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ABSTRACT 

Debris-slide Susceptibility Modelling Using GIS Technology in the Great Smoky Mountains 

National Park 

by 

Raja Das 

Debris-slides are one of the most frequently occurring geological hazards in metasedimentary 

rocks of the Anakeesta ridge in Great Smoky Mountains National Park (GRSM), which often 

depends on the influence of multiple causing factors or geo-factors such as geological structures, 

slope, topographic elevation, land use, soil type etc. or a combination of these factors. The main 

objective of the study was to understand the control of geo-factors in initiating debris-slides 

using different knowledge and data-driven methods in GIS platform. The study was performed in 

three steps: (1) Evaluation of geometrical relationship between geological discontinuity and 

topographic orientation in initiation of debris-slides, (2) Preparation of knowledge-driven debris-

slide susceptibility model, and (3) Preparation of data-driven debris-slide susceptibility models 

and compare their efficacy. Performance of the models were evaluated mostly using area under 

Receiver Operating Characteristic (ROC) curve, which revealed that the models were statistically 

significant.  
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CHAPTER 1 

INTRODUCTION 

Debris-slides are a type of mass wasting event, where unconsolidated rock fragments 

mixed with soil and other plant debris become saturated with water and move downslope, under 

the force of gravity. In presence of favorable causative factors such as slope angle, geology, soil 

type, land use etc. and triggering factors such as rainfall and earthquakes, most of the 

mountainous region in the world have undergone slope modification process (Van Western 

1996).  Debris-slides are a common phenomenon in the Appalachian region, where so far, more 

than 3000 debris-slides have been identified. Most of these slides were triggered by torrential 

rainfall associated with hurricanes and storms (Wieczorek et al. 2000). The Great Smoky 

Mountain National Park (GRSM) in the Appalachian Mountains is the most visited national park 

in the United States with over 11.3 million visitors per year. Therefore, debris-slide not only 

possess a serious threat to the millions of visitors in the park but these events can cause serious 

damage to the roads, federal properties, and lands. 

Adverse orientations of geological discontinuities and topographic slopes can play a 

crucial role in controlling the initiation mechanism of the debris-slide. Depending upon the 

mutual geometric orientation of the topographic slope and aspect relative to geological 

discontinuities, three different modes of slope failure are possible, namely: (i) Planar (ii) Wedge 

and (iii) Topple (Godman and Bray 1976; Hoek and Bray 1981). Movement of the bedrock along 

the geological discontinuity planes is known as rock kinematics and slope instability analysis 

based on kinematic properties is called kinematic analysis. The kinematic analysis is often 

performed for site-specific slope instability analysis by plotting orientations of geological 

discontinuities and topographic slopes using the stereographic projection or stereonet (Markland 
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1972; Hoek and Bray 1981; Yoon et al. 2002). However, for a regional scale study, where 

orientation of discontinuities may vary significantly, the traditional stereonet-based kinematic 

analysis is an unrealistic approach. Therefore, to overcome such a geotechnical obstacle, GIS 

technology can be an effective solution. Very few studies have employed GIS based kinematic 

analysis for large study areas (Ghosh et al. 2010). Ganther (2003) and Ghosh et al. (2010) 

adapted an unique technique to develop a Digital Structural Model in a GIS platform based on 

the orientation of the geological discontinuities by interpolating them to perform the kinematic 

analysis. However, the accuracy of such model a greatly depends on factors like quality of data, 

accuracy in data measurement, density of point data, distribution of exposures etc. (Ghosh et al. 

2010). One of the previous studies conducted by Ryan (1989) in the Anakeesta ridge of GRSM 

found that the chute of the debris-slide were mostly formed due to the intersection of different 

discontinuity planes, which lead to abundant wedge failures. Hence, performing a GIS based 

kinematic analysis will be an effective analytical approach to understand the role of geological 

discontinuities in influencing the initiation of debris-slides.  

To understand the spatial probability of debris-slide in the future, one of the primary 

steps is to develop the debris-slide susceptibility map with the assumption that the factors, which 

were responsible for slope failure in the past, most likely will again contribute to slope failure in 

the future (Varnes 1978; Carrara et al. 1995; Guzzetti et al. 1999). Generation of debris-slides 

highly depends on the influence of causative factors or geo-factors such as slope angle, lithology, 

elevation, drainage, rainfall, land use etc. in different proportions.  Several methods for regional 

scale debris-slide susceptibility modelling are available, which are mainly of two categories: 

heuristic or data-driven and empirical or knowledge-driven. Physically based models are third 

option for debris-slide susceptibility analysis. These model employs simulation techniques using 

different geotechnical data, however, development of this model is beyond the scope of the 
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present study. Heuristic or knowledge-driven methods can be either direct, where detailed 

geomorphological and geological mapping is required to model the debris-slide (Brabb 1984) or 

indirect, where numerical weights are assigned to the geo-factors by the expert (Hansen 1984; 

Varnes 1984). The subjectivity of selecting geo-factors and assigning weights is at the sole 

discretion of the investigator and is often done by applying his/her knowledge gained from 

dealing with similar kinds of situation in the past. However, this kind of approach can be proven 

effective if the correct sets of geo-factors are selected for the analysis as the role of geo-factors 

varies with changes in the physical environment of the terrain (Ghosh et al. 2013). 

