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ABSTRACT 

 

Design and Development of a Comprehensive and Interactive Diabetic 

Parameter Monitoring System – BeticTrack 

 

by 

Nusrat Jahan Chowdhury 

 

 

A novel, interactive Android app has been developed that monitors the health of type 2 diabetic 

patients in real-time, providing patients and their physicians with real-time feedback on all relevant 

parameters of diabetes. The app includes modules for recording carbohydrate intake and blood 

glucose; for reminding patients about the need to take medications on schedule; and for tracking 

physical activity, using movement data via Bluetooth from a pair of wearable insole devices. Two 

machine learning models were developed to detect seven physical activities: sitting, standing, 

walking, running, stair ascent, stair descent and use of elliptical trainers. The SVM and decision 

tree models produced an average accuracy of 85% for these seven activities. The decision tree 

model is implemented in an app that classifies human activity in real-time.  
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1 INTRODUCTION 

Diabetes is a chronic disease that damages a body’s natural blood sugar/glucose 

processing. It can lead to life-threating conditions like heart failure, stroke, kidney failure, limb 

amputation, and blindness. In 2016, 2.2 million deaths were caused by high blood glucose 

worldwide, 1.6 million of which were due to diabetes [1]. According to the World Health 

Organization, the number of people with diabetes worldwide has quadrupled since 1980 [1].  

Diabetes is a manageable and preventable disease. Maintaining a healthy diet, regular 

physical activity, and a normal body mass index can prevent the onset of type 2 diabetes (T2D). 

Additional factors like balanced blood sugar level and timely medication can help T2D patients 

avoid further complications.  

Currently, most T2D patients fail to maintain the controlled and prescribed lifestyle that 

authorities recommend. According to [2], at least 45% of T2D patients fail to control blood 

glucose within the recommended range (HbA1c <7%). Reasons for poor treatment adherence 

include a lack of integrated healthcare in existing health care systems; demographics like age, 

education, and income; and the perceived burden in obtaining and taking medications [2]. 

Healthcare information technology interventions have been shown to reduce T2D patient 

failures to maintain healthy lifestyles. One such intervention, mHealth, is “is the generation, 

aggregation, and dissemination of health information via mobile and wireless devices and the 

sharing of that information between patients and providers” [3]. According to [4], smartphone 

users will account for roughly two-thirds of new global connections. The ease with which data 

can be collected through smartphone-accessible sensors and then accessed by health providers via 

the Internet promises to make mHealth an integral part of modern health care. 

Contemporary apps, however, fail to enable mHealth-based diabetes interventions. Almost 

100,000 health-related applications are available in the Google Play Store and the Apple App 

Store [5]. According to [6], more of these apps target diabetes than any other illness. Most 

diabetes-related apps focus exclusively on patient self-care management, even though 

communication between clinician and patient is important for chronic diseases like diabetes. 

Incorporating telemedicine into mHealth protocols can address the lack of support for 

patient-clinician communication in contemporary apps. Telemedicine uses telecommunication to 
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provide remote support to target patients. According to [7], telemedicine can support the treatment 

of diabetes by providing clinicians with real-time access to patient physiological data, including 

levels of blood glucose physical activity, and carb intake; laboratory and test data, including 

imaging data; and patient history, including medications, symptoms, and previous doctors' visits. 

This research was concerned with the development of a system that integrates 

telemedicine and mHealth in the service of the following goals: 

• Provide T2D patients with a way to record and review behavioral data related to 

diabetes management, including daily carbohydrate intake. 

• Provide patients with a way to set and receive reminders about the actions they need to 

take to manage their illness, including what medication to take and when to take them. 

• Provide patients with a means of recording physiological data in real-time, passively, 

through wearable insole devices and classifying activity dynamically. 

• Provide physicians and other clinicians with secure, Internet-based access to their 

patients' medical records, so these physicians can monitor patient progress and 

communicate with their patients. 

The resulting system, BeticTrack, enables patients to record their blood glucose and 

hemoglobin levels and daily carbohydrate intake in a secure, cloud-based database that their 

physicians can access. It allows patients to set reminders to measure and enter data in the system. 

It also represents a step towards the automated detection of patient activity and real-time logging 

of that activity, without patient intervention.  

Among the goals of BeticTrack system, this research particularly focuses on building an 

automated physical activity module to track a patient activity. BeticTrack collects real-time 

sensor data via Bluetooth and classifies seven types of activities: sitting, standing, walking, 

running, stair ascension, stair descension, and using an elliptical. To classify the seven activities, 

this research initially collected real-time data from four human subjects and applied two machine 

learning techniques—support vector machines (SVM) and decision tree learning—on the dataset. 

The SVM provided an average accuracy of 80%, and the decision tree provided an average 

accuracy of 80%-90%. Because of its higher accuracy, the developed decision tree model is 

implemented in the BeticTrack system to classify real time activity of a human based on the 

seven activities. Using the implemented decision tree model within BeticTrack, further testing 
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was done to measure classification time. From the analysis, it can be concluded that, among the 

seven activities, the system classifies sitting and running, classifies walking and using an 

elliptical with some degree of error, and fails to identify stair ascent, stair descent, and standing. 

The classification error for stair ascent, stair descent and standing may be reduced by collecting 

data for a longer time period from different age groups and regenerating the machine learning 

models from the larger dataset. 
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2 RELATED WORK 

2.1 Self-Management Applications for Diabetes Intervention 

The number of self-management applications for diabetic care management is increasing 

rapidly due to the availability of mobile devices and their ability to connect with IoT devices 

(viz. Table 1). Most assistive systems are described as self-monitoring, meaning that patients can 

provide their records and get feedback from the applications. Self-monitoring applications are 

often patient-centric and may not support communication among patients, doctors, and 

healthcare providers. 

In [8], [9], and [10], Martinez et al., Brzan et al., and Viazie et al. review self-monitoring 

applications for iOS and Android devices. Of the more than one hundred such apps, these 

reviewers identify only a few that they deem as acceptable to some degree. 

Micro sugar is a consultation and information app for diabetic patients in China. It 

focuses on blood glucose (BG) health. A patient can use the app to learn about diabetic health 

and consult a doctor if necessary. However, language barriers precluded identifying the app’s 

communication standard [11]. 

