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ABSTRACT 

Communications and Methodologies in Crime Geography: Contemporary Approaches to 

Disseminating Criminal Incidence and Research 

by 

Mitchell S. Ogden 

Many tools exist to assist law enforcement agencies in mitigating criminal activity. For centuries, 

academics used statistics in the study of crime and criminals, and more recently, police 

departments make use of spatial statistics and geographic information systems in that pursuit. 

Clustering and hot spot methods of analysis are popular in this application for their relative 

simplicity of interpretation and ease of process. With recent advancements in geospatial 

technology, it is easier than ever to publicly share data through visual communication tools like 

web applications and dashboards. Sharing data and results of analyses boosts transparency and 

the public image of police agencies, an image important to maintaining public trust in law 

enforcement and active participation in community safety.  
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CHAPTER 1 

INTRODUCTION 

History of Geographic Research in Criminology 

 The empirical study of crime is a relatively new field compared to other social sciences, 

and has a tumultuous history full of highs and lows. Emerging out of early 19th century Europe, 

statisticians eagerly applied judicial data on juvenile delinquents and adult criminals to census 

demographics (e.g., Alison (1840), Holland (1843), Guerry (2002). At first looking at broad, 

countrywide distributions of crime rates, researchers analyzed data at regional and city levels to 

determine the cause of high crime rates in the fast-growing industrial centers of Europe.  

Emergence of Empiricism in the Study of Crime 

The origin of the serious scientific inquiry into the relationship between criminality and 

place coincides with the first government publications of official crime statistics in 1825 (Voss 

and Petersen 1971). France and England, most notably, were among the first countries to 

publicly release judicial data regarding criminal and delinquent offenses. These data were 

comprehensive in that they included incidents and their circumstances in addition to data on the 

offending party such as their place of residence. Andre-Michel Guerry is among the first credited 

in the research of “moral statistics” on a large-scale. In his 1833 Essai sur la Statistique Morale 

de la France, Guerry compiles data and draws geographic comparisons between crime and the 

demography of French departments; Guerry included variables such as age, sex, and education in 

his analyses. Based on his findings, Guerry theorized that crime is influenced by poverty, lack of 

education, and population density (Voss and Petersen 1971; Guerry 2002). Many other studies in 

the so-called “Cartographic School” era of the 19th century cross-referenced offender data with 

census statistics to investigate causal or proxy variables contributing to the high presence of 
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crime in a region. The naming of this period of growth in the science of criminality comes from 

the widespread use of maps to visualize the spatial differences in crime rates, something seen as 

a novel innovation at the time (Voss and Petersen 1971). 

Prior to the release of official data on crime, the subject of criminology was a topic of 

philosophy and political economy. The topics of discussion were largely on the efficacy of laws 

in effect at the time and potential benefits of implementing new laws. These social philosophers 

held many hypotheses on crime and law with no scientific inquiry or solid methodologies to 

evaluate and confirm them (Levin and Lindesmith 1971; Brantingham and Brantingham 1991a). 

Some in the Cartographic School held contempt for these predecessors. Henry Mayhew, an 

English statistician, once called them “a sect of social philosophers who sat beside a snug sea-

coal fire and tried to think out the several matters affecting the working classes…retired to some 

obscure corner, and there remained, like big-bottomed spiders, spinning their cobweb theories 

among heaps of rubbish” (Levin and Lindesmith 1971). 

English researchers, philosophers, and law officials continued adding theories and 

literature to the emerging field between 1830 and 1860 with a focus on regional and local studies 

of crime (Alison 1840; Holland 1843; Levin and Lindesmith 1971). A common link between 

studies was the concentration of juvenile delinquents and adult criminals in deteriorated sections 

of large towns and cities. The impact on population from England’s growth into an industrial 

nation was noticed by contemporary observers who saw crime and immorality inseparable from 

factories, the harshness of cramped urban streets and alleys, and the poorly-ventilated living 

spaces, all of which the working class became accustomed to out of their desperate 

circumstances (Holland 1843). The governor of Coldbath Prison in London said that housing 

conditions were in a “state of frightful demoralization” and was the principal cause of crime and 
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delinquency in the inner city (Levin and Lindesmith 1971). Alison (1840) authored multiple 

volumes on poverty, vice, and the human pursuit of happiness, writing an extensive chapter on 

the effects of vice on the urban poor. As was common during the Industrial Revolution, 

impoverished families from rural areas migrated to cities and crammed together out of 

desperation, perhaps with the likes of drunks, thieves, and prostitutes. Alison gives an anecdote 

of one such hard-working family, coming home to witness seemingly joyous persons reveling in 

licentious and immoral behavior, and the want for present enjoyment coupled with the 

contagious nature of bad example compelling them to join in the euphoria surrounding them. The 

boys become thieves, girls becomes prostitutes, resulting in one day being arrested by the police 

for their crimes. Such a situation comes not from the depravity of their character but the 

temptations they were exposed to by their circumstances (Alison 1840). Matthew D. Hill posited 

that areas with larger populations lack a “natural police” that smaller and rural communities 

have. This natural order has some wholesome influence originating from the closeness in both 

proximity and relationship between people in those communities regardless of any social factor 

(Levin and Lindesmith 1971). Due to the large number of individuals with a diaspora of 

experiences, standards, and values, not to mention the separation between poor working class 

housing and relatively expensive more comfortable housing, that natural police does not manifest 

in the working class sections of the city (Levin and Lindesmith 1971).    

 The Cartographic Era of spatial criminal inquiry ended with the rise of Italian physician 

Cesare Lombroso into prominence in the field. In Lombroso’s 1876 L’uomo Delinquent 

[Criminal Man], he expressed the controversial theory that criminals are a distinctive physical 

type and are biologically defective or otherwise genetically predisposed to a life of crime. 

Lombroso described the “Criminal Man,” like the primitive Man, as one with abundant hair, 
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sparse beard, a receding forehead, large ears, and oblique eyes, among other traits (Voss and 

Petersen 1971; Lombroso 2006). Lombroso’s hypothesis of “theoretical impotence,” that the 

criminal is an automaton destined to a path of deviant behavior, attracted physicians and 

psychologists to criminology despite widespread criticism from contemporary criminologists as 

this theory countered the notion of free will and was ignorant to social and economic factors 

which were believed to be the main contributors to crime. Compelled by these critics, Lombroso 

revised his theory, now accounting for social impacts (Morris 1957). The influx of these 

researchers into criminology with backgrounds widely different from the likes of Guerry and 

Mayhew led to something of an eclipse altering the progression of criminology and shifting the 

focus of criminology to the offender. This went so far as to overshadow previous researchers, 

causing Lombroso to be mistakenly labelled as the progenitor of criminology (Levin and 

Lindesmith 1971; Voss and Petersen 1971; Lombroso 2006).   

The Chicago School and Social Ecology 

 In the late 19th and early 20th century, the city of Chicago became a frontline in social 

science due to a rapidly growing immigrant population. Researchers at the Chicago School of 

Sociology became concerned with the relationships between populations sharing the same living 

space and the character of that territory, i.e., social structure in relation to the local environment, 

a subject that would become known as “social ecology.” Upon its introduction, social ecology 

concerned itself with two elements: social conflict due to usually scarce resources in an 

industrialized urban area and the nature and quality of social organization in these areas (Butorac 

and Marinović 2017). This became the guiding focus for researchers at the School, who studied 

social ecology through the lens of criminology.  
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Compared to the Cartographic Era of criminology, the “Chicago School Era” 

differentiates itself through questions regarding socio-criminal theories. Robert Park and Ernest 

Burgess created a framework through which their colleagues could understand the social roots of 

crime, dividing the city into five concentric zones surrounding a central core based on their 

distinguishing characteristics (Porter 2010; Burgess 2019). Park & Burgess predicted that crime 

rates were inversely proportional to the distance from city center (Harries 1974; Brantingham 

and Brantingham 1991a; Butorac and Marinović 2017). Of the zones Park and Burgess proposed 

in their Concentric Zone theories, the second zone, the Transition Zone, was of greatest interest 

to the Chicago School. Burgess, Park, and their colleagues hypothesized that the presence of 

deteriorated housing, abandoned buildings, industrial zones, and immigrant populations were 

predictors of crime, which were present in the Transition Zone (Porter 2010; Burgess 2019).  

Clifford Shaw and Henry McKay worked to confirm the Concentric Zone Theory, and in 

doing so found delinquency flourishing in the Transition Zone. This was the case in not just 

Chicago, where they originally studied, but also in Birmingham, Cleveland, Denver, 

Philadelphia, Richmond, and Seattle; each city displayed similar geographic gradients in crime 

rates (Morris 1957). Further, Shaw and McKay found neighborhood or social organization a 

factor in juvenile delinquency, i.e., growth, transiency, heterogeneity, and poverty generates 

disorganized communities with rampant delinquency (Byrne 2016). Areas of social 

disorganization in a city are lacking in social controls and have a prominent criminal culture, 

showing a lack of community resistance to deviant behavior (Morris 1957). In the understanding 

of the social context in which juvenile delinquents lived, Shaw and McKay believed the origin of 

delinquency could be found (Byrne 2016).                          
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 The research of Shaw and McKay launched the sociology of crime into prominence, but 

it was not without critique. Sophie Robison questioned the validity of Shaw’s delinquency rates 

under the belief that court appearances are not sufficiently reliable to determine the extent of 

delinquent behavior. However, Robison’s definition of delinquency went beyond Shaw’s, who 

did not consider anti-social (but legal) acts that go against the interests of the community as 

delinquent (Morris 1957; Robison 1960). Robison points out that the presence of unofficial 

community resources (e.g., religious organizations), which remediate poor behavior before the 

delinquent encounters the law, can cause underestimation of delinquent behavior in a community 

(Robison 1960). Shaw and McKay rebutted that by including those delinquents referred to 

community or private resources, it is no greater an index of total delinquent behavior for that 

(Shaw and McKay 1969). Robison additionally questioned if differences in community ethnic 

homogeneity or the distribution of police influenced rates in certain sections, as Shaw and 

McKay made no mention of those effects (Robison 1960). Similarly, C. T. Jonassen questioned 

if changes in police policies had any effect on the rate of apprehension of juvenile delinquents. 

Jonassen directed another criticism to Shaw and McKay through the validity of their 

comparisons over time, pointing out inconsistencies within their 30-year comparison of Chicago 

delinquency rates. Datasets from studies used for comparison described delinquents of varying 

age ranges (e.g., 10-15, 10-16, 10-17), a complication resulting from changes in the juvenile 

court system. Jonassen also viewed the census tract unit too large an aggregate for study, as they 

may include multiple culturally distinct neighborhoods (Morris 1957). 

 The Chicago School Era was a time of advancement in the theoretical and 

methodological frameworks further showing the importance of a space/environmental 

perspective in crime analysis. However, some modern criminologists claim that Shaw and 
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McKay’s research were not supportive of a total examination of ecological theory of crime, 

given their focus on the criminal and no other environmental influence (Brantingham and Jeffery 

1991). 

The mid-19th century would become a stagnating time for criminology after the 

introduction and widespread implementation of factor analysis. A 1954 study of Baltimore by 

Bernard Lander attracted attention from his contemporaries with the claim that variables of 

“anomie” or social instability (e.g., overcrowded and substandard housing), not socio-economic 

status, were the major determinants of delinquency (Bordua 1958; Davidson 1981). However, 

labels of anomic and socio-economic are arbitrary and leads to the question of whether an 

anomic variable lacks socio-economic meaning and vice versa (Rosen and Turner 1967).  While 

other researchers attempted to replicate his results with mixed success, most took issue with 

Lander’s definition of anomie, his results, and choice of indicators. Lander’s critics challenged 

him on the basis that delinquency is a product of anomie and Lander’s methods and factor 

analysis were considered dead ends for criminology (Bordua 1958; Rosen and Turner 1967; 

Davidson 1981). 

Revitalization and Environmental Criminology 

 In the early 1970s, another shift in criminology brought new life to the subject. C. R. 

Jeffery’s Crime Prevention through Environmental Design and Oscar Newman’s Defensible 

Space: Crime Prevention through Urban Design turned criminologists away from studying the 

criminal and towards the study of crime itself and the environmental factors that open up the 

opportunity for the commitment of that crime (Brantingham and Brantingham 1991a; Butorac 

and Marinović 2017). Researchers in “environmental criminology” study the characteristics of a 

criminal act; the criminal, the rationale for the crime site, and what creates the opportunity (Kim 
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et al. 2013). Jeffrey and Newman’s works attracted architects, environmental psychologists, 

geographers, and urban planners into a field dominated by psychologists and sociologists. 