Empirical or data-driven methods apply statistical or mathematical approaches to 

calculate the relationship between the geo-factors and debris-slides. A Geographic Information 

System (GIS) provides a powerful analytical platform to execute advanced statistical equations 

for slope instability analysis in larger spatial extents. Data-driven methods are broadly divided 

into two groups, namely, bivariate and multivariate. Bivariate process deals with the individual 

classes of a geo-factor to calculate weights of geo-factors based on the one to one relationship 

with the geo-factors and debris-slide. Most multivariate models work like a black box that 

process multiple geo-factors at a time against the debris-slide occurrence data using  statistical 

software like SAS, SPSS etc. 

Different debris-slide studies have been conducted in the Anakeesta Ridge of GRSM 

between 1970’s to 2017. However, no attempt has been made to understand the role of 

geological discontinuities in controlling debris-slide initiation. Henderson (1996), and Nandi et 

al. (2016) modelled debris-slide susceptibility of the area using different statistical approaches. 

Again, the role of geological discontinuity was not included in their study. This study aims to 

evaluate the role of geological discontinuity and include the information in susceptibility models 
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by using a novel approach to develop comprehensive knowledge of debris-slide phenomenon in 

the Anakeesta Ridge of GRSM. Following are the specific objectives of the study: 

(i) Develop a GIS-based kinematic model for predicting the debris-slide initiation  

 zones using the geometrical relationship between geological discontinuities and 

 topographical orientation. 

(ii) Develop a GIS-based knowledge-driven debris-slide susceptibility model using 

 the Weighted Overlay method. 

(iii) Develop four data-driven debris-slide susceptibility models and compare their 

 ficacy in a GIS platform. 

The above mentioned objectives form the driving questions for three separate studies, 

which are presented in the three consecutive chapters (Chapter 2, 3 and 4).  The all-inclusive 

flow chart in the next page shows the preparation of debris-slide susceptibility models.  
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Flow chart of the study 
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CHAPTER 2 

Debris-slide Assessment Using Spatial Distribution of Structural Orientation Data and Kinematic 

Properties of Rock, Great Smoky Mountains National Park, TN 

Abstract  

Geological discontinuities, and their geometrical relationship with orientation of topographical 
slope, known as bedrock kinematics, play a crucial role in controlling slope stability within a 
rock mass. This study aims to develop a GIS based kinematic model based on the mutual 
relationship between topographic slope and geological discontinuities to predict debris-slide 
initiation zones in the Anakeesta rock formation of Great Smoky Mountain National Park, 
Tennessee. Debris-slide locations were mapped from aerial photographs, satellite imagery, and 
directly from field surveys. Topographical information such as slope angle and direction for the 
entire study area were extracted from high resolution Light Detection and Ranging (LiDAR) 
digital elevation model using ArcGIS 10.5.1. Orientation of geological discontinuities were 
measured during field surveys. The kinematic model was developed using the orientation of 
topographical slope and geological discontinuities and 75 percent of the debris-slide locations 
(192 slides) were used to build the kinematic model. Results showed the presence of four distinct 
sets of discontinuities, resulted in eleven possible combinations of slope failure. Wedge failure 
was found to be the dominant mechanism of failure followed by planar failure, and 67% of 
existing debris-slide pixels were represented by the two failure modes. Based on mechanism of 
failure and combination of responsible discontinuities, percent weightage was calculated and 
Weighted Sum analysis was performed to estimate the debris-slide susceptibility of the study 
area on a scale of 0 to 1. The susceptibility model was validated using 64 known debris-slides, 
and area under Receiver Operating Characteristic (ROC) value of 0.67 indicated that the 
susceptibility model is valid. It was concluded that kinematics of bedrock discontinuities with 
respect to topographical slope are an important contributing factor in controlling the slope 
stability in the Anakeesta Formation. 

Keywords: Debris-slide, Kinematic analysis, Great Smoky Mountains National Park, GIS. 
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1. Introduction 

A debris-slide initiates when unbroken rock characterized by displacement of one or 

multiple failure surfaces is disrupted into several units, often becomes saturated with water, 

and starts moving downslope. The mechanism of debris-slide type failures can initiate from 

adverse orientation of bedrock discontinuities that might lead to planar, wedge, or topple 

failures or any combination of the three.  The mobility of a slope caused by movement 

along bedrock discontinuities is known as kinematics. Several researchers have studied the 

spatial distribution and geometrical relationships of geological discontinuities in rock 

formations and combined them with topographic slopes to contribute to different modes of 

rock slope failure including  debris-slides (Godman and Bray, 1976; Hoek and Bray, 1981; 

Matheson, 1983; Cruden, 1989; Gokceoglu et al., 2000; Roy and Mandal, 2009). Reduction 

of rock shear strength parameters like internal friction and cohesion against the sliding 

movement of a rock block plays an important role in slope instability (Ghosh et al., 2010).  

Weathering is common along planes of discontinuities and could affect rock shear strength.  