The BlueStar Diabetes app provides dietary suggestion and a BG level alert. It supports 

connections to wearables and to electronic health records (EHR) [12,13]. 

mDiab primarily monitors BG and provides BG level alerts [14-17]. mDiab does not 

support patient activity detection, intervention schedule reminders, food carb estimation, and 

doctor-patient communication. 

Dbees monitors BG, provides BG level alerts, adds dietary a calculator, and provides 

healthcare-related suggestions [18,19]. 

NexJ HealthCoach is a secured health app that enables consultation with a health coach. 

It does not account for any treatment parameters, like BG, exercise, and food intake [20,21]. 

Diabetic’s Diary [22] and Diamedic [23] account for key treatment parameters, including 

BG, carb intake, and exercise. These apps require manual input of all these records. They do not, 

moreover, support communications with physicians or clinicians. 
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Table 1 – Features of a selection of commercially available mobile apps 

Glucose Buddy is similar to Diary and Diamedic. It also supports activity detection based 

on another third party application [24]. 

Apps Glucos

e 

Food intake Exercise Physician 

Interaction 

Medicatio

n 

Reminder 

Other features 

BlueStar 

[12,13] 

Yes None Can sync 

with 

wearable 

devices 

None yes  

mDiab  

[14-17]  

Yes None Manual input Email 

options to 

interact 

Yes  

Dbees 

[18,19] 

Yes Yes – 

calculates 

carbohydrates 

None Can share 

data and test 

result 

Yes  

NextJ 

HealthCoach 

[20, 21] 

Yes Yes – keeps a 

log of meal 

Step counter None None Reward points 

based on 

improvement, 

notifications 

Diabetic 

Diary [22] 

Yes None None None Yes Blood pressure, 

weight log, 

notifications 

Glucose 

Buddy [24] 

Yes Yes None None None Weight, Blood 

pressure, A1C 

Glucose 

Comp [25] 

Yes None None None Yes Weight, notes, 

reminders 

Glucose 

Tracker26] 

Yes None None Via email None Records can be 

exported in .csv 

GlucoSweet 

[27] 

Yes Yes – 

calculates 

carbohydrates  

None None None Data 

visualization 

can be exported 

in CSV 

Glucose Wiz 

[28] 

Yes None None None None Data 

visualization, 

weight, data 

sharing via 

social media 

and email 

SugarPal 

[29] 

Yes None None None None Data 

visualization 

and save option 
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Glucose Companion is intended for patient-centric self-management. It has features for 

BG and weight tracking, notes, and graphic visualization, and supports downloading files from 

the app [25]. Glucose tracker, GlucoSweet, Glucose wiz, and SugarPal are similar to Glucose 

Companion; all four focus on self-management [26-29]. 

Goyal et al. (2017) developed a self-management app, Bant, for adolescent type I 

diabetes patients [30]. The app’s primary features include BG monitoring and providing 

interventions. Goyal et al. (2016) also describe Bant-II, a second app for type II diabetic patients 

[31]. Bant-II’s key features include self-monitoring of BG, dietary intake, and physical activity. 

The authors proposed the use of a Bluetooth device to monitor BG, along with Jawbone UP24, a 

wearable monitor, and mobile phone sensors to detect patient inactivity. The target activity for 

Bant II is ‘walking’. Bant-II treats more than 5000 steps on a given day as an adequate amount of 

walking, otherwise, it treats the user as sedentary. Bant–II also encourages patients to set 

progressive goals. Neither Bant nor Bant II supports patient-clinician communication. 

A few apps enable physicians or coaches to interact with patients. One, ActiveAgeing, 

includes a setup phase that sets a degree of interaction between patient and doctor. A web app 

then allows an assigned doctor to monitor patient progress [32]. ActiveAgeing, however, does 

not collect any wearable sensor data for exercise or activity monitoring. 

DiaFit supports BG monitoring, medication tracking, dietary intake, and the use of 

wearable devices to track activity. It supports the use of a cloud portal to store patient data, 

although no direct communication between patient-physician is reported in the research [33]  

A French app, DIABEO, accounts for BG input, carbohydrate intake, and physical 

exercise. DIABEO requires active patient input for these data: it provides no support for direct 

input from wearable sensors. The app is modeled as a teleconsultation module so that secured 

messages can be sent to authorized clinicians [34]. 

One Drop, another healthcare app, tracks BG and reminds users about medication dosage. 

It uses wearable sensors (HealthKit, Google Fit) to collect information on users' activities. The 

authors fail to specify which activities are tracked and the extent of the tracking. One Drop does 

not support clinician-patient interaction. [35]. 
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The DialBetics app includes options for entering data on blood glucose, blood pressure, 

body weight, and step count [36]. An evaluation module analyzes the data collected. DialBetics 

collects voice prompts as data input and can send prerecorded instructions based on the analysis 

module. The app's activity module focuses only on step counts and does not track other forms of 

physical exercise, all of which can be important for a diabetic patient.  

Pustozerov et al. [37] describe an app that enables physicians to view patient input. The 

app supports the tracking of a patient's BG, diet, insulin dosage, and physical exercise, and stores 

laboratory test data. This app does not support the use of wearable IoT devices to collect patient 

activity data. 

In [38], Ryan et al. describe Intelligent Diabetes Management (IDM), a system that 

incorporates a smartphone app and a website. IDM does insulin bolus calculations and serves as 

an electronic diabetes diary. It enables communication between patients and physicians, which, 

according to the authors, helps patients to change their management habits. IDM does not 

support the use of physical activity monitoring systems to gather data on patient activity. 

DiaCert uses a pedometer device to track a patient's steps automatically. Physicians can 

use a DiaCert exercise record, along with a patient's BG, to suggest a required HbA1c level. 

DiaCert does not support the monitoring of dietary intake [39]. 

MyDay, an IoT based healthcare app, uses Bluetooth BG meters, and mobile sensors to 

collect real-time data on type 1 diabetes patients. It uses this information to provide patients with 

feedback. MyDay does not support clinician access to patient data [40]. 

2.2 Wearable Sensor Use in Activity Detection 

2.2.1 Physical Activity in Diabetic Treatment 

Physical activity is the movement of the human body by means of skeletal muscle 

contraction, e.g., walking, sports, and household chores. Physical exercise is a repetitive planned 

physical activity focused on improving physical fitness [41]. The standard measure of physical 

activity or exercise depends on the duration of activity and intensity: low, moderate, or high. 