Theories of environmental design, the way people interact with the urban spatial structure, and 

perception of criminal opportunity (as opposed to motivation), drove the literature forward. For 

example, Brantingham and Brantingham (1991b) state that cities where work areas shift from the 

core to the fringe areas tend to see an increase in crime on the periphery. The concept of an 

individual’s “awareness space,” their everyday surroundings, was central to the crime pattern 

theory where criminal acts occur during the everyday activities of a person’s life. Danish 

researcher David Sorensen added that some crime types, like burglary, have a distance decay 

effect between a criminal’s residence and the site of a crime, and the criminal typically avoids 

such activity within the immediate area of their residence (Butorac and Marinović 2017). 

Geography and Geospatial Science in Law Enforcement 

 Planning is essential to creating effective policies, policing is no different. The usage of 

spatial analytics and geographic intelligence enhances police knowledge of general crime trends. 

The geographic profiling of criminals has been a resource for law enforcement for tracking down 

areas where serial offenders likely live by analyzing crime scenes using a distance decay 

function (Center for Geospatial Intelligence and Investigation; Harries 1999; LeBeau and Leitner 

2011). Based off the work of environmental criminologists, distance decay in crime conveys the 

theory that criminals take shorter journeys, on average, to future crime sites. Geographic 

profiling works best as a decision support tool, filtering data for investigations of higher-profile 

repeat offenders (Center for Geospatial Intelligence and Investigation; Harries 1999). 

Crime data are not just useful for police departments, but also for the public at large. 

Open, publically-accessible, datasets have the benefit of boosting public awareness and 
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potentially reducing victimization (Assiniboine Community College Police Studies). With this 

goal, the Brandon Police Service (BPS) of Brandon, Manitoba created a mapping application 

using a web application development platform from the Environmental Systems Research 

Institute (ESRI). The application provides a wealth of geographic data on crimes against persons 

and property in the city and displays a “heat” surface where concentrated areas of crime are 

distinguishable on the map. While there are multiple disclaimers against using the application for 

judgment of safe or unsafe areas it still supplies useful statistics for managing police resources 

and personnel, boosting public awareness of local crime, and giving a measure of transparency to 

police activity (Assiniboine Community College Police Studies; Brandon Police Service 2019). 

Community and Public Awareness Impacts 

 As the Chicago School found, public perception of crime and law enforcement affects the 

community’s response to crime trends and their relationship with local police. Crime policy in 

the United States is shaped by public views and political ideology, a phenomena easily discerned 

by the ongoing debates over gun legislation in response to “mass shootings” (Roberts and Stalans 

1995; Luca et al. 2019). This relationship could be seen as either good or bad with statistics and 

surveys consistently finding conflict between the reality of overall crime trends and public 

perception of crime (Gramlich 2016; LaFree 2018). Researchers attribute blame for this 

inconsistency to news media and the sometimes sensationalized incidents of crime (Jackson and 

Gray 2010). Roberts and Stalans (1995) postulated that televised trials contribute to the media’s 

comparatively greater closeness to crime and justice, while surveys and data do not get as high a 

profile of coverage.  

 The role of police and the community in crime control is a contentious debate in the 

criminal justice community (Kelling and Wilson 1982; Harcourt 2001; Lombardo and Lough 
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2007; Hinkle 2009). Police and social scientists agree that a link exists between disorder and 

crime; if a broken window exists and is left untended, every window in the building will 

eventually break (Kelling and Wilson 1982). Known as the Broken Windows Theory, this 

method of policing centers around the crackdown on lesser offenses (e.g. public nuisance and 

negligence) to evoke a positive change in more serious crimes. Broken Windows originates from 

a quality-of-life improvement program in New Jersey, taking police out of patrol cars and putting 

them on walking beats. These beats had little or adverse impacts on the crime rates in the study 

cities but had the benefit of alleviating fear of crime and created a more favorable opinion of 

police officers in those areas. The police presence maintained a public order, keeping disorderly 

people (e.g. drunks/addicts, transients, etc.) in check, giving the public a false perception of 

safety. Another phrase coined for this strategy of policing is “order-maintenance” due to that 

perception.  

One case of the Broken Windows theory in action is that of Stanford psychologist Philip 

Zimbardo. Zimbardo found after parking one automobile in the Bronx without its license plates 

and hood raised and another similar car in Palo Alto, California. People stole everything in the 

Bronx car within 24 hours, later vandals destroyed the car, and after then children used the 

wreckage as a playground. Nothing happened to the Palo Alto car for over a week until 

Zimbardo took a sledgehammer to it and others joined in, destroying the vehicle. Regardless of 

where the untended property was left, Zimbardo found, it led to deviant behavior and a 

breakdown of community controls (Zimbardo 1969).  

Critics of the Broken Window theory, namely Bernard Harcourt (2001), cite the theory 

lacks sufficient evidence and the few experiments which state a positive result for Broken 

Window usually have some issues. One study of New York crime in the 1990s after 
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implementing order-maintenance sweeps, where police heavily cracked down on misdemeanors 

in an effort to reduce serious crime, showed a remarkable drop in crime. However, cities across 

the U.S., including those without order-maintenance policing, were experiencing the same drop 

in crime. Harcourt criticized the study further by pointing out that an increase in police numbers, 

favorable economic trends, a drop in the young adult population, and a number of other factors 

likely influenced the change. Even if these quality of life programs contributed to drops in crime, 

he contests that it is likely the increased surveillance and aggressive stop-and-frisks and 

misdemeanor arrests (Harcourt 2001).  

The perceived benefits of a crackdown on misdemeanors and other aggressive police 

policies (e.g. stop-and-frisk, zero-tolerance) on crime rates and arrests comes at the cost of public 

perception. These aggressive strategies put law enforcement at odds with communities, 

especially minorities. The stop-and-frisk policies of  New York police departments are notorious 

for accusations of racial bias and discrimination (Gelman et al. 2007; White and Fradella 2016). 

On California’s three strike laws, some argue it violates double jeopardy rules since it effectively 

punishes people further for previous offenses. For prior offenders who come of age, their 

juvenile crimes follow them into adulthood, potentially landing a young adult into a lengthy 

prison sentence for something they did as a child, circling back to the double jeopardy argument 

(Vitiello 1997). Despite the popularity of Broken Windows and the law enforcement strategies 

that came from it among police, support (both academic and popular) for it is mixed at best.  

An alternative to cracking down on certain types of crime is a more community-driven 

approach to the crime problem. If public perception and social organization are known to have an 

impact on crime rates and the ability of law officers to do their jobs, would it prove beneficial to 

collaborate with citizens to remedy community problems related to local crime? Questions like 
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this drive the “community implant” hypothesis, which focuses on increasing social controls in 

areas where it is weak or non-existent through collective action (individual or organizational) 

and community building. Additionally, this theory has the goals of increasing satisfaction with 

the police and give residents a sense of responsibly with community order “implanting” informal 

social controls (Lombardo and Lough 2007). Some police agencies today use strategies like this, 

placing focus on community relations and responding to local needs and problems (Johnson City 

Police Department 2018). 

Study Objectives 

 Using the city of Johnson City, Tennessee, a community of 66,778 people (July 2018 

estimate) in southern Appalachia, as the study area, an exploration of municipal-level trends in 

crime may give insight into the distribution of offenses in the city’s space (United States Census 

Bureau 2018). A distinction between areas of high crime of a particular type during a certain 

time of the day, or year, can be taken under the consideration of law enforcers to maintain and 

distribute resources to mitigate local issues. While police can find such information useful for 

their operations, the public may also find easily accessible information on local crime relevant to 

their quality of life. A web application can present a meaningful interface where police can 

interact with citizens by supplying information about the crime in their city. 

 The aims of this research are, therefore, to: 

1. Analyze trends in local crime to determine when and where crimes concentrate. 

2. Determine an effective medium for the dissemination of crime data.  
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CHAPTER 2 

OBSERVATION OF CLUSTERS AND POINT INTENSITIES IN JOHNSON CITY, TN 

CRIME THROUGH NEAREST NEIGHBOR HIERARHICAL CLUSTER ANALYSIS AND 

KERNEL DENSITY ESTIMATION 

Mitchell S. Ogden, Dr. T. Andrew Joyner, Dr. Ingrid Luffman, Dr. Joseph B. Harris 

Abstract 

 Statistics and spatial analysis methods have long provided useful tools in parsing crime 

data to solve a variety of issues, from where criminals live to where concentrations of crime 

occur, at many scales. Cluster and hot spot analyses are relatively accessible methodologies in 

theory, application, and interpretation for analysts to implement, deducing areas where crimes 

occur in unusually close proximity or in high concentrations related to elsewhere within a city of 

study. While most agencies and researchers focus on analyzing raw data, adjusting to account for 

ambient daily population may grant additional insight into areas that are especially active despite 

sparse daily activity. This collection of spatial clustering and density methods coupled with a 

temporal exploration of the same data provides an overall picture of local crime trends. Using 

these results can better inform decision-makers in law enforcement agencies on resource 

allocation and assist police in community partnerships to find ways to curtail the apparent and 

underlying causes of crime. 

Keywords: cluster, nearest neighbor hierarchical clustering, hot spot, kernel density estimation, 

crime statistics 
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Introduction 

Spatial Techniques in Law Enforcement 

Geographic Information Systems (GIS) provide effective tools and methods for 

visualizing patterns in criminal activity through spatial analysis. Since the 1960s, law 

enforcement agencies implemented cartographic methods, spatial analyses, and eventually GIS 

to answer questions relevant to crime patterns.   

Journey-to-Crime. Criminal geographic profiling has a long history in law enforcement 

for its use in determining potential residential areas for serial offenders. Based on the concept 

that criminals do not deviate far from their routine activity to commit an offense, journey-to-

crime uses a distance-decay function to eliminate areas unlikely to fit within an offender’s 

awareness space as a support tool to prioritize areas for police to watch (Kent et al. 2006).  

Wiles and Costello (2000) of the United Kingdom’s Home Office analyzed 

advancements in transportation over the last three decades to determine if this expanded the 

distance criminals travel to commit a crime. They found that journeys are still typically short, 

and farther locations tend to have some connection to the offender (e.g., a leisure location). 

Wiles and Costello then identified the need for additional research on specific “professional” 

offenders and mapping of concentrated areas of victimization (Wiles and Costello 2000; Costello 

and Leipnik 2003). 

Machine Learning. With advancements in technology, computers became powerful 

enough to calculate large, complex datasets in a wide variety of disciplines. A popular topic 

among computer and data scientists is Machine Learning (ML) where advanced computational 

hardware and software are used to process a dataset and develop “rules” to classify potential new 

observations. For example, in ecological modeling, ML is implemented to determine a species’ 
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potential habitat range based on recent observations of that species and related variables (e.g., 

climate) (Franklin 2010; McClendon and Meghanathan 2015). That logic could apply to crime as 

a “species” to determine anomic, socio-economic, and other variables influencing crime in an 

area, bringing the concept of criminal ecology full circle from Shaw & McKay (1969) during the 

Chicago School era of criminology.  

The police of Vancouver, British Columbia, Canada (VPD) conducted a pilot test using a 

ML technique to combat residential burglaries in the city. Machine Learning determined areas 

most susceptible to future break-and-enters based on citizen reporting, which determined where 

the department prioritized sending patrols. During the quarter when they implemented the 

technique, the VPD reported the highest occurrence of break-and-enters in 20 years. The second 

quarter, it was reduced to the lowest in 25 years. Since then the department made this resource a 

staple of their management system, resulting in an effective police force (Beck 2019). 

Risk Terrain Modeling. Researchers from Rutgers University developed the Risk 

Terrain Model (RTM) in response to a State Police request for a robust analysis of data related to 

their operations against crime in Irvington, NJ. The police gave the Rutgers team data on known 

residences of gang members, drug arrests, infrastructure, and shooting locations. A spatial 

relationship between drug arrests and known gang residences, and shootings were found to occur 

around gang residences or liquor stores, bars, strip clubs, and fast food restaurants. Seeing these 

connections, they created a composite map to identify what locales hold potential for future 

shootings. The risk terrain map closely matched the 18-month dataset, but since they were 

uncertain of the predictive capability of the technique, they partitioned the data into 6-month 

periods. Between the different time periods, they found that shifts in police activity matched the 

movement of shootings (Kennedy et al. 2009; Caplan and Kennedy 2011). Since then Caplan, 
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Kennedy, and other researchers at Rutgers further developed RTM and how crimes of different 

types correlated to other factors like proximity to certain infrastructure (e.g., transportation) or 

other types of crime, socioeconomic variables, social disorganization, etc. (Caplan et al. 2011).  

Outside academia, law enforcement utilizes RTM in predictive analysis of crime to 

prioritize resource expenditure in areas of elevated risk. The Baton Rouge Police Department 

makes use of a web dashboard with quarterly RTMs to target areas for patrols, engage the 

community and improve relations, and determine local attractors of crime in an attempt to reduce 

neighborhood crime rates, improve reporting, and alleviate fear of crime (Jumonville 2018; 

Skene 2019). 

Clustering and Hot Spot Detection. There is no common definition of a cluster or hot 

spot in crime, varying between researchers and sometimes used interchangeably. Eck et al. 