The rock mass and associated discontinuities could be weakened by the presence of partly 

infilled clay, gypsum, calcite, or water through in freeze thaw activities (Aydin, 2006). 

Therefore, to evaluate the reason for debris-slide in an area, it is important to analyze 

geological discontinuities and rock shear strength, and recognize their mutual relationship 

with topographic slope and aspect. 

Several debris-slide predictive models are found in the literature. Some models predict 

debris-slide source or initiation areas, whereas others focus on the pathway and runout of 

the phenomenon. Statistical based susceptibility models like logistic regression, artificial 

neural network, frequency ratio etc. exist in the literature where the contribution of 

different causative factors for debris-slides initiation such as slope, aspect, lithology, rock 
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discontinuities, soil texture, curvature etc. are used to predict spatial probability of future 

debris-slide occurrences (Henderson, 1997; Nandi and Shakoor, 2010; Ghosh et al., 

2013).  These geo-environmental factors are cost-effectively acquired at a regional scale, 

except acquisition of site specific field data for geological discontinuities. The kinematical 

approach to evaluate site-specific geological discontinuities for slope instability analysis is 

well documented in the literature and is commonly performed by an engineering geologist 

during any road, tunnel, or dam site geotechnical evaluation. In kinematic analysis 

orientation of field measured geological discontinuity and slope are plotted using 

stereographic projections to evaluate potential initiation zones for rock slope failure 

(Markland 1972; Hoek and Bray, 1981; Yoon et al. 2002).  While kinematic analysis is 

common during site specific analysis, the approach is rarely used in regional scale studies.  

In tectonically affected mountainous terrain, often orientation of discontinuities is widely 

spread within the same set of data, which makes a conventional stereonet-based approach 

problematic in selecting appropriate representative discontinuity values for the analysis 

(Park et al., 2015). Data collection is time consuming, unreachable in treacherous terrain, 

and hard to execute in larger study areas. Park et al. 2015, used traditional kinematic 

analysis and grid-based probabilistic analysis for rock slope stability along a 2.6-km-long 

stretch of Baehuryeong Road, Korea where the researchers studied 23 rock slopes along 

the road corridor.  For probabilistic analysis, a 1m DEM was used to calculate the 

topographic slope aspect in ArcGIS and discontinuity orientations were mapped in the 

field. The analysis calculated the percentage of unstable area susceptible to planar and 

wedge failures.  Gunther (2003) and Ghosh et al. (2010) made unique attempts to create a 

Digital Structural Model (DSM) based on orientation of geological discontinuities by 

applying an interpolation technique in GIS to perform the kinematical analysis for a large 
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study area. Gunther (2003) used SLOPEMAP which is a suite of QUICKBASIC programs 

to map the geometric and kinematic properties of bedrock in Oker Water Reservoir, Lower 

Saxony, Germany. He constructed a continuous DSM from point data of discontinuity 

orientations of bedding and joint planes using Inverse Distance Weighting interpolation of 

structural discontinuities.  Ghosh et al. 2010, used a similar approach  in Darjeeling 

Himalaya, India where they divided the study area into small structural domains based on 

the major trend of discontinuity orientations. They dissolved the azimuth, dip angle of 

discontinuities into linear cosine components, and interpolated a continuous DSM using 

Inverse Distance Weighting interpolation in ArcGIS. The slope angle and aspect of the 

terrain was derived from 10 m × 10 m ‘CartoDEM’, prepared from 2.5 m resolution stereo-

images of IRS P5 Cartosat-1 satellite.  Their study showed the kinematic analysis 

prediction map could estimate up to 46% of the existing slope failure locations.  The 

accuracy of spatial interpolation highly depends on the accuracy of data collection, 

collection point density, distribution of good exposure etc. and does not always completely 

represent the local structural variation (Ghosh et al., 2010).  

 Debris-slides are persistent phenomena in the Appalachian region (Henderson, 1997) and 

triggered by high rainfall associated with hurricanes and storms (Wieczorek, et al., 2000).  

Debris-slides in the Appalachian mountain are caused by excessive rainfall that increases 

pore water pressure in thin soil cover and rock discontinuities (Eshner and Patric 1982; 

Hupp, 1983). The Great Smoky Mountains National Park (GRSM) has experienced heavy 

rainfall and associated damaging debris-slide events. Several studies have been conducted 

on debris-slides in Anakeesta Ridge and Mt. Leconte, of GRSM from 1970’s to till date. 