Moderate to high physical activities are typically prescribed for diabetic patients to 

maintain BG and to avoid complications like cardiovascular diseases. When diabetic patients’ 

health and muscle strength are questionable, low-intensity exercises can avoid possible harms 
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and stresses caused by vigorous activities [42,43]. Wen et al. [44] found that a low-intensity 

activity, such as a 15-minute walk per week, has a positive impact on T2D patients and can 

reduce the risk of mortality rate to 14%. 

According to Hamasaki et al. [45], daily physical activity and movement can reduce 

T2D-related risks to patient health. Hamasaki et al. reviewed physical activities that incur less 

risk to T2D individuals, including mowing lawns, stair climbing, gardening, cleaning, cooking, 

and walking. These researchers found that walking has the most pronounced effect on a person’s 

body. The effect of walking depends on the duration walked and the pace; according to [45] 

(Table 1, p. 4). the metabolic equivalent (MET) values for very slow, slow and moderate walking 

are 2, 2.8, and 3.5, respectively. The MET is a measure of the intensity of physical activity, 

expressed as the amount of oxygen intake relative to the normal resting position (sitting) [46]. 

Researchers have also established that inactivity can adversely affect T2D patient health. 

Biswas et al. [47] found that a sedentary lifestyle—one that includes longer periods of inactivity 

like sitting—can counteract the positive effects of physical exercise. According to the American 

Diabetes Association (ADA) [48], a diabetic patient should not sit more than 1.5 hours at a time. 

Similarly, physicians encourage patients to reduce sedentary hours in daily life. 

2.2.2 Activity Recognition 

Activity recognition is challenging due to the diverse and incomplete nature of data 

obtained from motion sensors and individual variances in patterns of human activity. Machine 

learning techniques have recently become effective in solving activity recognition problems due 

to their ability to extract information from devices that sense human motion. 

State of the art research in machine learning is concerned with identifying the best 

machine learning practices in human activity detection (HAR). Traditional methods include 

models like the Random Forest Model (RF) [49], the Hidden Markov Model (HMM) [50], 

Support Vector Machines (SVM) [51], and the Decision Tree Model [52]. 

One of the two classes of models adopted in this research, SVM, is a supervised learning 

algorithm for classification or regression problems. The SVM algorithm classifies data in n-

dimensional feature space by generating hyperplanes between pairs of classes. The objective is to 
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choose hyperplanes with a maximum margin between the classes. SVM can be applied to linear 

(i.e., readily separable) datasets and nonlinear (i.e., hard-to-separate) datasets alike. 

The other, decision tree algorithms, divide datasets into a hierarchical tree structure while 

eliminating factors that fail to impact any decision. Decision trees generate a set of decision 

strategies based on the dataset to provide a categorical outcome. 

2.2.3 Insole Devices in Health Care Research 

Andre et al. [53] conducted a HAR classification with a wearable insole device 

containing six ground contact force (GCF) pressure sensors. The authors studied six activities: 

walking on a level surface, walking upslope, walking downslope, sitting, ascending stairs, and 

descending stairs. Data were collected from 11 individuals for all activities. An RF learning 

model was used for the HAR. The model's accuracy ranged from 81.8% to 93.84%. This 

research only used one sole size (US men 8). The authors did not use the models they generated 

to classify activity data in real-time. 

Chinimilli et al. [54] used a smart shoe containing four GCF sensors and four thigh-

mounted inertial measurement units (IMUs) to detect six types of human activities: sitting, 

standing, walking, jogging, ascending stairs, and descending stairs. The authors developed an 

intelligent fuzzy inference algorithm using an RF model. The resulting model's accuracy ranged 

from 47.56% to 100%. While the authors' system does not provide any classification mechanism 

for real-time data, it identifies and notifies users about transitions between activity types. 

Hegde et al. [54][55] conducted real-time activity detection experiments using a pair of 

Bluetooth Low Energy (BLE) insole devices. The devices consisted of three pressure sensors, 

three accelerometers, and three gyroscopes. The pressure sensors and accelerometers sampled 

data at a rate of 50 Hz. The authors collected sitting, standing, walking, and cycling data from 4 

human subjects and fed this data to an SVM and Artificial Neural Network (ANN). The resulting 

machine learning models exhibited an accuracy of 96.9%. SmartStep, an Android application 

that the authors developed that incorporated these models, subsequently achieved an average 

real-time classification accuracy of 95.4%. 

Nguyen et al. [56] conducted research to classify human activity data collected from a 

smart insole device. The device contains eight plantar-pressure sensors. The authors compared 
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the HAR using three machine learning algorithms: SVM, Decision Tree, and K-Nearest 

Neighbor (KNN). They found that the KNN algorithm outperformed the other two, yielding 

classification accuracies of 98.11%, 98.11%, 99.73%, 100%, and 99.73% respectively for 

walking on flat surfaces, descending and ascending stairs, and descending and ascending 

inclines. 

2.3 Summary 

Existing applications provide a range of functions that support best practices for 

managing diabetic patient health. Most applications focus on blood glucose monitoring, 

calorie/carbohydrate intake, and/or physical activity. Some focus on patient-centric monitoring. 

Others incorporate physician participation. However, none of the commercially available 

mobile/web application systems for T2D patients that this review identified supported the five 

key elements of T2D treatment routines: i.e., the monitoring of BG, meals, and exercise, along 

with medication reminder and patient-physician interaction. Moreover, while researchers have 

used HAR to identify real-time human activities, no identified study implemented or integrated 

real-time HAR for specific patient groups, including T2D patients   
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3 METHODOLOGY 

The goal of this study was to monitor physical activity in a manner that would help T2D 

patients communicate activities to their clinician. This research investigated the use of sensor 

data to monitor physical activity in T2D patients, as part of an effort to help those patients and 

their clinicians manage patient health. To this end, a system was developed, called BeticTrack, 

that uses sensors to collect patient movement data, processes the data in real-time to classify 

physical activity, calculates the duration of daily human activity, logs this information, and 

classifies subsequent physical activity in real-time. 

The research primarily focused on developing several machine learning models to 

classify seven human activities real-time by collecting human data through wearable insole 

devices. The most effective of these was then incorporated into the app to classify and store real-

time activity information. 

