in Fig. 4.2A, neutralizing the 

negative charge with a switch from Glu147
 to Ala (E147A) or maintaining the charge with a 

switch from Glu147
 to Gln (E147Q) did not affect the binding of mutant CRP as much as when 

the mutation involved changing the negatively charged Glu147
 to a positively charged Lys 

(E147K). The binding of E147K mutant CRP at pH 6.4 and lower was much reduced when 

compared to WT CRP. The double mutant F66A/E81A gave intermediate results. Meanwhile, 
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mutating amino acids in the intersubunit region of CRP did not yield mutants with binding 

deficiency to immobilized Aβ (Fig. 4.2B).  

 

Figure 4. 2: Binding of CRP to immobilized Aβ as a function of pH. Microtiter wells were 

coated with factor H, Ox-LDL and Aβ. The unreacted sites in the wells were blocked with 

gelatin. CRP (10 μg/ml), diluted in TBS-Ca, pH 7.0–4.6, was then added to the wells and 

incubated at 37 °C, for 2 h. Bound CRP was detected by using a rabbit polyclonal anti-CRP 

antibody and HRP-conjugated donkey anti-rabbit IgG. The absorbance of the developed color 

was read at 405 nm and plotted. 

 

However, when mutations where carried out in CBS (Fig. 4.2C and D), the resulting mutants 

showed a drastic lost in binding with comparative binding of WT CRP at pH 6.0 being similar to 

the binding of H38A and Y40F at pH 4.8. Binding to immobilized Aβ was not initiated until the 

pH dropped below 5.2 for both mutants. The double H38A/Y40F mutant with both mutations 
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surprisingly bound better than the single mutants. Albeit, it still bound less compared to WT 

CRP (Fig. 4.2C). In Fig. 4.2D, other CRP mutants with mutations to CBS were screened. They 

all bound to a similar degree as WT CRP except for Y40F/E42Q and the triple mutant 

H38A/Y40F/E42Q. CRP mutant Y40F/E42Q bound immobilized Aβ at physiological pH (pH 

7.2) 10 times better compared to WT CRP. Its binding was even more pronounced with 

decreasing pH, plateauing at pH ranges of 6.4 to 4.6. Additional mutation of His38
 to Ala 

inhibited some of the binding and also reduced the pH sensitivity of H38A/Y40F/E42Q, resulting 

in about the same binding at all pHs. Amidst our failure to identify the binding site on CRP for 

Aβ, we identified mutant Y40F/E42Q which binds immobilized Aβ at physiological pH and can 

be used to study the significance of these interactions between CRP and multiple ligands. 

Binding of CRP to immobilized factor H and Aβ  

We tested the binding of Y40F/E42Q CRP to another ligand, factor H, as a function of 

pH (Fig. 4.3A). The binding of Y40F/E42Q to immobilized factor H was similar to its binding to 

Aβ (Fig. 4.2D). This confirmed that the multiple ligand binding site of CRP was accessible on 

Y40F/E42Q CRP, making the molecule suitable for downstream studies as the requirement for 

an acidic environment was eliminated. Also, performing a CRP dose-response assay to compare 

the efficiency of binding of various CRP species to factor H and Aβ revealed that Y40F/E42Q 

CRP binds as efficiently as pH 4.6-treated CRP to these immobilized ligands (Fig. 4.3B and C). 

This further confirms the usability of Y40F/E42Q CRP to study the significance of CRP’s 

interaction with multiple immobilized ligands. WT CRP did not bind to either of these ligands. 
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Figure 4. 3: pH and dose dependent binding of CRP to immobilized factor H and Aβ. Microtiter 

wells were coated with factor H and Aβ. The unreacted sites in the wells were blocked with 

gelatin. (A)  CRP (10 μg/ml), diluted in TBS-Ca, pH 7.0–4.6 or (B and C) CRP, in increasing 

concentrations diluted in TBS-Ca, pH 7.2 or 4.6, was then added to the wells and incubated at 37 

°C, for 2 h. Bound CRP was detected by using a rabbit polyclonal anti-CRP antibody and HRP-

conjugated donkey anti-rabbit IgG. The absorbance of the developed color was read at 405 nm 

and plotted. 

 

Amyloid fibrillation assay with CRP 

After determining that Y40F/E42Q CRP was suitable for use in downstream studies, we 

investigated the significance of this interaction in the formation of fibrils by Aβ. Amyloid 

fibrillation is a distinctive feature in the development of Alzheimer’s disease. The results 

obtained from a thioflavin (ThT) assay showed that Y40F/E42Q mutant CRP prevents 

fibrillation. A slow build up was initially observed when WT CRP was used, but this effect was 

lost as time went on.  
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Figure 4. 4: The effect of CRP on Aβ amyloid fibril formation in Tris buffered saline. Amyloid 

fibril formation time course monitored by ThT fluorescence in the absence (black) or presence of 

0.4 µM CRP (red and blue).  

 

 

Discussion 

 

The ligand binding properties of WT CRP can be expanded beyond its ability to bind molecules 

and cells bearing exposed phosphocholine (PCh) at physiological pH to include immobilized, 

denatured and aggregated proteins when it is modified by acidic/redox conditions and 

mutagenesis (5–7,38). Given that acidic and redox conditions are associated with the 

microenvironment at various types of inflammatory sites (45,43,42,44,39–41), and that CRP has 

been shown to be localized at these sites of inflammation (18,17,20,21,19), suggest that this 

novel binding property is an innate characteristic of WT CRP only exploited in its non-

native/modified pentameric state. We have previously demonstrated that for the interaction 

between CRP and these various protein ligands to occur, both CRP and the protein ligands have 

to be subjected to the same mild denaturing conditions (5). Native WT CRP does not bind to 

these immobilized, denatured and aggregated protein ligands at physiological pH. However, 
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there has been debate regarding this multiple ligand binding property of modified CRP within the 

scientific community. Some speculated that the binding of CRP to these many protein ligands 

may be due to CRP being sticky and therefore the binding artefactual. However, as shown in Fig. 

4.3B and C, the interaction between modified pentameric CRP and immobilized protein ligands 

is dose dependent, suggesting specificity for the protein ligands and leading to our hypothesis 

that immobilized proteins present common unique structures with which modified CRP interacts. 

This means that CRP in its alternate pentameric conformation exposes a multiple ligand (Aβ) 

binding site which binds amyloid-like structures of immobilized denatured proteins. This is in 

contrast with the argument that the multiple ligand binding property of CRP could be artefactual 

and gives modified pentameric CRP specificity of interaction with these new ligands.  

We investigated the significance of the binding between CRP and these immobilized protein 

ligands. Knowing that CRP carries out general housekeeping functions in the body which include 

getting rid of misfolded, denatured and conformationally altered proteins to prevent the toxicity 

they generate, and that the interaction of CRP is probably with common amyloid-like structures 

of denatured proteins, we investigated the significance of this interaction with respect to amyloid 

fibril formation. We found that the interaction of modified CRP with Aβ prevents progression of 

amyloid fibrillation (Fig. 4.4).  

The location of the Aβ binding site on CRP is not known. However, studies have shown 

CRP to dose dependently inhibit both Aβ40 and D76N β2 -microglobulin fibril formation in a 

Ca2+- independent manner (46). CRP has also been shown to bind fibronectin (Fn) with high 

affinity Ca2+- independently (32) and site directed mutagenesis of the amino acids involved in 

coordinating Ca2+ greatly reduced the affinity of CRP for Fn. This suggested that the Ca2+-

binding site formed the Fn-binding site and therefore a putative Aβ binding site. However, acidic 
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pH conditions known to chelate Ca2+ bound CRP, cause the exposure of an otherwise buried loop 

prone to proteolytic cleavage (47). This renders Ca2+-free CRP very unstable. A second more 

stable and promising putative binding site is the cholesterol binding region (CBS; a.a. 35–47). 

This region is said to be intrinsically disordered and responsible for the binding of CRP to 

diverse protein ligands. Using a synthetic CBS peptide, the binding of CRP to all tested 

immobilized protein ligands was inhibited (48,49) suggesting that this region could be the 

multiple ligand (Aβ) binding site. However, the mutations we carried out to this site did not 

completely prevent the binding of modified CRP to immobilized Aβ. Given the reduction in 

binding seen especially with the single mutants H38A and Y40F, suggests the implication of this 

site. More studies are required to definitively identify this site as the multiple ligand or Aβ 

binding site. 

The deposition of amyloid fibrils as plaques is a key feature of many neurodegenerative 

diseases like Parkinson's and Alzheimer’s disease. The continuous accumulation of Aβ peptides 

trigger secondary pathogenic events leading to progressive cognitive impairment (50). Therapies 

geared at preventing the aggregation of Aβ into fibrils or methods of increasing the dissociation 

of these amyloid fibril plaques are potential strategies for combatting amyloid diseases. Modified 

pentameric CRP is a potential candidate for not only preventing the formation of amyloid fibrils 

but also stopping the progression of amyloid β deposition. 

 

 

 

 

 

 

 

 



104 
 

References 

1.  Volanakis JE, Kaplan MH. Specificity of C-reactive protein for choline phosphate 

residues of pneumococcal C-polysaccharide. Proc Soc Exp Biol Med (1971) 136:612–4. 

2.  Black S, Kushner I, Samols D. C-reactive Protein. J Biol Chem (2004) 279:48487–48490.  

3.  Du Clos TW. Pentraxins: Structure, Function, and Role in Inflammation. ISRN Inflamm 

(2013) 2013:1–22. 

4.  Dong A, Caughey WS, Du Clos TW. Effects of calcium, magnesium, and 

phosphorylcholine on secondary structures of human C-reactive protein and serum 

amyloid P component observed by infrared spectroscopy. J Biol Chem (1994) 269:6424–

30. 

5.  Hammond DJ, Singh SK, Thompson JA, Beeler BW, Rusiñol AE, Pangburn MK, et al. 

Identification of acidic pH-dependent ligands of pentameric C-reactive protein. J Biol 

Chem (2010) 285:36235–36244.  

6.  Singh SK, Thirumalai A, Hammond DJ, Pangburn MK, Mishra VK, Johnson DA, et al. 

Exposing a hidden functional site of C-reactive protein by site-directed mutagenesis. J 

Biol Chem (2012) 287:3550–8.  

7.  Singh SK, Thirumalai A, Pathak A, Ngwa DN, Agrawal A. Functional transformation of 

C-reactive protein by hydrogen peroxide. J Biol Chem (2017) 292:3129–3136.  

8.  Singh SK, Hammond DJ, Beeler BW, Agrawal A. The binding of C-reactive protein, in 

the presence of phosphoethanolamine, to low-density lipoproteins is due to 

phosphoethanolamine-generated acidic pH. Clin Chim Acta (2009) 409:143–144.  

9.  Sánchez-Corral P, Pérez-Caballero D, Huarte O, Simckes AM, Goicoechea E, López-

Trascasa M, et al. Structural and functional characterization of factor H mutations 

associated with atypical hemolytic uremic syndrome. Am J Hum Genet (2002) 71:1285–

95. 

10.  Cathcart ES, Shirahama T, Cohen AS. Isolation and identification of a plasma component 



105 
 

of amyloid. Biochim Biophys Acta - Protein Struct (1967) 147:392–393.  

11.  Hamley IW. The amyloid beta peptide: A chemist’s perspective. role in Alzheimer’s and 

fibrillization. Chem Rev (2012) 112:5147–5192. 

12.  Harper JD, Wong SS, Lieber CM, Lansbury PT. Observation of metastable Aβ amyloid 

protofibrils by atomic force microscopy. Chem Biol (1997) 4:119–125.  

13.  Lansbury PT, Lashuel HA. A century-old debate on protein aggregation and 

neurodegeneration enters the clinic. Nature (2006) 443:774–779.  

14.  Sgourakis NG, Yan Y, McCallum SA, Wang C, Garcia AE. The Alzheimer’s Peptides 

Aβ40 and 42 Adopt Distinct Conformations in Water: A Combined MD / NMR Study. J 

Mol Biol (2007) 368:1448–1457. 

15.  Jarrett JT, Berger EP, Lansbury PT. The Carboxy Terminus of the β Amyloid Protein Is 

Critical for the Seeding of Amyloid Formation: Implications for the Pathogenesis of 

Alzheimer’s Disease. Biochemistry (1993) 32:4693–4697.  

16.  Yasojima K, Schwab C, McGeer EG, McGeer PL. Human neurons generate C-reactive 

protein and amyloid P: Upregulation in Alzheimer’s disease. Brain Res (2000) 887:80–89.  

17.  Duong T, Nikolaeva M, Acton PJ. C-reactive protein-like immunoreactivity in the 

neurofibrillary tangles of Alzheimer’s disease. Brain Res (1997) 749:152–6.  

18.  Iwamoto N, Nishiyama E, Ohwada J, Arai H. Demonstration of CRP immunoreactivity in 

brains of Alzheimer’s disease: immunohistochemical study using formic acid pretreatment 

of tissue sections. Neurosci Lett (1994) 177:23–26. 

19.  Slevin M, Matou S, Zeinolabediny Y, Corpas R, Weston R, Liu D, et al. Monomeric C-

reactive protein - A key molecule driving development of Alzheimer’s disease associated 

with brain ischaemia? Sci Rep (2015) 5. 

20.  Strang F, Scheichl A, Chen YC, Wang X, Htun NM, Bassler N, et al. Amyloid plaques 

dissociate pentameric to monomeric C-reactive protein: A novel pathomechanism driving 



106 
 

cortical inflammation in Alzheimer’s disease? Brain Pathol (2012) 22:337–346.  

21.  Thiele JR, Habersberger J, Braig D, Schmidt Y, Goerendt K, Maurer V, et al. Dissociation 

of pentameric to monomeric C-reactive protein localizes and aggravates inflammation: In 

vivo proof of a powerful proinflammatory mechanism and a new anti-inflammatory 

strategy. Circulation (2014) 130:35–50.  

22.  Mancinella A, Mancinella M, Carpinteri G, Bellomo A, Fossati C, Gianturco V, et al. Is 

there a relationship between high C-reactive protein (CRP) levels and dementia? Arch 

Gerontol Geriatr (2009) 49 Suppl 1:185–194. 

23.  Schmidt R, Schmidt H, Curb JD, Masaki K, White LR, Launer LJ. Early inflammation 

and dementia: A 25-year follow-up of the Honolulu-Asia aging study. Ann Neurol (2002) 

52:168–174.  

24.  pH imbalance in astrocytes may lead to Alzheimer’s disease - DTR. Available at: 

https://www.drugtargetreview.com/news/34005/ph-imbalance-alzheimers/ [Accessed 

January 7, 2020] 

25.  pH Imbalance in Brain Cells May Contribute to Alzheimer’s Disease. Available at: 

https://www.hopkinsmedicine.org/news/newsroom/news-releases/ph-imbalance-in-brain-

cells-may-contribute-to-alzheimers-disease [Accessed January 7, 2020] 

26.  Su Y, Chang PT. Acidic pH promotes the formation of toxic fibrils from β-amyloid 

peptide. Brain Res (2001) 893:287–291.  

27.  Cheignon C, Tomas M, Bonnefont-Rousselot D, Faller P, Hureau C, Collin F. Oxidative 

stress and the amyloid beta peptide in Alzheimer’s disease. Redox Biol (2018) 14:450–

464. 

28.  Tönnies E, Trushina E. Oxidative Stress, Synaptic Dysfunction, and Alzheimer’s Disease. 

J Alzheimer’s Dis (2017) 57:1105–1121. 

29.  Agrawal A, Gang TB, Rusiñol AE. Recognition functions of pentameric c-reactive protein 

in cardiovascular disease. Mediators Inflamm (2014) 2014. 



107 
 

30.  Gibbs J, Vessels M, Rothenberg M, Ph D. Immobilization Principles – Selecting the 

Surface for ELISA Assays Application Note.1–6. 

31.  Agrawal A, Lee S, Carson M, Narayana S V, Greenhough TJ, Volanakis JE. Site-directed 

mutagenesis of the phosphocholine-binding site of human C-reactive protein: role of 

Thr76 and Trp67. J Immunol (1997) 158:345–350.  

32.  Suresh M V., Singh SK, Agrawal A. Interaction of Calcium-bound C-reactive Protein with 

Fibronectin Is Controlled by pH. J Biol Chem (2004) 279:52552–52557.  

33.  Agrawal A, Xu Y, Ansardi D, Macon KJ, Volanakis JE. Probing the phosphocholine-

binding site of human C-reactive protein by site-directed mutagenesis. J Biol Chem (1992) 

267:25352–25358. 

34.  Agrawal A, Simpson MJ, Black S, Carey MP, Samols D. A C-Reactive Protein Mutant 

That Does Not Bind to Phosphocholine and Pneumococcal C-Polysaccharide. J Immunol 

(2002) 169:3217–3222. 

35.  Suresh M V, Singh SK, Ferguson DA, Agrawal A, Agrawal A. Role of the property of C-

reactive protein to activate the classical pathway of complement in protecting mice from 

pneumococcal infection. J Immunol (2006) 176:4369–74. 

36.  Shrive AK, Cheetham GMT, Holden D, Myles DAA, Turnell WG, Volanakis JE, et al. 

Three dimensional structure of human C-reactive protein. Nat Struct Biol (1996) 3:346–

354. 

37.  Ramadan MAM, Shrive AK, Holden D, Myles DAA, Volanakis JE, DeLucas LJ, et al. 

The three-dimensional structure of calcium-depleted human C-reactive protein from 

perfectly twinned crystals. Acta Crystallogr D Biol Crystallogr (2002) 58:992–1001.  

38.  Ngwa DN, Agrawal A. Structure-Function Relationships of C-Reactive Protein in 

Bacterial Infection. Front Immunol (2019) 10:166. 

39.  Hunt JF, Fang K, Malik R, Snyder A, Malhotra N, Platts-Mills TAE, et al. Endogenous 

airway acidification: Implications for asthma pathophysiology. Am J Respir Crit Care 



108 
 

Med (2000) 161:694–699. 

40.  Patel RP, Moellering D, Murphy-Ullrich J, Jo H, Beckman JS, Darley-Usmar VM. Cell 

signaling by reactive nitrogen and oxygen species in atherosclerosis. Free Radic Biol Med 

(2000) 28:1780–1794.  

41.  Papaharalambus CA, Griendling KK. Basic Mechanisms of Oxidative Stress and Reactive 

Oxygen Species in Cardiovascular Injury. Trends Cardiovasc Med (2007) 17:48–54.  

42.  Tannock IF, Rotin D. Acid pH in Tumors and Its Potential for Therapeutic Exploitation. 

Cancer Res (1989) 49:4373–4384. 

43.  Ward TT, Steigbigel RT. Acidosis of synovial fluid correlates with synovial fluid 

leukocytosis. Am J Med (1978) 64:933–936.  

44.  Simmen HP, Blaser J. Analysis of pH and pO2 in abscesses, peritoneal fluid, and drainage 

fluid in the presence or absence of bacterial infection during and after abdominal surgery. 

Am J Surg (1993) 166:24–27. 

45.  Edlow DW, Sheldon WH. The pH of inflammatory exudates. Proc Soc Exp Biol Med 

(1971) 137:1328–32. 

46.  Ozawa D, Nomura R, Mangione PP, Hasegawa K, Okoshi T, Porcari R, et al. Multifaceted 

anti-amyloidogenic and pro-amyloidogenic effects of C-reactive protein and serum 

amyloid P component in vitro. Sci Rep (2016) 6. 

47.  Kinoshita CM, Ying SC, Hugli TE, Siegel JN, Potempa LA, Jiang H, et al. Elucidation of 

a protease-sensitive site involved in the binding of calcium to C-reactive protein. 

Biochemistry (1989) 28:9840–9848. 

48.  Li H-Y, Wang J, Meng F, Jia Z-K, Su Y, Bai Q-F, et al. An Intrinsically Disordered Motif 

Mediates Diverse Actions of Monomeric C-reactive Protein. J Biol Chem (2016) 

291:8795–8804.  

49.  Ullah N, Ma FR, Han J, Liu XL, Fu Y, Liu YT, et al. Monomeric C-reactive protein 



109 
 

regulates fibronectin mediated monocyte adhesion. Mol Immunol (2020) 117:122–130.  

50.  Hardy J, Selkoe DJ. The amyloid hypothesis of Alzheimer’s disease: Progress and 

problems on the road to therapeutics. Science (80- ) (2002) 297:353–356.  

51.  Woo P, Korenberg JR, Whitehead AS. Characterization of genomic and complementary 

DNA sequence of human C-reactive protein, and comparison with the complementary 

DNA sequence of serum amyloid P component. J Biol Chem (1985) 260:13384–8.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



110 
 

CHAPTER 5: THE CONTRIBUTION OF CCAAT-ENHANCER-BINDING PROTEINS 

IN THE TRANSCRIPTIONAL REGULATION OF THE C-REACTIVE PROTEIN 

GENE  

 

 

 

 

Running title: The role of the two CCAAT-enhancer-binding protein promoter sites in 

mediating C-reactive protein gene expression 

 

 

 

Donald N. Ngwa, and Alok Agrawal1 

 

1Department of Biomedical Sciences, James H. Quillen College of Medicine, East Tennessee 

State University, Johnson City, TN, USA 

 

 

 

Number of words: 4180 

 

 

 Correspondence should be addressed to: AA (agrawal@etsu.edu) 

 

mailto:agrawal@etsu.edu)


111 
 

Abstract 

 

Human C-reactive protein (CRP) is mainly produced by hepatocytes and its levels go up in both 

acute and chronic inflammation. In Hep3B cells, the cytokine IL-6 induces CRP gene expression 

by activating the transcription factors C/EBPβ and STAT3. Cytokine IL-1β alone cannot induce 

CRP expression, but synergistically enhances the effects of IL-6 by activating the transcription 

factor NF-κB. This synergy can be seen with the first 157 bp proximal CRP promoter region. 

However, an increased expression of the CRP gene is seen when the longer 300 bp proximal 

CRP promoter is used compared to the shorter 157 bp proximal promoter. The reason for this 

enhanced expression is not known. We hypothesize that a second C/EBP site centered at position 

-219 of the CRP promoter is responsible for this enhanced expression. Therefore, with the use of 

mutagenic probes in transactivation (Luc) assays we were able to show that this site was not only 

critical for the increased expression seen with the longer 300 bp promoter but also that it worked 

in synergy with the downstream C/EBP site at -52 to fully activate CRP gene expression. We 

also found that the upstream C/EBP site worked independent of both NF-κB and STAT3, two 

transcription factors known to induce CRP gene expression. 
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Introduction 

 

C-reactive protein (CRP) is a member of the pentraxin family of proteins and a major 

acute-phase protein (1–3). It is synthesized primarily by liver hepatocytes and maintained in 

circulation at a median serum concentration of 0.8 mg/L. Following an inflammatory insult or 

bacterial infection, serum CRP levels surge sometimes several hundred fold above basal levels 

(4,5). Serum CRP levels rise in both acute and chronic inflammation (6). After the resolution of 

inflammation, CRP levels immediately fall back to basal levels (4). Thus, levels of CRP are 

measured to evaluate the general inflammatory state of the body  (7,8). Due to the nature of the 

CRP gene to cause fluctuations in CRP expression, it has become a point of intrigue to 

understand how it is regulated. 

At the transcriptional level, where the regulation of the CRP gene occurs, cytokines IL-

1β, IL-6, IL-17, TGFβ, and TNFα have been shown to modulate its induction (9,10,19,11–18). In 

human hepatoma Hep3B cells which are the most commonly used model to study CRP gene 

expression, expression of the CRP gene is primarily regulated by cytokines IL-6 and IL-1β (20). 

IL-6 activates transcription factors STAT3 and C/EBPβ to induce a modest expression of the 

CRP gene while IL-1β, which alone does not affect the expression of CRP, together with IL-6 

synergistically enhances the induction of CRP gene expression (9,17,21–24). However, the 

mechanism by which IL-1β synergistically enhances the effects of IL-6 induction of the CRP 

gene remains elusive but may involve the IL-1β response element Rel protein/NF-κB family of 

transcription factors (25). We have previously showed that the binding of Rel proteins p50 and 

p52 to a nonconsensus κB site overlapping the proximal C/EBP binding site on the CRP 

promoter is a requirement for C/EBPβ to bind to its cognate site (10). This association may be 
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key to the synergistic action of the two cytokines. Also, the first 157 bp of the CRP promoter 

have been shown to be sufficient for the synergistic actions of IL-6 and IL-1β (9,11,12,26).  

In addition to the improved induction of the CRP gene seen with a combination of IL-6 

and IL-1β observable with only the first 157 bp of the CRP promoter, Hep3B cells consistently 

show better induction of CRP gene expression when the 300 bp proximal CRP promoter is used 

compared to the proximal 157 bp (9,27). Most of the binding sites for transcription factors 

involved in regulating CRP gene expression identified so far are located within the 157 bp 

proximal CRP promoter (Fig 5.1a). C/EBP has two identified sites on the CRP promoter; one 

centered at position -52 and a second at -219 (23,28). Therefore, in this study, we decided to 

evaluate the contribution of the C/EBP site at position -219 given that a better induction is seen 

with the 300 pb promoter compared to the 157 pb promoter which lacks this upstream C/EBP 

site (at -219). We focused on understanding the role of the -219 C/EBP site in CRP gene 

expression, as well as investigating the mechanism of action of this site in inducing CRP gene 

expression all in the context of the 300 bp CRP promoter. We found that the -219 C/EBP site 

was not only crucial for the enhanced expression of the CRP gene seen with the 300 pb 

promoter, but also that it worked in synergy with the downstream C/EPB site at -52 to induce 

this CRP expression. No direct crosstalk was seen with the C/EPB site at -219 and NF-κB or 

STAT3 sites of the CRP promoter (Fig 5.1A) known to be involved in CRP gene expression. We 

therefore conclude that the C/EPB site at -219 is critical for the full activation of the CRP gene, 

working in synergy with the C/EBP site at -52 but independent (at least directly) of the NF-κB 

and STAT3 sites at -69 and -108 respectively known to promote CRP gene expression. 
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Figure 5. 1: CRP promoter and oligos used to study the role of C/EBPβ in CRP gene regulation. 

(A) The −300 to +3 region of the CRP gene is shown. The binding sites of various transcription 

factors on the promoter are boxed. (B) Sequences of the WT and mutagenic oligos derived from 

the CRP promoter and used as probes in EMSA. (C) Sequences of the mutagenic oligos used for 

mutagenesis of the CRP promoter and used as probes for Luc assays. Mutated bases are in red 

and binding sites underlined. 
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Methods 

 

Electrophoretic mobility shift assays (EMSA) 

 

Hep3B cells cultured in 100 mm dishes were subjected to overnight serum starvation 

and then treated with IL-6 for 18 h, as described previously (10). The confluency of cells was 

approximately 60% at the time of treatment. IL-6 (R&D) was used at a concentration of 10 

ng/ml. Nuclear extracts were prepared by using NE-PER nuclear and cytoplasmic kit (Pierce), as 

described previously (21). The sequences of the oligonucleotides (Integrated DNA 

Technologies) used in EMSA are shown in Fig. 5.1B. Probes were prepared by annealing 

complementary oligos and labelling with [ 32P] ATP. The probe-nuclear extract reaction buffer 

contained 16 mM HEPES (pH 7.9), 40 mM KCl, 1 mM EDTA, 2.5 mM DTT, 0.15% Nonidet P-

40, 8% Histopaque, and 1 μg of poly dI-dC. In super shift experiments, antibodies to C/EBPβ 

(C19, Santa Cruz Biotechnologies) used at 2 μg, were added to the reaction mixture and 

incubated on ice for 15 min before adding the probe. Then, 150 ng of unlabeled oligos was added 

to the reaction mixture before addition of the antibody and probe in oligo competition 

experiments. DNA-protein complexes were resolved in native 5% polyacrylamide gels 

containing 2.5% glycerol and visualized in a phosphorimager using Image-Quant software (GE 

Healthcare). 

 

Construction of CRP promoter-luciferase (Luc) reporter vectors 

 

Making the WT CRP promoter constructs, Luc 157 WT (−157/+3 of CRP gene) and Luc 300 

WT (−300/−1 of CRP promoter), has been reported previously (9,10,29). These two WT 
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constructs were used as templates for mutagenesis of the CRP promoter by using the 

QuickChange site-directed mutagenesis kit (Stratagene). The mutagenic primers are shown in 

Fig. 5.1C. Double mutants of C/EBP (-52) and NF-κB (-69) or C/EBP (-52) and STAT3 (-108) 

where made using Luc 300/157 mut C/EBP (-52)  as template while the double mutant of NF-κB 

(-69) and STAT3 (-108) was made using Luc 300/157 STAT3 (-108) as template. As for the 

triple mutant with mutations to C/EBP (-52), NF-κB (-69), and STAT3 (-108), the template used 

was Luc 300/157 mut C/EBP (-52) & NF-κB (-69). Mutations were verified by sequencing and 

plasmids were purified using maxiprep plasmid isolation kit (Eppendorf).  

 

Luciferase transactivation assays (Luc assays) 

 

Hep3B cells were cultured in 6-well plates. Transient transfections were done on cells at 60% 

confluency using FuGENE 6 reagent (Promega) according to manufacturer's instructions. The 

CRP promoter-Luc reporter constructs were used at 1 μg plasmid per well in 10 l FuGENE 6 

and 125 l RPMI-1640, and the mixture incubated for 20 mins at RT before adding to wells. 

After transfection, cells were left in serum-free medium and 16 h later, the transfected cells were 

treated with IL-6 and/or IL-1β for 24 h or left untreated. IL-6 (R&D) was used at a concentration 

of 10 ng/ml and IL-1β was used at a concentration of 1 ng/ml. 40 h post transfection, Luc assays 

were performed following the protocol supplied by the manufacturer (Promega). Luc activity 

was measured in a luminometer (Molecular Devices), as described previously (21). 
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Results 

 

The binding of C/EBPβ to the site centered at -219 on the CRP  

To demonstrate that C/EBPβ binds to its cognate site centered at -219 upstream of the 

CRP promoter, we performed an EMSA using a 29 bp oligo (WT C/EBP upstream oligo; 

Fig.5.1B). Nuclear extract from Hep3B cells treated with IL-6 for 18 h was used as the source of 

C/EBPβ. A faint C/EBPβ complex was observed (Fig. 5.2; lane 1). 

Figure 5. 2: Mutations to the upstream C/EBP site (-219) results in the abolition of C/EBPβ 

binding. A representative EMSA using the upstream WT and mutagenic C/EBP oligo as probe is 

shown. Nuclear extract from 18h, IL-6 treated Hep3B cells was used. 

 

The faint complex contained C/EBPβ because it was super shifted when C/EBPβ specific 

antibodies were used (Fig. 5.2; lane 3). Mutating the C/EBP site on this oligo (m-C/EBP 

upstream oligo; Fig. 5.1B) resulted in the abolition of C/EBPβ binding to the probe (Fig. 5.2; 
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lanes 4 and 6). This confirmed that the mutations done to this site prevents the binding of 

C/EBPβ and therefore that repeating these mutations on probes to be used in the subsequent 

functional transactivation assays (Luc assays) would be sufficient to investigate how this site 

affects the induction of the CRP gene. 

 

The C/EBP site at -219 is critical for the enhanced response with Luc 300  

A better induction of the CRP gene has been reported in Hep3B cells when the proximal 

300 bp CRP promoter was used compared to the proximal 157 bp promoter (9,27). Therefore, to 

investigate the contribution of the C/EBP site at -219 in this better induction of CRP gene 

expression, we mutated this upstream C/EBP site (m-C/EBP upstream; Fig. 5.1C) exactly as with 

the EMSA probe aforementioned. This probe together with the WT probe was then used to test 

CRP gene induction in a Luc assay (Fig. 5.3). For maximum induction of the gene, Hep3B cells 

were treated with a combination of IL-6 and IL-1β. We found that mutating the upstream C/EBP 

site resulted in a drastic loss of CRP gene expression (approximately 67% drop). However, the 

Luc 300 mC/EBP reporter construct was still 2 times better at inducing CRP gene expression 

compared to the Luc 157 WT reporter construct, suggesting that there may be another site 

contributing to CRP gene expression upstream of the proximal 157 CRP promoter. We conclude 

from these results that the upstream C/EBP site is very critical for the full activation of the CRP 

gene. 

 

 



119 
 

The two C/EBP sites at -219 and -52 work in synergy to activate CRP gene expression 

To investigate the mechanism of the upstream C/EBPβ-mediated activation of CRP 

expression, we used mutated C/EBP promoter constructs with mutations to the upstream and/or 

downstream C/EBP sites. 

Figure 5. 3: The C/EBP site at -219 is critical for the enhanced response with Luc 300. Hep3B 

cells were transfected with Luc 300 WT, Luc 300 mC/EBP, and Luc 157 WT CRP promoter 

constructs. After 40 h, CRP transcription was measured as Luc activity and plotted on the y-axis. 

Average ± S.E.M. of three experiments are shown. Unpaired two-tailed Students t-test was used 

to calculate p values. 

 

Unlike the upstream C/EBP site mutations which resulted in about 67% drop in CRP gene 

activation, results were even more drastic when the downstream C/EBP site (-52) was mutated 

(about 83% drop) (Fig. 5.4). Suggesting that the downstream C/EBP site is more critical for the 

activation of CRP gene expression than the upstream -219 C/EBP site. Conversely, the results 

also indicate that these two sites work in synergy to activate CRP gene expression as the additive 

results of single C/EBP site mutations was lower than the combined effect when both sites were 
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present. Mutating both C/EBP sites resulted in a complete loss of CRP gene expression (Fig. 5.4) 

indicating unequivocally that C/EBPβ is the principal activator of the CRP gene. 

 

Figure 5. 4: The two C/EBP sites of CRP promoter work in synergy to induce CRP expression. 

Hep3B cells were transfected with Luc 300 WT, Luc 300 mC/EBP (-219), Luc 300 mC/EBP (-

52), and Luc 300 double mC/EBP (-52 and -219) CRP promoter constructs. After 40 h, CRP 

transcription was measured as Luc activity and plotted on the y-axis. Average ± S.E.M. of three 

experiments are shown. Unpaired two-tailed Students t-test was used to calculate p values. 

 

CRP gene expression due to the C/EBP site at -219 is not affected by other sites known to induce 

CRP gene  

CRP gene expression with the Luc 300 promoter construct is always higher than with the 

Luc 157 promoter construct. This, as shown earlier, is due to the synergy between the two 

C/EBP sites at -52 and -219 (Fig. 5.4). Likewise, CRP gene expression was always better with 

mutant Luc 300 promoter constructs compared to matching mutations on Luc 157 promoter 

constructs (Fig. 5.5A and B). Mutations were introduced to sites of the CRP promoter known to 

directly participate in CRP gene expression. These included double and triple mutations of 

L u c  3
0 0  W

T

L u c  3
0 0  m

C
/E

B
P  ( -

2 1 9 )

L u c  3
0 0  m

C
/E

B
P  ( -

5 2 )

L u c  3
0 0  m

C
/E

B
P  ( -

5 2 /-2
1 9 )

0

2 0

4 0

6 0

8 0

L
u

c
 a

c
ti

v
it

y
 (

F
o

ld
)

B a sa l

IL -6 + IL -1 

p = 0.0248  

p = 0.2466  



121 
 

C/EBP (-52), NF-κB (-69), and STAT3 (-108) sites, referred to with single letters C, N, and S 

respectively (Fig. 5.5A and B). Interestingly, the trend in CRP gene expression was very similar 

with both Luc 300 and Luc 157 promoter constructs (Fig. 5.5A and B). However, when the NF-

κB (-69) and STAT3 (-108) sites where mutated (mNS), a peak was observed with Luc 300 (Fig. 

5.5A) compared to a drop with Luc 157 (Fig. 5.5B). This could be due to the synergistic effect of 

the two C/EBP sites present on the Luc 300 promoter constructs. Given that a similar trend or 

drop in CRP gene activation relative to respective WT Luc promoter constructs was seen with or 

without contributions from the upstream C/EBP site (-219), suggest that the upstream C/EBP site 

works independent of the NF-κB (-69), and STAT3 (-108) sites of the CRP promoter. P values of 

0.0317 and 0.0635 where obtained when comparing the trend of both graphs with and without 

Luc 300 mNS respectively. 

 

 

 

 

 

 

 

 

Figure 5. 5: C/EBP site at -219 works independent of NF-κB (-69), and STAT3 (-108) sites of 

the CRP promoter. Hep3B cells were transfected with (A) Luc 300 WT and mutant CRP 

promoter constructs, and (B) Luc 157 WT and mutant CRP promoter constructs. After 40 h, CRP 

transcription was measured as Luc activity and plotted on the y-axis. Unpaired two-tailed 

Students t-test was used to calculate p values. 
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Discussion  

 

CRP is a very important molecule of the human immune system. Its expression is tightly 

regulated by a combination of both constitutively and cytokine induced transcription factors. In 

this study, we investigate one of these transcription factors, C/EBPβ, which is believed to play a 

central role along with STAT3 in CRP gene expression. We focused on the C/EBP site centered 

at position -219 of CRP promoter region -300/+3. We found that 1) The C/EBP site at -219 was 

critical for the full activation of CRP gene expression. 2) The two C/EBP sites, one centered at -

219 and the other at -52 of the CRP promoter work in synergy to activate the CRP gene 3) 

C/EBPβ bound to its site at -219 work independent of NF-κB, and STAT3 bound to their 

respective sites at -69 and -108 of the CRP promoter. Taken together, our data show that for the 

full induction of CRP gene expression, both C/EBP sites have to participate.  

The C/EBP site centered at -219 was initially identified by Li and Goldman in 1996 (23) 

and said to participate in CRP gene expression. Consistent with their findings, we observed that 

CRP gene expression was increased when the proximal 300 bp CRP promoter containing this 

upstream C/EBP site was used compared to using the proximal 157 bp promoter which lacked 

this site (9,27). The reason for the increase expression was not known but thought to be in part 

due to the upstream C/EBP site at position -219. However, given the nature of the CRP gene 

promoter with several crowded and overlapping binding sites within the proximal 157 bp (Fig. 

5.1A) and how far upstream the second C/EBP site is (at -219), it is posible that other sites yet to 

be identified between this crowded region and the upstream C/EBP site could be an additional 

reason for the better expression seen with the 300 bp promoter. We decided to abolish by 

mutagenesis the influence of the -219 C/EBP site in the induction of CRP gene to determine how 

much this site actually contributes to CRP gene expression. Using transfected Hep3B cells in 
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transactivation (Luc) assays with CRP promoter constructs, we noticed a 67% drop in CRP 

expression when the upstream C/EBP site was mutated. However, given that the drop in 

expression was still better than the overall expression seen with Luc 157 WT promoter construct, 

suggest that there may be other site(s) upstream of the proximal 157 bp promoter that participate 

in CRP gene expression. IL-6 is known to induce CRP gene expression modestly, but in 

combination with IL-1β synergistically induce CRP gene expression (16). IL-6 activates both 

C/EBPβ and STAT3 and therefore we propose that other contributing site may be a STAT3 site 

as no other C/EBP site but for the one at -219 is found upstream of the proximmal 157 bp CRP 

promoter. When the downstream C/EBP site at -52 was mutated, the loss in CRP gene 

expression was greater than seen with the abolition of upstream C/EBPβ binding (83% drop). 

This suggests that the downstream C/EBP site is of greater importance for CRP gene expression. 

However, it is not known whether this loss in CRP gene expression was due solely to the loss of  

C/EBPβ binding to this downstream  site or because mutations to this site also affected nearby 

binding of other transcription factors important for CRP expression, given the crowded nature of 

the region. The double mutation of both C/EBP sites resulted in a complete loss of CRP gene 

expression and this highlights the predominance of C/EBPβ in CRP gene expression. Mutating 

other sites like the NF-κB and STAT3 sites known to induce CRP gene expression resulted in the 

loss of CRP gene expression but did not seem to be influenced by the presence or absence of the 

upstream C/EBP site and therefore it seems that this upstream C/EBP site works independent of 

the NF-κB and STAT3 sites. In conclusion, we found that the full activation of the CRP gene 

was mainly due to the synergy between the two C/EBP sites at -52 and -219 of the CRP 

promoter. 
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CHAPTER 6: SUMMARY 

 

 

This work was conducted under the following specific aims: 

1. To determine the role of complement in CRP mediated protection against pneumococcal 

infection in mice. 

a. Identify a CRP mutant that does not activate the mouse complement system.  

b. Investigate the protective effects of this CRP mutant in a mouse model of 

pneumococcal infection. 

2. To determine the efficacy of a CRP mutant capable of binding to factor H in protection 

against pneumococcal infection. 

a. Investigate the efficacy in a late-stage infection model in which native CRP has 

been shown to be ineffective.  

b. Investigate the protective effects of the CRP mutant when combined with an 

antibiotic in both early-stage and late-stage infection models. 

3. To investigate the mechanism of binding of CRP to aggregated and immobilized proteins 

including factor H. 

a. To define the ligand-binding site on CRP when CRP is in its alternate pentameric 

structural conformation. 

b. To evaluate the significance of the interaction of modified CRP with aggregated 

and immobilized protein ligands. 