Bogucki (1970) studied debris-slides and flood damage resulting from a cloudburst on 

September 1951 over the Mt. Leconte Sugarland Mountain, in Alum Cave Creek 
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watershed. He found the slope angle for most of the debris-slide scars varied from 35° to 

44° with a mean of 40° and any slope angle below 20° was considered safe. Clark (1987) 

studied rainfall associated with debris-slides in Anakeesta Ridge and emphasized the 

importance of precipitation thresholds and movement mechanism of failure to understand 

the probability of debris-slide initiation zones.  Ryan (1989) examined the change in debris 

scar morphology in Anakeesta Ridge by using aerial photographs from 1953 to 1987 and 

performed wedge failure analysis. He found abundant release surfaces in the Anakeesta 

phyllite formation and the chute of the slides was formed due to wedge failure caused by 

the intersection of different discontinuities. Henderson (1997) performed debris-slide 

susceptibility analysis in the Mount Leconte-Newfound Gap area in the Great Smoky 

Mountain, TN and NC using GIS. He employed logistic regression and failure rate analysis 

using six geo-factors: slope angle, slope aspect, slope form (plan and profile), geology, 

distance to the ridge crests, and precipitation, to map debris-slide susceptibility. Nandi and 

Shakoor (2017) also used a logistic regression model in the Upper West Prong Little Pigeon 

River watershed containing Anakeesta Formation using 3 m LiDAR data and more recent 

slide surfaces. They concluded that a combination of steep and concave slopes, weathered 

and jointed phyllitic bedrock, surficial deposit, and infiltration from spring and summer 

thunderstorm events were responsible for debris-slides initiation. Mandal and Nandi (2017) 

used HEC-HMS hydrological model to estimate rainfall-runoff-infiltration relationships of 

phyllitic bedrock and surficial deposits in debris-slide initiation.   Results indicated a high 

rate of infiltration in debris-slide scar areas compared to non-debris scar areas, where 

infiltration values reached maximum rates immediately following peak rainfall, and were 

followed by increased surface runoff. 
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All previous debris-slide research in the study area were conducted either to understand the 

influence of precipitation on slides or to map susceptibility of debris initiation zones. While 

rainfall is the main triggering factor for debris-slides in the area (Bogucki, 1970; Clark, 

1987; Ryan, 1989), all slopes are not vulnerable to mass wasting. The stability of a slope 

is highly controlled by the orientation of geological discontinuities, internal friction angle 

(ϕ) of the rock along with slope and aspect of the topography. Therefore, the kinematic 

relationship between topography with structural orientation must be understood in order to 

identify the spatial probability of debris-slides initiation zones. Except Ryan’s (1989) and 

Nandi and Shakoor’s (2017) site-specific wedge failure analysis on selected slopes in the 

Anakeesta Formation using stereographic projections, no detailed work has been 

performed at a regional scale using GIS to map rock discontinuity kinematics and establish 

a relationship with topography that initiates debris-slide formation. Therefore, the 

objectives of this study are to, (i) evaluate the role of major geological discontinuities in 

debris-slide initiation, (ii) develop a kinematic model and implement it at a regional scale 

using ArcGIS, and (iii) validate the accuracy of the model in the Upper West Prong Little 

Pigeon River watershed’s Anakeesta Formation. 
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2. Background  

2.1. Study area 

The study was conducted in the Upper West Prong Little Pigeon River watershed 

(31.90 sq. miles/82.63 sq. km.), in Great Smoky Mountain National Park that includes 

Mt. LeConte, Newfound Gap, and Route 441, which winds through it. The elevation 

of the study area ranges from 402 m (1313 ft) to 2010 m (6094 ft). Temperature varies 

from -2.2˚C (28 ˚F) to 31.1˚C (88˚F) at the base and -7.2˚C (19 ˚F) to 18.3˚C (65˚F) at 

the tops of the ridges. Average annual rainfall increases with elevation and is 140 cm 

(55 inches) at the base and 216 cm (85 inches) at the highest ridge in the park (National 

Park Service). The area receives snow around 2.45 cm (1 inch) or more, over 1-5 events 

per year at lower elevation and up to 61 cm (2 feet) at higher elevation.  

Most of the debris-slide patches are mainly concentrated around the southeastern part 

of the watershed especially in the Anakeesta rock formation. Therefore, rock slope 

instability analysis was confined within the Anakeesta Formation. 
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Figure 1: Digital Elevation Model of study area within the Great Smoky Mountain National 

Park, TN  with debris flow locations (yellow dots). 
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2.2. Geological setting 

The study area rocks are part of the Ocoee Series of late Precambrian age, 

characterized by a thick mass of clastic metasedimentary rock, which includes 

sandstone and interbedded slate, phyllite, and schist (Figure 2). The Ocoee Series rests 

on a basement complex of granite and metasedimentary gneiss of earlier Precambrian 

age (Moore, 1988). The formation shows the signature of folding and faulting with 

varying degrees of metamorphism and has a spatial extent from Ashville, North 

Carolina to Cartersville, Georgia, covering a distance of more than 225 km (175 miles) 

(King et al., 1968). The overlying Ocoee Series is divided into three groups: Snowbird, 

Great Smoky, and Walden Creek Groups (Figure 3), each separated by thrust faults 

(King et al., 1958). A large part of the watershed falls under the Great Smoky Group 

which is separated from Snowbird group by a low angle thrust fault called the 

Greenbrier Fault. The Mingus Fault, located in the north of the study area, is a high 

angle reverse fault trending east-west and exposed within the Anakeesta Formation. 