(2005) identified the common link between definitions as being high concentrations of crime 

separated by low concentrations of crime. For this study, hot spots are areas of especially dense 

concentrations of crime, and clusters will refer to the pattern of multiple incidents in a 

significantly close spatial proximity to each other. This is an important distinction to make, as 

clusters may exist in less “hot” areas, especially for crime types with a large volume of incidents. 

Hot spots can vary in size depending on the study, ranging from hot spot houses to hot 

spot cities (Harries 1999; Eck et al. 2005). Using clustering and hot spot detection as methods of 

crime mitigation depends on the assumption that past crime is a reliable indicator for future 

crime, whether because an area attracts an unusual amount of crime or the area is defined by a 

particular activity (Levine 2013a). Multitudes of techniques exist in cluster and hot spot analysis, 

so for the purpose of this review there will be a focus on three techniques: hierarchical, density, 

and risk-based.  
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Nearest Neighbor Hierarchical Clustering. Nearest Neighbor Hierarchical Clustering 

(NNHC) observes the distribution of points in a space to determine where spatial clusters exist, 

ranging from micro scales (a single building) to macro scales (individual or multiple adjacent 

neighborhoods). For each cluster, the algorithm identifies the existence of clusters of clusters that 

then become a second-order of clusters. This continues until all potential clusters are identified 

(Levine 2013a).  

The exploration of crime using NNHC has declined over the past few decades in favor of 

more quantified methods. The Planning & Organization Directorate of the Kingdom of Bahrain 

conducted a relatively recent study to identify regional hot spots throughout the country using 

this clustering method (Singh 2006). 

Kernel Density Estimation. Density techniques, particularly Kernel Density Estimation 

(KDE), identify hot spots by summing the value of all incidents within a space, assessing point 

event intensity to create a continuous surface within a grid. Greater clustering of events within a 

grid results in a higher value (Levine 2013a; Levine 2013b).  

 KDE provides a simple and easy-to-interpret result displaying hot spots identified with 

defined contours. While useful for displaying hot spots, care must be given towards application 

in a law enforcement setting as data quality and selection of parameters can affect model results. 

Kernel density displays risk and there may be no incidents where ‘hot’ values are estimated 

(McLafferty et al. 2000). 

In KDE literature, researchers may focus on a singular type of crime such as in Liu & 

Brown (2003) or lump multiple different types of crime together into a single analysis such as in 

Gerber (2014). The latter shows a lack of consideration about these crimes as a separate 

phenomenon. 
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Study Area  
The city of Johnson City is situated in the Tri-Cities region of northeast Tennessee with a 

population of 66,778 (as of a July 2018 Census estimate) and a land area of 111.21 km2 (as of the 

2010 Census) (Figures 2.1-2.2) (United States Census Bureau 2018). The Johnson City Police 

Department (JCPD) is the main law enforcement agency, servicing the community with 154 

sworn officers. The Washington County Sherriff’s Office (WCSO), operating out of 

Jonesborough, also has some jurisdiction in Johnson City. Both JCPD and WCSO subscribe to 

CrimeMapping, which provides a publicly available map of crime occurrences in their respective 

jurisdictions. 

 

Figure 2.1. Reference map of Johnson City (with labels). 
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Figure 2.2. Reference map of Johnson City (without labels). 

The JCPD publishes annual reports on their website about crime within their jurisdiction 

to increase public awareness of the goals of the department and to release crime statistics. The 

2017 annual report by the JCPD reported a crime index of 4,681 per 100,000 people for “Part I 

Index” (or Index) crimes. Index crimes include aggravated assault, arson, burglary, larceny, 

murder, rape, robbery, and vehicle theft. Compared to 2016, murder (50%) and arson (44.4%) 

saw decreases in 2017 while aggravated assault (2.6%), burglary (19.9%), larceny (18.7%), 

motor vehicle theft (31.7%), and robbery (22.9%) showed increases. Between 2013 and 2017, 

there was a slight increase (+1.5%) in reported Index crimes, mostly due to a relatively large 
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increase (+18%) in crime in the last year (Johnson City Police Department 2018). That important 

distinction, that these are only reported increases and decreases in crimes, disclaims that these 

reports may not be a total picture of the true crime in the area. The Department attributes these 

changes, in part, to greater confidence in the agency’s ability to clear cases (Johnson City Police 

Department 2018). Outside of these rate change calculations, there is currently no 

implementation of aspatial or spatial statistics in Johnson City crime analysis. 

Research Questions 
Geostatistical methods may prove to be useful in helping law enforcement identify 

potential “hot” areas for criminal activity whether it be for crime in general or for a specific type 

of activity such as larceny or vehicle break-ins. Statistical methods, in general, would help to 

provide a better understanding of local crime spatial patterns. With that understanding, law 

enforcement officials can form strategies to mitigate those patterns, reducing crime levels and 

possibly predicting and planning for future crime trends. 

Research Objectives and Questions:   

• Examine spatial and temporal patterns in Johnson City crime. 

o Where are clusters and hot spots of crime? Are certain types of crime 

concentrated in particular areas? Where are these places and why might 

that be the case? 

• Are general theories of where and when crimes typically occur correct in the case 

of Johnson City (e.g. areas of daily activity, major traffic arteries, etc.)? 

Data and Methods 

Most data for this study are derived from CrimeMapping (CM), a website developed by 

TriTech Software Systems to provide the public with information regarding criminal activity. 
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Local law enforcement agencies subscribe and provide their data to CM, which retrieves and 

displays new data daily. A map displays each crime incident, indicating the type of crime, a short 

description of the event, location, and time of the event, and the incident identifier number. Each 

crime has a generalized address to protect the privacy of parties involved. The description of 

each crime forms the basis of its categorical assignment in analysis.  

CrimeMapping maintains data for each law enforcement agency for a period of up to 180 

days. Obtaining a longer-term dataset requires storing the data in a spreadsheet over time or 

requesting the data from the agency directly. Data collection for this study started in mid-April 

2018 and ended in July 2019, allowing a range from 10/15/2017 to 06/30/2019 (624 days) for 

analysis. During this period, CM data from the JCPD was available for retrieval, but data 

retrieval from the Washington County Sherriff’s Office only started 11/01/2018. To obtain a 2-

year dataset, the JCPD fulfilled a request for data from the dates 07/01/2017 – 10/14/2017. To 

ensure consistency with CM, only crimes that would be reported to CM by the JCPD were 

retained in analysis. Additionally, no address data were included in the requested data, restricting 

them to the exploratory section.  

As the JCPD’s jurisdiction is not explicitly bound to the city limits of Johnson City, and 

the WCSO holds jurisdiction across the county that Johnson City is only a small portion of, 

many crime records were removed to focus on criminal incidents around Johnson City proper. 

To account for boundary effects and Johnson City’s irregular border, the convex hull of a 1km 

buffer of the city limits served as the study extent that all incidents herein lie. Within the study 

extent over the two-year period 13,288 crimes remained, only 12,041 of which had adequate 

spatial data. Incidents were separated into types then categories based on their description. 

Descriptions included the type of violation committed, with slight discrepancies between the 
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JCPD and WCSO, or were recorded differently despite being the same type of offense (e.g. 

ROBBERY/INDIVIDUAL vs Individual). Certain crime types are not included in this study due 

to lacking number of incidents. The decided cutoff is 30 incidents (Table 2.1). 

Table 2.1.  Summary of crime in JC by categories during study period. Numbers in parentheses include incidents 
without spatial data. 

Type Category # of Incidents 
Arson† Arson 17 

Assault 

Aggravated Assault 319 (363) 
Bomb Threat 4 (5) 
Domestic Violence 6α 

Intimidation 184 (214) 
Simple Assault 1,149‡ (1,310) 
Stalking 37 (41) 

Burglary 
Forced Entry 74 
Non-Residential Burglary 151 (163) 
Residential Burglary 421‡ (447) 

Disturbing the Peace 
Bar Disturbance 30 
Disorderly Conduct or Fighting 135 (139) 
Fireworks 5 (8) 

Drugs/Alcohol Violations 

Drunkenness 795‡ (942) 
Equipment Violation 785‡ (820) 
Liquor Violation 126 (134) 
Liquor, Underage 54 (61) 
Narcotics, Felony 240 (268) 
Narcotics, Misdemeanor 781‡ (894) 
Overdose 64 (71) 

DUI Driving Under the Influence 334 (388) 

Fraud 

Credit Card/ATM 345‡ (375) 
Counterfeiting & Worthless Checks* 2 
Embezzlement* 1 
False Pretenses, Swindling, etc. 495‡ 
Identity Theft* 8 
Impersonation 139 (155) 
Phone Prescription 8 
Theft of Services 2 
Wire & Electronic 16 

Homicide*† Murder and Non-Negligent Manslaughter 1 
Motor Vehicle Theft Multiple 416 (442) 

Robbery Business 11 (13) 
Individual 65 (73) 

Sex Crimes*† Obscene Material 1 
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Sexual Assault 8 
Other (Incest, Sodomy, etc.) 0 

Theft/Larceny 

Bicycle 79 (82) 
From Building 638‡ (710) 
From Coin Machine 5 
From Yard 230 (239) 
Fuel 8 (9) 
Mail or Delivery 62 (64) 
Motor Vehicle Parts or Accessories 265 (275) 
Pick-pocketing & Purse-snatching 12 
Possession of Stolen Property 2 (3) 
Shoplifting, Felony 41 (46) 
Shoplifting, Misdemeanor 1,570‡ (1,793) 
Trailer 35 (36) 
All Other 186 (194) 

Vandalism 

Destruction of Private Property 48 
Felony 151 (159) 
Misdemeanor 604‡ (643) 
Other Property Damage 0 (16) 

Vehicle Break-In From Motor Vehicle 716 (772) 

Weapon Explosives Pickup 8 (11) 
Other Weapon Violations 158 (182) 

* Data solely comes from the Washington County Sherriff’s Office. 
† Denotes data excluded from analysis due to lacking sufficient incidents (30). 
‡ Denotes a top ten category for further analysis. 
α Data were split between aggravated (4) and simple assault (2) for analysis based on original CM description. 

 
Exploratory Methods 

Histograms of crimes by type and category over days and minutes can give a picture of 

short-term temporal patterns in local crime. For all crime and crime type (when included), four 

temporal histograms measuring counts of incidents throughout the study period, each month in 

the year, each day of the week, and each hour in a day were created using the Statistical Package 

for the Social Sciences (SPSS) version 25. Hourly histograms are binned for approximately 

every 30 minutes, while histograms over the study period are binned for around 10 days (~3 bars 

per month). Days of the week and months are in order according to the calendar (e.g., 1 for 

Sunday or 1 for January).  
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SPSS contains multiple analyses to test the significance of trends found and differences 

between groups of time (e.g. day vs. night, weekday vs. weekend). For this, the linear regression 

and poisson generalized linear model will be used to determine the significance for trends of 

crime through the study period. To determine significance within the other temporal trends 

(month, day, and hour), other statistical tests work better due to the potential nonlinearity of 

those trends (e.g. seasonal variation between months, day/night). The Mann-Whitney (MW) and 

Kruskall-Wallis (KW) tests, while not as powerful as T tests or ANOVAs, account for 

nonparametric data distributions by automatically ranking the data. Tests comparing two groups 

use MW while tests of three or greater use KW (Reed College n.d.). Months are broken down 

between the astronomical and meteorological seasons, and additionally between when school is 

in session at East Tennessee State University. Days of the week are split between the weekday 

and weekend. Lastly, hours of the day are separated by daylight and nighttime hours (i.e. 6am – 

6pm). 

Analytical Methods 

 This study looks to calculate clusters and hot spots of each type of crime that surpassed 

the 30-offense threshold and the ten most common categories of crime through NNHC and KDE. 

Each occurrence served as the input for NNHC & KDE in CrimeStat IV. The reference grid and 

measurement parameters are based on the maximum spatial extent of crime incidents throughout 

the study period.  

For risk-adjusted analyses, the Oak Ridge National Lab LandScan Global Population 

dataset provided ambient daytime population to adjust hot spots according to the average 

population an area maintains in a 24-hour period (Oak Ridge National Laboratory 2017). 
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Nearest Neighbor Hierarchical Clustering (NNHC). The NNHC method, known 

within CrimeStat IV as “Nearest Neighbor Hierarchical Spatial Cluster (Nnh)”, is one of the 

older methods of cluster analysis. CrimeStat IV uses a unique algorithm with a defined 

“threshold distance” between individual pairs of points to determine cluster suitability, one of 

three important parameters. Users can manually define this distance or allow CrimeStat to 

calculate the distance by the following equation, where A is the area of the study extent and n is 

the number of incidents:  

𝑑𝑑𝑁𝑁𝑁𝑁(𝑟𝑟𝑟𝑟𝑟𝑟) = 0.5�
𝐴𝐴
𝑛𝑛 

Further, search radius (or confidence interval) assigns a probability to the distance 

between points based on a chance distribution. Lastly, minimum points per cluster (MPPC) is a 

self-explanatory parameter, determining how many points need to fit together to create a cluster 

of any order (Levine 2013a). 

Choosing random threshold distance reduces the subjectivity of clusters. For confidence 

interval of the search radius, a value of 0.01 (fourth from left on the CrimeStat scale) indicates a 

1% chance of assigning points to a cluster based on a chance distribution. That leaves MPPC, the 

only subjective parameter in this case. Minimum points will vary depending on the n value of the 

type/category: 

• If n > 1,000, MPPC = 1% of n 

• If n > 100, MPPC = 10% of n 

• If n > 30, MPPC = 20% of n 

• If the above methods fail to generate clusters, halve the value. Failing that divide 

the original value by three, and so on until achieving sufficient clustering. 
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Kernel Density Estimation (KDE). Changes in interpolation method, grid cell size, and 

bandwidth have different levels of importance in relation to the accuracy of KDE surfaces. In his 

study of Newcastle-upon-Tyne assaults and residential burglaries, Chainey (2013) states cell size 

has little effect on a kernel density surface, adding that bandwidths require special consideration 

and that smaller bandwidths lead to better predictive results. This is a valid thought considering 

larger bandwidths can lead to overly smooth surfaces. Hart and Zandbergen (2014) agreed on 

both these matters, placing little importance on grid cell size and highly recommending smaller 

bandwidths. They added that choice of interpolation method has a significant effect on accuracy, 

showing triangular and quartic as accurate predictors compared to normal and uniform, which 

underperformed (Hart and Zandbergen 2014). Some statisticians contend that most interpolation 

methods have hardly any important distinctions outside of determining smoothness (Vermeesch 

2012). Interpolation methods weigh points within a specified bandwidth based on their 

function/shape. CrimeStat contains five interpolation functions: normal, negative exponential, 

quartic, triangular, and uniform. Normal interpolation, the most common, has a bell curve shape 

extending endlessly through every location in a study extent, unlike the other functions in 

CrimeStat. Negative exponential kernels exhibit drastic drops in density with distance from the 

kernel center. Quartic functions have a more gradual falloff until the end of the bandwidth. A 

triangular bandwidth loses weight in a linear relationship with distance. Lastly, in a uniform 

function all points within the bandwidth weigh the same (Levine 2013b). 

Single kernel density and dual kernel density methods measure kernel density for raw hot 

spots and risk-adjusted hot spots for Johnson City crime respectively. The interpolation method 

chosen for a type or category depends on the spatial distribution of the crime and its frequency. 

Quartic shape for more spatially concentrated crimes, and triangular for more widely distributed 
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crimes, were the only implemented shapes given their acceptance relative to other methods. 

Kernel bandwidth varies across crime types and categories based on their number of incidents 

and standard distance deviation using the Silverman equation as follows where n is the number 

of incidents and σ is the standard distance deviation of incidents (Tables 2.2-2.3):  

𝒉𝒉𝟎𝟎 = (
𝟒𝟒𝝈𝝈𝟓𝟓

𝟑𝟑𝟑𝟑 )
𝟏𝟏
𝟓𝟓  ≈ 𝟏𝟏.𝟎𝟎𝟎𝟎𝝈𝝈𝟑𝟑−

𝟏𝟏
𝟓𝟓 

Table 2.2.  Summary of kernel parameters for each eligible crime type. 
Type Interpolation Method 𝒉𝒉𝟎𝟎 MPPC 

All Crime Quartic 0.685 120 
Assault Quartic 1.071 17 

Burglary Quartic 1.333 16 
Disturbing the Peace Triangular 1.260 9 

Drugs/Alcohol Violations Quartic 0.843 28 
DUI Triangular 1.347 11 

Fraud Quartic 1.137 10 
Motor Vehicle Theft Triangular 1.565 14 

Robbery Triangular 1.676 8 
Theft/Larceny Quartic 0.826 31 

Vandalism Triangular 1.255 20 
Vehicle Break-In Quartic 1.324 18 

Weapon Triangular 1.504 8 
 

Table 2.3. Summary of kernel parameters for the top ten categories. 
Category In. Method 𝒉𝒉𝟎𝟎 MPPC 

Credit Card/ATM Fraud Triangular 1.521 17 
Drug Equipment Violation Quartic 1.162 26 

Drunkenness Quartic 0.940 27 
False Pretenses, Swindling, etc. Quartic 1.193 17 

Misdemeanor Narcotics Quartic 1.181 26 
Misdemeanor Shoplifting Quartic 0.774 16 
Misdemeanor Vandalism Quartic 1.106 15 

Residential Burglary Quartic 1.196 14 
Simple Assault Quartic 1.196 11 

Theft From Building Quartic 1.110 21 
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Results 

Exploratory Analysis 

All Crime. Through temporal analysis, crime in Johnson City increased from the latter 

half of 2017 into 2018, and fluctuated in subsequent months. Between all crimes (month over 

month), there is a dip in crime going into the summer before rising again into autumn. A similar, 

albeit smaller, trend exists with winter. Between days of the week, trends are much slighter with 

a falloff of crime during the weekend and Wednesday. Crime generally seems to peak in the 

daylight hours, increasing with dawn and decreasing with dusk. Especially noteworthy is the 

freefall of crime after 6pm (1800) and rebound an hour later (Figure 2.3). Regression analyses 

report a significant, increasing, trend (0.000) in crime across the study period. Differences 

between astronomical seasons (Jan, Feb, Mar for Winter, etc.) are additionally significant (0.45), 

however the meteorological and school seasons are not. Neither the day of the week or time of 

day have trends holding significance. 
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Figure 2.3. Histograms showing all crime during the study period (a), over months of the year (b), over days of the 

week (c), and over hours in the day (d). 
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Assault. Assaults continuously fluctuated throughout the study period. With months, 

assault trends are comparable to all crimes, elevated in the spring and less common in the 

summer. Somewhat the same can be said of hours in the day as offenses begin to increase at 

dawn but increase quickly after lunch, only to fall later in the evening (Figure 2.4). Despite 

fluctuation, the trend of crime over the study period is positive and significant (0.000). 
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Figure 2.4. Histograms showing assaults during the study period (a), over months of the year (b), over days of the 

week (c), and over hours in the day (d). 

 

Burglaries. Both period and monthly histograms showed surges and declines in offenses 

between months, with the height of offenses occurring in the spring and drastic decline in the 
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summer. More burglaries occurred on weekdays, notably during hours correlating with a typical 

work schedule, with some fluctuation (Figure 2.5). Burglary additionally tests positive for a 

significant and increasing trend for crime across the study period (0.000). Burglary produced 

additional significant trends with astronomical seasons (0.024) and time of day (0.005).  

 

 

 
Figure 2.5. Histograms showing burglaries during the study period (a), over months of the year (b), over days of the 

week (c), and over hours in the day (d). 
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Disturbances of the Peace. One of the scarcer crime types in these analyses, there is 

typically no more than five or six incidents of the peace being breached in any 10-day period. 

The first half of April 2019, however, saw more than double the usual number of offenses. In 

months, a drop in disturbances occurred in the late summer then steadily increased until reaching 

a peak between mid-winter and the beginning of spring.  

Bar disturbances were an outlier when observing disturbances by day of the week and 

hour of the day, with a relatively high concentration of occurrences on Sundays. Bar disturbances 

solely occurred during the late night hours and make these times the peak for this crime type, 

making it one of the only crime types to see an increase after dusk. After bars and similar 

businesses close for the night, disturbances plummet until day arrives and the overlying trend of 

crime increasing during daylight hours and decreasing in the evening resumed (Figure 2.6). The 

significance of disturbance of the peace data shows in the analysis of the study period (0.000) 

and the astronomical seasons (0.032). 
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Figure 2.6. Histograms showing disturbances of the peace during the study period (a), over months of the year (b), 

over days of the week (c), and over hours in the day (d).  

 

Drugs & Alcohol. Over the study period, the occurrence of drug offenses fluctuated 

frequently but tended to stay relatively level. Hourly, drug offenses peak at night, not beginning 

to fall off until around 3am until increasing again at around 7am (Figure 2.7). Analyses over the 
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study period (0.000), meteorological seasons (0.041), and day/night (0.020) successfully tested 

the significance of variation between temporal data. 

 

 

 

Figure 2.7. Histograms showing drug & alcohol violations during the study period (a), over months of the year (b), 

over days of the week (c), and over hours in the day (d). 
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DUIs. Unlike the all crimes dataset and most other crimes, DUIs over the study period 

have stayed at around the same level with some drops and rises from time to time. Wintry 

months largely have higher cases of DUIs with the exception of June. Clear temporal patterns in 

DUIs exist in the weekends and after dusk hours as people leave work, go to the bar, or party 

(Figure 2.8). The linear and poisson regression analyses produced slightly different, but still 

significant, values (0.016 and 0.012 respectively). The hour of the day trend is also a significant 

trend among the DUI data (0.000). 

 

 
Figure 2.8. Histograms showing DUIs during the study period (a), over months of the year (b), over days of the 

week (c), and over hours in the day (d). 
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Fraud. Like all crimes, fraud through the study period began relatively low and increased 

after October. An unusual spike occurred in credit card/ATM fraud December 2018 and 

February 2019 before stabilizing. There was a clear trend of fraud occurrences during the 

workday, with cases of false pretenses and impersonation primarily comprising the nighttime and 

weekend occurrences of fraud (Figure 2.9). Fraud over time holds statistical significance with a 

positive trend (0.000). Hour of the day comes out as a significant difference between data groups 

(0.000). 
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Figure 2.9. Histograms showing fraud during the study period (a), over months of the year (b), over days of the 

week (c), and over hours in the day (d). 

 

Motor Vehicle Theft. This crime type also exhibits surging crime after October 2017 

however numbers decline to previous levels in subsequent months, fluctuating over time. 

Between months, September experienced the lowest occurrence of vehicle thefts with November 

having the peak occurrences. Again, this crime type more-or-less follows the same hourly trend 
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with all crime, increasing at dawn and decreasing at dusk (Figure 2.10). The occurrence of motor 

vehicle thefts over time is increasing with statistical significance (0.000). Hour of the day, again, 

comes out as having significant variations between day and night (0.000). 

 

 

 

Figure 2.10. Histograms showing motor vehicle thefts during the study period (a), over months of the year (b), over 

days of the week (c), and over hours in the day (d). 
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Robberies. Being the crime type with the fewest instances, there was typically no more 

than three occurrences of robbery in any 10-day period. However, the beginning of October 2017 

saw a surge in robberies with greater than double the usual number of robberies seen in a 10-day 

interval. The month of October and, slightly, the day of Friday experienced the most robberies. 

Peak time for robberies occurred around 3pm (Figure 2.11). No significant trends were observed 

within robbery data. 
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Figure 2.11. Histograms showing robberies during the study period (a), over months of the year (b), over days of the 

week (c), and over hours in the day (d). 

 

Thefts. The typical jump in crime in October 2017 was not as jarring in the thefts 

histogram. Between months, there were small increases and decreases, with December holding 

the most offenses by a relatively slight number. The same can be said with weekdays, though 

weekends showed a significant decrease.  Hourly, thefts focused mostly in the daylight hours 
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starting around 8am and slowing after 7pm (Figure 2.12). For the study period, there is a 

significant increase in the occurrence of theft (0.000). The difference between the day and night 

trends were significant (0.039). 

 

 
 

 

 

Figure 2.12. Histograms showing thefts during the study period (a), over months of the year (b), over days of the 

week (c), and over hours in the day (d). 
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Vandalism. The occurrence of vandalism in Johnson City exhibited a slight, but steady, 

increase with occasional spikes. Vandalism peaked in the month of April, decreasing through to 

the end of summer then increasing in the latter part of the year. Weekends are the height of 

vandalism occurrence, with Wednesday marking the lowest point. Vandalism is another crime 

that has an hourly trend correlating with the presence of daylight, with a sudden drop in offenses 

shortly before noon (Figure 2.13). Again, regression analyses calculate that the increasing trend 

of vandalism is significant (0.000). The day and night difference in vandalism data also comes 

out as statistically significant (0.006). 
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Figure 2.13. Histograms showing vandalism during the study period (a), over months of the year (b), over days of 

the week (c), and over hours in the day (d). 

  

 Vehicle Break-Ins. By month, April has a higher count of vehicle break-ins, with May 

following with the lowest count. The highest and lowest occurrence of vehicle break-ins occur 

during weekdays, Tuesday and Thursday respectively, but still appear to be a workday-focused 

crime type. In regards to hours, vehicle break-ins also follow the trend of increasing during dawn 



57 

 

and decreasing closer to dusk (Figure 2.14). Vehicle break-in data produced a significant trend 

for the study period (0.000) and day against night (0.000). 

 

 

Figure 2.14. Histograms showing vehicle break-ins during the study period (a), over months of the year (b), over 

days of the week (c), and over hours in the day (d). 