 
Figure 1 - System Architecture 
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3.1 System Design and Architecture 

The BeticTrack system was developed as an Android mobile application with an SQLite 

database back end (Figure 1). The BeticTrack app, written in the Java programming language, 

supports all versions of Android. It consists of four modules: a carb intake tracker, which 

patients can use to log daily food intake; a blood glucose tracker, which records patient-provided 

glucose data (fasting and prandial); a medication reminder, which patients can configure and 

which, by default, contains no sensitive health data; and a physical activity tracker, which 

collects patient activity data from a BID via Bluetooth. Both the user interface and architecture 

for BeticTrack are original contributions resulting from this study.   

3.1.1 Carb Intake Tracker (CIT) 

Figure 2a shows the CIT module user interface (UI). This module enables users to enter 

their daily meals in the app. Carbohydrate levels are crucial for T2D patients because the body 

produces sugar from carbohydrates. Uncontrolled intake of carbohydrates can cause a BG level 

to rise at an alarming rate. Providing patients with information about their daily carbohydrate 

intake can help them control their diet. A patient can add his/her breakfast, lunch and dinner 

menus to the system through the form. Data are stored in real-time in Firebase cloud database. A 

future version of this module will include carbohydrate calculations for users.  

3.1.2 Blood Glucose Tracker (BGT) 

Figure 2b shows the BGT module UI. This module provides a platform for recording and 

tracking patient BG levels, along with A1C levels during postprandial and fasting periods. The 

BG measurement standard is the Hemoglobin A1c (HbA1c/A1c). According to [43], the level of 

A1C should be less than 7%. The records are stored in the Firebase cloud. 

3.1.3 Medication Reminder (MR) 

Electronic reminders have been found to help patients adhere to schedules for taking 

medication and taking BG readings: two interventions that are crucial for diabetes management 

[45]. To help patients adhere to their prescribed regimens, the MR module allows patients to set 

reminders for when to take medication and BG readings and update their BG record in the portal. 

The SQLite database is used to store medication and alarm task for these two modules. 
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3.1.4 Physical Activity Tracker (PAT) 

Physical activity, an essential intervention for type 2 diabetes, helps T2D patients to 

control their BG level. T2D patients are insulin resistant: their body does not produce enough 

insulin to process blood glucose. In these patients, muscles can process glucose during exercise. 

This research’s primary focus is to provide T2D patients with a means of tracking their 

physical activity in real-time. The PAT module tracks a patient’s level of activity over time, in 

order to calculate their caloric expenditure. It uses a pair of wearable insole devices to track 

patient activity data via Bluetooth. The app detects movements that impact a patient’s BG level 

and other health indicators. 

3.1.5 Persistent Data Stores 

The four Android modules are supported by SQLite and Firebase databases. SQLite, a 

small, simple, and fast relational database, is embedded in the BeticTrack app. BeticTrack's MR 

module, which communicates strictly with the patient, uses a local database to store medicine 

names and alarm tasks; all medication alarms are managed locally, in the Android device. 

 

Figure 2 - a) Carbohydrate intake tracker and b) blood glucose tracker 
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Firebase is a NoSQL database for mobile and web application development. It provides a 

cloud-based infrastructure that supports concurrent, real-time access to data sets by multiple 

applications and data synchronization between devices. It enables the fast querying of data sets, 

regardless of set size. It supports event-based subscription: applications accessing a Firebase 

database can subscribe to any data table and receive notifications when subscribed-to tables are 

updated. It also provides a module that authenticates different users, along with their user roles. 

BeticTrack uses Firebase to store credentials for properly authenticating users and 

authorizing their actions. BeticTrack supports four types of user roles: one for patients; one for 

doctors; one for observers, who are authorized to view or monitor patient records; and one for 

administrators, who are authorized to read and modify data for the other three types of users. 

Figure 3 shows examples of BeticTrack screens for logging users into a system, using their e-

mail addresses and passwords. 

3.2 Tracking Physical Activity 

The Android application and its supporting databases provided a platform for supporting 

this research's primary focus: the use of foot sensors to gather and interpret data about a patient’s 

activity. This research sought to use sensors to identify seven types of patient activity: sitting, 

standing, walking, running, ascending stairs, descending stairs, and using an elliptical trainer. To 

 

Figure 3 - User authentication screen, user type selection, and profile update 
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this end, a machine learning module was created to analyze and classify activity based on real-

time data. 

3.2.1 Wearable Insole Device 

A battery-operated and Bluetooth-enabled smart insole device was used to collect 

information about patient activity (Figure 4). Each Bluetooth Low Energy (BLE) Insole Device 

(BID) has a unique identifier name and a MAC address. These insoles come in EU shoe sizes 37-

44. They can be worn in any shoe by replacing the original shoe insole. The smart insole 

provides four Soft Pressure Sensors (A, B, C, D) and three built-in accelerometers (a, b, c). Data 

from these sensors can be collected using any Bluetooth device with an operating system (OS) of 

iOS 8.4, Android 5.0, or above. 

3.2.2 Application Development for Data Collection using Bluetooth 

An Android application was developed to collect insole sensor data, using the insole 

provider's application program interface (API). The API provides data access functions and 

enables communication between the Bluetooth and Android devices. 

BeticTrack's workflow for activating a BID is depicted in Figure 5. When the BeticTrack 

app starts, it scans for nearby BIDs until timing out. The app matches the scan's result with 

information in its database, attaching only user-owned devices to the session. When the app 

detects user-provided BIDs, it updates its UI, prompting for permission to connect the devices. 

Figure 6 shows screenshots of representative device scans. 

 

Figure 4 - Wearable Insole Device 



25 

 

If the scan finds both devices, the UI prompts the user with “connect left” and “connect 

right” buttons. If a user clicks to connect, the application first checks for BID firmware upgrades, 

per the manufacturer's requirements. The device then connects to the BIDs and pushes data real-

time data to the database, updating the UI.  

To ensure improved the app’s performance and enhanced responsiveness in response to 

the BIDs real-time connection state change, a unique UI design was built using Java 

asynchronous programming. Figure 6 shows screenshots of the UI based on the BIDs’ 

 

Figure 5 - The data collection application’s work flow 
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connection states. The first screenshot represents a state where only the left BID is discovered by 

the device and connected. The second screenshot displays the state when both BIDs are 

discovered by the app but the only the right BID’s connection succeeded. The third screenshot 

represents the normal state where both BIDs are discovered and connected.  