The Oconaluftee Fault that trends NW-SE and dips towards the south, is a right lateral 

fault located in the western part of the study area that separates the Anakeesta 

Formation from Copperhill Formation (Bogucki, 1970). Thunderhead Sandstones 

named after Thunderhead Mountain consist of thickly bedded, fine-grained arkosic 

conglomerate and coarse-grained metasandstone interbedded with graphitic 

metasiltstone and slate.  
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Figure 2: Geological Map of the Study Area (Source: King, Neuman, and Hadley, 

1968). 
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Figure 3: Stratigraphy of Great Smoky Mountain National Park and Vicinity (Source: 

Philip B. King et al., 1968). 

The Anakeesta Formation conformably lies on the Thunderhead Formation and 

contains a great variety of rock, varying in color from dark gray (due to presence of 

graphite) to rusty orange (due to sulfide minerals). The main rock types include 

phyllite, chloritoidal slate, graphitic and sulfidic slate, feldspathic sandstone, 

laminated metasiltstone, and coarse-grained metagraywacke (Southworth et al., 2005). 

The thickness of the formation varies from 610 m (2000 ft) to 1524 m (5000 ft). The 
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formation poses abundant discontinuities in terms of bedding, joint, and cleavage that 

form numerous planes for slope failure (Clark et al., 1987). 

2.3. Debris-slide history 

The study area does not have a consistent documentation of debris-slide information. 

However, previous studies suggest that over time the frequency of debris-slides has 

increased (Clark, 1987 ; Ryan, 1989) and the scars have increased in volume and 

extent moving towards the crest of the ridge (Ryan, 1989). Most of the slides in the 

study area were caused by severe storm events and are listed below in Table 1. Six 

more landslides took place due to extreme rainfall in the vicinity of Anakeesta Ridge, 

however, those were not included in this study because they fell outside the study area.  

Table 1: Past debris flow events in the Upper West Prong River Watershed. 

Date Type of Storm Area 
10 July 1942 Thunderstorm Newfound Gap 
1 September 1951 Cloudburst Mt. Leconte 
15 June 1971  Mt. Leconte 
March 1975 – through 1983 Multiple Storm  Anakeesta Ridge 
August 3,1978 Thunderstorm Mt. Leconte 
Mar / Sep 1985 Thunderstorm Anakeesta Ridge 
July 1984 Thunderstorm Anakeesta Ridge 
10 August 1984  Thunderstorm Anakeesta Ridge 
28 June , 1993 Cloudburst Mt. Leconte 
October 4-6, 1995 Hurricane Opal Mt. Leconte / Anakeesta Ridge  
16-17 September, 2004 Hurricane Ivan Mt. Leconte / Anakeesta Ridge 
August 5-6, 2012 Thunderstorm Anakeesta Ridge 
Sept. 10-14, 2017  Hurrican Irma Anakeesta Ridge 

           (Source: Clark, 1987; Nandi and Shakoor, 2017) 
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3. Methodology 

The study consisted of five distinct parts. First, the debris-slide initiation zones were 

mapped. Second, field data were collected from bedrock exposures and debris-slide 

initiation zones. Third, field data were analyzed to prepare kinematic models based on the 

rock discontinuities. Fourth, ArcGIS 10.5 software was used to build the regional kinematic 

model at the watershed scale. Finally, the kinematic model was validated using the ROC 

curve method. 

3.1. Data collection 

All debris-slide patches or initiation zones were directly digitized as polygons  from 

satellite imagery, and aerial photographs from 2004 to 2018 and verified during field 

surveys. Polygons were converted to shapefile format and projected to North America 

Albers Equal Area Conic projection. The debris-slide location database was split into 

training (75%) and testing (25%) groups. 

Field data collection included site description, GPS location, bedrock type, structural 

discontinuity measurement including dip and dip direction of discontinuity planes, 

topographic slope angle, and direction. Structural discontinuity data were also collected 

from previous literature (Ryan, 1989). Additional rock mass property data were 

collected according to Rock Mass Rating (RMR) System guidelines proposed by 

Bieniawski (1989). A Schmidt hammer was used to measure the uniaxial compressive 

strength of the rock exposure in each field location. Rock Quality Designation (RQD) 

was calculated using the following relation (Palmstrøm, 1982): 

If Jv < 4.5, then RQD of the rock is 100%. 

If JV ≥ 4.5, then RQD = (115 – 3.3 * JV) …….  Equation 1 

where Jv = number of discontinuities present per m3 volume of rock outcrop. 
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Joint spacing was computed by summing the total number of discontinuities per meter 

length of all discontinuity sets (Palmstrøm, 1982).   

Condition of discontinuities and groundwater conditions were estimated qualitatively 

by evaluating the physical condition of the slope and subsequently, a rating was 

assigned to the slope. To estimate the internal  rock friction angle (ϕ), direct shear test 

results from previous studies in the area (Ryan,1989), standard value for rock type 

(West and Shakoor, 2018), RMR rating, and empirical method by Aydan et al. (1993) 

were compared. A conservative value was adopted based on observed field condition.   

LiDAR Digital Elevation Model (DEM) with spatial resolution of 0.76 m was 

downloaded from State of Tennessee GIS Clearinghouse (http://www.tngis.org/). 

ArcGIS 10.5 was used to derive raster maps of slope angle and aspect from the LiDAR 

DEM. 

