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ABSTRACT

Function Space Tensor Decomposition and its Application in Sports Analytics

by

Justin Reising

Recent advancements in sports information and technology systems have ushered in 

a new age of applications of both supervised and unsupervised analytical techniques 

in the sports domain. These automated systems capture large volumes of data points 

about competitors during live competition. As a result, multi-relational analyses are 

gaining popularity in the field of Sports Analytics. We review two case studies of di-

mensionality reduction with Principal Component Analysis and latent factor analysis 

with Non-Negative Matrix Factorization applied in sports. Also, we provide a review 

of a framework for extending these techniques for higher order data structures. The 

primary scope of this thesis is to further extend the concept of tensor decomposition 

through the use of function spaces. In doing so, we address the limitations of PCA 

to vector and matrix representations and the CP-Decomposition to tensor represen-

tations. Lastly, we provide an application in the context of professional stock car 

racing.
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1 INTRODUCTION

1.1 Evolution of Big Data in Professional Sports

The age of newspaper box scores being the primary source of numerical informa-

tion for professional athletes has long become an after-thought over the course of the

last decade. Now, stakeholders throughout all levels of professional sports organi-

zations are engaging with an overwhelming amount of data being collected from a

multitude of sources [2]. From the front office to the field, court, or racetrack, the

competitive advantage for clubs in top echelon team sports now rely heavily on the

ability to mine, warehouse, and transform their data into actionable information.

Professional sports in the United States have taken a massive step in the pro-

curement of data and have made major investments in human and computational

resources to handle the data collected in the last decade [1]. This paradigm shift

became more prevalent in the industry after the release of the book and movie Mon-

eyball, which depicted the use of statistics to drive player acquisition decisions instead

of traditional scouting practices within the Oakland Athletics Major League Baseball

(MLB) organization during the 2002 season [1]. During that season, General Manager

Billy Beane embraced statistics that went beyond the box score. This is now known

as “Sabermetrics” and is used to inform scouting decisions to put players on the field

with very limited capital. Sabermetrics were originally developed by Bill James in

the 1970’s as “analytical musings” that have now evolved into what has become the

field of “Sports Analytics” [3].

Baseball was not the only sport that began thinking of how to use technology and
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advanced mathematical techniques to increase the tally count in the win column. Of

the major sports in the Unites States, the National Basketball Association (NBA), Na-

tional Football League (NFL), Major League Soccer (MLS), National Hockey League

(NHL) have all embraced the coming of age with analytics [1]. Some teams in each

sport have been more apprehensive than others, but when dynasty teams seemingly

form out of nowhere within a 5 year period, every team asks the same question:

“What are they doing that we are not?” The answer is not just a couple of Physics

and Mathematics PhD’s on payroll cranking out “insights”. It takes years to develop

a data-driven culture within the organization and build the pipeline from raw data

to actionable information.

Every professional sports team has a series of scouting methods for evaluating

amateur and other professional players when it comes to physiological traits like

speed, arm strength, etcetera. In baseball, the ability to do these things were typically

observational in most cases and subjective measurements varied depending on which

individual was doing the evaluation. Conventional baseball player evaluation is (or

was) dependent on five “tools”: Speed, Arm Strength, Hit for Average, Hit for Power,

and Fielding [3]. While baseball has always been the most prolific numbers game when

it comes to statistics, there was still a subjective nature to them with all of the nuances

of the game. However, since 2015, MLB mandated that all stadiums be equipped with

sonar tracking systems that track object movements including players, bats, and the

ball [19]. This ushered in a new age of big data that has never been seen before

and pushed the envelope in the sports analytics domain from the “personal computer

statistics” domain to the “cloud computing applied mathematics” domain. Over the
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course of the past 5 years, stadiums in the NBA, NFL, MLS, and NHL are now all

equipped with this type of technology generating petabytes of data collectively each

year.

One sport that has less public attention in the sports analytics industry is the

National Association for Stock Car Auto Racing (NASCAR). NASCAR also has a

very different structure than other sports. Teams are not located geographically with

a “Home Field” or track in this case. Most teams operate from a central location

in the Charlotte, North Carolina metropolitan area and travel to venues across the

country on a weekly basis. This is not the only concept that is quite different than

other professional team sports. As organizations have multiple teams at different

levels, such as major league and minor league levels in baseball, NASCAR organiza-

tions can have multiple drivers competing at the same level. For example, Joe Gibbs

Racing (JGR) is an organizational team consisting of four drivers that compete in

the Monster Energy Cup Series (MECS) sponsored by the manufacturing team Toy-

ota Racing Development (TRD). Each car-level team is comprised of a driver, crew

members, with some unique corporate sponsorships. All future mentions of “teams”

is in reference to organizational teams.

1.2 Motivation

The primary motivation for this paper is the increasing use of dimensionality

reduction, low-rank approximation, and latent factor techniques applied in sports

analytics with the goal of extracting hidden components in the underlying structure

of data. However, the granularity of data can vary widely with different types of
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contextual indices such as individual events or competitors, situational characteristics,

time-based intervals, etc. Current applications of decomposition techniques typically

ignore such categorical parameters to suit the constraints for the numerical data

types being analyzed. In sports, events that take place during competition are highly

dependent on contextual factors. For example, in basketball, time left on the clock

can influence shot selection or the inning, count, and runners on base for a pitch

selection in baseball.

Principal Component Analysis (PCA) is one of the oldest methods applied for

dimensionality reduction [13]. The primary goal of PCA is to reduce the dimension-

ality of a data set by extracting low dimensional sub-spaces while preserving as much

variability as possible. PCA is a common technique that addresses the problem of

dimensionality and sub-space leaning in data science, but its effectiveness is limited to

numerical vector and matrix data structures. PCA is also computationally expensive

for very large data sets. This causes PCA to lose power for large-scale, multi-relational

data sets that are now more common in practice. When applied to multi-model data,

the traditional PCA methods applied for matrices has been shown to be inadequate

at capturing variance across different modes and burdened by increasing storage and

computational costs [14].

There is an increasing demand for PCA type methods that can learn from tensor

data while accounting for the multi-relational structure for multi-linear dimensionality

reduction and subspace estimation [14]. In sports analytics, matrix factorization

techniques have been used in many sports applications, such as in the NBA to identify

latent factors of players that go beyond the standard five positions [5]. The extension
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of tensor decomposition to this type of problem is reviewed in more detail through

the development of tHoops, which profiles shot selection tendencies relative to time

on the clock [8]. This is a primary motivation exemplifying how subspace learning

techniques can extend traditional shot chart analyses in the context of basketball.

Collectively, this thesis provides a framework for addressing the limitations of PCA

for tensors subspace learning.

Unlike in other sports, there is a lack of analytical frameworks publicized in

NASCAR and motorsports in general. With large numbers of observations for each

car, lap, track, and season from a multitude of data types and sources, utilizing mul-

tiple indexes in higher order data structures can lead to finer analysis of data. We

further extend the application of multi-relational analysis for sports analytics and

suggest approaches in the context of NASCAR.

1.3 Objectives

The objectives for this thesis are to describe in detail applications of dimension-

ality reduction and subspace learning applications in sports related contexts and to

provide a framework for extensions of these methods utilizing concepts from func-

tional analysis. A conventional approach for multi-relational data is to reshape the

data (unfold) into a matrix structure and then apply classical PCA techniques. How-

ever this eliminates relational information from the folded index. The first primary

goal of this thesis is to demonstrate the classical approach to sports related data in

two different case studies and establish the context for extending analyses into higher-

order data structures. The second goal for this thesis is to provide a mathematical
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basis for the traditional approaches through the lens of linear algebra concepts as well

as the extension to tensor approaches through the lens of functional analysis concepts.

1.4 Outline of Thesis

The remainder of the thesis is organized as follows. Chapter 2 covers the math-

ematical background for the concepts introduced for matrix decompositions, an in-

troduction for tensors, and introduction for function spaces. Chapter 3 provides two

case studies with applications of PCA in baseball analytics and non-negative matrix

(NMF) factorization in basketball and a review of tHoops; a tensor decomposition

framework for basketball shot selection. Chapter 4 provides a comprehensive anal-

ysis including PCA and NMF approaches and introduces tensor decomposition via

function spaces in the context of NASCAR analytics. Chapter 5 includes closing

comments and suggestions for further work for the methodology.
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2 MATHEMATICAL BACKGROUND

2.1 Special Matrices

In this chapter we introduce the mathematical background for developing our

proposed framework for tensor analysis in sports analytics. The motivation for de-

composing matrices or “data frames with numerical entries” is drawn from funda-

mental aspects of linear algebra with “special matrices”. For this paper, we assume

the reader has exposure to basic undergraduate level linear algebra concepts in the

following definitions for later references.

Definition 2.1 [10] An n× n orthogonal matrix Q has orthonormal columns which

means that qTi qj = 0 and qTi qi = 1 ∀ i, j ∈ 1, ..., n. Equivalently,

i) QTQ = QQT = In

ii) ||Qx|| = ||x|| for all x ∈ Rn

iii) QT = Q−1

iv) The columns of Q are an orthonormal basis for Rn

If Sx = λx such that x 6= 0, then λ is an eigenvalue of S with eigenvector x. This

leads to the next definition.

Definition 2.2 [10] If S is an n× n matrix with eigenvalues λi and eigenvectors xi,

then

i) Trace(S) =
n∑

i,j=1

si,j =
n∑
i=1

λi

ii) Determinant(S) =
n∏
i=1

λi
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Theorem 2.3 [10] If S is an n× n symmetric matrix, then,

i) S = ST implies that the eigenvalues are real

ii) If λi 6= λj for i, j ∈ 1, ..., n, then xi · xj = 0. (orthogonal eigenvectors)

In this way, symmetric matrices, S, are like real numbers in that every λ ∈ R

and orthogonal matrices, Q are like complex numbers in that every |λ| = 1 [10].

While orthogonal and symmetric matrices are indeed “special” with their own unique

properties, they are only part of the main attraction for many applications in data

science.

2.2 Matrix Decomposition

Our first theorem is the Spectral Theorem, which is foundational for much of

matrix decomposition.

Theorem 2.4 [10] The Spectral Theorem. Every symmetric matrix has the form,

S = QΛQT (1)

Note that Q is the orthogonal eigenvector matrix of S and Λ is the diagonal matrix

of corresponding eigenvalues. The Singular Value Decomposition is the extension of

The Spectral Theorem for non-symmetric, non-square matrices.

Theorem 2.5 [10] For an m × n matrix A with rank = r, the Singular Value

Decomposition (SVD) of A is,

A = UΣVT =
r∑
i=1

σiuiv
T
i s.t σ1 ≥ σ2 ≥ ... ≥ σr (2)

17



Just as the columns of Q are orthogonal in Theorem 2.4, the columns of U and

V and also orthogonal. However, since A is not square, then the columns of U are

orthogonal in Rm and the columns of V are orthogonal in Rn. The vectors of U and V

are referred to as the “left singular vectors” and “right singular vectors” respectively.

Also, a special property of SVD is that it decomposes the matrix into a series of unique

rank one pieces in (2) in order of importance [10]. Therefore, Ak =
k∑
i=1

σiuiv
T
i is the

best rank k approximation of A.

Definition 2.6 The Frobenius Norm is defined as ||A||F =
√
σ2

1 + σ2
2 + ...+ σ2

r .

Theorem 2.7 [10] The Eckart-Young Theorem. For A,B ∈ Rm×n, If B has

rank k and Ak =
k∑
i=1

σiuiv
T
i , then

||A−Ak||F ≤ ||A−B||F . (3)

An immediate application of of Theorem 2.7 is Non-Negative Matrix Factorization

(NMF). The goal of NMF is to approximate a non-negative matrix A ≥ 0 by a lower

rank product of two matrices.

Definition 2.8 A matrix A ∈ Rm×n is a Non-Negative Matrix if aij ≥ 0 for all

i = 1, ...,m and j = 1, ..., n.

Theorem 2.7 applied to non-negative matrices leads to the following corollary.

Corollary 2.9 [10] Non-Negative Matrix Factorization (NMF) For non-negative

matrix A ∈ Rm×n, there exists non-negative B ∈ Rm×r and non-negative C ∈ Rr×n,

such that A ≈ BC in that

min
B,C
||A−BC||2F exists. (4)
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This approximation is a Linear Dimensionality Reduction (LDR) technique that

requires the selection of a measure to assess the quality of the approximation [4]. The

measure frequently chosen is the Frobenius norm of the error in the approximation

(i.e ||A−BC||2F ). The choice of this error measure is primarily driven by the implicit

assumption of the noise present in A being Gaussian and the low rank approximation

given by Theorem 2.7, which is also known as the “Truncated SVD”.

2.3 PCA and SVD

It is important to note the results of applying the SVD factorization to ATA and

AAT, which are square, symmetric, positive definite matrices:

ATA = (V ΣUT )(UΣV T ) = VΣTΣVT = VΣ2VT (5)

AAT = (UΣV T )(V ΣUT ) = UΣTΣUT = UΣ2UT (6)

The right-hand side of equations (5) and (6) are the SVD forms of Theorem 2.4, i.e

QΛQT. For the m×n matrix A, the shape of ATA is m×m and the shape of AAT

is n × n. Lastly, it important to note that V contains the orthonormal eigenvectors

of ATA, U contains the orthonormal eigenvectors of AAT, and the diagonal of Σ2

contain σ2
1, σ2

2, ... , σ2
r , which are the non-zero eigenvalues of both ATA and AAT.

These special matrices, combined with Theorem 2.7 are key concepts of building an

analytic framework for analyzing data.

Principal Component Analysis is a tool used in numerous settings with a wide

variety of data types as a means of visualizing high-dimensional data structures [13].

Geometrically, PCA and SVD are closely related with one key step at the beginning
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for PCA, which is to center the data. However, if every feature of the data is of the

same scale and metric, this step may be unnecessary.

Definition 2.10 [10] The Sample Covariance Matrix of A ∈ Rm×n is defined

by

S =
AAT

m− 1
. (7)

After applying SVD to S, we obtain S = UΣ2UT and since S is a symmetric

matrix, then the columns of U are eigenvectors of S by Theorem 2.4, which are also

the left singular vectors of A. Then by applying SVD to A, the columns of U are

the principal components of A. As a consequence, then the eigenvalues of S equal to

the squared singular values of A, and the total variance of A =
r∑
i=1

σ2
i /(n− 1). The

key observation of Theorem 2.7 in combination with SVD is that the first k singular

vectors together account for the most variation in the data than any other set of k

singular vectors. This is the key motivation for dimensionality reduction.
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2.4 Introduction to Tensors

Tensors are not a new mathematical object, but rather a generalization of matrices

to higher number of indicies. Tensors and their decompositions were originally studied

in the 1920’s but remained in the abstract domain of mathematics until the explosion

in computational capacity in the late 20th century [6]. Over the course of the last

decade, there has been a surge of applications in statistics, data science, and machine

learning built on tensor representations of data. One of the most famous software

developments in recent years is the machine learning platform TensorFlow developed

and maintained by Google, Inc. [7]. TensorFlow provides back-end computational

support for the “Keras” package, a popular machine learning package available in

the Python and R programming languages. TensorFlow provides extensive training,

support, and documentation to allow machine learning applications easier to develop,

train, and deploy for practitioners. The name contains the fundamental structure of

machine learning and data science which is the Tensor.

Figure 1: Tensor Order [6].

Tensors are multi-dimensional array structures in a field, such as R. Figure 1
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demonstrates the traditional progression of dimensions in the form of a scalar, vector,

matrix, and tensor, denoted, x ∈ R,x ∈ R4,X ∈ R4×5,X ∈ R4×5×3 respectively.

More generally, scalars are referred to as a “0-Order Tensor”, vectors are “1st- Order

Tensors”, matrices are “2nd - Order Tensors”, and lastly, 3 dimensional structures are

“3rd - Order Tensors”. The order of the tensor is the number of axes.

Figure 2: Tensor Fibers [6].

Indexing tensors allow for sub-components to be created by fixing one or more

indices. For example, consider a third order tensor X ∈ RI×J×K . Fibers are created

by fixing all but two indices. Figure 2 demonstrates the vector fibers x:jk (column),

xi:k (row), and xij: (tube). Slices are created by fixing all but one index. Figure 3

shows matrix slices Xi:: (horizontal), X:j: (lateral), and X::k (frontal).

With fibers and slices of a tensor, it is easy to see that we can reshape tensors

by rearranging these components with vectorization and matricization (unfolding).

Given a matrix X ∈ Rm×n vectorization is achieved by stacking the columns of X

vertically, such as
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Figure 3: Tensor Slices [6].

vec(X) =


x:1

x:2
...

x:n

 (8)

Tensors can also be vectorized and matricized in a similar fashion. One method we

highlight is the mode-n matricization of a tensor. For X ∈ R(I1×I2×...×IN ), the mode-n

matricization of X is X(n) ∈ RIn×(
∏N

m=1 Im). Let x ∈ X and m ∈ M where M is the

unfolded tensor. Then the mapping of a mode-n matricization is,

xi1,i2,...,iN min,j where j = 1 +
N∑
k=1
k 6=n

(ik − 1)
k−1∏
m=1
m 6=n

Im

 (9)

For example, let X ∈ R2×2×2 be composed of two frontal slices, X::1,X::2 ∈ R2×2.

X::1 =

[
a b
c d

]
X::2 =

[
e f
g h

]
Then the matricization index is denoted by the corresponding index of fibers that are

used as columns in the associated matrix. For this example, the columns of X(1) are
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the column fibers x:jk, X(2) are the row fibers xi:k, and X(3) are the tube fibers xij:.

X(1) =

[
a b e f
c d g h

]
(10)

X(2) =

[
a c e g
b d f h

]
(11)

X(3) =

[
a b c d
e f g h

]
(12)

In undergraduate linear algebra, the Outer Product, denoted ◦, is the product of

two vector elements. For vectors a,b ∈ Rn, we obtain the following equation,

a ◦ b = abT =


a1b1 a1b2 ... a1bn
a2b1 a2b2 ... a2bn

...
...

. . .
...

anb1 anb2 ... anbn

 (13)

Equation (13) has a direct extension for tensor outer product. In the same way

that an outer product of two vectors is a matrix, the general tensor product of N

vectors (i.e first order tensors) produces an order N tensor.

Definition 2.11 [6] The Tensor Product of N first order tensors produces a tensor

X such that,

X = a(1) ◦ a(2) ◦ ... ◦ a(N) where xi1,i2,...,iN = a
(1)
i1
a

(2)
i2
...a

(N)
iN
. (14)

Definition 2.12 [6] A N-Order tensor is of rank-1 if it can be strictly decomposed

into the outer product of N first order tensors. More generally, the Rank of a tensor

is the number of minimum first order tensors necessary to produce the tensor.

Similar to Equation (13) and Equation (14), Figure 4 shows the rank one third

order tensor X = a ◦ b ◦ c. As higher order tensors can be generated by the outer
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Figure 4: Rank 1 Third Order Tensor [6].

product of first order tensors, this can be extended to the product of different order

tensors. There are multiple types of tensor products extending from Definition 13,

but for this paper, we will introduce one primary product type.

Definition 2.13 [6] The Kronecker Product, denoted ⊗, between two arbitrarily

sized matrices A ∈ RR×J and B ∈ RK×L, then A⊗B ∈ RIK×JL, is a generalization

of the outer product defined in Equation 13.

A⊗B =


a11B a12B ... a1JB
a21B a22B ... a2JB

...
...

. . .
...

aI1B aI2B ... aIJB

 = [a1 ⊗ b1 a1 ⊗ b2 ... aJ ⊗ bL] (15)
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2.5 Tensor Decomposition

Definition 2.14 [6] A tensor decomposition is unique if there exists only one combi-

nation of rank-1 tensors that sum to X up to a common scaling and/or permutation

indeterminacy.

As previously discussed for the SVD in Definition 2.5, the primary restriction

imposed for matrix decomposition with the SVD is the orthogonality of the left and

right singular vectors, which makes the decomposition unique up to row and comlumn

permutations. Similarly, a tensor decomposition is unique if it decomposes into one

and only one arrangement of rank-1 tensors [6]. However, tensor decomposition can

be unique under less restrictions than in the matrix case of the SVD. With the goal

of low-rank approximation, consider the low rank tensor X in Figure 2.4, then each

slice of the tensor,

Xk =
R∑
r=1

(a ◦ b)ckr (16)

is a low-rank matrix. Hence, a low-rank tensor is a collection of low-rank matrices with

interrelations among the slices with different scaling, namely ckr [6]. As a result, the

relationship between slices make tensors much more rigid than matrices when it comes

to conditions for uniqueness. This creates an opportunity for multiple decomposition

approaches with different structural properties for generalizing SVD from matrices to

higher order tensors.

Our primary objective is to generalize PCA and SVD from matrices to tensors

and address the issues presented in regards to uniqueness. There are many ap-

proaches to tensor decomposition, but the scope of this paper discuss two common
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outer-product tensor decomposition methods with different properties: the Canoni-

cal Polyadic Decomposition (CP-Decomposition) and the Tucker Decomposition. The

CP-Decomposition is typically used for latent factor analysis while Tucker is com-

monly applied for subspace estimation, compression, or dimensionality reduction [6].

Figure 5: CP Decomposition [6].

First, we will highlight the CP-Decomposition, which is a rank decomposition.

The key concept for this decomposition is the expression of tensor as the sum of

rank-one tensors. For order-3 tensors, depicted in Figure 5, the CP-Decomposition is

formalized as,

min
X̂
||X − X̂ || where X̂ =

R∑
r=1

ar ◦ br ◦ cr = [[A,B,C]]. (17)

Note the similarity in Equation (17) and that of the NMF in Corollary 2.9. For the

general case, the CP-Decomposition is formalized as,

X̂ =
R∑
r=1

λra
(1)
r ◦ a(2)

r ◦ ... ◦ a(n)
r = [[λ; A(1),A(2), ...,A(n)]]. (18)

The factors, A(n), are normalized at unit length and the scalings are stored as λr.

These λr are trial-specific scalings of the tensor and are the fundamental difference
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in the CP model and normal PCA. While there are many algorithms for computing

the CP-Decompositon, the most common approach is the Alternating Least Squares

(ALS) algorithm. This key idea is to optimize a factor matrix while holding all others

constant and repeat for every factor matrix until a stopping criterion. But with the

formalization of equation (18), the rank is necessary for approximation. There is no

trivial algorithm in computing the rank of a tensor as it the problem in NP-hard

[6]. In practice, most algorithms fit for multiple ranks and then choose the best

approximation.

In direct contrast to CP-Decomposition is the Tucker Decomposition which de-

composes the tensor into a “core” tensor for which there are different scalings along

each mode. This is what makes Tucker akin to PCA and is sometime referred to as

higher-order PCA.

Figure 6: Tucker Decomposition [6].

Figure 6 depicts the model for the third order tensor decomposition. For this case,

consider X ∈ RI×J×K , then G ∈ RP×Q×R, A ∈ RI×P , B inRJ×Q, and C ∈ RK×R.
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The optimization problem then becomes,

min
X̂
||X − X̂ || where X̂ =

P∑
p=1

Q∑
q=1

R∑
r=1

gpqrar ◦ br ◦ cr = [[G; A,B,C]]. (19)

The factors A, B, and C are often thought of the principal components for the

respective axis. The core tensor, G, is a compression of the original tensor and ex-

presses the interaction between factors. In contrast to the CP-Decomposition, Tucker

is generally not unique because of the arbitrary structure of the core constructed.

However, if gpqr = 0 for all p 6= q 6= r in equation 19, then it would reduce to the

CP-Decomposition. In the general case, the tucker decomposition is formalized as,

min
X̂
||X−X̂ || where X̂ =

R1∑
r1=1

R2∑
r2=1

· · ·
RN∑
rN=1

gr1,r2,...rNa
(1)
i1r1
◦· · ·◦a(N)

iNrN
= [[G; A(1), ...,A(N)]].

(20)

The two key problems between these common techniques discussed lie with the

loss of orthogonal components in CP Decomposition and the interpretability of the

“core” from Tucker. Thus PCA tends to be poorly defined for tensors with order

greater than two as the concept of “centering” becomes axis dependent. To bridge

this gap we introduce a proof of concept to build a new approach to tensor PCA and

utilize the inherent network structure of tensors. Next, we will introduce functional

analysis concepts in tandem with matrix and tensor concepts to address these two

pain points in extending multi-relational PCA.

2.6 Function Spaces

Before getting into function spaces in a general sense, it is necessary to expand on

the linear algebra concept of a vector space. Vector spaces, such as Rn, have useful
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properties that are the foundational elements of matrix decomposition techniques.

We will build up vector spaces with additional properties to draw comparisons for

function spaces, and ultimately, tensor decomposition with function spaces. We begin

with the complement of the outer product from equation (13).

Definition 2.15 [11] The Inner Product on a real vector space V is the mapping

< ·, · >: V × V → R such that for all x,y, z ∈ V and α, β ∈ R,

i) < x, αy + βz >= α < x,y > +β < x, z > (Linearity in Second Argument)

ii) < x,y >=< y,x > (Symmetric)

iii) < x,x >≥ 0 (Non-Negative)

iv) < x,x >= 0 if and only if x = 0 (Positive Definite)

Definition 2.16 [11] A vector space with an inner product is called an Inner Prod-

uct Space.

Note that in Rn, the inner product is also referred to as the dot product and defined

as < x,y >=
∑n

i=1 xiyi. Defining an inner product on a vector space induces a norm

on the vector space.

Corollary 2.17 [11] Every inner product space, V, is a normed vector space with the

norm defined by,

||x||2 = (< x,x >)1/2 =

(
n∑
i=1

x2
i

)1/2

. (21)

More generally, for 1 ≤ p <∞, the p- norm on Rn is defined by,

||x||p = (< x,x >)1/p =

(
n∑
i=1

|xi|p
)1/p

. (22)
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For p =∞, the ∞-norm, or maximum norm is defined by,

||x||∞ = max{|xi|}ni=1. (23)

Definition 2.18 [12] A Banach Space is a normed vector space that is a complete

metric space with respect to the metric derived from its norm.

Altogether, we begin with the vector space Rn, define the inner product via the

dot product, which induces the norm defined in equations (22) and (23). This norm,

combined with the fact that Rn is a complete metric space (i.e every Cauchy sequence

converges), yields the important result of Rn is a finite-dimensional Banach Space.

For the case that p = 2, we obtain a special type of Banach Space.

Definition 2.19 [12] A Hilbert Space is a complete inner product space.

It is important to note that every Hilbert space is a Banach space with respect

to the norm defined in equation (21). As we have demonstrated, since Rn is an

inner product space and completed by the norm in equation (21), then it is a finite-

dimensional Hilbert space. With these key concepts on hand, we move on to the

introduction of function spaces. Similar to how vectors operate in a vector space,

functions operate in function spaces with defined mappings.

Definition 2.20 [21] A function space is the set of all real-valued functions on a

set X, denoted `(X) = {f : X → R}.

Note that we can extend the concepts of function spaces as a mapping of a set to

the complex numbers (C), but for the scope of applications in this paper, we will only
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consider the real numbers (R). The set X is commonly referred to as the indexing

set. Also, more in line with our application, consider X to be finite, then we can we

list the elements of the indexing set such that for some n ∈ N and some f ∈ `(X),

X = [x1, x2, ..., xn]→ [f(x1), f(x2), ..., f(xn)]. (24)

This is known as the array representation which allows us to view these lists of

objects as vectors and establishes a bijective relationship between X ∈ Rn and l(X).

For example, consider the set X = {x1, x2, ..., xn}, where f, g ∈ `(G) and α, β ∈ R.

Then, αf(xi) + βg(xi) ∈ R. In fact, we get all of the same properties as we do for

the traditional sense of a vector space, which lead to three key concepts regarding

function spaces.

Theorem 2.21 [21] A function space `(X) is a vector space.

Corollary 2.22 [21] If X is a finite set, then `(X) ∼= Rn where n = |X|.

Corollary 2.23 [21] If X is a finite set, then for all functions f, g ∈ `(X), fg ∈

`(X).

Extending function spaces defined as vector spaces, in Corollary 2.22, we obtain

the isometric property for function spaces of finite sets. However, in contrast to

traditional vector spaces, Corollary 2.23 introduces the additional property of the

product of functions being closed in a function space. From this, we can define an

inner product on a function space `(X) for a finite set X,

< f, g >=
n∑
i=1

f(xi)g(xi) for all f, g ∈ `(X). (25)
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Consequently, this induces a norm defined by,

||f ||2 =

(
n∑
i=1

|f(xi)|2
)1/2

. (26)

Thus, `(X) is a complete inner product space with respect equations (25) and (26),

and by Definition 2.19, a Hilbert space. With the initial notion of a function space

`(X) = {f : X → R} we also obtain familiar inequalities from traditional vector

spaces.

Theorem 2.24 [11] < f, g > is positive definite, and satisfies the Cauchy-Schwarz

Bunyakovsky Inequality,

| < f, g > | ≤ ||f || ||g|| for all f, g ∈ `(X). (27)

It immediately follows that the triangle inequality still holds in `(X) as well.

||f + g|| ≤ ||f ||+ ||g|| for all f, g ∈ `(X) (28)

Definition 2.25 For < f, g > defined on `(X), a set of functions {un} is an or-

thonormal set if

< um, un >= δmn. (29)

Theorem 2.26 [12] Every finite dimensional Hilbert space has an orthonormal basis.

Corollary 2.27 [21] For a set X where |X| = n, `(X) = {f : X → R}, there exists

{un} that is an orthonormal basis for `(X).

Definition 2.28 [12] Let V and W be vector spaces.The mapping T : V → W is a

linear transformation if

T (αv + βw) = αT (v) + βT (w) for all v,w ∈ V and α, β ∈ R. (30)
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If V is a function space on a finite set X with |X| = n, `(X) = {f : X → R},

and W ∼= Rm, then T maps from the set of functions on x ∈ X ( f ∈ `(X)), to an

element w ∈ W . Let f = [f(x1), f(x2), ..., f(xn)]. Then

w =


w1

w2
...
wn

 = T (f) =


a11 a12 . . . a1m

a21 a22 . . . a2m
...

...
. . .

...
an1 an2 . . . anm



f(x1)
f(x2)

...
f(xn)

 . (31)

Theorem 2.29 [12] If T is a linear transformation from an n dimensional vector

space V into a vector space W, then given any orthonormal basis { e1, e2, ..., en } of

V, the linear transformation T is given by,

T (v) =
n∑
k=1

< v, ek > ak for all v ∈ V , T (ek) = ak. (32)
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3 RESEARCH

The goal of this section is to describe the current applications of the mathematical

methodologies described in the mathematical background in the domain of “Sports

Analytics”. Principal Component Analysis and Non-Negative Matrix Factorization

techniques provide a framework for sports analysts to develop methods for character-

izing and profiling players, teams, and sport specific actions like “pitches” in baseball

or “shots” in basketball. Professional sports organizations like MLB and NBA have

made data publicly available for where this type of analysis has gained attention in

public articles and blogs. The NFL has incorporated an annual competition called

“The Big Data Bowl” that mimics Kaggle competitions for free and open discussion

and collaboration with football related data collected by the NFL.

The direct access to data for casual fans and amateur practitioners of data sci-

ence and machine learning is a significant factor in the development of the techniques

described in this paper in the field of sports analytics. In this section, we will first

investigate two sport specific case studies for general applications of Principal Com-

ponent Analysis and Non-Negative Matrix Factorization. Then we will review the

applications of tensor decomposition frameworks with a generalised example and in

relation to the tHoops framework [8]. In their work, Pelechrinis et al. propose a

method of analyzing spatio-temporal sports data using tensor decomposition meth-

ods to create profiles with respect to competitor metric.
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3.1 PCA in Sports Analytics

Terminology used in baseball pitch analytics like “spin rate”, “spin direction”,

and “release velocity” have become common at all levels of engagement with the

game since the introduction of StatCast in 2015. In this case study, the anatomy of

pitch types are analyzed by their measured metrics collected from the sophisticated

tracking systems that make up StatCast. The data set chosen for this analysis is a

subset of the pitch data from the 2016 MLB season that consists of pitches thrown

on Mondays (See Appendix 1.1 for data source and feature descriptions).

Table 1: 2016 Monday Baseball Pitch Data Header

probCalledStrike releaseVelocity spinRate spinDir locationHoriz locationVert movementHoriz movementVert

1 0.98 94.20 2, 044.22 205.48 -0.37 2.93 -6.93 8.28
2 0.74 97.10 1, 966.32 220.14 0.34 3.22 -7.48 7.35
3 0.97 96.50 2, 127.17 198.82 0.39 2.27 -5.22 9.79
4 1 95.60 1, 947.11 198.73 -0.004 2.38 -7.24 8.40
5 1 95.60 1, 903.08 205.50 0.27 2.42 -6.79 9.37
6 0.32 98.30 2, 038.06 206.73 -0.21 1.43 -8.30 7.96

Table 2: 2016 Monday Pitch Summary

Feature N Mean St. Dev. Min Pctl(25) Pctl(75) Max

probCalledStrike 73,569 0.48 0.43 0.00 0.01 0.95 1.00
releaseVelocity 73,569 88.51 5.93 60.00 84.70 92.90 105.00
spinRate 73,569 2,201.33 318.24 159.04 2,062.02 2,396.80 3,472.37
spinDir 73,569 183.78 61.35 0.01 148.75 222.64 359.99
locationHoriz 73,569 −0.04 0.86 −4.05 −0.63 0.56 3.97
locationVert 73,569 2.27 0.93 −2.54 1.68 2.87 6.75
movementHoriz 73,569 −0.79 6.40 −16.21 −6.21 4.55 20.42
movementVert 73,569 5.25 5.25 −16.21 2.83 9.04 17.85

After some data cleaning and feature selection, we obtain the descriptions of key

pitch metrics for 73,569 pitches thrown in the 2016 season. The goal of this analysis

is to uncover the underlying structure of pitches based on the physical attributes
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measured for each pitch type through a decomposition of the “Pitch Data Matrix”

for all pitches.

Table 3: Pitch Correlation Matrix
probCalledStrike releaseVelocity spinRate spinDir locationHoriz locationVert movementHoriz movementVert

probCalledStrike 1 0.08 0.02 0.03 -0.03 0.17 -0.01 0.09
releaseVelocity 0.08 1 0.09 0.29 -0.03 0.25 -0.27 0.71

spinRate 0.02 0.09 1 -0.21 0.09 0.07 0.13 -0.07
spinDir 0.03 0.29 -0.21 1 -0.18 0.05 -0.73 0.29

locationHoriz -0.03 -0.03 0.09 -0.18 1 −0.13 0.16 0.01
locationVert 0.17 0.25 0.07 0.05 -0.13 1 -0.03 0.25

movementHoriz -0.01 -0.27 0.13 -0.73 0.16 -0.03 1 -0.20
movementVert 0.09 0.71 -0.07 0.29 0.01 0.25 -0.20 1

In general exploratory data analysis of the pitch data, it is not uncommon to see

correlations between features. In this case, as seen in Table 3, horizontal movement

and spin direction have a moderate negative correlation at approximately 73 percent.

This is a perfectly normal association in how pitches are thrown and move based on

the tilt of the axis for which the spin revolves. Also, release velocity and vertical

movement have a moderate correlation of approximately 71 percent. Again, the

association is justified by example of four seam fastballs having an approximate flat

back spin while curveballs and other non-fastball type pitches have a combination

of degrees of lateral and downward movement. Many people familiar with baseball

know pitch types and spin directions intuitively, or have a unique understanding of

the “Magnus Effect” and it’s applications in baseball.

While no two pitches from two different pitchers are exactly the same, there are

classes of pitch types that have been generally accepted based on the movement or grip

type of the pitch. With this heuristic being so prevalent before technology allowed

for these metrics to be recorded during live games, it is reasonable to look for clusters

of pitches within the data.
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Figure 7: Pitch PCA Biplot - Velocity.

In Figure 7, it is clear that the first principal component is creating separation

based on the release velocity of the pitch. However, there is still a lot of overlap in

the pitches, which is expected with the variety of pitchers included in this data set.

Altogether, there are 611 individual pitchers contributing to the global data set of

pitches. Someone with extensive domain knowledge of baseball and pitching may see

another structure beneath heat map in Figure 7. This person would know that pitch

types vary between left-handed and right-handed pitchers. For example, a two-seam

fastball from a left-handed pitcher would actually move in the opposite direction of

a two-seam fastball from a right-handed pitcher.

Figure 8 really begins to tell the story of pitch structure between a certain class of
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Figure 28: Track-Position Profile 2

Principal component two accounts for approximately 16 percent of the variation

and we see the same trend in the separation between the front runners and back

of the pack. It is important to note the consistent insignificance we see in last few

positions that can be easily explained by drivers that wreck early in a race and are

unable to finish will consequently have lap completion rates close to zero. There are

two observations that stick out in this plot regarding Charlotte (CHA) and Daytona

(DAY). The highly significant cell in CHA position 1 is of particular interest in that

Kyle Busch (18) led 377 of the 600 laps. Also, Daytona is well-known for “The Big

One” as it pertains to crashes that occur at almost every race there. At the 2.5

mile super-speedway, speeds exceed 200mph regularly as drivers form single file lines

around the track. At these speeds, and the proximity of the cars, a miscalculation
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maneuvering through traffic can, and does, cause significant pile ups where higher

numbers of cars do not finish the race. Bristol also shares this characteristic due to

the limited lateral track space for cars to fight for position, but at much lower speeds.

In summary, this component is capturing the positions where highest percentage of

laps are recorded for each track.

Next, we consider a different pivoting strategy to obtain principal components in

a different feature space. This time we focus on the “Track” pivot to develop the

notion of “Driver-Position” profiles. This time, we define the action on R24 by,

Xv =
24∑
k=1

X:k:vk (44)

After applying SVD to the adjoint XTX, we obtain the following variance measures

from the singular values for each of the principal components:

s1 = 0.9149, s2 = 0.0015, s3 = 0.0011, ..., s24 = 2.77× 10−4

Here we obtain approximately 93 percent of the variation by the first two principal

components, and more notably, approximately 91 percent in principal component one

alone.

Through the analysis of the the NASCAR data so far with the results from PCA

and NMF revealing the separation of drivers relative to positions, we have developed

a sense of how drivers typically perform. The high amount of variation explained by

a 2-dimensional array principal component in Figure 29 shows a similar heat map to

the original heat map in Figure 18. However, when we account for the additional

feature “Tracks” and utilizing the tensor structure, the first principal component

“Car-Position Profile” has a much clearer picture of where drivers tend to run, at
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Figure 29: Driver-Position Profile 1

least in 2018. In the context of the 2018 playoffs, the 4, 18, and 78 car were each

competing for the championship in Homestead as part of the final four drivers in the

NASCAR playoff structure. The fourth driver edged their way into the championship

round ahead of three drivers that ranked higher in Figure 29 by winning a crucial

race in the final lap prior to the championship. The 22 car made the final playoff

round and ended up winning the race at Homestead for the 2018 championship. As is

a common theme in sports analytics, capitalizing on analytical trends can get a team

to the playoffs, but once there, a single “black swan” event can change the likeliest

of outcomes.

Lastly, we will consider the pivot strategy to obtain principal components in the

“Position” feature space. This will allow us to develop the notion of “Driver-Track
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Profiles”. This time, we define the action on R40 by,

Xv =
40∑
k=1

X::kvk (45)

After applying SVD to the adjoint XTX, we obtain the following variance measures

from the singular values for each of the principal components:

s1 = 0.5193, s2 = 0.2081, s3 = 0.0957, ..., s40 = 4.64× 10−5

Figure 30: Driver-Track Profile 1

The first principal component in this feature space in Figure 30 accounts for

approximately 52 percent of the variation and depicts trends in how well drivers

run at each track in 2018. We are able to pick out some hot spots, such as the

22 car at Homestead (HOM), the 9 car at Watkins Glenn (WAT), and to 18 car at
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Charlotte (CHA) to name a few. However, this component requires some substantial

contextual knowledge about the drivers and tracks to interpret. Keep in mind that

the value for each tensor element is the percent of total laps held by each driver, in

each position at each track. It is noteworthy to pay attention to the low significant

cells for drivers, especially the drivers that we are used to seeing at the top positions.

Some key events took place to cause these cold zones such as the 4 car finishing 24th

at California (CAL) and 40th at Charlotte (CHA) due to a crash early in the race.

The 22 car crashed on lap 1 at Watkins Glenn (WAT) and finished last. The 78

car struggled at Indianapolis finishing 40th due to a mechanical failure on lap 41 and

crashes caused short outings for the 18, 9, and 2 cars at Daytona (DAY).

Figure 31: Driver-Track Profile 2

Principal component two accounts for approximately 21 percent of the variation
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and has similar hot spots for drivers and tracks that were noted in principal component

one with much less noise. In fact, a closer look at these drivers for races at these tracks

reveals exactly where drivers led the most laps. In some cases, such as the 18 car

at Charlotte (CHA), the 9 car at Watkins Glenn (WAT), and the 78 car at Pocono

(POC) and Kentucky (KEN), these hot spots correlate to wins. Leading the most

laps is relatively correlated with winning the race, however, in California, the 18 and

78 cars both led for the majority of the race until the 78 car ran away with the lead

in the last 32 laps winning by a margin of approximately 11 seconds. The 42 car led

242 laps at Darlington (DAR) and gave up the lead to the 2 car with 22 laps to go in

the race. In summary, this second component profiles were drivers dominated leading

races.

There is no doubt that just as with PCA or NMF, interpreting principal com-

ponents and latent factors generated by these methods requires necessary contextual

knowledge to pick up on patterns with utility. For example, utilizing the “Driver-

Track Profiles” can guide research into other aspects of the race to target certain

drivers and investigate their trends in other relational data sets that can lead to

other competitive insights. The indices chosen for this tensor decomposition method

can be extended into other feature analyses such as investigating lap times over the

course of a race as non-uniform time series. The underlying network structure for

tensors allows for more flexibility than the CP and Tucker Decomposition approaches

while maintaining rigid decompositions without sacrificing interpretability.
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5 CONCLUSION

Further work in this area is inevitable stemming from a number of fields such as

multi-linear algebra, network dynamics, and functional analysis. Tensor PCA and

decomposition techniques are in high demand with the increased frequency of multi-

relational data structures utilized in practice. As machine learning and computational

methods continue to be developed, tensor structures will remain as the fundamen-

tal structure for applications in the field various analytical context including sports

analytics. A couple of things to consider moving forward would be to develop the

mathematical framework more formally and include general finite order tensors of

real and complex valued vector spaces.

The next area to address is the computational aspect of the application. In this

thesis, we use general python packages such as pandas, numpy, matplotlib, scipy, and

Tensorly. We also incorporate R for other tasks with data manipulation and plotting

packages included in the tidyverse as well as the rTensor package for converting data

frames into tensor objects. There are many other packages, in other languages as

well, designed to carry out tensor products, decompositons, and manipulations such

as vectorization and matricization covered in Chapter 2. Additional packages may be

available to better utilize the network structure to further develop the function space

methodology more efficiently to complement existing packages or built into new ones.
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APPENDICES

1 Appendix A - Data Sources

1.1 Case Study: MLB Pitch Analysis

Data retrieved from https://www2.stat.duke.edu/courses/Summer17/sta101.001-

2/uploads/project/project.html

1.2 Case Study: NBA Shot Analysis

Data retrieved from https://github.com/kpelechrinis/NBA Shot Data [8].
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2 Appendix B - Code Implementation

2.1 Python Code

# Import necessary packages
%matplotlib inline
from matplotlib import pyplot as plt
from scipy import linalg
import numpy as np
import pandas as pd

# Import data and select relevant features
Timing18df = pd.read_csv(’TimingLaps2018Normalized.csv’)
tdf = Timing18df [[’TrackNameShort ’,’CarNumber ’,’

LapStanding ’,’LapPct ’]]

# Create lists of indices
CarNumbers = tdf.CarNumber.unique ()
CarNumbers.sort()
Positions = tdf.LapStanding.unique ()
Positions.sort()
Tracks = tdf.TrackNameShort.unique ()

# Create list of group keys
XDf = tdf.groupby ([’CarNumber ’,’TrackNameShort ’,’

LapStanding ’])
Tgroups = list(XDf.groups.keys())

# Assign lengths of indices
m = len( tdf.CarNumber.unique () )
n = len( tdf.TrackNameShort.unique () )
r = len( tdf.LapStanding.unique () )

# Create Multi -Dimensional Array
X = np.zeros( (m,n,r), dtype = float )
for i in range(m):

print(’.’, end = ’’)
for j in range(n):

for k in range(r):
group = (CarNumbers[i], Tracks[j], Positions[k

] )
if( group in Tgroups):

X[i,j,k] = XDf.get_group(group).iloc [0][’
LapPct ’]

t = X.astype(float)

# Note: Adjust m and k for pivot index
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m = t.shape [0]
THT = np.array([ [ (t[k,: ,:]*t[l,:,:]).sum() for k in

range(m)] for l in range(m)] )

# Apply SVD and obtain singular values
V,Sigma , V = linalg.svd( T T )
np.cumsum(Sigma **2)/sum(Sigma **2)

# Obtain Principal Axis and Principal Component
# Note: Adjust V column index for corresponding Principal

Axis
U_0 = sum([t[k,:,:]*V[k,0] for k in range(m) ])
P0 = U_0**2 / sum((U_0 **2).flatten ())

# Plotting Principal Component Heat Map
# Note: Adjust labels for relative pivots and axes
fig , ax = plt.subplots(figsize = (10 ,10))
plt.imshow(P0, cmap = ’plasma ’)
plt.colorbar( fraction =0.025 , pad=0.04, label = ’

Significance ’)
plt.xlabel(’Position ’)
plt.ylabel(’TrackId ’);
plt.yticks(ticks = list(range(0,n)),labels = Tracks)
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