Once connected, the BIDs can send two types of real-time data to the app. The one, 

continuous accelerometer data, characterizes device motion in three-space, using X-, Y- and Z-

axes. This data is sent continuously, at a frequency of 12 Hz. The other type, event-based sensor 

data, is sent when the four pressure sensors sense any touch or pressure. 

The app relays saved data collected from the BIDs in real-time to Firebase database. The 

Firebase data was used initially for data analysis. For this phase, the data were deleted from the 

database after each data collection phase. 

3.3 Activity Detection 

In keeping with work by Wen et al. [44] and Hamaski et al. [45], this research focused on 

routine, low-intensity activities like walking, stair ascending, and stair descending. For 

completeness, it included running as a moderate to a high form of activity and elliptical training 

as a form of equipment-based exercise. All five activities require foot movement, which supports 

 

Figure 6 - UI with left BID connected, right BID connected, and both BIDs 

connected 
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the use of BID as a basis for activity identification. Additionally, in keeping with findings by 

researchers like Biswas et al. [47], monitoring of patient activity was extended to sitting and 

standing: two sedentary activities that, in excess, are deemed risky to patient health. 

3.3.1 Data Collection 

Data were collected for seven types of activities: 

• Walking on flat surfaces.  

• Running on a running track and a treadmill. 

•  Sitting on standard couches, while maintaining normal sitting postures (Figure 7). 

• Standing on an even surface in common standing positions, e.g., when switching 

legs or changing from straight-legged to cross-legged (Figure 8).  

• Ascending straight, landing-free staircases, at varying rates of speed (Figure 9a).  

  
Figure 7 - Standing postures. a) normal b) cross legged 

 

 

 

Figure 8 - Sitting postures  
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• Descending straight, landing-free staircases, at varying rates of speed (Figure 9b).  

• Using two different models of elliptical trainers (Figure 10). 

Sensor data was collected from four volunteers, two males and two females, each of 

whom did all seven activities. Data collected while walking on landings between flights of stairs 

were disregarded to ensure the integrity of stair data. Data, as they were collected, were stored in 

the Firebase database. After each activity, the dataset was exported. Data was then deleted from 

the database to maintain the volunteers’ confidentiality and to ensure no data was compromised. 

 

3.3.2 Data Preprocessing 

Data preprocessing is the preparation of a raw data set for subsequent analysis by 

converting this data into a usable format. As the data collected were from different individuals in 

real-time, a cleaning step was needed to condition the raw data for analysis. After this step, 

 

Figure 10 - Volunteer using elliptical for data collection. 

 

Figure 9 - a) stair ascension, b) stair descension 
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feature extraction was done to reduce the dataset to a more manageable size. Table 2 shows the 

attributes included in each collected data set. 

3.3.2.1 Data Cleaning 

The primary considerations for data cleaning were removing outliers and irrelevant data, 

accounting for missing data (NaN values), converting strings to numeric values, and labeling the 

data based on activities. 

Outliers. Outliers are data that deviate from the original data; e.g., before the start of the 

running activity, standing activity data can be considered as outliers. The first step of data 

cleaning involved the removal of the first and last few seconds of data from test runs. This 

eliminated sensor readings from before activities started and after activities ended. These 

irrelevant readings were collected due to the need to start recording data before visually 

confirming that both left and right insoles were sending data (Figure 11). 

Irrelevant data. The BID SDK includes built-in data—e.g., sole data, varus—that were 

irrelevant to the research and removed from the dataset. 

Missing data points. The shoe sole SDK returns an empty (NaN) value for sensors that 

fail to generate readings during a given 12 Hz reading cycle. For example, the A, B, C, and D 

sensors only generate values when a person is stepping. Figure 12 shares a snippet of a dataset 

containing NaNs. For this research, NaNs were retained for use in the machine learning model. 

String to numeric conversion. True and false sensor values were converted to 1 and 0 for 

cleaning and machine learning purposes. 

Name Description 

Timestamp the timestamp of event in milliseconds 

Ax, Ay, Az X-, Y-, and Z-axis data for accelerometer A 

Bx, By, Bz X-, Y-, and Z-axis data for accelerometer B 

Cx, Cy, Cz X-, Y-, and Z-axis data of accelerometer C 

A heel sensor data in Boolean 

B feet palm sensor in Boolean 

C feet palm sensor in Boolean 

D feet palm sensor in Boolean 

Impact force exerted on the sole, scaled from 0-7 based on the force 

 

Table 2 – Collected data attributes 
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3.3.2.2 Feature extraction 

Feature extraction is the extraction of meaningful data representations from a raw and 

possibly redundant dataset. Periodic activities, like those sampled in these trials, typically exhibit 

repeating patterns. Feature extraction can introduce invariance and provide compact, quantitative 

characterizations of the patterns.  

For this research, three types of features were extracted from sensor data recorded over 

ten-second (10s) intervals: 

• Mean, mode, a median of accelerometer data. For each 10s interval, each 

accelerometer axis's mean, mode, and median values. 

• The elapsed time between consecutive shoe sole sensor events. Time differences 

between consecutive sensor events; these were used to distinguish between activities 

like walking and running, the former having less frequent events than the latter. 

 

 

 

 

 

 

 

 

 

Figure 12 - Timestamps containing NaNs 

Figure 11 - Firebase console, a) both devices are b) one is - connected and active 
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• Mean, mode, the median of the elapsed times. 

Feature extraction yielded 43 features. These included mean, mode, and median values 

for the A, B, and C sensors; the number of events for all sensors; the number of true events for 

the A, B, C, and D sensors (true when a sensor touches the ground); the mean, mode, and median 

impacts; and mean, mode, and median time differences for the A, B, C, and D sensors. 

3.3.3 Machine Learning Technique 

Support-vector-machine- and decision-tree-based-learning algorithms were used to 

analyze the preprocessed data. Both methods are well-suited to handling many-dimensioned data 

sets like the 43-dimensional data set in this research. Both are also more resistant to overfitting 

compared to other machine learning techniques. Overfitting is a modeling error that occurs in 

small datasets. Although overfitting classifies the correct result, when additional data is 

introduced, the classification model fails. 