3.2. Kinematical analysis of debris-slides  

The analysis was performed in two steps. In the first step, the orientations of geological 

structures were plotted in the Stereonet 10.2.0 (Allmendinger et al., 2012) to estimate 

the pole clusters and average trend of different sets of discontinuity planes and the 

plunge of intersection caused by different discontinuity planes. The following 

conditions should be fulfilled for planar and wedge failure (Hoek and Bray, 1981): (1) 

the potential failure plane must have dip/plunge direction similar to the rock face’s dip 

direction, i.e. the potential discontinuity plane must lie at minimum of ± 20° to the dip 

direction of the topographic slope angle, (2) dip/plunge amount of the potential failure 

plane should be greater than the friction angle (ϕ) of the rock but less than the 

topographic slope angle. According to Goodman (1989), pre-condition for topple 

failure, (i) the friction angle (ϕ) of the rock must be less than the dip/plunge of the 

http://www.tngis.org/
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discontinuity, (ii) both discontinuity and topographic slope should be steep, where the 

discontinuity dips opposite to the topographic slope. The above-mentioned conditions 

are expressed in terms of equations 2 & 3 (Ghosh et al. 2010):  

                       ϕ ≤ β  ≤ θ (for Plane and Wedge Failure)……..Equation 2 

                       θ ≥ [ ϕ + (90° - β)] (for Topple Failure)…….. Equation 3 

where θ is the slope angle of the topography with slope aspect ±30° to the dip/plunge 

direction of the discontinuities, β is the dip/plunge amount of the discontinuity and ϕ 

is the friction angle of the rock.  After extracting the average orientation of different 

discontinuity planes in the study area, different kinematically possible failure modes 

associated with discontinuities were plotted in Stereonet 10.2.0.  

In the second stage, slopes greater than the dip/plunge of the discontinuity were 

extracted from LiDAR derived slope angle map using ArcGIS (10.5.1).  Topographic 

slope aspect equal to ± 30° in the dip/plunge direction of the discontinuity were 

extracted from the aspect map. Slope direction range was set to ±30° instead of ±20° 

to capture variation along the dip/plunge direction of discontinuity in meta-

sedimentary rocks of the Great Smoky Group.  Next, the slope and aspect output maps 

were overlaid  using Mask tool for the two raster data layers and the common area of 

both maps was identified as spatial locations for kinematically possible slope failures. 

This process was repeated for each discontinuity that satisfied Equation 2. The 

overlapping area between the slope and aspect maps represented places where either 

planar or wedge failure was possible depending upon the nature of the discontinuity. 

A threshold value of 70° was set for the dip/plunge of the discontinuity planes as the 

pre-condition for topple failure, as applied by Ghosh et al. (2010). Dip angles below 

70° were not further considered for topple analysis. Next, dip or plunge amount and 
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friction angle (ϕ) values were applied in Equation 3 and subsequently potential slope 

gradient was extracted. Topographic slope direction for toppling was extracted at 180° 

to the dip direction with addition of ±30° to determine the topographic slope for topple 

failure. 

Subsequently, using the training data  of the debris-slide initiation zone, the percentage 

of actual debris-slides matched with the kinematically possible potential spatial 

location maps created from equation 2 and 3, were calculated. The percent match of 

individual discontinuities were summed and scaled to 100%. The newly re-calculated 

percentage values were assigned as the weightage of individual discontinuity layer.   

A Weighted Sum Analysis was performed to compute a kinematical susceptibility map 

in a 0-1 scale, based on the influence of the different sets of discontinuities.  Values 

close to 1 indicated high probability of debris-slide and vice-versa. The test data (25% 

of actual debris-slide areas) were used to validate the effectiveness of the susceptibility 

model. To validate the model, a Receiver Operating Characteristic (ROC) curve was 

generated to calculate the Area Under the Curve (AUC) using SPSS software.  
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4. Results 

4.1. Evaluation of rock slope instability in Anakeesta Formation 

The proposed methodology for rock slope instability analysis followed a deterministic 

approach on a GIS platform to model the debris-slide susceptibility of the study area 

solely based on the geometrical relationships between topographical slope and aspect, 

and orientations of the discontinuities. In total, 256 debris-slide polygons were 

mapped, of which 185 polygons were used for model training purposes and the rest 

were used for validation. The majority of the debris-slide areas were concentrated in 

the northeastern part of the study area close to Mt. Leconte peak and surrounding 

ridges (Figure 1).  All slide initiation zones were concentrated in the Anakeesta 

Formation, were within close vicinity of a drainage channel, and commonly occurred 

in concave topographic slopes, which might have initiated by bedrock structural 

discontinuities.  The current study did not focus of genesis of concave slopes and 

drainage channels. 