4. To define the role of the transcription factor C/EBPβ in IL-6-induced CRP expression in 

hepatic cells. 
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a. Investigate the role of the C/EBP-binding sites located at positions -52 and -219 

on the CRP promoter.  

b. Investigate the interactions of C/EBPβ with other transcription factors bound to 

the nearby and overlapping sites on the promoter. 

 

Our major findings from investigating the importance of complement activation in CRP-

mediated protection against pneumococcal infection were: 

1. Mutating His38
 →Arg resulted in a CRP mutant that neither activates human nor mouse 

complement as determined by measuring C3 deposition. Meanwhile, His38
 →Ala mutation 

did not produce a mutant with the same deficiency in complement activation as H38R CRP. 

2. H38R mutant CRP did not protect mice from pneumococcal infection as seen with H38A and 

WT CRP, implying the activation of complement is critical for CRP-mediated protection 

against pneumococcal infection in mice. 

 

AIM 1 Limitations 

A drawback in this study is that we do not know for certain what specific pathway of 

complement is involved in CRP-mediated protection against pneumococcal infection in mice. It 

was shown earlier that human CRP does not bind mouse C1q, meaning that the classical pathway 

of complement is probably not used in CRP mediated protection of mice. The alternative 

pathway is always on and can be activated by bacteria alone. Therefore, the lectin pathway 

remains the primary suspected pathway to be involved. H38R does not activate complement and 

therefore cannot be used to investigate what pathway of complement is activated in CRP-
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mediated protection. However, mice deficient in specific complement components corresponding 

with specific complement pathways should eventually answer this question. 

 

The main findings from our work to understand the anti-pneumococcal properties of CRP in late 

stage infection models were: 

1. E-CRPs bind immobilized factor H at physiological pH. Binding to immobilized factor H 

requires CRP to be in its modified conformation.  

2. Both E-CRPs are not sequestered by serum components and their rate of clearance was not 

faster than seen with WT CRP. Therefore, E-CRPs were readily available in mice circulation 

during infection experiments. 

3. Pneumococci recruit factor H to their surface in the later stages of infection, making them 

complement resistant. In vivo isolated bacteria tested positive for factor H whereas broth 

grown bacteria did not. 

4. E-CRP-1 with its PCh binding site mutated was very effectively inhibited from binding to 

PnC by either PCh or dAMP as might be expected. WT CRP required approximately 10 

times higher concentration of inhibitors to achieve the same level of inhibition. In contrast, 

E-CRP-1 was found to bind with greater affinity to broth grown bacteria requiring levels of 

inhibitor greater than required for WT CRP for similar inhibition. This suggests, that E-CRP 

does not interact with the PCh on bacteria. This was confirmed when E-CRP-1 bound broth 

grown bacteria in the absence of calcium (a requirement for PCh binding by CRP). 

5. E-CRPs protect against pneumococcal infections in both early and late stages of infection. 

Multiple injections of E-CRP given in the late stage were no more protective than a single 

injection. However, the level of protection provided by early administration of E-CRP was 
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higher than when E-CRP was administered in the late stages as determined by both survival 

and bacteremia data. 

6. Both E-CRPs work synergistically with the antibiotic clarithromycin to protect mice against 

late stage pneumococcal infection.  

 

AIM 2 Limitations 

The main drawback in this study was our inability to show E-CRP on the surface of in vivo 

isolated bacteria (Pn-mice). This was because of the cross reactivity of anti-human/mouse CRP 

antibodies for both human and mouse CRPs. So, all in vivo isolated bacteria, even those from 

infected control mice (no exogenous CRP injections), tested positive for human CRP. 

Nonetheless, in the in vitro assays, we were able to show that E-CRP binds to both Pn-mice and 

Pn-broth allowing us to proceed with our experiments. Our future experiments will include the 

use of CRP knockout mice, to completely nullify any contributions made by mouse CRP in the 

protection against pneumococcal infection and making it possible to study exclusively the anti-

pneumococcal properties of exogenously administered CRP. 

 

The major findings from our work to investigate the multiple ligand binding properties of CRP 

were:  

1. CRP can assume three different structural conformations and all three forms; native 

pentameric, non-native pentameric, and monomeric CRP display different ligand recognition 

functions in vitro. 
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2. Immobilizing proteins may cause them to expose amyloid-like structures recognized by non-

native (modified) pentameric CRP. 

3. E-CRP-2, prevents the formation of amyloid fibrils suggesting that CRP is an anti-

amyloidogenic protein. 

 

AIM 3 Limitations 

The main difficulty in this study was identifying the Aβ binding site on CRP. The most 

promising putative site was the cholesterol binding site. However, mutant CRPs generated with 

mutations to this site or other putative sites did not abrogate the multiple ligand binding ability of 

modified CRP. Some mutants did show reduced binding, but we were not able to completely 

block the multiple ligand binding ability of modified CRP. Even if we were able to prevent the 

binding of modified CRP to immobilized ligands by mutagenesis, it still might not mean that the 

mutations were at the Aβ binding site, since mutations at other regions can cause modifications 

to this binding site. We could also have a situation where the binding site is formed by different 

amino acids in the different CRP subunits. In which case, finding the binding site by mutagenesis 

will be extremely difficult with current technology. 

 

Our major findings investigating the transcriptional regulation of the CRP gene were; 

1. The C/EBP site at -222 is critical for the full activation (induction) of the CRP gene 

expression as determined by luciferase activity. 

2. The upstream C/EBP site at -222 does not work with other known sites of the CRP promoter 

except for the C/EBP site at -53, where they work in synergy to induce CRP gene expression. 
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AIM 4 Limitations 

The major drawback of this study is that only a fragment of the CRP promoter is used to 

investigate its gene regulation. This approach cannot give a complete picture of the regulation of 

CRP gene expression. Therefore, other techniques such as chromatin immunoprecipitation 

(ChIP) are needed for a more accurate understanding of how the CRP gene is regulated. One 

other drawback is the use in this study of only the Hep3B cell line. The results should be 

confirmed using other cell lines such as the HepG2 cell line as well as primary human 

hepatocytes. 
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