 

Weapons. Over the study period, weapon offenses did not see much fluctuation. Over 

months April has the highest amount of weapon violation occurrences, although there does not 

seem to be a favored season. The hourly histogram of weapon offenses does not have as 

pronounced a trend as other histograms, showing maybe slight favor for daytime offenses 

(Figure 2.15). No trends in weapon offense data produced a significant effect. 
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Figure 2.15. Histograms showing weapon offenses during the study period (a), over months of the year (b), over 

days of the week (c), and over hours in the day (d). 

  

Clusters and Hot Spots 

Maps for each crime type displayed the resulting kernel density surfaces and hierarchical 

clusters from crime incidence points. Most bandwidths calculated by the Silverman method 

created large and overly smooth raw crime surfaces and minute risk-adjusted surfaces. Halving 
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the bandwidth produced better raw surfaces, while for risk-adjusted surfaces a quarter of the 

bandwidth (1.25%) to the final bandwidth produced easier surfaces to interpret. Due to this 

change, some hot spots partitioned into relatively massive areas of high density.  

Notable clustering and highly dense concentrations of these broader crime types appeared 

in numerous areas of interest. Normal cluster and hot spot methods generally matched with each 

other. Downtown, the Mall, and Walmarts (on both West Market Street and Browns Mill Road) 

consistently appeared as ‘neighborhoods’ of high crime density and clustering. Interesting results 

came out of adjusting for average daily population trends. Most downtown hot spots contracted 

significantly but still represented relatively high areas of crime, while the two Walmarts were 

relatively preserved as areas of high crime. Many new hot spots emerged in the periphery of 

Johnson City, especially in the Cash Hollow area (Tables 2.4-2.6, Figures 2.16–2.28). 

Table 2.4. Summary of areas with clustering and hot spots of crime by type. 
Crime Type Hierarchical Clustering Kernel Density 

All Crime Downtown, Mall, Med Center, Walmarts 

Assault Downtown, Science Hill, housing around Founders park, 
housing around industrial areas and other low-income areas 

Burglary Downtown, areas of low income and multi-family housing. 

Disturbing the Peace Downtown, Mall, Medical 
Center, Science Hill 

Downtown, Science Hill 

Drugs & Alcohol Budget motels, ETSU/Tree 
Streets, Downtown, Walmarts 

Downtown, Walmarts 

DUI Downtown, ETSU, Mall 

Fraud 

Mall, Medical Center, 
Mountain Home, Walmarts, 
various other commercial and 
low-income areas. 

Mall, Medical Center, 
Walmarts 

Motor Vehicle Theft 
Downtown, low income 
housing 

H-321, Bristol Hwy, 
Downtown, low income 
housing, Medical Center 

Robbery Downtown Commercial area north of 
Med Center, Downtown 

Theft/Larceny Downtown, Food City, Mall, 
Medical Center, Walmarts,  

Downtown, Food City, Mall, 
Medical Center, Tree Streets, 
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Walmarts, low-income 
housing 

Vandalism Downtown, low-income housing  
Vehicle Break-In Downtown, low-income housing, housing SW of ETSU 

Weapon Downtown, Mall commercial area, Science Hill, Walmart (H-
321)  

 
Table 2.5. Summary of areas with risk-adjusted clustering and hot spots of crime by type. 

Crime Type Hierarchical Clustering Kernel Density 

All Crime Downtown, Mall, Med 
Center, Walmart’s 

Cash Hollow area 

Assault 

Downtown, Mall, Medical 
Center, Science Hill, 
commercial and residential 
areas around campus 

Cash Hollow area, industrial 
and low-income area 
residences 

Burglary 
No clusters generated. Cash Hollow, industrial area, 

housing/commercial towards 
Jonesborough  

Disturbing the Peace No clusters generated. Between Downtown and 
Science Hill. 

Drugs & Alcohol Downtown, Target, Walmarts 

DUI No clusters generated. H-321 to Jonesborough, 
Downtown, Tree Streets 

Fraud Mall, Medical Center, 
Walmarts 

Bristol Hwy to Piney Flats, 
Mall, Walmart’s 

Motor Vehicle Theft 
No clusters generated. H-321 to Jonesborough, 

Bristol Hwy, east industrial 
area, low-income housing 

Robbery No clusters generated. Cash Hollow, Downtown 

Theft/Larceny Food City, Mall, Med Center, 
Walmarts 

Cash Hollow, Food City, 
Mall, Walmarts 

Vandalism No clusters generated. Yes. 

Vehicle Break-In 
Downtown Downtown, Housing around 

industrial areas, housing SW 
of ETSU 

Weapon No clusters generated. Cash Hollow, H-321 to 
Jonesborough 
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Table 2.6. Legend of cluster and KDE maps. 
Nearest Neighbor Hierarchical Clustering Kernel Density Estimation 

    
 1st Order Clusters (White)  Low Density 

    
 2nd Order Clusters  Moderate Density 
    
 3rd Order Clusters  High Density 

 
 

 

Figure 2.16. Clusters and KDE surfaces for all crimes in Johnson City, TN (10/15/2017-06/30/2019; secondary data 

source: LandScan 2017™, ORNL, UT-Battelle, LLC). 
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Figure 2.17. Clusters and KDE surfaces for assaults in Johnson City, TN (10/15/2017-06/30/2019; secondary data 

source: LandScan 2017™, ORNL, UT-Battelle, LLC). 

 

 

Figure 2.18. Clusters and KDE surfaces for burglaries in Johnson City, TN (10/15/2017-06/30/2019; secondary data 

source: LandScan 2017™, ORNL, UT-Battelle, LLC). 
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Figure 2.19. Clusters and KDE surfaces for disturbances of the peace in Johnson City, TN (10/15/2017-06/30/2019; 

secondary data source: LandScan 2017™, ORNL, UT-Battelle, LLC). 

 

 

Figure 2.20. Clusters and KDE surfaces for drug and alcohol violations in Johnson City, TN (10/15/2017-

06/30/2019; secondary data source: LandScan 2017™, ORNL, UT-Battelle, LLC). 
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Figure 2.21. Clusters and KDE surfaces for DUIs in Johnson City, TN (10/15/2017-06/30/2019; secondary data 

source: LandScan 2017™, ORNL, UT-Battelle, LLC). 

 

 

Figure 2.22. Clusters and KDE surfaces for fraud in Johnson City, TN (10/15/2017-06/30/2019; secondary data 

source: LandScan 2017™, ORNL, UT-Battelle, LLC). 
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Figure 2.23. Clusters and KDE surfaces for motor vehicle thefts in Johnson City, TN (10/15/2017-06/30/2019; 

secondary data source: LandScan 2017™, ORNL, UT-Battelle, LLC). 

 

 

Figure 2.24. Clusters and KDE surfaces for robberies in Johnson City, TN (10/15/2017-06/30/2019; secondary data 

source: LandScan 2017™, ORNL, UT-Battelle, LLC). 
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Figure 2.25. Clusters and KDE surfaces for thefts in Johnson City, TN (10/15/2017-06/30/2019; secondary data 

source: LandScan 2017™, ORNL, UT-Battelle, LLC). 

 

 

Figure 2.26. Clusters and KDE surfaces for vandalism in Johnson City, TN (10/15/2017-06/30/2019; secondary data 

source: LandScan 2017™, ORNL, UT-Battelle, LLC). 
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Figure 2.27. Clusters and KDE surfaces for vehicle break-ins in Johnson City, TN (10/15/2017-06/30/2019; 

secondary data source: LandScan 2017™, ORNL, UT-Battelle, LLC). 

 

 

Figure 2.28. Clusters and KDE surfaces for weapon offenses in Johnson City, TN (10/15/2017-06/30/2019; 

secondary data source: LandScan 2017™, ORNL, UT-Battelle, LLC). 

  
Clusters and hot spots for the ten most common crime categories in Johnson City result in 

some changes in the pattern for both NNHC and density measures, adjusted and non-adjusted 

compared to their respective type. Although, the problem persists with risk-adjusted methods that 
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some categories generate no clustering or KDE calculate hot spots erroneously (Tables 2.7-2.8; 

Figures 2.29-2.38).  

Table 2.7. Summary of areas with clustering and hot spots of crime by category. 
Crime Category Hierarchical Clustering Kernel Density 

Credit Card/ATM Fraud Mall, Walmarts 
Drug Equipment 

Violation Downtown, Mall, Walmarts Downtown, Mall, Walmart 
(Browns Mill) 

Drunkenness Downtown, Tree Streets Downtown 
False Pretenses, 
Swindling, etc. 

Downtown, Mall, Medical Center, 
Walmarts Mall 

Misdemeanor Narcotics Downtown, Mall, Walmarts 

Misdemeanor Shoplifting Food City, Mall, Walmarts, various 
other commercial areas. Walmart (Browns Mill) 

Misdemeanor Vandalism Downtown, Housing Authority, 
some low-income residential areas Downtown 

Residential Burglary Various residential areas both inner and outer of JC jurisdiction. 

Simple Assault 

Downtown and nearby residential 
areas, Housing Authority and nearby 
residential areas, Medical Center, 
Science Hill 

Downtown, Housing 
Authority, Science Hill 

Theft From Building Downtown, Mall, Medical Center Widespread concentrations. 
 

Table 2.8. Summary of areas with risk-adjusted clustering and hot spots of crime by category.  
Crime Category Hierarchical Clustering Kernel Density 

Credit Card/ATM Fraud No clusters generated Bristol Hwy, Gray, Mall, Walmarts 
Drug Equipment Violation Mall, Walmart (Browns Mill) H-321 

Drunkenness Downtown 
False Pretenses, Swindling, 

etc. 
Mall Bristol Hwy, Walmarts 

Misdemeanor Narcotics Walmart (Browns Mill) H-321, Downtown, Mall, 
commercial area towards Gray 

Misdemeanor Shoplifting 
Food City, Mall, Walmarts, 
various other commercial 
areas  

Walmarts 

Misdemeanor Vandalism No clusters generated. Downtown 

Residential Burglary 
No clusters generated. H-321, residences near downtown, 

various low-income areas along the 
periphery of JC. 

Simple Assault 
Medical Center, Science Hill, 
some low-income residential 
areas 

Cash Hollow area, Housing 
Authority 

Theft From Building Medical Center No explicit concentrations. 
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Figure 2.29. Clusters and KDE surfaces for credit card/ATM fraud in Johnson City, TN (10/15/2017-06/30/2019; 

secondary data source: LandScan 2017™, ORNL, UT-Battelle, LLC). 

 

 

Figure 2.30. Clusters and KDE surfaces for drug equipment violations in Johnson City, TN (10/15/2017-

06/30/2019; secondary data source: LandScan 2017™, ORNL, UT-Battelle, LLC). 
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Figure 2.31. Clusters and KDE surfaces for drunkenness in Johnson City, TN (10/15/2017-06/30/2019; secondary 

data source: LandScan 2017™, ORNL, UT-Battelle, LLC). 

 

 

Figure 2.32. Clusters and KDE surfaces for false pretenses, swindling, etc. in Johnson City, TN (10/15/2017-

06/30/2019; secondary data source: LandScan 2017™, ORNL, UT-Battelle, LLC). 
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Figure 2.33. Clusters and KDE surfaces for misdemeanor narcotics in Johnson City, TN (10/15/2017-06/30/2019; 

secondary data source: LandScan 2017™, ORNL, UT-Battelle, LLC). 

 

 

Figure 2.34. Clusters and KDE surfaces for misdemeanor shoplifting in Johnson City, TN (10/15/2017-06/30/2019; 

secondary data source: LandScan 2017™, ORNL, UT-Battelle, LLC). 
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Figure 2.35. Clusters and KDE surfaces for misdemeanor vandalism in Johnson City, TN (10/15/2017-06/30/2019; 

secondary data source: LandScan 2017™, ORNL, UT-Battelle, LLC). 

 

 

Figure 2.36. Clusters and KDE surfaces for residential burglaries in Johnson City, TN (10/15/2017-06/30/2019; 

secondary data source: LandScan 2017™, ORNL, UT-Battelle, LLC). 
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Figure 2.37. Clusters and KDE surfaces for simple assaults in Johnson City, TN (10/15/2017-06/30/2019; secondary 

data source: LandScan 2017™, ORNL, UT-Battelle, LLC). 

 

 

Figure 2.38. Clusters and KDE surfaces for thefts from building in Johnson City, TN (10/15/2017-06/30/2019; 

secondary data source: LandScan 2017™, ORNL, UT-Battelle, LLC). 

 

Discussion 

  Confirming previous studies and theories areas of high daily activity, where and when 

people are operating within their daily routine, observe the highest concentrations of crime. 

Clusters and hot spots regularly occurred in areas such as downtown, places of low-income 
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residence, areas of commerce, and along other highly trafficked roads and highways throughout 

town. These results appear to line up with the theory behind awareness space, that crimes occur 

most often around the areas offenders are most active (home, work, etc.) and the space between  

(Brantingham and Brantingham 1991). 

Spatial analysis results became less clear when normalizing for population. While risk-

adjusted results deviate, wildly in some cases, against the raw observations, it is important to 

consider why that may be the case. In a number of observed hot spots between multiple crime 

types, two main areas of interest appear where the accuracy of the calculation was frequently 

called into question: Buffalo Mountain to the south of the city and the residences to the 

northwest of the main body of the city limits. In multiple cases, hot spots calculated in these 

areas only included one incident (albeit in a relatively sparse area of population) or no incidents 

at all. CrimeStat IV documentation on dual kernel density indicates that kernels of a small 

bandwidth may produce surfaces where the periphery of the grid area may have overly 

exaggerated grid values, which can occur in the presence of an incident or even with a lack 

thereof (Levine 2013b). Only in a few cases did the Cash Hollow hot spots elicit a similar effect. 

 This calls into question the practicality of the methods employed. There is a difference 

between these methods regarding complexity. The only parameter that required substantial trial 

and error was MPPC. In comparison, KDE is much more involved with some parameters 

requiring a mathematical equation for various parameters, as in this case the original bandwidth 

calculation produced overly smoothed surfaces that were improved upon. Despite that, KDE 

retains popularity and a substantial body of literature that can help guide choices to make in 

model setup, unlike NNHC. As far as risk-adjusted methods go, there is a dearth of background 

literature. Adjusted kernel density generated some exaggerated hot spots, whereas NNHC 
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sometimes did not produce any clustering. It is also noteworthy that making changes to the 

bandwidth on dual kernel density elicits a response much more exaggerated than a similar 

change on single kernel density. Potentially, introducing higher resolution population data 

(LandScan resolution is 0.75 km) may affect the shape of some of the odd hot spots and produce 

better quality risk surfaces. Further development and improvement of risk-adjusted cluster and 

hot spot methodologies is another area of future research.  

In the context of crime, it is understandable that risk-adjusted methods garner little to no 

attention as law enforcement may focus on areas of high crime concentration, especially those 

that see frequent activity. However, there may still be insight to gain concerning neighborhoods 

that see more crime than could be expected given their relatively low concentration of residents. 

For example, many risk-adjusted hot spots appeared around the area of Cash Hollow and Cash 

Hollow Road, an area subject to plenty of local news articles about crimes committed there or by 

people from that area (Campbell 2013; Johnson City Press 2015; Thompson 2015a; Thompson 

2015b; Johnson City Press 2017; Campbell 2019a; Campbell 2019b). While that and other 

similar areas may see regular crime, it may not get much attention from police patrols or 

outreach due to its relative remoteness from Johnson City. 

An item to keep in mind while interpreting the results of cluster or hot spot analysis is 

that these, by no means, confirm that future crime will occur in those areas, only that there is a 

high risk for future crime to occur in those areas. However, a record of past crime may still lend 

insight into future crime occurrence. 

Whenever performing any analysis of crime, it is also important to keep in mind that the 

data may not be complete; this case is no different. The data provided on CM may not be a 

complete record of crime reported by the JCPD, as they are the provider of the data, they may 
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withhold data for various reasons. Further, CM discloses on their website that homicide and sex 

crime data are common types of crime withheld by reporting agencies. As stated before, the 

WCSO does include those data in their CM description, however through the JCPD data request 

it was discovered that they do exclude those data in addition to other criminal offenses such as 

embezzlement and trespassing. Excluding this, there is also the likelihood of crimes going 

unreported or unnoticed. This factor may have greater prevalence with certain types of crime, as 

the Bureau of Justice Statistics indicated that the rate of unreported victimizations differs 

between property and violent crimes (Langton et al. 2012).  

Crimes occurring on the East Tennessee State University (ETSU) campus is another data 

anomaly. Despite its location in the middle of Johnson City, crimes reported to and investigated 

by the ETSU Department of Public Safety (DPS) do not appear on CM. An alert in November 

2017 of an incident of assault with a deadly weapon occurred on campus, but no such incident 

exists in the data (East Tennessee State University Department of Public Safety 2017). Similarly, 

an incident of intimidation with threat of a firearm on the first day of classes in August 27, 2018, 

is not present on CM (USA Today Network Tennessee 2018). The ETSU campus represents a 

significant spatial void where there is a constantly high ambient population, with the thousands 

of resident students and commuters during the day, where crimes are known to occur but no, at 

least publically available, data exists for ready analysis. Public Safety produces an annual 

security and fire safety report, as required by law, disclosing yearly occurrence of all campus 

crime over the past three years. However, little to no statistical information exists in analysis of 

campus crime. To gain a full picture of crime within Johnson City, the dataset requires 

supplementation by the DPS.  
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 It is worth repeating that addresses on CM are block-aggregated. That is, hypothetically, 

a crime at 305 W Walnut St would appear on CM occurring at “300 BLK W Walnut Street” in 

the table, preserving the privacy of all parties involved. It is not certain the extent to which this 

may affect the overall results, so if using CM as a decision-support tool for determining place-

level remedies to crime, no small amount of caution should be exercised. It would be more 

appropriate to examine these results on a more general, neighborhood scale. However, police 

agencies can easily circumvent this issue by doing such analyses themselves using the address 

information police databases already contain. Conveniently, the CrimeStat software package 

used in these analyses, and all relevant documentation, is free for download on the National 

Institute of Justice (NIJ) website; although to produce maps with CrimeStat one needs to 

additionally install GIS software, which also has open and free options such as QGIS (if the city 

does not have existing GIS infrastructure). 

While these types of analyses could prove to be useful support tools for local law 

enforcement, another application seen in other police organizations is the publishing of these 

data in a manner similar to CM. At the very least many police departments, using municipal GIS 

resources, utilize the power of ESRI’s ArcGIS Online web application development platform to 

create an app where recent criminal events are posted for the public to see for themselves 

(Halifax Regional Municipality 2019). Some try to go a step further and display results of spatial 

analysis, like the Brandon Police Service in Brandon, Manitoba (though as of writing, that 

feature appears unavailable for display) (Brandon Police Service 2019). Services such as these 

boost public awareness of local crime and add a layer of transparency to police activities, 

something over which there has been increased scrutiny (Kupferberg 2008; Jackson 2015; Sousa 

et al. 2018).  



78 

 

Conclusion 

 The Johnson City Police Department’s current crime mitigating efforts may be bearing 

fruit with increases in crime reporting. Investigation into potential problem areas of Johnson City 

may give additional insight into neighborhoods that the police may provide further investment of 

time and resources to alleviate crime through patrols or a tailored, more community-oriented 

approach. Normal cluster and hot spot analysis can confirm whether areas of constant, 

significant, daily activity (e.g., downtown) contain concentrated criminal activities and bring 

attention to other areas of unusually high activity. Risk-adjusted methods, if carefully used by an 

analyst knowledgeable of the data who can identify and ameliorate erroneous results, can 

identify additional areas that, while not particularly abundant in criminal activity, appear to elicit 

more crime than a neighborhood of its size would normally have in relation to the rest of the 

region. Data anomalies can be smoothed out with additional data sources and access to accurate 

address information, both of which local law enforcement can leverage alongside free software 

to have more freedom with their data, and without subscribing to a data storage service. This 

could ultimately culminate in a department’s own custom web-based application, developed as a 

tool for police strategy and community awareness. 
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CHAPTER 3 

GEO APPS AND DASHBOARDS: CONTEMPORARY TECHNOLOGIES FOR DATA 

DISSEMINATION AND CONSUMPTION 

Mitchell S. Ogden, Dr. T. Andrew Joyner, Dr. Ingrid Luffman, Dr. Joseph B. Harris 

Abstract 

 Advancements in geospatial technology and the Internet of Things brings the ability to 

create and share map-based products on a large scale. Esri and other organizations are beginning 

to provide resources and services to groups such as law enforcement agencies, among others, to 

enhance their capabilities. Operations Dashboard, a report-style web application, is one tool in 

the toolbox for the analyst. With little to no coding needed and easy-to-customize map-based 

widgets, analysts of all levels of expertise can make graphics-based applications for decision-

makers and various other audiences. In this case, dashboards present an opportunity to glance at 

crime trends in space, place, and time; maps and charts give an idea of areas and times of 

potential high criminal activity for police officers. If this application is publicized, citizens and 

neighborhood watch groups who are concerned about crime in their community and city can also 

utilize its analytics. This not only makes the dashboard a useful tool for quick at-a-glance 

analysis in crime mitigation, but also provides an interface between local law enforcement and 

the citizenry.  

Keywords: Geo Apps, Operations Dashboard, crime mapping, open data, web GIS 

  



86 

 

Introduction 

 Working as a data scientist in the field of geographic information systems (GIS) and 

remote sensing in contemporary times is exciting with ongoing advancements in the Internet of 

Things (IoT). This interconnectivity of technological networks, its rapid advancements, and its 

accessibility and availability to a wide range of users, brings new opportunities to interact with 

that technology (Joyner & Mollenkopf, 2018). At the forefront of this innovation, over the last 

few decades, web GIS saw increased adoption and use by businesses, government agencies, and 

other entities. The wide reach of the Internet, ease of use and maintenance, and diversity of 

applications provides an ideal channel through which data can be disseminated throughout an 

organization, group, or even to the public (Fu, 2015).  

The Environmental Systems Research Institute (also known as Esri), one of the most 

influential businesses in geospatial data science, championed the advancement of GIS into the 

IoT. ArcGIS Viewer for Flex was one of Esri’s first forays into web mapping, an application for 

developers and non-developers alike with a customizable graphically driven interface. Getting 

the most out of Flex requires extensive widget programming and API (application programming 

interface) support (Esri 2014). More recently, Esri brought renewed vigor to ArcGIS Online 

(AGOL), with greater capabilities and new utility beyond basic map viewing with limited 

functionality. Now with AGOL, investigators can upload, analyze, and share data, collaborate on 

projects, and leverage their creations to create impactful tools (Esri).  

Esri provides multiple platforms on AGOL to create data-driven web products. 

Dashboard type applications, such as Operations Dashboard for ArcGIS, provide simple report-

like interfaces, driven by widgets, which include maps, charts, filters, etc., for at-a-glance 

decision-making. Operations Dashboard provides a simple-to-use engine to develop a dashboard 
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application without requiring any programming expertise (Esri; Pelletier). This accessibility 

lends to its popularity as a platform for sharing data and generating statistics. Public safety is an 

industry seeing increased implementation of web applications for such purposes. Researchers 

and law enforcement agencies on all levels of governance over the last few years have taken 

advantage of Operations Dashboard’s capabilities as a data visualization tool (City of Brasilia 

Brazil; Jumonville 2018; Douglas County Sheriff’s Office 2018; Ogden 2018; The Vancouver 

Police Department 2018; Beck 2019; Brandon Police Service 2019).  

While Esri dominates the web-mapping arena, they are far from the only company 

providing web mapping services. Websites such as TriTech’s CrimeMapping (CM) and 

LexisNexis’s Community Crime Map (CCM), formerly known as RAIDS Online, allow 

subscribing law enforcement agencies to curate criminal occurrence data in their jurisdiction for 

users to view with some charts and other graphical analytics (TriTech Software Systems 2016; 

LexisNexis 2019). Among their analytics, CCM provides a unique visualization of temporal hot 

spots per day of the week by hour (LexisNexis 2019). Services like these benefit police in 

municipalities lacking GIS infrastructure, but largely do not provide anything special for those 

that employ a GIS analyst.  

Methods 

 For this application, the Operations Dashboard platform serves to display information on 

the distribution of crime within the city of Johnson City (JC), Tennessee in time and space. To 

create an equal emphasis between these aspects of the data, a combination of cartographic 

techniques and charts will be used to display aspatial trends. The main objective is to create an 

application that displays the data in a manner that makes it accessible for the widest range of 

people, both civilian and police, as possible.  
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 Outside of increasing awareness for the public and supplying local police with an on-the-

spot decision-making tool, this application serves an additional, pragmatic purpose. Currently, 

the Johnson City Police Department (JCPD) subscribes to the CrimeMapping (CM) web 

mapping service. This service holds up to 180 days of crime data volunteered by subscribed 

agencies, updated daily. These data are separated into crime types based on how these crimes are 

described (e.g., shoplifting is arranged into the “theft/larceny” type). Since law agencies 

completely volunteer this information, they have the prerogative to keep small, relatively 

nonconsequential, offenses from cluttering the map or to withhold very severe or sensitive 

offenses from public display (CM disclaims that many agencies do not volunteer homicide and 

sex crime data). A new web application for the JCPD that fulfills the same tasks as CM plus any 

additional items of interest to the department could provide a useful alternative for the 

department since Johnson City has existing municipal GIS infrastructure. CrimeMapping does 

not advertise any subscription cost for their service, so the amount of money the department 

would save by switching is unknown. 

Case Study – Philadelphia Demonstration App 

 The development team of Operations Dashboard for ArcGIS demonstrated the ability of 

Operations Dashboard as a tool for at-a-glance decision making by creating a dashboard using 

open data from the Philadelphia Police Department (PPD). Upon opening the dashboard, users 

are presented with a map, front and center, of all Part I crimes (arson, aggravated assault, 

burglary, larceny, motor vehicle theft, murder, rape, robbery) over the past 28 days sized by the 

time elapsed since (last hour, last 24 hours, and older). In the same panel, below the map, are 

several serial (or bar) charts displaying total amount of crime per crime type separated by city 
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police division (which represents the geographic split between police districts (e.g., North West 

Police Division or NWPD) (Operations Dashboard Team (Esri) 2017).  

In addition to the map and charts, users may move between three other tabs in the center 

panel for additional data. The “time periods” tab displays a pie, serial, and line chart, each 

displaying temporal trends in the full 28-day period by time of day, day of the week, and hour of 

the day, respectively (Operations Dashboard Team (Esri) 2017). There is a purpose to using both 

a pie and line chart to display these kinds of data. The pie chart shows the relation of crime over 

a specific “block” of the day, showing when a majority of crimes occur over the day. The line 

chart shows the progress and regression of crime through the natural course of the day. Next, the 

“Last Days Comparison” tab compares crime in the last 14 days to the same 14 days from the 

last year, showing a percent increase or decrease, and does the same for the last 15-28 days. 

Lastly, the “Property and Violent Comparison” tab does the same as the previous tab but with 

Property and Violent crimes over the past 28 days (Operations Dashboard Team (Esri) 2017).  

On the right-hand panel is a live crime feed complete with a numerical indicator and list 

of all crime in the period, with associated date and time of incidence and block-aggregated 

address. Users are able to filter the data down to a 7-day, 3-day, 24-hour, or the last hour interval 

instead of the default 28 days. Should the user wish to further explore the data in other ways, 

filters are present on the left-hand panel for filtering by police division or district, crime type, 

day of the week, and/or time of day (Operations Dashboard Team (Esri) 2017).  

This Philadelphia app is thoroughly resplendent with data with a multitude of filters to 

customize the data display that could allow users to observe crime over a relatively macro 

spatiotemporal scale, or extremely specific micro-scale such as burglaries occurring mid-day on 

Saturdays within the NWPD. While a large police department in one of the United States’ most 
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populous cities no doubt could find all of this information useful, such a comprehensive 

undertaking in managing all of these data may not be so paramount for the management of police 

resources in a smaller community like Johnson City. Moreover, when developing an application 

with the intent of being useful for both the police and public, displaying all data could potentially 

feel overwhelming to an individual inexperienced in data consumption. A balance must be 

struck, displaying sufficient data in both a functional yet approachable manner. 

Case Study – Halifax (Nova Scotia) App 

 Another unofficial Operations Dashboard exists for the display of crime in the Halifax 

Regional Municipality (HRM) in Nova Scotia, Canada (Figure 3.1). Similarly, the Halifax 

Regional Police (HRP) hosts this information, which consists of certain types of crime within a 

seven-day period. Unlike Philadelphia, which displays all Part I index crimes, the HRP dataset 

only contains assault, breaking and entering, robberies, thefts from vehicle, and thefts of vehicle. 

The map takes up the majority of space on the app, displaying the incidents throughout the 

region. To the left of the map are an indicator of the crime on display and a stack of graphs, one 

bar and one pie, of crime separated by type. On the top right corner of the dashboard is a 

dropdown filter for isolating crimes based on their type (Ogden 2018). 
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Figure 3.1. Screen capture of the Halifax criminal incidence dashboard. 

 The Halifax app is not as data-rich as Philadelphia’s but it makes up for that in its 

approachability to a public inexperienced in data consumption. For the Johnson City app, 

something between those two applications may work best. 

Johnson City Crime Operation Dashboard 

 Using the two previously discussed applications as a guide, an online operations 

dashboard application is designed for the intention of use by both the police and public to 

observe crime trends. The only requirements to view the dashboard will be an internet 

connection, web browser, and of course a link to navigate to the application (Figure 3.2).  
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Figure 3.2. Screen capture of dashboard interface upon initial application load from a viewer’s perspective. 

The principal component of the dashboard on which all other components are built 

around is the web map containing criminal incident data. In lacking live or regularly updating 

data for demonstration of this application, currently the dashboard uses an upload of some 

placeholder crime data for Johnson City from 10/14/2017 – 06/29/2019, symbolized by crime 

type. When the application launches, so that a veritable swarm of incident points does not 

overwhelm the user, a filter tones down the dataset so only incidents between the last seven days 

of the available data will appear. Users may extend or shrink the time interval beyond the 

default. Crime type is an additional filter applicable to the data via a dropdown menu in the top 

right corner of the dashboard. Each filter affects the data displayed on the map and the various 

widgets, allowing for a wide range of customization options with the data. 

A search bar allows the search of a specific address, whether it be an actual incident 

location or a user’s residence or business to check for nearby incidents. Appended to the map, 

charts compare crime types between each other and crime overall.  
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A second “Time” tab on the main panel displays the map data in a temporal context. On 

top is a line chart displaying crimes throughout a 24-hour period, beneath which two bar charts 

lie. To the left is a serial chart of crimes split between days of the week, where “1” represents 

Sunday and so forth. To the right, similarly, is a month of the year chart, where “1” represents 

January (Figure 3.3).  

 

Figure 3.3. Time tab of dashboard main panel (data displayed from June 23-29, 2019). 

To lend additional context to the dashboard, the most recent (2017) annual crime report 

by the JCPD is embedded to the side allowing users to peruse through its entirety or download a 
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copy onto their computer. The report sits under a simple indicator of all crime on the map 

display, changing with filter usage and change in map extent.  

Hovering over a panel (annual report, indicator, and map/time) reveals a button on the top 

right corner of that panel allowing the viewer to enlarge that panel to cover the whole window. 

Use of this feature may only be particularly beneficial with respect to reading the JCPD annual 

report without relying on the use of multiple scrollbars.  

Discussion 

 The Johnson City crime application displays the capabilities of Operations Dashboard as 

a data visualization and analytics tool. Operations Dashboard produces applications with the 

potential to assist decision-makers in allocating resources and manpower; implementations of 

which police entities are increasingly taking notice and advantage (Jumonville 2018; Beck 

2019). With persistent advancement in web GIS and IoT, the power of geospatial data cannot be 

understated. With increasingly smart and community-driven police forces, along with the 

barriers to entry in GIS falling, emerging tools will increase their capabilities to mitigate criminal 

behavior.  

The introduction of this application grants users a means to observe local crime trends in 

the short and long term in both a spatial and temporal context. For civilians, this application 

lends itself as a tool for boosting awareness of local crime. The application is also an instrument 

providing results at a glance for decision-makers to allocate resources to mitigate the social 

issues and issues of perceived opportunity in the neighborhoods of high criminal activity. 

Crime dashboards and similar applications may additionally serve as an interface 

between law enforcement and local citizenry. The JC crime dashboard adds a new avenue for 

citizen involvement in crime reduction in collaboration with the JCPD, in addition to current and 
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proposed programs (e.g. neighborhood watches and associations). These kinds of community 

interaction and initiatives provide a focus for police agencies alternative to some of the more 

aggressive enforcement procedures criticized by the public. While web applications and maps 

cannot replace direct interaction with actual sworn police, they are nonetheless a potential 

mechanism to inform and drive interest to local crime phenomena.  

Additional features were considered for the app but were ultimately not implemented due 

to data constraints and limitations of the program. One function, of which the JCPD expressed 

interest, is an alert system for residents when a burglary occurs within their neighborhood. 

CrimeMapping, the subscription service the JCPD currently use for mapping crime, allows users 

to sign up to receive an email alert when a crime occurs within a distance from their residence. 

This centers around the theory of repeat (or near repeat) victimization where a criminal who 

successfully burglars a house then recommits that offense shortly after the previous incident 

(Kleemans 2001; Townsley et al. 2003; Bernasco 2008). The JCPD also expressed interest in a 

feature similar to one present in the Philadelphia dashboard, a group of charts and indicators for 

comparing the last seven days in crime to those same days last year to see the difference in 

crime. Future updates on the app, or work on a new app, or updates to the Operations Dashboard 

development platform could see these desired features implemented. 

Conclusion 

The Johnson City Crime Dashboard (accessible at https://arcg.is/10zPWq) provides a 

simple, yet functional, window through which users with any level of experience can view trends 

of local crime in the short or long term.  
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CHAPTER 4 

SUMMARY OF FINDINGS & FUTURE RESEARCH 

Summary of Findings 

 Geospatial techniques such as cluster and hot spot analyses continue to be tried-and-true 

methods to analyze spatial trends in crime. Clusters and hot spots grant insight into 

neighborhoods of high crime density, identifying areas of high risk. Temporal analyses looking 

at daily, monthly, and hourly crime trends supplement the spatial data to form a more complete 

look at crime. The results of these analyses can inform decision-makers in law enforcement 

agencies with improved resource management. Publicizing these kinds of data for public 

consumption may also prove beneficial, as there are many benefits in public participation in 

crime-mitigating efforts. In this case, a web application showing the distribution of crimes in a 

city can boost the public’s awareness of local crime occurrence, showing what types of crime are 

prevalent, and adding a measure of transparency to police activity.  

Future Research 

 Several restrictions, such as data availability and address aggregation, limited the ability 

to engage in certain types of analyses. Future endeavors in crime research in Johnson City can 

take advantage of new or historic data to develop results that examine and interpret local crime 

trends. Some ideas where prospective research can go include: 

• Place-level analysis using non-generalized location information.  

• Reanalysis using crime categories not included in CrimeMapping or in this analysis. 

• The short-term and long-term effects of downtown revitalization on crime. 

• Crime trends related to holidays and holiday seasons. 



100 

 

REFERENCES 

Alison A. 1840. On the Moral Evils and Management of the Poor in Great Cities. In: On the 

Principles of Population, and Their Connection with Human Happiness. Edinburgh: 

William Blackwood and Sons. 

Assiniboine Community College Police Studies. Law Enforcement & Geospatial Technology. 

Environ Syst Res Inst. [accessed 2019 Sep 4]. 

https://www.arcgis.com/apps/MapJournal/index.html?appid=df264d01169a481c83fe4b4

d19592938. 

Beck J. 2019. Vancouver Police Drive Down Crime with Machine Learning and Spatial 

Analytics. Environ Syst Res Inst. [accessed 2019 Apr 9]. 

https://www.esri.com/about/newsroom/blog/vancouver-police-drive-down-crime/. 

Bernasco W. 2008. Them Again?: Same-Offender Involvement in Repeat and Near Repeat 

Burlgaries. Eur J Criminol. 5(4):411–431. doi:10.1177/1477370808095124. 

Bordua DJ. 1958. Juvenile Delinquency and “Anomie”: An Attempt at Replication. Soc Probl. 

6(3):230–238. doi:10.2307/799077. 

Brandon Police Service. 2019. Public Crime Mapping Application. Brand Police Serv. [accessed 

2019 Apr 9]. http://police.brandon.ca/crime-map. 

Brantingham PJ, Brantingham PL. 1991a. Introduction: The Dimensions of Crime. In: 

Brantingham PJ, Brantingham PL, editors. Environmental Criminology. Prospect Heights 

(IL): Waveland Press, Inc. p. 7–26. 

Brantingham PJ, Brantingham PL. 1991b. Notes on the Geometry of Crime. In: Brantingham PJ, 

Brantingham PL, editors. Environmental Criminology. Prospect Heights (IL): Waveland 

Press, Inc. p. 27–54. 



101 

 

Brantingham PJ, Jeffery CR. 1991. Afterword: Crime, Space, and Criminological Theory. In: 

Brantingham PJ, Brantingham PL, editors. Environmental Criminology. Prospect Heights 

(IL): Waveland Press, Inc. p. 227–237. 

Burgess E. 2019. The Growth of the City: An Introduction to a Research Project. In: Park RE, 

Burgess E, editors. The City. Chicago: University of Chicago Press. p. 47–62. 

Butorac K, Marinović J. 2017. Geography of Crime and Geographic Information Systems. J 

Forensic Sci Investig. 2(4):1–7. doi:10.19080/JFSCI.2017.02.555591. 

Byrne J. 2016. Rejecting Individualism: The Chicago School. 

Campbell B. 2013. Man accused of kidnapping woman at gunpoint after shots fired at Johnson 

City motel. Johnson City Press. 

Campbell B. 2019a. Court documents say Cash Hollow Road shooter was stabbed by robbers. 

Johnson City Press. 

Campbell B. 2019b. Man found dead on Cash Hollow identified. Johnson City Press. 

Caplan JM, Chowdhury L, Drucker J, Fujita S, Gaziarifoglu Y, Kennedy LW, Moreto WD, 

Rusnak DM. 2011. Criminogenic Features and Crime Correlates. In: Caplan JM, 

Kennedy LW, editors. Risk Terrain Modeling Compendium. Newark (NJ): Rutgers 

Center on Public Security. p. 29–70. 