A multiclass classification mechanism was adopted since we collected data for seven 

activities. Although SVM is a binary classification approach, this binary nature can be extended 

for multiclass classification.  Multiclass classification can be done by decomposing multiple 

classes into a combination of binary classes. Binary SVM can be conducted on the decomposed 

binary classes by doing the one-vs-one or one-vs-all [57, 58]. This research used the one-vs.-one 

(OVO) classification. For a K-way multiclass problem the OVO trains k(k-1)/2 binary classifiers 

(21 classifiers for seven classes based on seven activities). Each classifier contains binary classes 

from the original training set. Each classifier then did binary classification for a pair of classes. 

3.3.4 Analysis Strategy 

A preliminary review of the data determined that A/B/C/D sensor data and accelerometer 

data are equally important for activity detection. While some activities can be detected directly 

from sensor readings, activities like sitting that generate no sensor data require the use of 

accelerometer data to detect. Four combinations of activity were studied: 

• two activities (walking and running): detection with accelerometer and sensor data 

• two activities (walking and running): detection with only sensor readings 

• seven activities (walking, running, sitting, standing, stair ascension and descension, 

elliptical use): detection with accelerometer and sensor data 
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• seven activities (walking, running, sitting, standing, stair ascension and descension, 

elliptical use): detection with only the accelerometer data.  

3.4 Integrating the Machine Learning Model into the Application 

To classify a patient’s real-time physical activity and log activity to the system, an 

activity classification module was integrated into the PAT module. Figure 13 depicts the updated 

application's architecture and workflow. The machine learning model (MLM) listens for changes 

to the Firebase database. When the MLM is notified by Firebase that the database has received 

sensor data, the MLM activates the ML operation. The MLM collects sensor data at five-second 

intervals and deletes the data from the database as the data is read. The collected data is then 

preprocessed and passed to the ML algorithm. Once the ML classifies an activity based on the 

collected data, the ML saves its classification along with the classification time to the Firebase 

database. At the same time, the Android application's PAT module listens for classification event 

push events, displaying changes in activity classification data on the app's UI. 

 

Figure 13 - Machine learning model integration to the application 
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4 RESULTS 

BID data from the volunteers' activity trials were input into SVM and decision tree 

classification algorithms to generate models of volunteer activity. The resulting models were 

compared to identify which yielded more accurate characterizations of these activities. Finally, 

additional real-time data were used to assess the models' validity relative to data outside of the 

training sets. 

Machine learning models were developed with the help of Python’s scikitlearn library, 

using test-to-train ratios of 10:90, 15:85, 20:80, 25:75 and 30:70 for the SVM and decision tree 

models alike. Different test-to-train ratios were used to determine which ratio yielded the most 

accurate results for both the SVM and decision tree models. Finally, two sets of models were 

produced. One was generated from all 43 features extracted from sensor and accelerometer data. 

The other, which was used to evaluate the accuracy of sensor-based activity detection, was 

generated from 16 sensor data features: i.e., number of total events; number of true events for 

sensors A, B, C, and D; mean, mode, and median impact; and mean and median time differences 

for sensors A, B, C, and D. The use of sensor-based data alone, without accelerometer data, was 

done to analyze the importance of accelerometer data for classifying activities that do not require 

foot movement (e.g., sitting). The resulting models were compared based on four sets of 

measures:  

• The accuracy provided by the machine learning models (on a scale of 100) 

• Classification accuracy based on error rate (in a scale of 100) 

• Classification accuracy based on real-time data. For this analysis, we compared the 

real-time activity time compared to the actual activity done by a human subject. 

• Data labeling was considered carefully; each shoe sole data was tagged with the shoe 

sole name to identify it. 

4.1 Human Movement Data 

To improve the quality of the machine learning models, sensor data from the trials was 

preprocessed to eliminate suspect data, as described in the "Methodology" chapter. For example, 

• Data collection start and end times for each activity were monitored using timers, and 

the first and last few seconds of data were removed to eliminate possible outliers. 
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• Throughout a data collection session, the connectivity of both insole devices was 

monitored carefully. This addressed problems with firmware upgrades of the BID, 

which occasionally caused one of the devices to stop operating. 

• NaN values from sensors were left intact throughout training. The extraction process 

ignored NaNs when computing means, modes, and medians, except for intervals that 

consisted entirely of NaN values, where NaN was returned instead. 

The cleaned left shoe sole data was then plotted to obtain insights into BID patterns 

produced by different activity types. Figure 14, for example, shows a plot of BID walking data 

relative to time. All attributes described in Table 2 (below) were plotted against the events’ 

timestamps. The red, blue, and green graphs show X-, Y-, and Z-axis data from the A, B, and C 

 

Figure 14 - Walking data visualization of one shoe sole 
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accelerometers, respectively. Orange plots show A, B, C, and C sensor data. The bottommost 

row in blue shows the ‘impact’ value. 

The following observations were drawn from plots of four individuals' activities: 

• Impact events and impact values for running are more pronounced than for walking. 

Accelerometer data varies for the two activities as well. 

• Standing data included one sensor event. Sitting data included no such events. 

• Stair ascent exercises all four sensors. Stair descent exercises three (A, B, and D). 

• Elliptical data exercises two sensors and exhibits a rhythmic accelerometer pattern.  

Additional plots generated from one of these individuals' trials are shown in Appendix A, 

Figures 24-29. 

4.2 Human Activity Modeling 

4.2.1 Training the Models 

While training the model, different test train ratios (10:90, 15:85, 20:80, 25:75 and 30:70) 

were used to identify the ratio that generated the most accurate models. The best results— 90-

100% accuracies—were obtained with test-to-train ratios of 15:85 and 20:80. Using these ratios, 

the machine learning models were built from two sequences of training exercises: 

• two activities (walking and running) with accelerometer and sensor data 

• seven activities (walking, running, sitting, standing, stair ascension and descension, 

elliptical use) with accelerometer and sensor data 

Initially, the models provided accuracy results in a scale of 0-100. An accuracy of 96% 

means 96 results were classified correctly, while 4 classifications were incorrect. For each of the 

five test:train ratios, an average of 5 observations were performed on the classification models.  
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Figure 15 and 16 depict an example of SVM and decision tree result on four test train 

ratios (30:70, 20:80, 5:85, 10:90).  

 

Figure 16 - Two activities and seven activities decision tree result on four test train ratios 

 

 

 

Figure 15 – Two activities and seven activities SVM result on four test train ratios 
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4.2.2 SVM Models of Volunteer Activity 

4.2.2.1 Walking Vs. Running 

4.2.2.1.1 With Accelerometer and Sensor Data 

A 96% classification accuracy was achieved when using accelerometer and sensor data to 

distinguish walking from running (Figure 17). From the 32-test samples of walking behavior, the 

model classified 31 as walking and one as running. For running, only one sample was detected as 

walking, while 26 were detected as running. 

4.2.2.1.2 With Sensor Data Alone 

An 80% classification accuracy was achieved with data from the 15 sensor readings 

(Figure 18). The confusion matrix shows that from among 16 walking samples, eight were 

identified as actual walking and eight as running. For running, only one sample was detected as 

walking whereas all others were detected as actual running. 

 
Activity Walking Running 

Walking 31 1 

Running 1 26 

Figure 17 - Walking and running classification with accelerometer and sensor readings 
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4.2.2.2 All Seven Activities 

4.2.2.2.1 With Accelerometer and Sensor Data 

In Figure 19, the seven activities are labeled as follows: 1: walking, 2: running, 3: sitting, 

4: standing, 5: stair ascent, 6: stair descent, 7: elliptical use. The linear SVM produced an overall 

classification accuracy of 85%. The analysis from the confusion matrix was as follows: 

Walking. Among 17 samples, 15 were classified accurately as walking, where two were 

classified as elliptical data. The precision-recall ratio is 0.75:0.88, denoting low precision and 

high recall: i.e., the model incurred no false positives but missed some of the walking samples. 

Running. Among 28 samples, all were classified as running. The precision-recall ratio is 

1:1, meaning that all of the model's classifications were accurate. 

 
Activity Walking Running 

Walking 8 8 

Running 1 28 

Figure 18 - Walking and running classification with only the sensor reading 
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Sitting. Among 18 samples, all were classified as sitting. The precision-recall ratio is 

0.86:1, denoting low precision and high recall: i.e., the model incurred no false negatives but 

incorrectly classified some other activities as sitting. 

Standing. Among 15 samples, ten were identified correctly as standing, three were 

classified as sitting, and one each classified as stair ascension and elliptical. The precision-recall 

ratio is 0.71:0.67: i.e., it failed to classify many standing samples as standing. 

Stair ascent. All six samples were classified as stair ascent. The precision-recall ratio is 

0.60:1, meaning that other activities were also incorrectly detected as stair ascension.  

Stair descent. Among seven samples, three were identified accurately as stair descent, 

three as stair ascent, and one as walking. The precision-recall ratio is 1:0.43: i.e., the model 

incurred no false positives but missed many samples, which were also stair descent. 

Elliptical. Out of 29 samples, 22 were classified correctly, four were classified as walking 

and three were classified as standing. The precision-recall ratio is 0.80:0.76, which indicates that 

it misinterpreted a few samples as activities other than elliptical use.  

 
Figure 19 - Result of linear SVM on seven activities with accelerometer and sensor data. 
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4.2.2.2.2 With Sensor Data Alone 

Figure 20 shows the result of seven activity analysis without the accelerometer data. 

Walking. Among 19 samples, six were identified accurately as walking, where 12 were 

classified as elliptical data. The precision-recall ratio is 1:0.32. High precision and low recall 

mean that although no other activities were classified as walking, a lot of walking activities were 

classified incorrectly. 

Running. Among 21 samples, two were classified as running and rest were classified as 

elliptical data. The precision-recall ratio is 1:0.1, meaning that the probability of running to be 

classified as running was 10%, and the probability of other activity being classified as running is 

0%. 

Sitting. Among 12 samples, all were classified as elliptical data. The precision-recall ratio 

is 0:0; i.e., none of the classifications were correct. This validates the use of accelerometer data 

in the analysis: i.e., sitting does not generate any pressure sensor data. Eliminating accelerometer 

data from activity detection fails to identify sedentary movement. 

 

Figure 20 - Result of linear SVM on seven activities based on sensor data only 
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Standing. Among the 17 samples, one sample was classified correctly as standing. The 

rest were classified as elliptical data. The precision-recall ratio is 1:0.06; i.e., the model failed to 

classify a lot of standing samples as standing, while classifying no other activity as standing. 

Stair ascent. One sample was identified correctly as stair ascent and the rest were 

elliptical. The precision-recall ratio is 0.33:0.06; i.e., the correct classified rate is too low, and 

other activities were also classified wrongly as stair ascent. 

Stair descent. Two samples were classified accurately as stair descent, two as stair ascent 

and the other 17 as elliptical. Precision is 1, and recall is 0.25, meaning classification probability 

is just 25%. 

Elliptical. Out of 25 samples, all were classified correctly, so the recall is 1. However, the 

precision is 0.24 because almost all other activities were wrongly classified as elliptical data. 

4.2.3 Decision Tree Models of Volunteer Activity 

Four sets of decision-tree models were generated from the test data. These models yielded 

the best results (100% accuracy) for walking and running detection with all 43 features. With 43 

features, 7-activity detection accuracy ranged from 90 to 100%. With the 15 sensor data features 

alone, the 2-activity and 7-activity models yielded 80-90% and 29% accuracy rates, respectively. 

Figure 21 shows the analysis with the decision tree. 

4.2.4 Implementation in BeticTrack 

Based on this analysis of model quality, the Machine Learning Module (MLM) generated 

from all 43 features was integrated into BeticTrack. The model was then tested in real-time to 

determine its accuracy of classification. The measure for this classification was time. For 

example, a person conducted the seven activities during some period of time, and the real-time 

No. of Activities Used Accelerometer 

Data 

Classification Accuracy 

2 No 80% - 90% 

2 Yes 100% 

7 No 29% 

7 Yes 80-90% 

Figure 21 - Analysis result with decision tree method. 
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classification result was stored in the database. The classifications were collected and the 

cumulative time of each session of activity was calculated to check the accuracy of 

classifications.  

Figure 22 shows the classification for two minutes of walking. In most cases (for 1 

minute 45 seconds), the MLM classified walking as elliptical. It classified walking as stair 

ascension only for ten seconds. 

A session was conducted with four minutes of sitting, followed by three minutes of 

walking and 2.5 minutes of standing. The MLM classified sitting accurately (4 minutes 3 

seconds) (Figure 23). However, it did not classify any of the standing data as standing (it 

classified walking for 3 minutes and 14 seconds).  Walking, moreover, was misclassified as 

elliptical data in most instances (for 2 minutes and 17 seconds). The model only classified 30 

seconds of walking data originally as walking. 

Figure 24 provides data from two sessions of 30-second stair descent. The stairs that were 

used for this test spanned three floors, with a landing between each flight of stairs. The 

classification identified the descent as well as the walking portions of this test as walking. 

 

Figure 22 - 4 minutes sitting, followed by 3 minutes standing, then 2.5 minutes walking 

 

 

 

Figure 23 - Two minutes walking, real-time classification 
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To test running and elliptical real-time classification, we conducted an experiment that 

consisted of three minutes running, followed by 2.5 minutes of elliptical training (Figure 25). 

The model classified all running sessions as running. For the elliptical session, it classified 30 

seconds data as elliptical and 1 minute 25 seconds data as walking. There was a sitting sample of 

ten seconds in between. 

These data suggest that the model accurately classifies sitting and running but confuses 

elliptical and walking data. Also, the model failed to classify stair climbing, stair descent, and 

standing. In all these cases, the model was classifying walking for the most part. One possible 

explanation for the inaccuracy of the classification is that the interval on which the classifications 

were based was too long. The features generated were based on 10 seconds of data, whereas 

climbing stairs can take less than 10 seconds, depending on the number of steps. 

For standing data, although the model classified the correct result, Figure 26 shows that 

the error rate of standing data classification is just 4.1% for standing. One possible reason for the 

erroneous classification could be the dataset's size. Using a model based on more data collected 

from different people over a longer period of time could improve the model's classifications.  

 

Figure 24 - 30 seconds stair descent 

 

 

 

 

Figure 25 - 3 minutes running followed by 2.5 minutes elliptical test 
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The classification algorithm can classify sitting and running with almost 100% accuracy 

because of the nature of the shoe sole. The sitting data do not include any sensor data, compared 

to the other seven activities. On the other hand, the running data has the highest number of true 

events with frequent events while running. The sensor assumes a value as true if it senses the 

pressure. The pressure sensor has only two values (0 and 1), and for the case of running the 

sensor gets 1 if the sensor touches the ground with running pace. However, for other slow-to-

medium pace activities like standing and walking or stair usage, the sensor only gets 

combinations of 0 values from the pressure sensor. The pressure sensor data has an impact on the 

failed classification. Another concern of the analysis is the overlap in classifying walking data 

and using elliptical data. Since the pattern of walking and using an elliptical instrument has 

similarities, removing elliptical data from the classification may produce better insight into 

classifying walking activity. This research focused on collecting five seconds of continuous data 

to generate features. Further analysis can be done to identify a time interval that can produce a 

better classification model.  

 

Figure 26 - Error rate based on decision tree analysis. 
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5 CONCLUSIONS AND FUTURE WORK 

BeticTrack's development was driven by the desire to ensure ease of use and ease of 

access to data for patients and physicians. There is no shortage of mobile applications for 

diabetes management in the marketplace. However, we incorporated physician feedback while 

designing the system, and we tried to capture all data that are important for diabetic management 

accurately. The overall goal of this research was to integrate all key parameters (blood glucose, 

carb intake, physical activity, timely reminders, and physician interaction) in one platform, to 

provide patients with a self-management portal, and provide clinicians with a remote patient 

monitoring platform. To these ends, this app included the use of wearable technology to collect 

patient information about their physical activity. The wearable IoT insole device collects 

physical activity data with no additional effort from its users. Currently, the app detects sitting, 

walking, and running with 85% accuracy, using SVM- and decision-tree-based learning 

algorithms. A future goal is to identify and track additional activities like cardio exercises. A 

second would be to improve the model's classifications for activities like stair climbing and 

standing. To make these classifications more accurate, this research should collect more data for 

a longer period from people of different ages and abilities. Also, future activity detection analysis 

should consider more than seven activities. K-fold cross-validation (K-fold CV) in the classifier 

sample could yield improved machine learning models. K-fold CV divides the complete dataset 

into k partitions to ensure that each partition is used as a test set over the learning iteration.  

Currently, the app stores real-time activity along with its duration in the database. Future 

development includes creating a graphical representation of activity trends over time so that 

patients and physicians can track activity history. The detected activity pattern can be stored 

based on a timeline, which would allow doctors and patients to see these trends. Also, the 

balance of blood glucose could be calculated from the stored carbohydrate value, current BG 

record, and the exercise level. Future development may also include integrating this personal 

health record into an existing EHR system. For example, the medication reminder is accessible 

through a patient’s app. This could be made accessible to physicians via an EHR system, 

allowing them to update and check current medications prescribed to the patient.  

In the next phase, our goal is to conduct a pilot study involving real patients and measure 

this application’s effectiveness in an actual setting. Future development also includes integrating 
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all the modules into a HIPAA- (Health Insurance Portability and Accountability Act of 1996) 

compliant platform. According to the U.S. Department of Health and Human Services, standards 

for patient data management, any application dealing with sensitive human data must be secured 

[53]. The goal of HIPAA compliance is to protect an individual’s health information while 

allowing the flow of health information necessary for the healthcare system. To ensure HIPAA 

compliance, this application will need to use technology such as Microsoft Azure’s CosmosDB 

database. CosmosDB is a HIPAA-compliant server communicating over a secure socket and 

storing information on an encrypted database. 

Although activity detection can accurately detect activities like running and sitting, there 

is a few seconds delay in display on the mobile device after an activity starts. Identifying the 

potential reason for the delay and revising the design to minimize the delay could be another goal 

for future research. 

This research’s long-term goal is to make the application available to patients for a pilot 

study and evaluate the application's effectiveness for type 2 diabetic patients. Future designs can 

be adapted, and apps created on the trial result and patient feedback. Depending on our findings 

from the deployment of the system for a pilot study involving real patients, this application has 

the potential to become a standard tool for diabetic care. If successful, this model can ideally 

extend to treat and manage other chronic diseases. 
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APPENDIX: GRAPHS OF PREPROCESSED SENSOR DATA 

 

 

Figure 27 - Running data visualization of one shoe sole  
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Figure 28 - Sitting data visualization of one shoe sole  
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Figure 29 - Standing data visualization of one shoe sole  



56 

 

 
 

 

Figure 30 - Stair ascension data visualization of one shoe sole 
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Figure 31 - Stair descent data visualization of one shoe sole  
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Figure 32 - Elliptical data visualization of one shoe sole 
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