In the field, 243 discontinuity orientations were measured and an additional 179 

discontinuity orientation data points were used from Ryan (1989) in the same study 

area in the Anakeesta Formation. The pole plot of all discontinuity orientation planes 

is represented in   Figure 5.  Additionally, RMR rating of the rock mass in Anakeesta 

Formation was calculated for fourteen field sites along hiking trails using the 

parameters UCS, RQD, discontinuity spacing, condition, and groundwater condition 

(Table 2).   The RMR rating of the Anakeesta Formation ranged from 55 to 29, which 

belongs to Class III and VI, classified as ‘fair rock’ to ‘poor rock’ after Bieniawski 

(1989).  
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Table 2: RMR (Bieniawski, 1989) information of the Anakeesta Formation. 

Parameters Range  RMR rating Range  
 Uniaxial Compressive 

Strength (UCS) 
10 to 48 (MPa) 4  

RQD  8% to 40 %  8 - 3  
Joint spacing 20 mm to 200 mm 8 

Joint Condition Slightly rough surfaces, 
separation <1 mm, highly 
weathered to slickenside 
surface,  separation <1 mm 

20 to 10  

Ground Water Condition Dripping  -  Dry 15 – 4  
Rock Mass Class   55 – 29  

Class III to VI 
Rock Friction Angle for 

class III and 1V rock 
 25 to 35 and 15 to 25 

degrees 
Average rock friction angle   25 degrees 

 

Friction angle values were also estimated using other methods summarized in Table 3.  

However, rock friction angle value produced by the RMR method was reasonable 

considering the weathering pattern and low RMR in the rock types.  

Table 3: Comparison of friction angle (ϕ) obtained from different sources. 

 

The stereographic projection plots and field investigation showed the presence of four 

dominant planar features (Figure 5). One of the planar features was identified as 

Bedding Plane (52°       151) and the rest were identified as joint sets during field 
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investigation. These four sets of discontinuities could result in 11 possible failure 

modes (Figure 6).  Wedges formed due to intersections of Joint1_ Joint2 and 

Joint2_Joint3 had a plunge amount less than friction angle (ϕ) which automatically 

ruled out the possibility of failure from those two combinations of discontinuities 

based on Equation 2. The remaining nine modes of failure could kinematically take 

place in the study area and are summarized in Table 4. Of the nine sets, four sets of 

possible planar failure maps were presented in Figure 8, and four set of wedge failure 

maps were presented in Figure 7 based on Equation 2. The topple failure map was 

produced based on equation 3, but not presented here due to its very small area of 

coverage. 
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Figure 5: Pole contours of different discontinuity planes in Anakeesta Formation. 

 

 

Figure 6: Average orientation of different discontinuity planes extracted from pole 

clusters in Anakeesta Formation. 
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Figure 7: Probable locations where wedge failure is kinematically possible.      

 

  Figure 8: Probable locations where planar failure is kinematically possible. 
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The number of pixels covering each of nine possible modes of failure due to presence 

of discontinuities were calculated (Table 4). Then debris-slide training data was 

overlaid to compute the number of pixels associated with individual failure mode 

present within each slide areas. Failure mode density was then calculated using the 

Equation 4.  

𝐹𝐹𝐹𝐹𝑖𝑖𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙 𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚 𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑 (%) = 𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹 𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚 𝑖𝑖𝑖𝑖 𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷−𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠
𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇 𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷−𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠

  ……. Equation 4       

where, total numbers of debris-slide pixel (Training data) = 413,406  

 Discontinuity plane Joint2 showed the maximum number of pixels (1,428,953) where 

planar failure mode was kinematically possible (Figure 8), although, the failure mode 

density was 1.03%. Joint1 was the greatest contributor to planar failure, with a failure 

mode density of 5.53%, followed by the sliding along Bedding Plane (1.75%). A 

higher failure mode density implied greater influence on slope instability by the set of 

discontinuities. Joint3 was the least important in terms of planar failure as it suggested 

only 209 pixels had the capability to cause planar failure and represented only 99 

existing debris-slide pixels.  

Wedge combination between Bedding and Joint1 contributed highest to the debris-

slide with failure mode density of 27.04% (Table 4). This was followed by the 

Bedding-Joint2 and Bedding-Joint3 failure mode density of 12% and 4.87% 

respectively. Joint 1-Joint 3 combination had the least influence total failure (4.22%). 

The numbers suggest that combinations of different joint planes with Bedding Plane 

contributed significantly to slope instability in the study area. 

Topple failure was very rare in the Anakeesta Formation and could not be found during 

field investigation. The results also support the observation, only Joint 3 in the study 

area qualified for the topple analysis as the minimum slope angle for the discontinuity 
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has been set to 70° and most of the discontinuities were too shallow to fulfill the 

criteria. However, the result revealed that Joint3 predicted only 1202 pixels of debris-

slide. 

The summation of all failure mode density was 56.753%. Further, this percentage was 

recalculated to 100%, where discontinuity set Bedding – Joint 1 forming wedge had 

the highest weightage (47.645%) and topple failure due to Joint 3 had the lowest value 

(0.510 %) (Table 4). Subsequently, the kinematical susceptibility map was generated, 

and debris-slides polygons were overlaid for visual comparison (Figure 9). 
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          Table 4: Details of different kinematically possible failure modes associated with 

discontinuities and their prediction rate. 
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Bedding 151 52 Planar 89468 7222 1.75 3.08 

Joint 1 255 50 Planar 558955 22874 5.53 9.74 

Joint 2 50 39 Planar 1428953 4295 1.03 1.81 

Joint 3 196 81 Planar 209 99 0.023 0.040 

Bedding – 

Joint 1 

204 37 Wedge 2471782 111769 27.04 47.645 

Bedding – 

Joint 2 

89 32 Wedge 2854179 49646 12.00 21.144 

Bedding – 

Joint 3 

115 47 Wedge 452446 20136 4.87 8.581 

Joint 1 – 

Joint 2 

335 12 Wedge Not 

applicable 
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applicable 

Not applicable 0 

Joint 1 – 

Joint 3 

276 48 Wedge 740664 17456 4.22 7.435 

Joint 2 – 

Joint 3 

110 23 Wedge Not 

applicable 

Not 

Applicable 

Not applicable 0 

Joint 3 196 81 Topple 2595893 1202 0.29 0.510 
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Figure 9: Kinematical susceptibility map of the study area. 
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4.2. Validation 

To validate the model, 1000 points were used, of which 500 points were debris-slide 

data (from the 25% testing dataset) and 500 were non-debris-slide (pseudo point) 

locations.  The debris-slide points were classified as 1, and non-debris-slide points 

were classified as 0.   Subsequently, the data were exported to SPSS statistical software 

(SPSS 24) to generate the Receiver Operating Characteristic (ROC) curve and to 

calculate the Area Under the Curve (AUC) for the susceptibility model. The higher the 

AUC, the better the model is at predicting the presence (1) and absence (0) data 

realistically.  The validation of kinematical susceptibility model yielded AUC value 

of 0.67 for the test data (Figure 10). 
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Figure 10: ROC curve for the Test Data. 
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5. Discussion 

The Kinematical model was developed based on the orientation of mapped discontinuities 

with the assumption that the discontinuities responsible for slope failures in the past, will 

also be responsible for slope failure in the future and are ubiquitously distributed 

throughout the study area showing some variation in orientation. Variation in orientation 

of the discontinuities was confirmed during field study and while plotting the data in the 

Stereonet 10. To accommodate the variability in the discontinuity orientations, slope aspect 

limit was subsequently increased from ±20° to ±30°, which represented the inherent 

inhomogeneity in structural orientations. The majority of the study area was inaccessible 

and covered by heavy vegetation, and lack of good exposures throughout the study area 

made fieldwork somewhat limited. Therefore, discontinuity orientations were mostly 

measured along roadside cut slopes and hiking trails.  

The internal friction angle (ϕ) of the rock was calculated considering the high weathering 

pattern of the rocks to represent the actual field situation.  Lower internal friction angle (ϕ) 

of rocks accounted for highly weathered schist/slate, generally made of low grade 

metamorphic rocks with slaty or crenulation cleavage. The choice of friction angle value 

was comparable with the values mentioned by other researches, except from Ryan’s study 

(1989), where his hand specimen laboratory test results yielded higher fiction angle values.  

It may be possible that the hand specimens were collected from competent sections of the 

formation, rich in secondary quartz mineralization.   

For the Anakeesta Formation, wedge failure was found to be the predominant mode of 

failure followed by planar failure, which supported field observation and was also verified 

from previous studies (Ryan 1989, Bogucki 1970). For wedge failure mechanism, the 

intersection of Bedding Plane and Joint Plane 1 (Bedding_J1) was the most prominent one, 
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which predicted 27% of debris-slide locations in  the training data. The intersections of 

these structural discontinuities had shallow plunge angles that were steeper (greater) than 

the internal friction angle (ϕ) of the rock, making these combinations more vulnerable 

towards kinematical slope failure. On the other hand, most wedge combinations between 

the different joint planes except J1_J1 and J2_J3 had plunge angles less than the internal 

friction angle (ϕ) and were eliminated from the possibility of any kind of kinematic failure. 

Planar failure alone does not seem to have a significant influence on debris-slides. 

However, it is important to note that debris-slides generated during heavy rainfall, can 

increase hydrostatic pressure along these weak discontinuity planes and may eventually 

result in multimode slope failure. Except J3, all other discontinuities in this formation had 

shallow to moderate dip angles, therefore, J3 was  the only structural discontinuity that 

caused possible topple failure, as topple is only possible in steeply dipping discontinuities. 

In the study, only 1202 pixels (0.29%) of the study area were mapped for topple failure, 

and confirmed qualitatively during field investigation. Hence, it was concluded, toppling 

was inconsequential at least in the Anakeesta Formation.  

The accuracy of the kinematic susceptibility model was evaluated by calculating Receiver 

Operating Characteristics (ROC) (Lee, 2005; Fawcett, 2006) and the percentage of known 

debris-slides in various susceptibility categories. In the ROC method, the area under the 

ROC curve (AUC) (values ranging from 0.5 to 1.0), were used to evaluate the accuracy of 

the model. The AUC value for the test data was 0.67. The model showed a moderately high 

prediction rate, which is consistent with other findings, as debris-slides are complicated 

phenomena that often depend on many additional geo-factors like landcover, rainfall, soil 

type, and hydrological condition etc. