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ABSTRACT 

Exploration of Ataxia Telangiectasia and Rad3-Related’s (ATR's) Role in Cell Death Regulation: 

Implications in Development, Cancer, and Stroke 

by 

Brian Michael Cartwright  

From gametogenesis until death an organism’s genome is under constant bombardment from 

endogenous and exogenous sources of DNA damage. To maintain genomic integrity amid this 

damage, cells have evolved responses which allow them to either preserve viability for recovery 

or initiate self-destructive pathways depending on the severity of DNA damage. One protein 

involved in initiating and carrying out these responses is the protein kinase ataxia telangiectasia 

and Rad3-related (ATR). ATR is known primarily for its regulatory role in initiating the 

checkpoint-signaling cascade following DNA damage and replicative stress. These signaling 

events lead to cell cycle arrest, DNA repair, or apoptosis when damage is too extreme.  In 

addition to these kinase-dependent roles, ATR also is capable of directly blocking the intrinsic 

apoptotic pathway through structural sequestration of the proapoptotic protein tBid. The sum of 

these regulatory events is a delicate balancing act resulting in either cell death or cell survival 

depending on the severity of the damage and the differentiation state of the cell in question. In 

the following studies, we sought to investigate the complex interplay of ATR’s kinase and 

structural roles in determining cellular fate. First, we investigated the structural role of prolyl 

isomerization of ATR across development by using mouse models of two isomerically locked 

forms of ATR which were previously shown to lock cytoplasmic ATR into a single isomer. 

Studies showed that ATR which is locked in ATR-L (trans-ATR, hATR-P429A/mATR-P432A) 

is embryonically lethal and that heterozygotes tend to have neurological and other developmental 
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abnormalities. This contrasts with ATR-H (cis-ATR, hATR-S428A/mATR-S431A), which is 

viable, but naturally prone to cancer development. Next, we used various in vitro stroke-like 

conditions to test if ATR inhibition could serve as a therapeutic target for stroke. We found that 

ATR inhibition is protective in non-dividing neuron-like cells; whereas, it potentiates death in 

cycling glial and immune-like cycling cells. Thus, ATR inhibition could likely be a target for 

both neuron sparing and immunosuppressive anti-stroke therapeutic strategies. Taken together, 

these studies provide insightful information into the structural and pathological roles of ATR in 

development and disease.  
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CHAPTER 1 

INTRODUCTION 

 

Cellular responses to DNA damage 

 
 An organism’s genome is under constant assault from both endogenous and exogenous 

sources of DNA damage. In order to maintain genomic integrity despite this damage, cells must 

respond in order to either repair the damage incurred or to eliminate critically damaged cells. 

This response, fittingly deemed the DNA damage response (DDR), is initiated by three members 

of the PIKK (phosphatidylinositol-3-kinase-like family) family of proteins: ATM (ataxia-

telangiectasia mutated), ATR (ataxia-telangiectasia and rad3-related), and DNA-PK (DNA-

dependent protein kinase). These three protein kinases work together to facilitate changes in the 

cellular environment to either promote cell cycle arrest and DNA repair for continued cell 

survival or to promote cell death to eliminate severely damaged cells.  

 While the studies contained within this dissertation are focused on the role of ATR in the 

modulation of cell death, in the following sections we will present an overview of DNA damage 

signaling (DDS), various mechanisms of cell death, and some general information pertinent to 

the contained studies. Lastly, we will generalize some of the findings contained within each of 

our studies.   

DNA damage signaling and cell-cycle arrest  

 Following DNA damage, cells will initiate signaling in order to arrest cell cycle 

progression and, ultimately, to determine whether a cell should repair its DNA or be eliminated 

by undergoing cell death. While all three members of the PIKK family mentioned previously are 
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involved in regulation of cell cycle arrest, ATR and ATM are the primary regulators as shown in 

Figure 1.1.  

 The primary response of either ATR or ATM in cell cycle regulation and DDS is 

determined by two main factors: 1) the stage of the cell cycle and 2) the type of DNA damage 

present (Ciccia and Elledge 2010; Marechal and Zou 2013; Sancar et al. 2004; Sirbu and Cortez 

2013). ATM functions primarily through its effector kinase Chk2 (checkpoint kinase 2) to signal 

DNA damage caused by DNA double strand breaks (DSBs). While ATM is active throughout 

the entirety of the cell cycle, it is predominantly responsible for signaling during the G1 phase 

and into the G1/S transition (Sancar et al. 2004; Sirbu and Cortez 2013). Upon DNA damaging 

during these phases, ATM phosphorylates its main substrate Chk2 on Thr68 leading to its 

activation and priming of the cell for cell cycle arrest (Falck et al. 2001; Marechal and Zou 

2013). Following activation, Chk2 phosphorylates two main cell cycle substrates: cdc25A and 

p53. Phosphorylation of cdc25A on Ser123 by Chk2 limits the activity of cdc25A by targeting it 

for ubiquitination and proteasomal degradation. This prevents cdc25A, a protein phosphatase, 

from removing inhibitory phosphorylations from CDK2 (cyclin dependent kinase 2), which is 

required for progression from the G1 phase to the S phase of the cell cycle (Falck et al. 2001; 

Mailand et al. 2000). In addition, ATM and Chk2 phosphorylate p53 at Ser15 and Ser20. These 

phosphorylations serve to dissociate p53 from its negative regulator MDM2 as well as to activate 

its transcriptional activity. These events result in p53-mediated transcriptional upregulation of 

p21 (p21WAF1/Cip1), a direct inhibitor of not only CDK2, but also an indirect inhibitor of CDK1 

(cyclin dependent kinase 1) (Falck et al. 2001; Maya et al. 2001). These events lead to cell cycle 

arrest as CDK1 and CDK2 are necessary to promote cell cycle progression (Bartek and Lukas 

2003).   
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Whereas ATM is responsible for the G1/S checkpoint, ATR is responsible for activating 

the intra-S and G2/M checkpoints. Upon activation by single stranded DNA (ssDNA) generated  

under replication stress or DSB end resection, ATR activates its effector kinase Chk1 through 

phosphorylation at Ser317 and Ser345 (Zhou et al. 2002; Zou and Elledge 2003). Similar to 

Chk2, Chk1 also works through phosphorylating cdc25A at Ser123 and p53, but only at Ser20, 

not Ser15. Each of these results in effects similar to that seen by Chk2 during cell cycle arrest at 

the G1/S transition; however, the effects of Chk1 carry through into an intra-S checkpoint as well 

as into the G2/M transition (Bartek and Lukas 2003; Zhou et al. 2002). ATR activity through its 

substrate Chk1 also serves to facilitate this process through modulation of Wee1. Once activated 

Figure 1.1 Summary of  DNA damage response checkpoint activation 
(Modified from Cartwright et al. 2018)  
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by Chk1, Wee1 phosphorylates CDK1, inhibiting this protein’s kinase activity (Harvey et al. 

2005). In this way, ATR induces the suppression of CDK1 activity through indirectly facilitating 

its suppression and prevention of its activation.   

 In addition to p53’s induction of p21WAF1/Cip1, p53 also upregulates two other important 

regulators of cell cycle progression: proteins GADD45a and 14-3-3. Each of these proteins 

regulate the G2/M checkpoint; however, do so through differing mechanisms. GADD45a binds 

directly to and suppresses the activity of CDK1, preventing the G2/M transition from occurring 

(Yang et al. 2000). 14-3-3 works through inhibition of cdc25C, another regulatory phosphatase, 

through facilitating the nuclear export of cdc25C and, subsequently, its removal from its target 

substrate, CDK1. This leads to accumulated inactive CDK1 and stalling of the cell cycle at the 

G2/M transition (Peng et al. 1997).  

 While individual stalling of the cell cycle is important to note, one must consider that any 

activation of ATR or ATM is likely to invoke subsequent DDR and cell cycle arrest regardless of 

cell cycle phase. This is due to known cross activation within the pathways, as shown in Figure 

1.1. Noting this, information regarding ATR and ATM activation should be taken as a tentative 

guideline as to what is predominantly seen (Myers and Cortez 2006; Serrano et al. 2013; Stiff et 

al. 2006).  

Apoptosis and other mechanisms of cell death 
 

When damage is too extreme for survival, cells must have programs in place to ensure 

they can be removed before they can undergo cancerous transformation. The most common of 

these processes is apoptosis, a highly-regulated and energy-dependent form of cell death. 

Apoptosis is common to both cycling and non-cycling cells; however, the process differs slightly 
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between the two due to the absence of Chk1 in non-cycling cells (Kemp and Sancar 2016). These 

processes are summarized in Figure 1.2 A & B. 

 

Upon DNA damage, ATR and ATM phosphorylate p53 at Ser15. This phosphorylation 

leads to the activation of p53’s transcriptional activity which results in upregulation of numerous 

pro-apoptotic genes including Bax/Bak, Puma, Noxa, Fas-ligand, and others (Riley et al. 2008; 

Zilfou and Lowe 2009). Puma and Noxa, members of the Bcl-2 family of proteins, inhibit the 

anti-apoptotic proteins Bcl-2 and Bcl-XL. Under normal conditions, these proteins are bound to 

the pro-apoptotic proteins Bax and Bak. By releasing Bax and Bak from their negative 

regulators, they are allowed to oligomerize and induce mitochondrial outer membrane 

permeabilization (MOMP) and subsequently apoptosis (Brady and Attardi 2010; Vaseva and 

Moll 2009). In addition to this, apoptosis is further promoted through Fas-ligand mediated 

Figure 1.2 Mechanisms of cell death in cycling and non-cycling cells 
A) Mechanisms leading to apoptosis after DNA damage in cycling cells. B) Mechanisms leading to apoptosis in non-
cycling cells. C) Mechanisms of PARP1 driven parthanatos and necrosis. (Modified from Cartwright et al. 2018)  
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upregulation. This receptor functions to facilitate p53-dependent extrinsic apoptosis following 

DNA damage (Brady and Attardi 2010). In addition to its transcriptional roles in apoptosis, p53 

also is capable of directly promoting MOMP through direct displacement of Bax and Bak from 

their suppressing proteins (Chipuk et al. 2005; Leu et al. 2004). While these pathways support 

the involvement of ATR and ATM’s activation of p53 in promotion of apoptosis, it is important 

to also note that their roles have been noted in both direct and indirect suppression of apoptosis 

(Hilton et al. 2016; Imanishi et al. 2014; Kemp and Sancar 2016; Korwek et al. 2012). This is 

notable, and expected, as the decision to undergo apoptosis should be highly regulated under a 

variety of checks and balances.  

 In addition to apoptosis, another DNA damage-induced form of cell death is due 

to overactivation of the protein PARP1 (poly-ADP ribose polymerase 1). Under cases of extreme 

oxidative damage or calcium overload, PARP1 can become hyperactivated leading to either 

parthanatos or necrosis (Wei and Yu 2016). Overviewed in Figure 1.2 C, PARP1 hyperactivation 

can lead to AIF (apoptosis inducing factor) release from mitochondria. Following release, AIF 

translocates to the nucleus where it induces DNA fragmentation in a non-specific fashion. 

Alternatively, necrosis from PARP1 hyperactivation occurs under extreme stress leading to 

overconsumption of NAD+ and subsequent metabolic collapse (Weaver and Yang 2013). 

DNA Damage Repair 

 In cases where DNA damage is not extreme enough to induce cell death, the cell will 

attempt to restore genomic integrity through repair of the damaged DNA. The pathway of repair 

engaged is dependent on the lesion or lesions present. A summary of potential lesions and their 

major repair pathways is shown in Figure 1.3. For the sake of brevity, we will only discuss the 
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pathways relevant to the works addressed in this dissertation: base excision repair and nucleotide 

excision repair.  

  

Figure 1.3 Types of  DNA lesions and their repair pathways 
1-Single-strand break (SSB), 2-Double-strand break (DSB), 3- Bulky DNA adduct (BA)  
(Reactive aromatic hydrocarbons, reactive lipids, reactive proteins), 4- Direct base oxidation 
(8-oxoguanine, thymine glycol, etc.), 5- Pyrimidine dimer (UV or oxidatively induced), 6- 
Abasic site (Modified from Cartwright et al. 2018) 

1 2 

3 

G 4 5 
6 
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Base Excision Repair. Bases excision repair (BER) most commonly repairs and resolves 

DNA lesions resulting from oxidation, alkylation, or spontaneous depurination/depyrimidination 

(abasic site formation). The initial step of classic BER is cleavage of the N-glycosylic bond of 

the modified base by various DNA glycosylases. Then the base is removed by APE1 (apurinic 

exonuclease 1) resulting in the formation of an apurinic/apyrimidinic (AP) site where the 

damaged base was once positioned. Following AP site formation, PARP1 processes the AP site 

through an addition of a polymer of ADP-ribose which serves as a scaffold for recruitment of 

WRN (RecQ/Werner protein), a helicase and exonuclease, which will further process the site 

before DNA poly β (DNA polymerase β) fills in the missing base. The break in the repaired 

strand is then ligated by DNA ligase I or DNA ligase III (Fig.1.4 A) (Fromme and Verdine 2004; 

Sancar et al. 2004; Wei and Yu 2016).  

 In addition to classic BER, an alternative form of BER exists where, instead of forming 

an AP site, the region is instead resected. In this instance, APE2 (apurinic exonuclease 2) will 

remove the damaged base and bases adjacent to the damaged base. This forms a short patch of 

ssDNA which is repaired by similar mechanisms to that seen in nucleotide excision repair 

(NER). In brief, PCNA (proliferating cell nuclear antigen) and RFC (replication factor C) are 

recruited to the ssDNA where they then recruit one of three DNA polymerases: DNA pol δ 

(DNA polymerase delta), DNA pol ε (DNA polymerase epsilon), or DNA pol κ (DNA 

polymerase kappa). One of these DNA polymerases then will fill in the gap generated by APE2 

on the initially damaged strand. Following gap resynthesis, either DNA ligase I or DNA ligase 

III will finish the repair by religation of the damaged strand (Sancar et al. 2004; Schärer 2013). 

 While classic BER does not tend to activate DDR unless the damage is extreme, the 

alternative form of BER is found to activate DDR through the ATR pathway. This is due to the 
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ssDNA gap that is generated through APE2 end resection and occurs before the DNA can be 

repaired.   

Figure 1.4 Base Excision Repair (BER) 
A) PARP1-mediated BER of an abasic site. Initial AP site generation is omitted. B) APE2-
mediated BER/short-patch NER and resultant ATR activation (Modified from Cartwright et al. 
2018) 
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Nucleotide Excision Repair. Nucleotide excision repair (NER) most commonly repairs 

and resolves DNA lesions resulting from UV-induced photoproducts, crosslinking agents, and 

other bulky adducts that can distort the helical structure of DNA. Two main forms of NER exist: 

global genome repair (GG-NER) and transcription-coupled repair (TC-NER) (Figure 1.5) (Mu 

and Sancar 1997; Schärer 2013; Sugasawa et al. 1998).  

 While the downstream mechanisms of bulky lesions repaired by both GG-NER and TC-

NER are similar, the initiation and initial recognition of damage vary between the two. In GG-

NER, the lesion is recognized either by XPC (Xeroderma pigmentosum complementation group 

C)-HR23B or XPC-HR23B in combination with DDB1-DDB2/XPE (Damage specific DNA 

binding protein 1 or 2-Xeroderma pigmentosum complementation group E) to enhance affinity 

for the lesion. Once damage is recognized by the XPC-HR23B complex, it recruits transcription 

factor IIH (TFIIH) which mediates strand unwinding and ssDNA generation. This single strand 

is rapidly bound by replication protein A (RPA) to stabilize the intermediate and allow for 

verification of the DNA lesion by XPA (Xeroderma pigmentosum complementation group A). 

Once the lesion is verified, XPG (Xeroderma pigmentosum complementation group G) and XPF-

ERCC1 (Xeroderma pigmentosum complementation group F-excision repair cross-

complementation group 1) will excise the DNA segment containing the bulky lesion by 

performing 3’ and 5’ incisions, respectively (Gaillard and Wood 2001; O'Donovan et al. 1994; 

Schärer 2013). TC-NER differs only in the initial recognition step which is performed by 

ERCC6/CSB (excision repair cross-complementing group 6/Cockayne syndrome B) and results 

from recognition of stalled RNA polymerase II. ERCC6/CSB facilitates ubiquitin-mediated 

removal of RNA polymerase II and recruitment of TFIIH (Gaillard and Aguilera 2013; Schärer  
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) 

  

Figure 1.5 Nucleotide Excision Repair (NER) 
A) NER and resultant ATR activation (Modified from Cartwright et al. 2018) 
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2013). Once the damaged DNA is removed, the gap will be filled as mentioned previously in 

reference to alternative BER.  

 Unlike with alternative BER, the DDR through ATR is always activated during this 

process. In fact, ATR is necessary to facilitate NER through facilitation of XPA nuclear import 

and stability (Lee et al. 2014; Li et al. 2013). 

Ataxia telangiectasia and rad-3 related (ATR) 

Ataxia telangiectasia and Rad-3 related (ATR), is one of the three main protein kinases 

responsible for eliciting the DDR. Primarily nuclear in distribution, ATR is responsible for 

regulating a variety of cellular processes ranging from cell cycle arrest, to DNA repair and cell 

death (Cimprich and Cortez 2008; Hilton et al. 2016; Kemp and Sancar 2016; Sancar et al. 2004; 

Wang-Heaton 2016; Zeman and Cimprich 2014). Nuclear ATR typically exists in complex with 

its binding partner ATRIP (ATR interacting protein). Together, they bind to RPA coated ssDNA 

during periods of replication stress or DNA damage. This binding leads to a conformational shift 

during which ATR undergoes autophosphorylation and activation (Zou and Elledge 2003). 

Subsequent to this activation, the ATR-ATRIP complex goes on to phosphorylate hundreds of 

proteins influencing everything from direct cell cycle progression to transcription (Matsuoka et 

al. 2007; Wagner et al. 2016). In contrast to its nuclear functions, cytoplasmic ATR is not bound 

to ATRIP and does not possess kinase activity. Instead, cytoplasmic ATR is found to regulate 

apoptosis through structural sequestration of the pro-apoptotic protein t-Bid (truncated-Bid) 

(Hilton et al. 2016). 
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Prolyl-isomerization of ATR and direct anti-apoptotic activity 

The differences between nuclear and cytoplasmic ATR can be explained further by 

looking at the structural changes that occur in the protein following DNA damage (Figure 1.6).  

Previous findings by our lab has shown that under normal circumstances the cell only possesses 

a single prolyl isoform of ATR, ATR-L/trans-ATR. This isoform is predominantly nuclear and is 

dependent on Pin1 (peptidylprolyl cis/trans isomerase NIMA-interacting 1) to be maintained. 

cis-ATR 
trans-ATR 

Pin1 

DAPK1 

-Mitochondrial localization 

-Anti-apoptotic through structural  
sequestration of tBid 

-Nuclear localization  
-Kinase active/checkpoint activity 
-Bound to ATRIP 

Figure 1.6 Prolyl isomerization of ATR 
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Pin1 function through isomerizing proline groups following a phosphorylated serine residue 

which in the case of ATR is Ser428. However, following DNA damage, Pin1 is inactivated by 

DAPK1 (Death associated protein kinase 1) through phosphorylation of Pin1 on Ser71. With loss 

of Pin1 activity, the total amount of ATR as well as the ATR-H/cis-ATR form increases in the 

cytoplasm. While not binding to ATRIP or having kinase activity, ATR-H possesses an intrinsic 

anti-apoptotic activity. During the prolyl isomeric shift from ATR-L to ATR-H a novel BH3 

domain is revealed. This exposed domain allows ATR-H to bind to and sequester t-Bid, thus 

preventing apoptosis (Hilton et al. 2016).  

This S428P429 site and its isomeric shift is of interest due to the fact that previous 

investigation into the phosphorylation status of cytoplasmic ATR pSer428 revealed a lower 

phosphorylation status of cytoplasmic ATR in ovarian carcinoma was associated with poor 

prognosis and an increased resistance to chemotherapeutics (Lee et al. 2015). In this way, these 

findings could support a role for the ATR prolyl isomeric shift in chemotherapeutic/DNA 

damage tolerance.  

ATR has multiple roles during development 

In addition to its roles in DDR, it is important to note that ATR is essential to organismal 

development. Previous studies have shown that embryonic mice lacking ATR die prior to 

E7.5/8.5 and that conditional knockout in adult animals leads to rapid stem cell depletion and 

accelerated ageing (Brown and Baltimore 2000; Ruzankina et al. 2007). Tangential to this, ATR 

has been shown to be necessary for cilia signaling, organ development, post-natal nervous 

system development up to adolescent stages, and to overall survival (Lang et al. 2016; Lee et al. 

2012; Ruzankina et al. 2007; Stiff et al. 2016).  
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Known roles of ATR in responding to calcium overload and oxidative damage: an implication in 

ischemic stroke  

 During ischemic stroke, the cells of the nervous system are assaulted by a barrage of 

excitatory neurotoxic compounds, calcium overload, and oxidative stress (Chen et al. 2011; 

Kritis et al. 2015; Li et al. 2018; Rodrigo et al. 2013). These events subsequently lead to DNA 

damage and cellular death. ATR is known to be activated by oxidative DNA damage (Martin et 

al. 2012; Moreno et al. 2019; Yan et al. 2014) and our previous studies also have implicated its 

involvement in preventing calcium overload-induced cell death (Wang-Heaton 2016). Given that 

the effects of ATR inhibition have been found to differ between cycling and noncycling cells we 

sought to understand whether those results may extend past UV irradiation and into other disease 

states such as ischemic stroke. The studies presented in Chapter 3 support the link presented here 

and show potential implications for ATR inhibition in the therapeutic treatment of ischemic 

stroke.  

Findings of these studies 

These studies further elaborate upon the roles of ATR in development and its influence 

on cell death under various conditions. Through the studies presented in Chapter 2, we show that 

cytoplasmic-ATR prolyl isomerization is required for organismal survival and development; 

however, in contrast, one structural isoform, ATR-H, also can potentially promote spontaneous 

tumorigenesis. Then, in Chapter 3, we show that inhibition of ATR’s kinase activity 

differentially affects cycling and non-cycling cell populations. Together, these studies show that 

ATR is a complex regulator of both development and disease and that this regulation is 

dependent on both its structural and kinase functions. While further studies need to be 
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performed, the preliminary findings presented in Chapters 2 and 3 present new avenues into the 

exploration of ATR as a target in the treatment of human disease.  
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CHAPTER 2 

ISOMERICALLY LOCKED FORMS OF ATAXIA TELANGIECTASIA AND RAD3-
RELATED (ATR) HAVE DIFFERING ROLES IN DEVELOPMENT AND DE NOVO 

CARCINOGENESIS  

Brian M. Cartwright1, Phillip R. Musich1, and Yue Zou1* 

1Department of Biomedical Sciences, J.H.Quillen College of Medicine, East Tennessee State 
University, Johnson City, TN 37614, USA 
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ABSTRACT 

 Ataxia telangiectasia and Rad3-related (ATR) is a multifunctional protein kinase that 

functions in a variety of cellular processes ranging from cell cycle arrest, to DNA repair and 

apoptosis. Previous studies have shown that cytoplasmic ATR assumes two prolyl isomeric 

forms depending on the state of cellular stress. Under basal conditions, cytoplasmic ATR 

assumes the trans isomer (trans-ATR/ATR-L) and under stress conditions it assumes the anti-

apoptotic cis isomer (cis-ATR/ATR-H). In this study, we sought to investigate the role of 

cytoplasmic ATR isomerically locked into either the cis- or trans- isoform. Using mice with 

isomerically locked ATR-S431A (cis-ATR/ATR-H) or ATR-P432A (trans-ATR/ATR-L), we 

investigated the role of each isoform on phenotypic development. We found that the trans isomer 

ATR-P432A is embryonically lethal and that ATR-P432A/WT heterozygotes tend to have 

neurological and other developmental abnormalities. In contrast, the cis isoform ATR-S431A 

produced viable homozygotes; however, mice possessing one or both alleles locked in the cis 

isoform were prone to spontaneous cancer development. These findings indicate that ATR prolyl 

isomerization plays a critical role in development and maintenance of the interconversion 

between the two isoforms is necessary for maintaining organismal homeostasis.  
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INTRODUCTION 
 
 Ataxia telangiectasia and Rad3-related (ATR), a member of the PIKK 

(phosphatidylinositol-3-kinase-like) family, is a protein kinase known for its roles in regulating 

cell cycle progression, DNA repair, and maintenance of genomic stability following both 

endogenous and exogenous DNA damage (1-5). Nuclear ATR exists in a complex with the ATR-

interacting protein (ATRIP) allowing it to sense DNA damage and replication stress through 

binding to RPA-coated ssDNA leading to its activation (4). When activated, ATR phosphorylates 

hundreds of proteins allowing it to induce cell cycle arrest, modify transcription and DNA repair, 

or even induce cell death in cases where damage is too extreme (2, 6-8). Recent studies have 

shown that, in addition to these nuclear roles, using a previously unknown BH3 binding domain 

cytoplasmic ATR functions directly at the mitochondria where it suppresses the intrinsic 

apoptotic pathway through structural sequestration of tBid. This shift in function comes via an 

isoform switch due to the actions of Pin1 (peptidylprolyl cis/trans isomerase NIMA-interacting 

1). Pin1, a prolyl isomerase, isomerizes human ATR at proline 429 (mouse proline 432) causing 

ATR to shift from cis-ATR (ATR-H) to trans-ATR (ATR-L). Under basal conditions ATR is 

present in the trans- isomer and is primarily nuclear. However, upon DNA damage-induced 

phosphorylation of DAPK1, Pin1 is inactivated which allows cytoplasmic ATR to return to the 

cis- isomer which exposes its BH3 domain allowing it to bind tBID (9).  

 ATR is essential in organismal development. Deletion of ATR or removal of its kinase 

activity leads to early embryonic lethality in mice before embryonic day E7.5 and E8.5, 

respectively (10, 11). In addition to its roles in embryonic development, it also has been shown 

to be indispensable in post-natal cilia signaling, organogenesis, neuronal growth, and overall 

survival (12-16). In humans, ATR mutations can lead to different phenotypes depending on the 
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degree of mutation. Seckel syndrome 1, also known as bird-headed dwarfism (Seckel type) or 

microcephalic primordial dwarfism, is an autosomal recessive disorder resulting from splice 

variant mutations leading to hypomorphic ATR. This disorder is characterized by congenital 

malformation, mental retardation, and shortened life span which have all been attributed to 

increased replication stress resulting from low ATR levels (17, 18). ATR mutations also have 

been implicated in cancer development with certain ATR germline mutations predisposing 

individuals to higher cancer risk (19-21). Other studies have found that ATR signaling is 

essential for continued cell replication and that ATR signaling functions to promote or dissuade 

cancer in a dose-dependent manner (5, 22, 23). As a result, ATR inhibition has become a target 

of great interest for therapeutic treatment and is currently being used in multiple clinical trials 

both alone and as an adjuvant to other therapies (24).  

 In this study, we investigate the effect of locking cytoplasmic ATR into either the cis- or 

trans- prolyl isomer. We provide evidence that mice with cytoplasmic ATR locked in the trans- 

isomer are embryonically lethal and that heterozygotes of this line show congenital and neuronal 

abnormalities. In addition, they show similar signs of advanced aging to those seen in Seckel 

mice and mice which have had tamoxifen-induced Cre conditional knockout of the entire ATR 

gene (16, 18). In contrast, we show that mice expressing ATR isomerically locked in the cis- 

isomer show no outward deleterious developmental defect, but are prone to spontaneous cancer 

development. These studies reveal novel insight into the role of ATR prolyl isomerization during 

development and normal aging.  
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METHODS 

Animals 

Isomerically locked ATR mice (ATR S431A/cis-ATR/ATR-H or ATR-P432A/trans-

ATR/ATR-L) were generated by the Cincinnati Children’s Hospital Medical Center CCHMC 

Transgenic Animal & Genome Editing Core. Cas9 editing was used through direct injection into 

fifteen C57BL/6 embryonic stem cells (ESCs). The guides used (with mutation sites highlighted) 

are: 

 5’-CTCAACAGGAGAATCTCAGTGGTAATAATGATGAGGTGGCCCTAAGAGGCGTAAACTCA-3’ (S431A)  

-and- 

5’-CTCAACAGGAGAATCTCAGTGGTAATAATGATGAGGTGAGCGCTAAGAGGCGTAAACTCA-3’ (P432A) 

Five founders possessing appropriate mutation profiles were identified and mice were bred until 

suitable progeny for continuing the lines were identified.  

Animals are housed in climate-controlled rooms with a standard 12hr light/dark cycle. 

Mice are either individually housed or cohoused, when appropriate, in large plastic cages and 

allowed access to food and water ad libitum. Humane care was provided to comply with the 

federal legislation (Animal Welfare Acts) and the “Principles of Laboratory Animal Care” and 

the “Guide for Care and Use of Laboratory Animals”. All procedures and protocols were 

approved by the East Tennessee State University Committee on Animal Care. 

Mouse breeding  

Mouse colonies were maintained by crossing heterozygous mice with wild types to 

prevent background mutational accumulation. Mice for breeding studies were identified by 

differential genotyping as described below. Individuals used for breeding studies were no 

younger than 12 weeks and no older than 32 weeks. For timed studies, females were exposed to 

soiled male bedding (Whitten effect) to induce estrus. Estrus was determined by visual staging at 
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which point they were placed with males. The following morning, they were checked for vaginal 

plugs and removed from the male’s cage if they were positive. This was considered day E0.5.  

Cell culture, transfections, and treatments 

HCT-116 ATR+/+ and HCT-116 ATRflox/- cells were obtained from either the American 

Type Culture Collection (ATCC) or Coriell Cell Repositories, respectively. Cultures were 

maintained in McCoy’s 5A media (VWR) supplemented with 10% heat-inactivated fetal bovine 

serum (Thermo Scientific). All lines were supplemented with antibiotics (100 units/mL 

penicillin, 100 units/mL streptomycin, VWR) and maintained at 37ºC under a constant 

atmosphere of 5% CO2.  

An original construct, pcDNA3-FLAG-ATR, was a generous gift from Dr. Stephen 

Elledge. Mutagenesis on this parent construct was previously described (9). FLAG-ATR (wt), 

FLAG-ATR (S428A), and FLAG-ATR (P432A) were all transfected into HCT116 ATR flox/- 

cells using jetPEI transfection reagent (Polyplus) by the company’s protocol. Cells were allowed 

to express constructs for 48hr prior to UV treatment. UV treatment dose was delivered by a 

254nm lamp at a flounce of 0.83J/m2/sec. 40J/m2 was administered and cells were allowed to 

recover for 2-hour post-treatment. Cells then were harvested by scraping and suspended in lysis 

buffer (50mM Tris-HCl, pH7.8, 150mM NaCl, 1mM EDTA, 1% Triton X-100, 1x 

protease/phosphatase inhibitor cocktail [Thermo]).  

Differential genotyping and sequencing 

DNA for genotyping was obtained through a digest of a 1cm segment of tail or partial 

embryo per the given protocol, EZNA DNA kit (Omega Biotek). Isolated DNA then was 

amplified by using DreamTaq polymerase (ThermoFisher) and the following primers: Forward 

5’- GACTCATGTAACACCTCATGCA-3’, Reverse 5’-ACCCAAATTAAACAGGCATGC-3’. 
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The protocol was as follows: 94ºC for 2 min (initial denaturing), [94ºC for 15 seconds 

(denaturing), 54ºC for 15 sec (annealing), 72ºC for 2 min (elongation)] x38, 72ºC for 1 min (final 

elongation). Products then were digested with one of three restriction enzymes (AfeI, HaeII, or 

SfoI (NEB)) for 8hr at 37ºC before the restriction enzyme was denatured at 60ºC for 10min. 

Digests were electrophoresed for 30min at 100 V in 2% agarose gels in in Tris-acetate-EDTA 

buffer(40 mM Tris, 20 mM acetate, 1 mM EDTA, pH 8.3). No loading dye was used to allow for 

easier resolution of DNA bands with ethidium bromide (0.1 µg/mL). Gels were imaged with UV 

excitation in either a Fuji Film imager LAS-400 or an Amerscham Imager 680 (GE). Positive 

cleavage with AfeI (AGCˇGCT) revealed the presence of the S431A mutation whereas SfoI 

cleavage (GGGˇCCC) showed the presence of the P432A mutation. Digestion with HaeII 

(RGCGCˇY) revealed the presence of a mutation but does not delineate which specific mutant is 

present. PCR cleanup and extraction of select gel bands were performed according to kit 

protocols (NucleoSpin Gel and PCR Cleanup, Macherey-Nagel). Confirmatory sequencing of 

certain mice was performed by dye-terminator sequencing on a Beckman CEQ 8000 automated 

DNA sequencer.  

Echocardiography 

 M-mode echocardiography was performed using a ToshibaAplio 80 Imaging System 

(Tochigi) with a 12MHz transducer. Mice were anesthetized using induction of 2% isoflurane 

(Isothesia) with titrated maintenance under forced oxygen (0.5 L/min). Body temperature was 

maintained at 37ºC using a heating pad. Echocardiographic assessments were performed to 

assess heart placement, ventricle function, and heart rate. 
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Immunoblotting and antibodies 

2xSDS loading buffer (0.5 M Tris-HCL pH 6.8, 4.4% w/v SDS, 20% glycerol, 0.2% 

bromophenol blue, 200 mM DTT) was added to cell lysates and then the mixture was heated at 

95ºC for 5min. Samples were then loaded onto 8% SDS-PAGE gels for resolution of the proteins 

in question. Proteins were transferred from gels onto PVDF membranes (Millipore). Antibodies 

raised against actin (Cell Signaling), ATR (Bethyl, Clone 137A), Chk1 (Cell Signaling), and 

pChk1 Ser345 (Cell Signaling) were used. The chemiluminescent signal from HRP-conjugated 

secondary antibodies (ThermoFisher) was detected and captured using either the Fuji Film 

imager LAS-400 or an Amerscham Imager 680 (GE). 

Tissue fixation, sectioning, and staining for phenotyping study 

Mice were allowed to develop with no outside influence for a period of one year at which point 

they were euthanized by CO2. Following euthanasia, mice underwent full body necropsy and 

were assessed for anything of gross pathological significance. Control and abnormal tissues were 

collected and immediately washed twice with ice-cold PBS. Following these rinses, the tissue 

was placed in 10% formaldehyde buffered with PBS for 24-48hr depending on tissue thickness. 

For cancer specimens, the tissue was rinsed and placed in 70% ethanol before being paraffin 

embedded. These sections were then cut at 20 µm with a knife microtome IEC horizontal before 

further processing. For embryos, the tissue was rinsed and allowed to sit in 30% sucrose 

(cryoprotectant) overnight. These specimens were then embedded in OCT (Fisher) and coronally 

sectioned using a cryostat CM3050SS (Leica). Both embryonic and cancer sections were 

hematoxylin and eosin stained to reveal morphological features. Gross anatomical images were 

acquired with a 16-megapixel, f/1.6 (OIS) 77-degree LG G7 mounted camera (LG). H&E 

histological images were acquired with an AMG FD1000 Evos microscope (Life Technologies).   
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RESULTS 

Design and confirmation of cis-ATR (ATR-S431A) and trans-ATR (ATR-P432A) knock-in  

 To explore the role of isomerically locking cytoplasmic ATR, mice were generated which 

possess mutations in the Pin1 isomerization domain of ATR. Sterically locking ATR into the cis- 

isomer (cis-ATR/ATR-H) was accomplished through Cas9 gene editing resulting in the 

substitution of the serine in position 431 with alanine (S431A). Sterically locking ATR into the 

trans- isomer (trans-ATR/ATR-L) was accomplished by substitution of proline in position 432 

with alanine (P432A). These substitutions allow for the steric locking of cytoplasmic ATR into 

one prolyl isomer over another due to the biochemical nature of the original Pin1 motif (Ser/Thr-

Pro) as previously shown (9). Briefly, Pin1 requires phosphorylation on either a serine or 

threonine residue prior to a proline to have catalytic activity at the motif. By generating the 

ATR-S431A mutant, we can eliminate the catalytic activity of Pin1 on cytoplasmic ATR due to 

the phosphorylation of the serine residue being required for Pin 1 activity. This results in an 

inability of Pin1 to convert the cis-proline to trans-proline effectively locking ATR into the cis-

isomer (ATR-H). In contrast, the ATR-P431A mutant takes advantage of the fact that all amino 

acids other than proline assume the trans-isomer in proteins (25). By substituting proline for 

alanine, we ensure that ATR is locked into the trans-isomer. The design and confirmatory 

sequencing of the various mutants are shown in Figure 1A & 1B, respectively.  

 Normal genotyping for the remaining experiments was carried out by PCR amplification 

of a common region followed by differential digest. For normal genotyping, HaeII was used. 

Both modifications to the ATR sequence have the HaeII restriction site allowing for a single 

enzyme to be used to distinguish between wildtype and mutated alleles (Fig.1C). The wildtype 

allele (459bp) is cleaved into two fragments (255 bp, 204 bp) by a single cut. For differential 
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Figure 2.1: Targeted knock-in of ATR-S431A (cis-ATR/ATR-H) and ATR-P432A (trans-
ATR/ATR-L) 
A) Schematic showing the mutational substitutions to wild type mouse ATR. By introducing three 
base changes (in red), the serine 431 to alanine mutation was achieved with no change to the 
adjacent proline. A total of 5 bases (in red) were changed in the proline 432 to alanine. This resulted 
in no change to the adjacent serine. Changes to bases outside of the amino acid to be targeted were 
performed to insert restriction sites for differential genotyping. B) Confirmatory dye-terminator 
sequencing confirmed the presence of four different genotypes for the mice from F1 crossing of 
founder offspring. C) Example digest of PCR products from mice cleaved with the HaeII restriction 
enzyme. It is seen that the larger fragment (459bp) is cleaved into a 204 and 255 bp fragment 
denoting the presence of a mutated allele. D) Example differential PCR digest showing that AfeI can 
be selectively used to identify the ATR-P432A mutation while SfoI can be used to identify the ATR-
S431A mutation. E) Confirmational sequencing of digested DNA showing that presence of the 
isolated full-length (wild type) band was not just due to inadequate digestion.  
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genotyping, AfeI and SfoI were used. AfeI recognizes a restriction site in only the P432A 

mutation whereas SfoI recognizes only the S431A mutation (Fig.1D). These enzymes were used 

to confirm the genotypes of lines. 

 One potential issue that arose during the sequencing that is common to dye terminator-

based reactions is a potential misread of heterozygous genotypes due to double peaks. To ensure 

that these were indeed heterozygotes and not additional mutations in the gene, direct PCR  

sequences, as well as those of the full-length PCR product after digestion, were obtained. It was 

found that after digestion and analysis of the purified full-length fragment the ambiguity 

disappeared, and the sequence presented fully as wild type. This indicates that the other 

contributing allele was heterozygous and able to be cleaved by HaeII. This implies the automated 

readout of either SP or TP indicates the ATR-S431A/+ (ATR-cis/+) and ATR-P432A/+ (ATR-

trans/+) genotypes, respectively (Fig. 1E). 

Isomerically locked ATR mutants differ in developmental effects and embryonic lethality 

 Upon maintenance of mouse colonies, it was discovered that no mice bearing the ATR-

P432A/P432A genotype were present. To determine if this was due to breeding error or if the 

ATR-P432A/P432A genotype was embryonically lethal a formal breeding study was established. 

Breeding showed that there was no statistical difference in litter size between the different lines 

(Table 2.1). A subset of these litters was then used to assess for embryonic lethality. Criteria for   

 

 

 

Average litter size 
Genotype Crossing Number of litters Average Litter Size 

   +/+           x            +/+ 7 6.50 ± 0.94 
S431A/+     x         S431A/+ 10 6.57 ± 1.13 
P432A/+     x         P432A/+ 15 7.53 ± 1.63 

Table 2.1: Average litter size 
S431A/+ = ATR-cis/+ 
P432A/+ = ATR-trans/+ 
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inclusion into this study included litters sizes having five or more pups and litters from the first 

two crossings as pup number is known to decrease with breeder age and pregnancy number. 

Litters in which there were ambiguous or missing reads were excluded from these studies. It was 

found that cis-ATR (ATR-S431A/+) crossings exhibited normal Mendelian distribution (1:2:1, 

+/+:S/+:S/S) in the ratio of offspring genotypes. In contrast, trans-ATR (ATR-P432A/+) 

crossings exhibited a non-Mendelian distribution (1:2:0, +/+:P/+:P/P) where no mice 

homozygous for the ATR-P432A allele were present (Table 2.2).  

  

Early embryonic lethality, prior to E7.5, is well established for ATR knockout mice (10). 

To investigate whether this was true for ATR-P432A/P432A mice, timed pregnancies studies 

were performed to assess the state of embryos and their genotypes at various stages. 

Hematoxylin and eosin (H&E) staining of day E7.5/8.5 implanted embryos were used to assess  

Offspring number and sex ratio 
+/+     x     +/+ 

 Total 
Number 

% Offspring 
Number 
(Male) 

Number 
(Female) 

Ratio (M:F) 

+/+ 46 100% 22 24 1:1.09 
S431A/+     x     S431A/+ 

 Total 
Number 

% Offspring 
Number 
(Male) 

Number 
(Female) 

Ratio (M:F) 

+/+ 15 23% 8 7 1.14:1 
S431A/+ 36 55% 20 16 1.25:1 

S431A/S431A 14 22% 9 5 1.8:1 
P432A/+     x     P432A/+ 

 Total 
Number 

% Offspring 
Number 
(Male) 

Number 
(Female) 

Ratio (M:F) 

+/+ 37 33% 21 16 1.31:1 
P432A/+ 76 67% 41 35 1.17:1 

P432A/P432A 0 0% - - - 

Table 2.2: trans-ATR (ATR-P432A) homozygosity is embryonically lethal whereas cis-ATR 
(ATR-S431A) is not  
S431A/+ = ATR-cis/+, S431A/S431A = ATR-cis/cis  
P432A/+ = ATR-trans/+, P432A/+ = ATR-trans/trans 
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Figure 2.2: trans-ATR (ATR-P432A) is embryonically lethal before E7.5/8.5 
A) & C) H&E staining of day E7.5/8.5 showing normal (stars) and partially reabsorbed 
embryos (arrows). B & D) Show enlarged views of these embryos appearing in A and C, 
respectively. B) is earlier in the reabsorption process and still possesses a near embryonic 
shape. D) has been completely reabsorbed and the only remnant of the embryo is the 
compacted trophoblastic layer indicated by the black arrow. E) Characteristic genotyping of 
embryos from crossing indicated which were cleaved with HaeII. In ATR-P432A heterozygote 
crossing no homozygotes are seen at day E13.5 indicating that ATR-P432A homozygosity is 
likely lethal at the peri-implantation or implantation stage. S431A/+ = ATR-cis/+, P432A/+ = 
ATR-trans/+ 
 

* 

* 



42 
 

reabsorption following implantation. Results imply that by E7.5/8.5 several embryos have 

undergone full reabsorption by the uterine horn (example images in Fig. 2.2A-D). To confirm 

that no animals bearing the ATR-P432A/P432A genotype were present past this point, embryos 

were harvested at E13.5 and genotyped (Table 2.3). This resulted in a ratio and percentage of 

offspring that was like that seen previously. This leads us to believe that the ATR-P432A/P432A 

genotype is peri-implantationally lethal (E4.5-7.5) and aligns with the previous findings seen in 

ATR knockout mice (10, 26). This also explains our findings where it is seen that litter sizes do 

not differ substantially across genotypes as these embryos likely die and are reabsorbed prior to 

or shortly after implantation allowing for normally developing embryos to implant in their place.  

 

 

  

Prior studies have shown that loss of ATR or it’s kinase activity leads to cell death 

through increased replication stress and a failure to initiate the checkpoint signaling cascade (1, 

2, 5, 10). To investigate whether ATR-P432A/P432A lethality was due to a loss of checkpoint 

activity, HCT116 ATR flox/- cells were transfected with human analogs of the different 

sterically locked ATR mutants (mouse ATR S431A/human ATR S428A, mouse ATR 

P432A/human ATR P428A) and treated with UV to induce replication stress. Results implicate 

little to no difference in the activation of checkpoint kinase 1 (Chk1), the main target of ATR, as 

indicated by the phosphorylation of Chk1 at Ser345 (Fig. 2.3A). This observation implies that 

only the cytoplasmic function of ATR is changed by sterically locking these mutants and the 

nuclear function, where ATR is always in the trans-isomer, is unaffected. Similar results show 

E13.5 P432A/+ Crossing 
 Total Number % of Offspring 
+/+ 18 64% 
P432A/+ 10 36% 
P432A/P432A 0 0% 

Table 2.3: ATR-trans/+ (ATR- P432A/+) crossings show no homozygote embryos at 
E13.5 
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unaffected checkpoint activation in combinations of the different ATR isomers mimicking 

heterozygotes (Fig. 2.3B). These results imply that sterically locking ATR into either prolyl 

 

isomer has no consequence on ATR nuclear function and that loss of embryonic viability must 

be through some other unknown means.  

cis-ATR (ATR-S431A) mice are naturally prone to cancer development 

 To investigate the differences in phenotypic development, we allowed mice to develop 

with no outside influence for a period of one year. At the end of that year, mice were euthanized 

to assess their phenotypes. Additional phenotypes leading to other abnormal outcomes or death 

were noted. 

 Results from necropsies revealed that mice of the ATR-S431A/+ (ATR-cis/+) genotype 

had increased rates of de novo hyperplasia (Table 2.4). These hyperplasias were either benign 

(lipoma) or malignant (lymphoma, prostate).  The mice with likely prostate cancer and lipomas 

Figure 2.3: DNA damage signaling is unaffected by isomerically locking cytoplasmic ATR 
Cells transfected with ATR appear to still maintain normal checkpoint kinase activity. HCT116 
ATR flox/- cells were transfected with indicated constructs for 48hr prior to UV exposure with a 2hr 
recovery. A) Transfection of a single construct does not cause activation of the DNA damage 
signaling response as indicated by a lack of pChk1 (S345) in control (-UV) lanes. Upon UV damage 
and recovery, wild type and both mutant ATRs showed appropriate phosphorylation of Chk1. B) 
ATR mutants co-transfected with wild type yielded results similar to the previous study with the 
exception of ATR-wt/ATR-P429A which showed a reduction in phosphorylation of Chk1 in 
comparison to ATR-wt/ATR-S428A co-transfection relative to total ATR and phosphor-Chk1 
levels. ATR-S428A = cis-ATR, ATR-P429A = trans-ATR 
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were asymptomatic at the time of euthanasia and collection. The mice with lymphomas were 

moribund having extreme infiltrates to various organs depending on the mouse in question. 

 Figure 2.4A shows one of the mice which presented with lymphoma. The liver shows 

gross hepatomegaly with multiple white nodules indicative of metastatic, infiltrating lymphoma.  

In addition to the liver, the lungs and spleen (highly enlarged) also possessed nodules but were 

not processed for further assessment. Hematoxylin and eosin staining of liver sections revealed 

the presence of immune infiltrate into the liver parenchyma resulting in compaction and, in some 

instances, complete replacement of normal liver architecture (Fig. 2.4B). Another mouse with the 

same genotype is shown in Figure 2.5. This mouse presented with abnormal liver morphology, 

enlarged spleen, an enlarged Peyer’s patch (.7cm diameter, normal = .1-.2cm), and a primary 

lymph node tumor (1cm in diameter, normal = .1-.2cm) (Fig.2.5A). The liver possessed large 

areas of focal necrosis, without immune infiltrate (Fig2.5B&C) indicating dysfunction 

potentially unrelated to the presence of lymphoma. Other areas of the liver indicate the 

beginnings of immune cell infiltration (Fig. 2.5D, F & G).   

Mouse 
Genotype 

Total # mice 
assessed 

Total # 
with 

cancer 

Percentage 
with cancer 

(inflammation) 

Types of Cancer/Hyperplasia 
Seen 

+/+ 10 (0) 0 0% (0%) - 

S431A/+ᵻ 
11 (8) 5* 40% (80%) Lymphoma [2], Lipoma [2], 

Prostate (likely) [1] 
S431A/S431Aᵻ 10 (8) 2** 20% (80%) Ovarian 

P432A/+ 26 (15) 0 0% (58%) - 

Table 2.4: Cancer/hyperplasia incidence   
Mice of the ATR-S431A line exhibit spontaneous cancer development in comparison to both wild 
type and ATR-P432A/+ mice.  
ᵻ p<0.05 by Fisher-exact test for comparison to +/+ 
*3 males, 2 females 
**Cancerous or Precancerous lesions 
(Number with) Enlarged Peyer’s patches indicative of increased systemic inflammation, (percent) 
S431A/+ = ATR-cis/+, S431A/S431A = ATR-cis/cis, P432A/+ = ATR-trans/+ 
[Number with indicated hyperplasia]  
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Figure 2.4: Varying cancer phenotypes of cis-ATR (ATR-S431A) mice (1) 
A) A male mouse (ATR S431A/+, 12 months) exhibiting a highly inflamed abdominal cavity. To the 
right is the excised liver showing gross hepatomegaly with various white nodules indicative of 
lymphomic infiltrates. B) 20x images of H&E-stained liver show huge populations of immune cells 
around central veins (arrows) with infiltration and compaction of sinusoids (stars). Two 
representative images are shown. The primary source of the lymphoma could not be determined. C) 
Another male mouse (ATR S431A/+, 12 months) with a primary liposarcoma in its gonadal fat pad. D) 
10x (top) & 20x (bottom) images of the H&E stained lipoma. The top panel shows a high degree fat 
necrosis with an atypical fibrotic cap formed from atypical adipocytes. The bottom panel shows 
atypical adipocytes forming a fibrous structure within the lipoma itself. This fibrosus is surrounded by 
fat necrosis. S431A/+ = ATR-cis/+, S431A/S431A = ATR-cis/cis  

* 

* 

* 

* 

* 



46 
 

However, of note, abnormal liver cells also are present (Fig2.5E) which could indicate another 

malignancy, such as the beginning stages of hepatocellular carcinoma may be present. In 

addition to the liver pathology, the lymph node (Fig 2.5H&I) shows complete loss of the normal 

node architecture. Furthermore, the densely stained areas could potentially indicate 

extramedullary hematopoiesis. While the bone marrow is the typical site of hematopoiesis, 

lymph nodes, as well as other organs, have been known to exhibit extramedullary hematopoiesis 

under cases of extreme inflammation or neoplasm (27). This also was seen in sections of the 

Peyer’s patch, shown in Figure 2.5 J & K. Here the normal morphology of the Peyer’s patch was 

absent, and the patch was so enlarged that it was causing near obstruction of the small intestine.  

 Interestingly, all mice presenting with overt hyperplasic phenotypes were of the 

heterozygous cis-ATR (ATR-S431A/ATR-H) line. This line is expected to have a higher 

intrinsic level of anti-apoptotic function due to the properties of ATR-H described previously (9). 

Thus, cancer development in this line likely could be attributed to prevention of intrinsic 

apoptosis, through tBid sequestration, during transformation. This would allow for precancerous 

cells to escape apoptosis and progress into malignancy. Given that this ATR is locked into the 

cis-isomer, it is also possible that less ATR-L is present. This would result in less proapoptotic 

signaling resulting from DNA damage and replicative stress due to the cytosolic cis-ATR (ATR-

H) form being found to not possess kinase activity (9).   

 While hyperplasic phenotypes were only apparent in the cis-ATR (ATR-S431A/ATR-H) 

line, both ATR mutant lines exhibited enlarged Peyer’s patches in their gastrointestinal tract 

(Table 2.4). This is commonly associated with infection or chronic systemic inflammation (28, 

29). Since sentinel mice for this colony were always negative for pathogens, it is highly likely  
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* 

* 

Figure 2.5: Varying cancer phenotypes of cis-ATR (ATR-S431A) mice (2) 
A) Male mouse (S431A/+, 11 months) exhibiting a variety of abdominal pathologies. B) 10x and C) 
20x images of focal liver necrosis. Entire portions of the liver have been evacuated leaving behind 
cyst-like structures. Surprisingly, these were devoid of immune infiltration. D) 10x liver image 
showing almost normal liver with some immune cell infiltration. E) A closer look at this section at 
higher magnifications (60x) shows a variety of atypical cells. Multinucleated cells are marked with 
arrows. Cells recently undergoing division are marked with stars. F) 10x H&E of liver showing 
immune cell infiltrate (arrows). G) 20x image of the same section revealing in better detail the 
immune cell infiltrate. H & I) 20x images of the primary lymph node tumor. The normal 
architecture has been completely taken over by lymphoma. Normal germinal centers, medullary 
cords, and paracortex have been completely replaced. J & K) 20x images of the enlarged Peyer’s 
patch seen in A. The entire normal architecture has been replaced by lymphoid tissue. S431A/+ = 
ATR-cis/+   
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that both lines possess basal systemic inflammatory characteristics. This, however, would need 

to be confirmed by serum cytokine analysis.  

trans-ATR (ATR-P432A) mice exhibit premature aging phenotypes alongside other 

developmental abnormalities 

 After one year of development, heterozygous trans-ATR (ATR-P432A/ATR-L) mice 

exhibit a wide array of developmental and age-dependent phenotypes. The first of these is 

evident in that some mice (~2-3%), have spontaneous pronounced hair loss, alopecia (Fig.2.6A). 

Alopecia in mice can result from numerous factors including over grooming, auto-immune type 

effects (alopecia areata), and/or accelerated aging-induced loss of follicular stem cells (30-32).  

Given that this condition was noted in mice from both individual and group housing, it is likely 

this phenomenon is not due to an overgrooming effect. Theories of alopecia areata stemming 

from an auto-immune disorder could support these findings due to the increased inflammation 

seen in these lines; however, accelerated aging-associated loss of follicular stem cells cannot be 

ruled out as mice with conditional ATR knockouts have previously been found to have 

progressive alopecia after induction of ATR knockout (16). Accelerated aging is also likely due 

to the presence of progressive kyphosis, arching of the spine due to weakness in the spinal bones 

or supporting muscles, in several mice (~43%) from this line (Fig. 2.6B). While kyphosis can be 

either a developmental or age-associated phenotype, young mice from this line do not show 

obvious signs of kyphosis which leads us to believe that this is an accelerated aging phenotype 

instead of a developmental abnormality (33). This is supported further by that fact that kyphosis 

is seen in mice from other DNA repair protein mutant backgrounds as well as ATR conditional 

knockout mice (16, 34, 35). 
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In addition to age-dependent phenotypes, heterozygous trans-ATR mice display various 

developmental abnormalities. The most extreme of these is the repeat occurrence of necrotic 

bowel-like symptoms leading to intestinal obstruction and death (Fig. 2.6 C). This was noted in a 

small fraction of heterozygous trans-ATR mice (~4-5%) but was completely absent in controls. 

While intestinal banding, a congenital malformation, was present in some mice, it was absent in 

others. Blockage from congenital banding is known to be able to cause intestinal obstruction and 

can lead to necrotizing enterocolitis (36-38). However, this only provides support for instances  

Figure 2.6: Heterozygous trans-ATR (ATR-P432A/+) mice express various deleterious 
phenotypes 
A) Alopecia areata is seen in some mice of the ATR-P432A/+ genotype. B) Several mice of the 
ATR-P432A/+ genotype exhibit marked kyphosis. Here two female litter mates (12 months) are 
shown for comparison. C) Spontaneous death occurred in several mice. In all mice necropsied, the 
presence of a necrotic bowel was found. D) Male mice of the ATR-P432A/+ genotype frequently 
have distended/engorged bladders. Here two male litter mates (12 months) are shown for comparison. 
P432A/+ = ATR-trans/+ 



50 
 

where banding is present. Another potential cause could stem from issues in the enteric nervous 

system (ENS). Studies have shown that defects in the retinoblastoma protein prevent proper ENS 

formation and can lead to intestinal obstructions through failure to move fecal matter (39). Given 

that ATR is known to have roles in central nervous system (CNS) development, it is highly 

possible that it also has roles in ENS development as well (14, 15). In addition, ~50% of trans-

ATR heterozygous males have highly engorged bladders in comparison to wild type controls 

(Fig.2.6 D). Control of urination, also called micturition, is regulated by ENS (40-42). Therefore, 

this sex-linked phenomenon provides further evidence of changes in ENS development in 

heterozygous trans-ATR mice. A lack of appropriate signaling due to either malformation or 

miss signaling could lead to urinary retention and the bladder distention seen in these mice. 

Along with these findings, trans-ATR heterozygous males were found to be more aggressive. 

Aggressive behavior was documented as an increase in fighting between littermates leading to 

mice having to be individually housed. While no formal behavioral assays were performed, it 

was found that male trans-ATR heterozygotes were five times more likely to have to be removed 

from cohousing than either wildtype or cis-ATR mice of either genotype. Improper CNS 

development can result in aggressive behaviors, especially in transgenic animals, and could 

provide a causal link between CNS developmental abnormalities and the behavior seen in male 

trans-ATR mice (43-45).  

Additionally, male trans-ATR heterozygotes were found to have cardiac abnormalities 

when evaluated by echocardiography. Tachycardia (~500-550bpm) was present in all male trans-

ATR mice evaluated (n=8) and this increased heart rate was completely refractory to isoflurane-

based anesthesia. This is in stark comparison to a known decrease in heart rate (~430-475bpm) 

of wild type mice exposed to isoflurane-based anesthetics (46, 47). Cardiac placement is also 
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shifted in some trans-ATR heterozygote mice. These findings agree with the previous 

finding in zebrafish which show that ATR is necessary for appropriate loop formation during 

cardiac development and ATR alteration, such as Seckel mutation, resulted in abnormal cardiac 

development and reduced function (13). Interestingly, clinical cases of Seckel syndrome were 

reported which show complex cardiac complications stemming from cardiac malformation (48, 

49). These findings further support the critically important role of interconversion between cis- 

and trans-isoforms being necessary for normal development and organismal maintenance. A 

summary of all findings can be found in Table 2.5. 

Findings present in heterozygous trans-ATR mice 
Finding Percentage or comparison  
Alopecia ~2-3% 
Aggression 5x more likely to have to be separated than wt or cis-ATR 

mice 
Bladder enlargement/Micturition issues ~50% of males 
Kyphosis ~43% 
Tachycardia 100% of males tested 

Table 2.5 Findings present in heterozygous trans-ATR mice 
 
Both cis-ATR (ATR-S431A) and trans-ATR (ATR-P432A) female mice exhibit features indicating 

elevated reproductive stress 

 During necropsy examinations, it was found that mutant female mice from both lines 

possessed increased rates of ovarian and uterine horn abnormalities (Table 2.6). For uterine 

horns, this abnormality was mainly enlargement or swelling as indicated in Figure 2.7 B in 

comparison to the wild type control (Fig. 2.7A). No cysts or other gross abnormalities were seen. 

Gross evaluation of ovaries showed multiple phenotypes ranging from apparently normal to 

potentially precancerous. Many ovaries possessed follicular cysts and enlarged corpus luteum, 

others, like that shown in Figure 2.7B, exhibit endometroid or hemorrhagic cysts as indicated by 

the engorgement of blood seen both under gross examination as well as histological examination 
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Figure 2.7: Ovary/uterine inflammation and follicular cysts are present in both cis-ATR (ATR-
S431A) and trans-ATR (ATR-P432A) mice 
A) and B) show gross anatomy of the reproductive tract of two female litter mates (12 months). Panel 
B This ATR-S431A/S431A mouse is representative of most females of both the S431A line (ATR-
S431A/+ & ATR-S431A/S431A) and the P432A line (ATR-P432A/+). Notice how the ovaries are 
engorged and the uterine horns are thickened (a consequence of chronic inflammation). C) 20x H&E 
of a wild type ovary from panel A. Normal follicular development is noted by the presence of oocyte 
formations (OF) and normal corpus luteum (Cl). D) 20x H&E of the ATR-S431A/S431A ovary shown 
in B. The ovary is misshapen and has lost size due to rupture during the embedding process. An 
abnormal number of follicular cysts (FC) are seen. The ovary appears to be hyperplasic (HP) in some 
regions and hemorrhagic (arrows) in others. S431A/+ = ATR-cis/+, S431A/S431A = ATR-cis/cis, 
P432A/+ = ATR-trans/+ 
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Mouse Genotype 
Total # mice 

assessed 

Total # with 
abnormal 

ovaries/uterine 
horns 

Percentage  

+/+ 10 0 0% 
S431A/+ ᵻ 8 5 62.5% 

S431A/S431A ᵻ 4 3 75% 
67S431A/+ or S431A/S431A ᵻ 12 8 67% 

P432A/+ ᵻ 10 8 80% 

 
 

 (Fig. 2.7D, arrows). Ovarian cyst formation can be due to a variety of factors, but most 

are attributed to either trauma, developmental abnormalities, or chronic inflammation (50-53). 

Developmental abnormalities in cilia function in the absence of DNA damage repair protein 

MRE11 have been found to contribute to kidney cyst formation (54). While not shown, renal 

cysts were present in some mice from these lines, though uncommon, and make show a potential 

link between known ATR cilial dysfunction and pathogenesis of both ovarian and renal cysts 

(13). Other studies have shown that increases in genomic stress leading to increased 

inflammation can lead to the formation of cysts and cancerous lesions.  For example, BRACA1 

(breast cancer type 1 susceptibility protein 1) mutant mice develop ovarian and uterine cysts 

typically resulting in cancer formation (55) whereas NEK8 (NIMA regulated kinase 8), a 

regulator of cytoskeletal structure, knockout mice show increased ATR activation and replicative 

stress leading to chronic high levels of inflammation resulting in cyst formation (56). Given that 

chronic inflammation involved in polycystic ovarian syndrome (PCOS) and other similar 

disorders predisposes individuals to cancer development it is possible that these ATR mutations 

likely have the same effect (53, 54). Additionally, cytoplasmic ATR phosphorylation at the Pin1 

motif previously has been linked to prognosis of ovarian cancer. These studies showed that  

Table 2.6: Incidence of abnormal/cystic ovaries and uterine horns by gross examination 
S431A/+ = ATR-cis/+, S431A/S431A = ATR-cis/cis, P432A/+ = ATR-trans/+ 
ᵻ p<0.05 by Fisher-exact test for comparison to +/+ 
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higher levels of phosphorylated ATR Ser428 were associated with poorer disease outcomes (57). 

Since pATR-S428 is a substrate for Pin1 and leads to its conversion into the trans- isomer it 

suggests that the trans- isomer is likely involved in tumor tolerance to chemotherapeutic 

treatment; however, its role here in precancerous cyst formation is unknown. In contrast, cis-

ATR (non-phosphorylated ATR-S428A) likely is cancerous through the direct anti-apoptotic 

activity previously described (9). This leads us to believe that while the phenotypes between 

ATR cis and trans mice are similar for ovarian cyst development, the underlying mechanisms 

driving these phenotypes are likely different.  

DISCUSSION 

To investigate the effects of sterically locking the prolyl isomerization site of ATR on 

organismal development we first began by constructing a mouse model wherein cytoplasmic 

ATR is locked into either the cis or the trans prolyl isomer through a single amino acid 

substitution. Studies revealed that mutations locking ATR into the cis-isomer were 

embryonically viable whereas no mice bearing only the trans-isomer of ATR were found. ATR 

knockout has previously been shown to cause early embryonic lethality and loss of kinase 

activity is well associated with cell death in cycling cells (1, 5, 10). We questioned whether 

embryonic lethality could be due to a loss of kinase activity in trans-ATR mice; however, upon 

investigation, it was found that trans-ATR possesses the same kinase activity as the wild type 

when constructs bearing the human form of the mutant were expressed in an ATR-deficient cell 

line and exposed to UV irradiation. Further investigation revealed that no mice bearing the 

homozygous trans-ATR genotype were present at E13.5 and that sections from E7.5 uteri post 

implantation from breeding of heterozygote trans-ATR mice revealed notable embryonic 

reabsorption sites. This could imply that the ability to switch between the two isoforms is 
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necessary for development at the implantation stage, the same stage at which ATR knockout 

embryos die (10). Another potential, though unexplored explanation, could involve the fact that 

ATR is involved in male meiotic recombination. Conditional knockout and Seckel syndrome 

models have shown that loss of ATR or its kinase activity can lead to reduced sperm counts with 

various functional defects (58, 59). Additionally, male mice expressing a single ATR kinase dead 

allele were found to be sterile due to ATR exchange dynamics limiting ATR activation kinetics 

and subsequent checkpoint activity (60). This could provide a potential explanation as human 

ATR deficient cells doubly-transfected with both wild type and trans-ATR constructs showed 

reduced checkpoint activation when compared to either wild type or trans-ATR transfected cells 

alone; however, further studies to explore this theory need to be performed.  

 In addition to potential aberrations in embryonic development, heterozygote trans-ATR 

mice exhibit a wide variety of developmental and age-related phenotypes. This is in contrast to 

mice carrying the cis-ATR which appear to develop normally, but are prone to neoplasia 

occurrence. The trans-ATR form presents with various phenotypes typical to either adult ATR 

conditional knockout or ATR Seckel syndrome mice; however, it is interesting because these 

mice only express a single, or at most a subset, of the phenotypes seen in either condition. While 

these phenotypes may vary, they most likely have roots in underpinning neurological 

development defects. Because ATR is essential in CNS development, it is likely that it also has 

roles in ENS development (12, 14, 15). Defects in ENS signaling could explain the phenotypes 

seen whereby micturition is inhibited as well as formation of the spontaneous necrotic bowel (36, 

37, 39, 40). While we can speculate that these phenotypes likely result from a change in ATR 

signaling, further studies investigating the development of these phenotypes need to be 

performed.  
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 The role of cis-ATR in carcinogenesis is likely defined by cis-ATR’s direct anti-apoptotic 

activity through structural sequestration of the pro-apoptotic protein tBid (9). Cancers/neoplasms 

develop when cells fail to initiate appropriate cell cycle arrest or apoptosis. Through blocking 

apoptosis, cis-ATR likely contributes to cancer by promoting tolerance to internal signals for 

apoptosis. In support of this, low phosphorylation of cytoplasmic ATR at the Pin1 site has been 

linked to advanced stage ovarian carcinoma and poor prognosis in regards to chemotherapeutic 

outcome (57). Phosphorylation is required for cis-ATR to be isomerized to the trans-ATR 

isoform by Pin1. Therefore, a lack of phosphorylation on the Pin1 motif likely results in a higher 

propensity for forming the cis-ATR conformation. This could give pre-cancerous cells the 

tolerance to apoptotic signaling necessary to develop into full blown neoplasms. In addition to 

this, both cis-ATR and trans-ATR mice seem to exhibit chronic inflammatory symptoms. This 

could be due to genomic instability which is known to induce inflammation in a DNA damage-

dependent manner (61-64). Furthermore, ATR mutations have been linked to modulation in the 

tumor immune microenvironment leading to promotion of tumor development and growth (65). 

Further investigation into the roles of each ATR prolyl isoform in these areas are needed, but 

current findings allude to the presence of inflammatory subtypes common to both lines. Why this 

contributes to neoplastic development in cis-ATR mice, but not in trans-ATR mice, still needs to 

be clarified, but is likely is due to the potential kinase deficiency seen in heterozygote trans-ATR 

mentioned previously.  

 The results of this study, summarized in Figure 2.8, reveal the importance of the cell’s 

ability to shift between cis and trans ATR prolyl isomers and give insight into specific isomer 

functions. Future investigation will hopefully reveal the exact mechanisms by which the two 
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isoforms differ in their phenotypic development and help to explain some of the differences seen 

both between the different mouse lines and within the trans-ATR line.   

 

 

 

 

  

Figure 2.8: Structurally locking cytoplasmic ATR has varying effects on organismal and 
phenotypic development. 
A) Summary of the effect of locking ATR into either the cis- (ATR-S431A/ATR-H) or trans- (ATR-
P432A/ATR-L) form. B) Summary of the findings of this study. C) Potential implication of each 
isoform on cellular fate.   
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ABSTRACT 

Calcium overload and oxidative damage are two marked outcomes of ischemic stroke. Ischemic 

stroke is one of the major leading causes of death and disability worldwide. During ischemic 

stroke, blood flow to a region of the brain is restricted by thromboembolism leaving the tissue 

supplied by the occluded vessel oxygen and nutrient deprived. Upon natural or assisted removal 

of the embolus, the brain is then reperfused. The initial hypoxia, as well as the reperfusion, leads 

to the release of excitatory neurotoxic components, oxidative stress, and destructive 

inflammation. Because current therapeutic options are limited, we sought to investigate the 

potential use of Ataxia telangiectasia and Rad3-related (ATR) inhibition as a potential treatment. 

Investigations of ATR inhibition, using various calcium overload and oxidative damage 

conditions, revealed differential effects between populations of cycling and non-cycling cells. In 

general, ATR inhibition was protective against these insults in non-cycling cells and detrimental 

to cycling cells. We also determined the upstream activation of ATR signaling in non-cycling 

cells to oxidative damage be both base excision repair and nucleotide excision repair dependent. 

These results indicate that ATR inhibition could serve as a potential therapeutic option by 

limiting neuronal death while simultaneously suppressing immune cell proliferation, and 

subsequent inflammation, following transient ischemic stroke.  
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INTRODUCTION 

 Stroke is one of the top five causes of death and major disability worldwide (1-3). 

Despite this, there are few therapeutic interventions and all available interventions have narrow 

clinical windows (4). Of all strokes, ischemic strokes account for the majority, 87% (1). During 

an ischemic stroke, blood flow to a region of the brain is restricted by a thromboembolism 

leaving the tissue supplied by the occluded vessel oxygen and nutrient deprived. Upon natural or 

assisted removal of the embolus, the brain is reperfused. The initial hypoxia, as well as the 

reperfusion, lead to the release of excitatory neurotoxic compounds, calcium overload, oxidative 

stress, and destructive inflammation (5-10). These events lead to widespread DNA damage and 

neuronal cell death in the infarct region.  

 Neuronal inflammation, calcium overload, and oxidative stress drive reactive nitrogen 

and oxygen signaling. This leads to calcium overload and the generation of reactive species 

which are capable of damaging proteins, lipids, and DNA. Calcium overload and oxidative DNA 

damage has been shown to induce cell death, cause base modifications that are mutagenic, 

induce replication stress, and inhibit/modify transcription dependent on the type of oxidative 

lesion (7, 11-13). One protein activated following hypoxia and oxidative damage is the protein 

kinase ataxia telangiectasia and rad3-related (ATR) (14-16). ATR is a member of the PIKK 

(phosphatidylinositol-3 kinase-like) family which has roles in regulating cell cycle progression, 

DNA repair, and apoptosis (17-21). Recent studies have shown that inhibition of ATR’s kinase 

activity in non-cycling cells is protective against the lethal effects of transcription stress and 

advanced DNA damage (22, 23). This contrasts with the fact that ATR’s kinase activity in 

cycling cells is required not only for replication but also for suppression of both caspase-2- and 

caspase-3-dependent apoptotic pathways following DNA damage (24-26).  
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Previous attempts at targeting calcium overload and oxidative DNA damage have 

focused on the individual components leading to the damage; however, they tend to 

therapeutically ‘miss the mark’ due to only being useful against one or two of individual factors 

(4). Here we show evidence that inhibition of ATR signaling is neuroprotective, as well as 

immunosuppressive, in various calcium overload and oxidative damage conditions. We further 

provide evidence that this protection is likely due to the differential actions of ATR inhibition on 

cycling and non-cycling cell populations. Lastly, we define ATR activation following oxidative 

damage in non-cycling cells to be both APE2-, a base excision repair (BER) protein, and 

nucleotide excision repair (NER)-dependent. These results give hope that ATR inhibitors could 

serve as a therapeutic option following ischemic stroke or other similar conditions.  

METHODS 

Cell culture  

C6 (ATCC CCL-107, rat glioma), HMC3 (ATCC CRL-3304, human microglia), and SH-

SY5Y (ATCC CRL-226, human neuroblastoma) cell lines were all obtained from the American 

Type Culture Collection (ATCC). C6 cells were maintained in F-12 media (Corning) 

supplemented with 10% fetal bovine serum (Thermo Scientific). HMC3 and SH-SY5Y cells 

were maintained in Dulbecco’s modified Eagle’s medium (DMEM) supplemented with 10% 

fetal bovine serum (Thermo Scientific). All lines were supplemented with antibiotics (100 

units/mL penicillin, 100 units/mL streptomycin, VWR) and maintained at 37ºC under a constant 

atmosphere of 5% CO2.  
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Cell differentiation   

C6 cells were grown to 60-70% confluency. Then, complete media was replaced with 

serum-free F-12 that was supplemented with 100 nM paclitaxel (SigmaAldritch). This media was 

refreshed on the second day with more media of the same composition. On the fourth day and 

every two days after that, the media was replaced with serum-free F-12. A washout period of six 

days post-paclitaxel treatment was allowed before experiments were performed. 

SH-SY5Y were grown to 60-70% confluency. Then, complete media was replaced with 

1% serum DMEM supplemented with freshly made all-trans retinoic acid dissolved in DMSO to 

a final in dish concentration of 10µM. This media was changed every two days with the media of 

the same composition until day ten. At day ten the media was replaced with 1% serum in DMEM 

with no further supplementation. A washout period of two days was allowed before any 

experiments were performed. 

Cell treatments and transfections 

All treatments were done for the times indicated in the sections where they are presented. 

The ATR inhibitor, VE-822 (MedKoo), was dissolved in DMSO to make a stock concentration 

of 80 µM which was then diluted in culture media to 80 nM before treatment. All listed VE-822 

treatments were initiated 1 hr prior to other treatments. Glutamate (SigmaAldritch) was dissolved 

in equimolar NaOH to a final stock concentration of 1M. Before treatment, glutamate was 

diluted in media appropriate for the cells to be treated. Media was removed from cells and 

replaced with media containing glutamate. Similar treatments were performed for both hydrogen 

peroxide (VWR) and ionomycin (Cayman). For glucose deprivation and oxygen-glucose 

deprivation with reperfusion (OGDR), glucose and serum-free DMEM (Corning) was used. Cells 

were washed with 1x PBS after the removal of normal media and addition of the glucose and 
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serum-free media. For oxygen depletion studies, 4 hr hypoxia (O2/N2/CO2, 1:94:5) treatments 

were achieved through the use of an oxygen depletion regulation system (ProOx C31, 

BioSpherix). Following hypoxia, media was replaced with complete media for the times 

indicated.  

For DNA damage signaling assays, Triptolide (300nM, ApexBio) was administered 1hr 

prior to further treatment. For shAPE2 (SantaCruz) mediated knockdown of APE2, transfection 

of  shAPE2 plasmid was done by using jetPEI transfection reagent (Polyplus) by the company’s 

protocol. Selection with puromycin (1µg/mL, Gibco) was done for three days before further 

treatment.  

Immunoblotting and antibodies 

Cells were collected by first scraping in media and spinning down all cells at 10,000rpm 

for 5min. Then, the cells were resuspended in lysis buffer (50mM Tris-HCl, pH7.8, 150mM 

NaCl, 1mM EDTA, 1% Triton X-100, 1x protease/phosphatase inhibitor cocktail [Thermo]) and 

the mixture incubated on ice for approximately 20min before centrifugation (10,000rpm at 4ºC) 

to pellet cellular debris. 2xSDS loading buffer was added to cell lysates and the mixture was 

heated at 95ºC for 5min. Samples were loaded onto appropriate percentage SDS-PAGE gels for 

resolution of the proteins in question. Proteins were transferred from gels onto PVDF membranes 

(Millipore). Primary antibodies raised against actin (Cell Signaling), APE2 (ThermoFisher), 

Chk1 (Cell Signaling), cleaved Caspase 3 (c-caspase 3, Cell Signaling), cleaved PARP1 (c-

PARP1, Millipore), Ki-67 (Cell Signaling), NeuN (Millipore), p-Chk2 T68 (Cell Signaling), and 

p-p53 S15 (Cell Signaling) were used. The chemiluminescent signal from HRP-conjugated 

secondary antibody (ThermoFisher) was detected and captured using either the Fuji Film imager 

LAS-400 or an Amerscham Imager 680 (GE). 
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Viability assays  

MTT (3-(4,5-dimethylthiazol-2-yl)-2-5-diphenyltetrazolium bromide) assays (Alfa 

Aesar) were used to assess viability following hydrogen peroxide, glutamate, and OGDR 

treatments per manufacturer’s instruction. Absorbance at 490 nM was determined using a 

PowerWave XS2 spectrophotometer (BioTek). Differences in cell viability were statistically 

determined using GraphPad Prism by one-way ANOVA with significance set at p<0.05 and the 

standard deviation is shown.  

Trypan blue exclusion assays were used to determine the cell death following ionomycin 

treatment. Cells were harvested by trypsinization followed by low-speed centrifugation (500 

rpm, 5 min). The supernatant was removed, and the cell pellet was resuspended in 0.1mL of 

0.4% trypan blue solution. Death was assessed by counting the number of blue cells versus the 

total number of cells. Differences in cell death were statistically determined using GraphPad 

Prism by one-way ANOVA with significance set at p<0.05 and the standard deviation is shown. 

Colony formation and viability staining with crystal violet were used to determine the 

effects of ATR inhibition on the growth of HMC3 cells and survival of differentiated C6 and SH-

SY5Y cells. HMC3 cells were plated and allowed to reattach overnight. A control plate was then 

fixed and saved until the end of treatment. The remaining plates were either treated with 80 nM 

VE-822 or with the same amount of DMSO for six days. Then the cells were fixed with 4% PFA 

(paraformaldehyde, EM Biosciences) for 10min at room temp before being stained with 4% 

crystal violet for 10 min at room temp. Plates were then destained with ddH2O until no crystal 

violet could be liberated from the plate. The same procedure was performed to ascertain viability 

in differentiated C6 and SH-SY5Y cells.   
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RESULTS 

ATR inhibition has opposite effects on the survival of cycling and non-cycling cells exposed to 

calcium overload  

 Strokes involve a complex interplay of excitatory neurotoxicity and direct oxidative 

damage. To tease apart the effect of ATR inhibition on these various components, we decided to 

address them individually in vitro. Using cell lines representative of different types of cells 

within the brain we looked first at the effects of two different excitotoxic calcium overload 

models: glutamate and ionomycin.  

 Glutamate is a multifunctional excitatory neurotransmitter capable of acting on multiple 

ionotropic and metabotropic receptors. During ischemia, glutamate is continuously released due 

to a feedforward depolarization of neurons resulting in the concentration of glutamate in the 

extracellular portion of the ischemic lesion. This glutamate activates ionotropic receptors which 

either directly (NMDA receptors) or indirectly (AMPA/KAR receptors) lead to an increase of 

intracellular calcium. These mechanisms are further augmented by activation of metabotropic 

glutamate receptors which lead to the activation of PLC (phospholipase C), generation of IP3 

(inositol 1,4,5-trisphosphate), and the subsequent release of calcium from the endoplasmic 

reticulum. The sum result of these events is an increase in cytoplasmic calcium concentration 

which leads to mitochondrial dysfunction, the generation of reactive oxygen species (ROS), and 

cell death by either apoptosis or necrosis (5, 7, 8, 27, 28).  

 To assess the effects of ATR inhibition, we first looked at the consequence of ATR 

inhibition on cellular viability post glutamate exposure. In human microglial cell 3 (HMC3), a 

cycling macrophage/microglial like cell line, ATR inhibition reduced viability both alone and in 

conjunction with glutamate treatment at both early (Fig. 3.1A) and late (Fig. 3.1B) timepoints. 

This was confirmed by an increase in apoptotic markers, cleaved caspase-3 (c-Caspase 3) and 
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cleaved PARP1 (c-PARP1), seen by western blot analysis at twenty-four hours (Fig. 3.1C). The 

absence of these markers at the earlier timepoint is likely due to mitochondrial dysfunction, 

without apoptosis initiation, and necrotic cell death. While early timepoints are known to induce 

necrosis at the dosage used, later timepoints are known to exhibit a mostly apoptotic phenotype 

due to accumulated oxidative damage from mitochondrial dysfunction and antioxidant depletion 

(5, 8, 28).   

 In contrast to the findings with cycling HMC3 cells, ATR inhibition was found to 

be protective when similar experiments were performed with non-cycling neuron-like cells. For 

these experiments, SH-SY5Y and C6 cells were differentiated using all-trans retinoic acid and 

paclitaxel, respectively. Both methods are known to induce a neuron-like phenotype upon 

differentiation (29, 30). Confirmation of a non-cycling state was established by western blot 

analysis for Ki-67 and Chk1 (checkpoint kinase 1) (Fig. 3.S1). Both Ki-67 and Chk1, defined 

markers for cycling cells, were highly depleted following retinoic acid treatment of SH-SY5Y 

and paclitaxel treatment of C6 indicating exit from the cell cycle and entrance into a non-cycling 

state (22, 31). Seen in Figure 3.1D and 3.1E, ATR inhibition was protective against the toxic 

effects of glutamate-induced calcium overload in differentiated SH-SY5Y both at four hours and 

twenty-four hours. Again, this was confirmed in the western blot analysis for c-PARP1 and c-

Caspase 3 at twenty-four hours (Fig. 3F). Interestingly, whereas both cycling HMC3 and 

differentiated SH-SY5Y lines had marked decreased viability at the four-hour timepoint, 

differentiated C6 cells were tolerant to the initial viability loss induced by glutamate exposure 

(Fig. 3.1G); however, there was still a significant protection conferred by ATR inhibition here as 

well as in the twenty-four-hour timepoint (Fig. 3.1H). These results were confirmed by western 

blot assessment of c-PARP1 and c-Caspase3 in which both four-hour and twenty-four-hour 
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Figure 3.1: ATR inhibition differentially affects cycling and non-cycling cells exposed to 
glutamate-induced calcium overload 
A & B) HMC3 cells were treated with glutamate, ATR inhibitor (VE-822), or a combination. 
Cellular viability was assessed by MTT at 4hr (A) and 24hr (B). Under both conditions, MTT 
results shows an increase in cell death in combination treatment compared to glutamate alone. 
C) Results of MTT were confirmed by analysis of whole cell extracts of similarly-treated 
HMC3. Increases in c-PARP1 and c-Caspase 3 are indicative of increased apoptotic cell death in 
ATR inhibitor-treated groups. D & E) Differentiated SH-SY5Y cells were treated with 
glutamate, ATR inhibitor (VE-822), or a combination. Cellular viability was assessed by MTT at 
4hr (D) and 24hr (E). A protective effect against glutamate-induced calcium overload was seen 
at both timepoints. F) Results of MTT were confirmed by analysis of whole cell extracts of 
similarly-treated SH-SY5Y cells. Decreases in c-PARP1 and c-Caspase 3 are indicative of 
decreased apoptotic cell death in ATR inhibitor-treated groups. G & H) Differentiated C6 cells 
were treated with glutamate, ATR inhibitor (VE-822), or a combination. Cellular viability was 
assessed by MTT at 4hr (G) and 24hr (H). A protective effect against glutamate-induced calcium 
overload was seen at both timepoints. I) Results of MTT were confirmed by analysis of whole 
cell extracts of similarly-treated C6 cells. Decreases in c-PARP1 and c-Caspase 3 are indicative 
of decreased apoptotic cell death in ATR inhibitor-treated groups. One-way ANOVAs were 
performed for all MTT tests listed. p<0.05 
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timepoints revealed a reduction in apoptotic markers in ATR inhibitor-treated samples (Fig. 

3.1I).  

 These observations indicate that ATR inhibition has differing effects between cycling 

immune-like cells and non-cycling neuronal-like cells. ATR inhibition alone appears to be 

enough to reduce viability, prevent clonal expansion, and induce apoptosis over time in cycling 

HMC3 (Fig. 3.S2A) while it has no effect on the viability of non-cycling cells (Fig. 3.S2B&C). 

These results resemble those previously reported by other labs which showed that ATR kinase 

activity is essential in cycling cell populations, but dispensable in non-cycling cells (22-24). 

Because glutamate is known to induce oxidative damage in addition to calcium overload, 

ionomycin, a calcium ionophore, also was employed to investigate calcium-overload induced 

cell death in these cell populations. Whereas glutamate is known to induce both apoptosis and 

necrosis, the dosage of ionomycin used is well known to induce a pure necrotic phenotype at 

early time points (32). Treatment of HMC3 cells with ionomycin in the presence of ATR 

inhibition led to a near three-fold increase in necrotic cell death as determined by trypan blue 

staining (Fig. 3.2A). Similar to the findings with glutamate, both differentiated SH-SY5Y (Fig. 

3.2B) and C6 cells (Fig.3.3C) were protected from the calcium overload-induced necrosis by 

ATR inhibition. These results suggest that ATR inhibition could serve to suppress the immune 

response to calcium-overload stimuli post-stroke while also directly sparing neurons from this 

mode of cell death.  
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ATR inhibition has opposite effects on the survival of cycling and non-cycling cells exposed to 

oxidative stress  

 Another component common to all strokes is oxidative damage resulting from ischemia 

and reperfusion, in cases where clot evacuation is possible. To study these events, we employed 

both direct oxidative damaging agents as well as an in vitro model mimicking 

ischemia/reperfusion.   

 Cycling HMC3 cells showed decreased viability when exposed to a moderate, apoptosis-

inducing, dose of hydrogen peroxide. This loss of viability was only slightly increased by ATR 

inhibition at four hours but was significantly increased at twenty-four hours (Fig. 3.3A&B). 

Increases in apoptotic cell death were seen at both four hours and twenty-four hours by western 

blot analysis for apoptotic markers (Fig. 3.3C). As seen previously with the calcium-overload 

models, ATR inhibition alone was sufficient to induce loss of viability and induce apoptosis in  

  

Figure 3.2: ATR inhibition differentially affects cycling and non-cycling cells exposed to 
ionomycin-induced calcium overload 
HMC3 (A), differentiated SH-SY5Y (B), or differentiated C6 (C) cells were pretreated with 
ATR inhibitor (80nM VE-822) and then exposed to ionomycin for 4hrs. ATR inhibition was 
detrimental to necrosis inducing calcium overload in cycling HMC3 cells. This contrasts 
with a protective effect of ATR inhibition seen in differentiated SH-SY5Y and differentiated 
C6 cells. Cell viability was assessed by the trypan blue exclusion assay. One-way ANOVAs 
were used to access statistical significance. p<0.05 
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Figure 3.3: ATR inhibition differentially affects cycling and non-cycling cells exposed 
to direct oxidative damage 
A & B) HMC3 cells were treated with hydrogen peroxide, ATR inhibitor (VE-822), or a 
combination. Cellular viability was assessed by MTT at 4hr (A) and 24hr (B). While no 
change in viability was seen at 4 hours there was an increase in cell death at 24hr. C) Results 
of MTT differed from western blot analysis of similarly treated HMC3 in which increases in 
the apoptotic markers c-PARP1 and c-Caspase 3 were seen at both 4hr and 24hr. D & E) 
Differentiated C6 cells were treated with hydrogen peroxide, ATR inhibitor (VE-822), or a 
combination. Cellular viability was assessed by MTT at 4hr (D) and 24hr (E). There was 
statistical protection at both 4hr and 24hr. F) Results of the MTT were confirmed by analysis 
of whole cell extracts of similarly treated SH-SY5Y. Decreases in c-PARP1 and c-Caspase 3 
are indicative of decreased apoptotic cell death in ATR inhibitor treated groups. G & H) 
Differentiated C6 cells were treated with hydrogen peroxide, ATR inhibitor (VE-822), or a 
combination. Cellular viability was assessed by MTT at 4hr (G) and 24hr (H). There was 
statistical protection at both 4hr and 24hr. The increase in cellular viability seen in G over H 
is likely due to transient loss of viability (mitochondrial respiration dependent) followed by 
recovery. I) Results of MTT were confirmed by analysis of whole cell extracts of similarly 
treated C6. Decreases in c-PARP1 and c-Caspase 3 are indicative of decreased apoptotic cell 
death in ATR inhibitor treated groups. One-way ANOVAs were performed for all MTT tests 
listed. p<0.05 
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these cycling cells adding to the evidence that ATR inhibition could be an immunosuppressive 

following stroke.  

Similar to calcium-overload models, ATR inhibition was protective against direct 

oxidative damage in differentiated C6 (Fig. 3.3D-F) and SH-SY5Y cells (Fig. 3.3G-I) exposed to 

hydrogen peroxide. Of note, both differentiated lines appear to have an initial reduction in 

viability in the ATR inhibitor treated group (Fig. 3.3D & G) that partially recovers at twenty-four 

hours (Fig. 3.3E & G). While not reflected in the western blot analyses for apoptotic markers, 

this shows that the initial reduction in viability was likely transient. As apoptosis is a time-

consuming process, it is likely the initial burst of oxidative damage induced mitochondrial 

dysfunction, but this dysfunction did not lead to apoptosis in ATR inhibitor-treated samples. In 

this way, ATR inhibition likely prevents apoptosis initiation allowing for adequate repair of 

DNA damage and removal of damaged mitochondria. This is supported by the fact that many 

proteins involved in oxidative DNA repair are markedly upregulated in neurons following 

oxidative insults, such as stroke (7, 33, 34). Thus, ATR inhibition of apoptosis initiation would 

allow time for upregulation of repair mechanisms and clearance of damaged macromolecules 

from the system.   

 To confirm these results, we employed an oxygen-glucose deprivation with reperfusion 

(OGD-R) model to study the effects of stroke-like conditions on these cell lines. This model 

employs a period of oxygen and glucose deprivation in which the cells are starved, imitating the 

ischemia induced by artery blockage. Then, nutrients and oxygen are restored to simulate 

reperfusion following blockage removal. Results show that ATR inhibition in HMC3 cells leads 

to reduced viability at both four hours and twenty-four hours of reperfusion following a four-

hour ischemic period (Fig. 3.4A & B). In contrast, ATR inhibition in differentiated SH-SY5Y  
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Figure 3.4: ATR inhibition differentially affects cycling and non-cycling cells exposed 
to an in vitro ischemia/reperfusion model 
A& B) HMC3 cells were exposed to oxygen-glucose deprivation for 4hr followed by either 
a 4hr (A) or 24hr (B) reperfusion period. A trend in the MTT assay data showing increased 
loss of viability with combination treatment was seen. C & D) Differentiated SH-SY5Y cells 
were exposed to oxygen-glucose deprivation for 4hr followed by either a 4hr (C) or 24hr (D) 
reperfusion period. MTT readings showed ATR inhibition trended to be protective at 4hr, but 
this was not significant. Results were significantly protective at 24hr. E) Cycling SH-SY5Y 
were exposed to glucose deprivation alone for 24hr with or without ATR inhibition. F) 
Differentiated SH-SY5Y cells were exposed to glucose deprivation alone for 24hr with or 
without ATR inhibition. ATR inhibition is deleterious for the survival of cycling cells under 
glucose deprivation, but appears to have no effect on non-cycling cells. One-way ANOVAs 
were used to access statistical significance. p<0.05 
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showed modest, but not significant, increases in viability at four hours post-reperfusion 

(Fig.3.4C); however, a significant level of protection was seen at twenty-four hours post-

reperfusion (Fig 3.4D). Glucose deprivation (GD) alone also was assessed in cycling (Fig. 3.4E) 

and differentiated (Fig. 3.4F) SH-SY5Y cells. It was found that ATR inhibition greatly 

potentiates viability loss associated with GD in cycling cells, but it has no real effect on the 

viability of differentiated cells. Taken together, these results support the previous findings that 

ATR inhibition is neuroprotective and immunosuppressive following oxidative injury.  

ATR activation following oxidative damage is different between cycling and non-cycling cells 

 Given that the previous results indicated differences between cycling and non-cycling 

cell populations, we sought to investigate whether differences exist in DNA damage signaling 

between the two states upon ATR inhibition. For this purpose, we employed hydrogen peroxide 

as a direct oxidative agent to avoid off-target effects commonly known to be involved with the 

other treatments presented previously. It was found that cycling HMC3 cells and differentiated 

SH-SY5Y cells exhibited decreased p53 phosphorylation at Ser15 when pretreated with ATR 

inhibitor before hydrogen peroxide treatment (Fig. 3.5A). p53 phosphorylation was chosen as a 

marker for ATR signaling because Chk1, the main substrate for ATR, is nearly absent in non-

dividing cells (22). Additionally, p53-Ser15 phosphorylation activates the transcriptional 

properties of p53 leading to transcription of both proapoptotic and cell-cycle regulatory proteins 

(35, 36).  Interestingly, while p53-Ser15 phosphorylation was decreased in both cells upon ATR 

inhibition, phosphorylation of Chk2 (checkpoint kinase 2) at Thr68 by ATM (Ataxia 

telangiectasia mutated) was increased in cycling cells and decreased in non-cycling cells. This is 

indicative of increased replicative stress, resultant replication fork collapse, and generation of 

DNA double-strand breaks induced from ATR inhibition with DNA damage (18, 24, 37).  
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Replication does not occur in differentiated cells, so activation of ATM is dependent on 

transcription-induced strand breaks after oxidatively-induced abasic site generation and direct 

activation by ROS, which are both additional mechanisms of ATM activation in cycling cells 

(37, 38). While a reduction in p53 S15 phosphorylation could be seen as anti-apoptotic in cycling 

cells, it is known that ATR inhibition upon replication stress in cycling cells leads to apoptosis 

through a caspase-3 dependent mechanism that has been attributed to ATM signaling (25, 39). In  

Figure 3.5: DNA damage signaling is different in HMC3 and RA differentiated SH-
SY5Y cells following oxidative damage 
A) Cycling and non-cycling cells express different DNA damage signaling profiles under 
ATR inhibition and oxidative damage. Note that while p-p53 Ser15 phosphorylation is 
decreased in both cell lines, there is an opposite effect on phosphorylation of Chk2, 
indicating a compensatory role of ATM in cycling cells that isn’t present in non-cycling 
cells. B) Inhibition of the TC-NER protein XPB with triptolide (300 nM) reduces the 
phosphorylation status of p53 following hydrogen peroxide treatment indicating 
transcription stress as an activator of ATR. C) shRNA knockdown of the BER protein APE2 
has similar effects to triptolide treatment on p53 phosphorylation status. This implicates that 
both BER and NER pathways are involved in oxidative signaling in non-cycling cells. 
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contrast, recent studies have shown that ATR inhibition is protective against transcription stress 

and generalized DNA damage in non-cycling/resting cells (22, 23). 

 Because replication stress, the primary activator of ATR, isn’t present in non-cycling 

cells we sought to investigate which pathways were involved in ATR activation post oxidative 

DNA damage in these cells. Previous reports have implicated that both nucleotide excision repair 

(NER) as well as single-strand break end resection by APE2 (apurinic exonuclease 2), a 

component of base excision repair (BER), could be involved (40-46). To investigate the effects 

of oxidative damage-induced activation of ATR in non-cycling cells, we first used triptolide to 

inhibit the NER pathway. TC-NER (transcription coupled-NER) is the pathway which responds 

to RNA polymerase stalling in response to bulky DNA lesions, whereas GG-NER (global 

genome-NER) response to helix-distorting DNA adducts in currently untranscribed regions. By 

using triptolide, an inhibitor of both GG-NER and TC-NER through inhibition of XPB 

(xeroderma pigmentosum type B), it was found that p53 Ser15 phosphorylation is reduced after 

hydrogen peroxide exposure in differentiated SH-SY5Y (Fig. 3.5B). This indicates that blocking 

NER generation of single-stranded DNA (ssDNA) by inhibiting the XPB DNA helicase can 

reduce, but not abolish, ATR activation. Investigation of shRNA-mediated knockdown of APE2 

also revealed a reduction in p53 Ser15 phosphorylation (Fig. 3.5C). This indicates that not only 

is NER involved, but BER as well through APE2 generation of ssDNA. Dual inhibition of BER 

and NER pathways was attempted but lead to extreme death following hydrogen peroxide 

treatment that was likely due to excessive damage accumulation from inhibition of repair. As a 

result, signaling could not be tested.  

 These observations demonstrate differences in activation of ATR following oxidative 

DNA damage. They also show that pathways which are known to be minor activators of ATR in 
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cycling cells are highly involved in its activation in non-cycling cells. A summary of these 

proposed activations and the resultant signaling is shown in Fig. 3.6A.  

 

DISCUSSION 
 
 During a stroke, the brain is assaulted by excitatory neurotoxic compounds, calcium 

overload, oxidative stress, and destructive inflammation (5-10). Here we provide evidence that 

ATR inhibition following various stroke-like insults has radically different effects among cycling 

and non-cycling cell populations representative of cells within the brain post-stroke (Fig. 3.6B). 

Using various in vitro models, we demonstrate that ATR inhibition is protective in differentiated  

cells which mimic neurons and non-reactive glia. In contrast, ATR inhibition directly suppresses 

cell division and potentiates pro-death signaling in cycling immune- and glia-like cells.   

Figure 3.6: Summary of differential ATR signaling and outcomes of ATR inhibition in 
cycling and non-cycling cells after DNA damage. 
A) ATR is differentially activated in cycling and non-cycling cells. The outcomes of this 
signaling are also noted. B) Examples of cycling and non-cycling cell populations in the 
brain. C) Stroke outcomes with and without ATR inhibition.  
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 Direct protection of neurons is the ideal therapeutic strategy following stroke. This 

maintains tissue integrity and provides the highest likelihood of functional protection and 

recovery (47). Here we show that ATR inhibition is capable of sparing neuron-like cells exposed 

to a variety of common in vitro stroke-like insults. ATR is well known to induce apoptosis in 

non-cycling cells exposed to DNA damage and transcription stress (22, 23). While previous 

reports have shown this effect to be independent of p53 activation (22), here we show that 

suppression of ATR kinase activity leads to decreased p53 phosphorylation at Ser15, implying 

reduced p53 proapoptotic activation. This corresponds to findings showing p53 Ser15 

phosphorylation to be required for p53-induced apoptosis (48). While not investigated, ATR also 

is known to induce a caspase 2-dependent, p53-independent, form of apoptotic cell death (26). 

This form of death is typically suppressed in cycling cells by Chk1; however, Chk1 is not present 

in non-cycling cells and, therefore, could contribute to the apoptosis seen. Inhibition of ATR, in 

this instance, would serve to directly prevent activation of the apoptotic pathway induced by 

caspase 2 following DNA damage.  

 In the absence of neuronal sparing, suppression of the inflammatory response serves as a 

second therapeutic option following stroke (9, 10). Neuron stress and death within the infarct 

region leads to the release of multiple proinflammatory factors leading to time-dependent 

recruitment of various immune and glial cells (49). These cells then continue to propagate cell 

death in the infarct region and surrounding tissue by either directly damaging neurons through 

the release of oxygen and nitrous oxide radicals (neutrophils, macrophages, and microglia) or 

through the release of proinflammatory/proapoptotic cytokines (natural killer cells, macrophages, 

microglia, astrocytes, and cytotoxic t-cells), such as tumor necrosis factor alpha (TNFα) (10, 49, 

50). Additionally, the release of cytokines such as TNFα and interferon-γ (INFγ) can lead to 
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further release of glutamate from neurons and further amplification of the excitotoxic 

environment following stroke. Our studies suggest that ATR inhibition can hinder the 

proliferation of these cycling cells and this inhibition combined DNA damage leads to increased 

cell death in these immune/microglia-like cells in comparison to DNA damage alone. While 

further studies need to be done to look at reduced inflammatory effects, such as cytokine release, 

these results are promising in the use of ATR inhibitors to suppress at least the immune cell 

proliferation at the ischemic lesion.   

Separate from these effects, ATR inhibition also could be implicated in other potentially 

protective mechanisms. For one, ATR and ATM have been found to assist in the balancing of 

excitatory and inhibitory neurotransmitters. While ATM binds to excitatory glutamate vesicles, 

ATR is found to bind to inhibitory GABA (γ-aminobutyric acid) vesicles and inhibition of either 

leads to decreased reuptake of neurotransmitters at the synaptic cleft (51). This could indicate a 

role for ATR inhibition in the prevention of GABA reuptake and, as previous studies have shown 

that GABAnergic signaling is protective in cases of ischemic injury (47, 52-54), these increases 

in GABA could lend to a protective effect. Another potential mechanism comes from the ATR-

induced bystander effect. In this phenomenon, cells which experience DNA damage trigger the 

induction of DNA damage signaling in neighboring cells without damage (55, 56). Following a 

stroke, this could potentially lead to the expansion of the lesion and increased recruitment of 

inflammatory cells. Therefore, prevention of this effect could be beneficial to stroke treatment.  

Alongside the cellular outcomes of ATR inhibition, we also demonstrate that DNA 

damage signaling is different between cycling and non-cycling cells. Activation of ATR is well 

known to be primarily replication stress driven in cycling cells (21, 24, 37); however, replication 

is not present in non-cycling cell populations. To address this, we looked at pathways which 
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were implicated in ATR activation while also involved in the repair of oxidative DNA damage. 

Oxidative DNA damage can come in multiple forms: direct base modifications (eg. 7,8-dihydro-

8-oxoguanine [8-oxoG], 5,6-dihydroxy-5,6-dihydrothymine [thymine glycol], 8,5’cyclo-

2’deoxyadeonsine [cdA], and 8,5’-cyclo-2’deoxyguanosine [cdG]) and protein/lipid adducts. 

While most direct modifications are either directly reversed or repaired by BER, a select subset 

(cdA, cdG) is known to block transcription and require the NER pathway to be resolved (43-45, 

57). In contrast, protein and lipid adducts must be removed by NER exclusively (12, 46). Here 

we demonstrate that both the BER protein APE2 as well as the NER pathway are involved in 

ATR activation following oxidative damage. This could implicate the presence of multiple kinds 

or complex lesions generated through oxidative DNA damage under stroke-like conditions. 

These findings align with those of others who have shown either BER or NER to be involved in 

the activation of ATR and, while controversial within the field, our data indicate the involvement 

of both repair pathways.  

These findings expand the existing view of ATR regulation of cellular fate following 

stroke and imply that ATR inhibition could serve as a target for both neuronal sparing and 

immunosuppressive therapeutic strategies.  While these results are promising, future studies need 

to be conducted to further explore the role of ATR inhibition in immunosuppression and to test 

the potential outcomes of ATR inhibition in in vivo stroke models. 
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Figure 3.S1: C6 and SH-SY5Y are appropriately differentiated into a non-cycling state 
Western confirming entrance into a non-cycling state for both all-trans retinoic acid treated 
SH-SY5Y and paclitaxel treated C6. Depletion of Ki-67 and Chk1 are both noted on cell 
cycle exit and entrance into a non-cycling state.  
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Figure 3.S2: ATR inhibition prevents colony formation in cycling HMC3 cells, but has 
no effect on the viability of differentiated C6 or SH-SY5Y 
A) HMC3 cells were plated, allowed to attach, and then treated for six days with ATR 
inhibitor (80nM VE-822). Colonies developed in the control (DMSO) group, while few 
were present in the inhibitor group. B & C) Taxol-differentiated C6 and RA-differentiated 
SH-SY5Y show no difference in viability after six days of ATR inhibitor treatment. This 
viability assay is based on crystal violet staining. 
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CHAPTER 4 

OVERALL DISCUSSION 

 

 Each day cells are assaulted by an assortment of intrinsic and extrinsic genomic insults. 

As a result, cells must respond by either repairing the damage done or by initiating cell death in 

order to maintain overall organismal integrity. One of the proteins involved in this response, 

ATR, has been shown, both in the enclosed studies and others, to have regulatory roles at 

multiple points within these response pathways (Cimprich and Cortez 2008; Hilton et al. 2016; 

Wu et al. 2006; Zeman and Cimprich 2014; Zou and Elledge 2003). These studies help to further 

define the role of ATR in the regulation of cell death and provide potential avenues for further 

investigation into how ATR structural changes and kinase modulation could impact clinical 

outcomes.  

Implications of sterically locking ATR into a single prolyl isomer 
 
 Previous findings from our lab implicate prolyl isomerization in ATR’s anti-apoptotic 

activity (Hilton et al. 2016). In the studies presented in Chapter 2, we expand on those findings to 

show that the ability to shift between prolyl isoforms is essential to organismal development and 

that possessing one prolyl isoform over another may even predispose an organism to cancer 

development. 

 By using mouse models expressing locked prolyl isoforms in the cytoplasm, we show 

that when ATR is restricted to its lower form, ATR-L (trans-ATR, ATR-P432A/P432A), that the 

organism is unable to develop. This is shown through controlled breeding between mice 

heterozygous for the prolyl isomer-locked ATR-L form. During this study, no offspring were 

found, either postnatally or at E13.5, to be of the homozygous ATR-L genotype leading us to 
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conclude that this mutation was likely embryonically lethal.  

 In contrast, ATR locked into its higher form, ATR-H (cis-ATR, ATR-S431A/S431A), are 

embryonically viable. Additionally, heterozygous ATR-H mice appear to be prone to 

spontaneous lymphoma development when compared to both ATR-L heterozygotes and to ATR-

wt controls. This incidence appears to be sex-dependent as only males were found to possess 

potential lymphomas.  

 Interestingly, females of both lines exhibited evidence of reproductive stress as indicated 

by cystic ovaries and/or inflamed uterine horns. These findings typically coincided with 

increased Peyer’s patch size which could indicate a global inflammatory phenotype. This could 

lend an explanation to both the findings of increased reproductive stress as well as the lymphoma 

see in some of the ATR-H males.    

 These results suggest that ATR prolyl isomerization can affect a wide variety of cellular 

and organismal processes. Further mechanistic studies into how each prolyl isoform can impact 

these processes need to be performed in order to truly tease apart the function of each 

independent isoform. Additionally, studies involving exogenous stressors, such as applied UV-

irradiation should be used to determine whether these prolyl isoforms have separate functions 

only under basal conditions or if they can function to independently influence DNA repair, 

apoptosis, DNA damage signaling, or DNA damage driven tumorigenesis. 

Potential for ATR-inhibition based therapeutic intervention in ischemic disease 
 

It is well established that ATR inhibition in cycling cells leads to cell death through 

increased replication stress and subsequent DNA damage (Brown and Baltimore 2003; Cimprich 

and Cortez 2008; Kemp and Sancar 2016; Ruzankina et al. 2007; Zeman and Cimprich 2014); 

however, recent reports have implicated that ATR inhibition is protective in non-cycling cells 
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exposed to UV-irradiation (Kemp and Sancar 2016). To determine if these findings were limited 

to UV-irradiation or if they could be extrapolated to other types of clinically relevant DNA 

damage, we used cell lines mimicking cycling neuronal immune cells (HMC3) and non-cycling 

neuronal cells (differentiated C6 and SH-SY5Y).  

When exposed to treatments simulating ischemic stroke and oxidative DNA damaging 

conditions, cycling cells were found to have increased cell death in the presence of ATR 

inhibition whereas non-cycling cells were partially protected from these insults. These results 

indicate that inhibition of ATR following ischemia-induced damage could serve as a therapeutic 

target post-stroke. The reason behind this is two-fold. First, ATR inhibition causes neuronal 

sparing following ischemic insult or oxidative damage. This would lead to primary protection of 

the neurons themselves. Secondly, ATR inhibition induces cell death in cycling immune cells 

which could potentially suppress the hyperinflammatory, pro-death, state post-

ischemic/oxidative insult. This would prevent further insult to already damaged neurons allowing 

more neurons to be spared. 

Additionally, this study addresses the mechanistic underpinnings of ATR activation in 

these non-cycling neuronal cells. While replication stress is the major known initiator of ATR 

signaling in cycling cells exposed to oxidative DNA damage, less is known about ATR 

activation in non-cycling cells. Previous reports have implicated both BER and NER pathways in 

this activation (Brooks et al. 2000; Lin et al. 2018; Melis et al. 2013; Menoni et al. 2012; 

Wallace et al. 2017; Willis et al. 2013; Yan et al. 2014). To determine which pathway was 

involved, we inhibited both at their initial steps of resection either through chemical or siRNA-

mediated means. It was found that both pathways were involved, and that no singular DNA 

damage response pathway was responsible for ATR activation post oxidative insult.  
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These findings implicate that modulation of ATR signaling following ischemic stroke 

could be potentially beneficial; however, further investigation in animal models of ischemic 

stroke needs to be performed to confirm the true therapeutic potential of ATR inhibition. 

Additionally, these studies only address ATR activation and apoptosis following oxidative insult. 

Further exploratory studies need to be done in order to determine how DNA repair is affected 

and if the neurons spared in this way are functionally viable.   
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