Caplan JM, Kennedy LW. 2011. The Origin of Risk Terrain Modeling. In: Caplan JM, Kennedy 

LW, editors. Risk Terrain Modeling Compendium. Newark (NJ): Rutgers Center on 

Public Security. p. 15–20. 

Center for Geospatial Intelligence and Investigation. Geographic Profiling. Texas State Univ. 

[accessed 2019 Apr 9]. https://www.txstate.edu/gii/geographic-profiling/overview.html. 

Chainey S. 2013. Examining The Influence Of Cell Size And Bandwidth Size On Kernel Density 



102 

 

Estimation Crime Hotspot Maps For Predicting Spatial Patterns Of Crime. Bull Geogr 

Soc Liege. 60:7–19. 

City of Brasilia Brazil. Painel de Monitoramento e Consulta das Estatísticas Criminais do 

Distrito Federal. Esri. 

Costello A, Leipnik MR. 2003. Journeys to crime: GIS analysis of offender and victim journeys 

in Sheffield, England. In: Leipnik MR, Albert DP, editors. GIS in Law Enforcement : 

Implementation issues and case studies. New York: Taylor & Francis. p. 228–231. 

Davidson RN. 1981. Crime and Environment. New York: St. Martin’s Press, Inc. 

Douglas County Sheriff’s Office. 2018. Crime Data Dashboard- Douglas County, Colorado. Esri. 

East Tennessee State University Department of Public Safety. 2017. Assault reported on campus. 

Eck JE, Chainey S, Cameron JG, Leitner M, Wilson RE. 2005. Mapping Crime: Understanding 

Hot Spots. 

Esri. ArcGIS Online. Esri. 

Esri. Operations Dashboard for ArcGIS. Esri. 

Esri. 2014. Welcome to ArcGIS Viewer for Flex. ArcGIS Resour. 

Franklin J. 2010. Mapping Species Distributions: Spatial Inference and Prediction. Cambridge 

(UK): Cambridge University Press. 

Fu P. 2015. Getting to Know Web GIS. Redlands (CA): Esri Press. 

Gelman A, Fagan J, Kiss A. 2007. An Analysis of the New York City Police Department’s 

“Stop-and-Frisk” Policy in the Context of Claims of Racial Bias. J Am Stat Assoc. 

102(479):813–823. doi:10.1198/016214506000001040. 

Gerber MS. 2014. Predicting crime using Twitter and kernel density estimation. Decis Support 

Syst. 61:115–125. doi:10.1016/j.dss.2014.02.003. 



103 

 

Gramlich J. 2016. Voters’ perceptions of crime continue to conflict with reality. Pew Res Cent. 

[accessed 2019 Sep 3]. https://www.pewresearch.org/fact-tank/2016/11/16/voters-

perceptions-of-crime-continue-to-conflict-with-reality/. 

Guerry A-M. 2002. A Translation of Andre-Michel Guerry’s Essay on the Moral Statistics of 

France (1833). Whitt HP, Reinking VW, editors. Lewiston (NY): The Edwin Mellen 

Press. 

Halifax Regional Municipality. 2019. HRM Crime Mapping. ArcGIS Online. 

Harcourt BE. 2001. Illusion of Order: The False Promise of Broken Windows Policing. 

Cambridge (MA): Harvard University Press. 

Harries K. 1999. Mapping Crime: Principle and Practice. Washington. 

Harries KD. 1974. The geography of crime and justice. Taaffe EJ, Yates J, editors. McGraw-Hill 

Book Company. 

Hart T, Zandbergen P. 2014. Kernel density estimation and hotspot mapping. Polic An Int J 

Police Strateg Manag. 37(2):305–323. doi:10.1108/PIJPSM-04-2013-0039. 

Hinkle JC. 2009. Making Sense Of Broken Windows: The Relationship Between Perceptions Of 

Disorder, Fear Of Crime, Collective Efficacy And Perceptions Of Crime. University of 

Maryland, College Park. 

Holland GC. 1843. The Vital Statistics of Sheffield. Sheffield: J.H. Graves. 

Jackson BA. 2015. Strengthening Trust Between Police and the Public in an Era of Increasing 

Transparency. 

Jackson J, Gray E. 2010. Functional fear and public insecurities about crime. Br J Criminol. 

50(1):1–22. doi:10.1093/bjc/azp059. 

Johnson City Police Department. 2018. Johnson City Police Department Annual Report 2017. 



104 

 

Johnson City (TN). 

Johnson City Press. 2015. Sheriff’s Department arrests 10 in methamphetamine bust. Johnson 

City Press. 

Johnson City Press. 2017. Convicted felon found with stolen gun, Johnson City police say. 

Johnson City Press. 

Joyner J, Mollenkopf A. 2018. ArcGIS & the Internet of Things (IoT). In: 2018 Esri 

DEVSummit Conference. Palm Springs (CA): Environmental Systems Research Institute. 

Jumonville B. 2018. Proactive and Real-time Crime Management Strategies Using GIS. 

Environmental Systems Research Institute. 

Kelling GL, Wilson JQ. 1982. Broken Windows. Atl. 

Kennedy LW, Caplan JM, Miller J. 2009. CASE STUDY: Applying Risk Terrain Modeling to 

Shootings in Irvington, NJ. 

Kent J, Leitner M, Curtis A. 2006. Evaluating the usefulness of functional distance measures 

when calibrating journey-to-crime distance decay functions. Comput Environ Urban Syst. 

30(2):181–200. 

Kim S, LaGrange RL, Willis CL. 2013. Place and Crime: Integrating Sociology of Place and 

Environmental Criminology. Urban Aff Rev. 49(1):141–155. 

doi:10.1177/1078087412465401. 

Kleemans ER. 2001. Repeat Burglary Victimization. Results of Empirical Research in the 

Netherlands. Crime Prev Studeis. 12:53–68. 

Kupferberg N. 2008. Transparency: A New Role for Police Consent Decrees. Columbia J Law 

Soc Probl. 42(1):129–176. 



105 

 

LaFree G. 2018. American attitude are disconnected from reality on crime trends. Hill. [accessed 

2019 Sep 3]. https://thehill.com/opinion/criminal-justice/371287-american-attitudes-are-

disconnected-from-reality-on-crime-trends. 

Langton L, Berzofsky M, Krebs C, Smiley-McDonald H. 2012. Victimizations Not Reported to 

the Police, 2006-2010. 

LeBeau JL, Leitner M. 2011. Introduction: Progress in Research on the Geography of Crime. 

Prof Geogr. 63(2):161–173. 

Levin Y, Lindesmith A. 1971. English Ecology and Criminology of the Past Century. In: Voss 

HL, Petersen DM, editors. Ecology, Crime, and Delinquency. New York: Appleton-

Century-Crofts. p. 47–64. 

Levine N. 2013a. Hot Spot Analysis of Points: I. In: Levine N, editor. CrimeStat IV Manual. 

Washington: The National Institute of Justice. p. 7.1-7.52. 

Levine N. 2013b. Kernel Density Interpolation. In: Levine N, editor. CrimeStat IV Manual. 

Washington: The National Institute of Justice. p. 10.1-10.36. 

LexisNexis. 2019. Community Crime Map. LexisNexis Community Crime Map. 

Liu H, Brown DE. 2003. Criminal incident prediction using a point-pattern-based density model. 

Int J Forecast. 19(4):603–622. doi:10.1016/S0169-2070(03)00094-3. 

Lombardo R, Lough T. 2007. Community Policing: Broken Windows, Community Building, and 

Satisfaction with the Police. Police J. 80(2):117–140. 

Lombroso C. 2006. Criminal Man. Gibson M, Rafter NH, editors. London: Duke University 

Press. 

Luca M, Malhotra D, Poliquin C. 2019. The Impact of Mass Shootings on Gun Policy. Report 

No.: 16–126. 



106 

 

McClendon L, Meghanathan N. 2015. Using Machine Learning Algorithms to Analyze Crime 

Data. Mach Learn Appl An Int J. 2(1):1–12. doi:10.5121/mlaij.2015.2101. 

McLafferty S, Williamson D, McGuire PG. 2000. Identifying Crime Hot Spots Using Kernel 

Smoothing. In: Goldsmith V, McGuire PG, Mollenkopf JH, Ross TA, editors. Analyzing 

Crime Patterns: Frontiers of Practice. SAGE Publications, Inc. p. 77–85. 

Morris T. 1957. The Criminal Area. London: Routledge and Kegan Paul Ltd. 

Oak Ridge National Laboratory. 2017. LandScan. UT-Battelle. 

Ogden M. 2018. Criminal Incidents in Halifax. Esri. 

Operations Dashboard Team (Esri). 2017. Demo Crime Dashboard - Interactive. Esri. 

Pelletier Z. Operations Dashboard for ArcGIS. North Cent Texas Counc Gov. 

Porter JR. 2010. Tracking the Mobility of Crime: New Methodologies and Geogrpahies in 

Modeling the Diffusion of Offending. Newcastle upon Tyne (UK): Cambridge Scholars 

Publishing. 

Reed College. The Theory Behind Mann-Whitney tests (A.k.A. Wilcoxon Rank Sum test) & 

Kruskal-Wallis H Tests. Reed Coll. 

https://www.reed.edu/psychology/stata/analyses/nonparametric/kruskal-

wallacetheory.html. 

Roberts J V., Stalans LJ. 1995. Crime, Criminal Justice, and Public Opinion. In: Tonry MH, 

editor. The Handbook of Crime & Punishment. New York: Oxford University Press. p. 

31–55. 

Robison SM. 1960. Juvenile Delinquency. New York: Holt, Rinehart and Winston. 

Rosen L, Turner SH. 1967. An Evaluation of the Lander Approach to Ecology of Delinquency. 

Soc Probl. 15(2):189–200. 



107 

 

Shaw CR, McKay HD. 1969. Juvenile Delinquency and Urban Areas. Revised. Chicago: The 

University of Chicago Press. 

Singh AK. 2006. Hierarchical Clustering Techniques in Crime GIS. Manama (BH). 

Skene L. 2019. Baton Rouge “ahead of the curve” in use of software to predict where crimes 

most likely to occur. The Advocate. 

Sousa WH, Miethe TD, Sakiyama M. 2018. Inconsistencies in Public Opinion of Body-Worn 

Cameras on Police: Transparency, Trust, and Improved Police–Citizen Relationships. 

Polic A J Policy Pract. 12(1):100–108. doi:10.1093/police/pax015. 

The Vancouver Police Department. 2018. GeoDASH Crime Statistics Hub. Esri. 

Thompson J. 2015a. Two arrested in barn burglaries. Johnson City Press. 

Thompson J. 2015b. Two Johnson Countians charged in meth manufacture. Johnson City Press. 

Townsley M, Homel R, Chaseling J. 2003. Infectious Burglaries. A Test of the Near Repeat 

Hypothesis. Br J Criminol. 43(3):615–633. doi:10.1093/bjc/43.3.615. 

TriTech Software Systems. 2016. CrimeMapping. CrimeMapping. 

United States Census Bureau. 2018. QuickFacts Johnson City city, Tennessee. 

USA Today Network Tennessee. 2018. ETSU: Fight between construction workers triggered 

campus lockdown on first day of classes. Knox News. 

Vermeesch P. 2012. On the visualisation of detrital age distributions. Chem Geol. 312–313:190–

194. doi:10.1016/j.chemgeo.2012.04.021. 

Vitiello M. 1997. Three strikes: Can we return to rationality? J Crim Law Criminol. 87(2):395–

481. 

Voss HL, Petersen DM. 1971. Introduction. In: Voss HL, Petersen DM, editors. Ecology, Crime, 

and Delinquency. New York: Appleton-Century-Crofts. p. 1–44. 



108 

 

White MD, Fradella HF. 2016. Stop and Frisk: The Use and Abuse of a Controversial Policing 

Tactic. New York: New York University Press. 

Wiles P, Costello A. 2000. The “Road to Nowhere”: The Evidence for Travelling Criminals. 

London. 

Zimbardo PG. 1969. The human choice: Individuation, reason, and order versus deindividuation, 

impulse, and chaos. Nebraska Symposium on Motivation. p. 237–307. 

  



109 

 

APPENDIX 

Data Sources 

Crime occurrences / Primary Data 

• CrimeMapping 
o Johnson City Police Department 
o Washington County Sherriff’s Office 

 

Crime occurrences (aspatial) 

• Johnson City Police Department 

 

Secondary Data 

• LandScan 2017™, ORNL, UT-Battelle, LLC 

 

Reference Data 

• Cities - National Transportation Atlas Database via the Homeland Infrastructure 
Foundation-Level Data 

• State boundaries – U.S. Census Bureau TIGER/Line 
• Local Law Enforcement Locations – Homeland Infrastructure Foundation-Level Data 
• Roads – City of Johnson City 
• Land Use – City of Johnson City 
• City Limits – City of Johnson City 
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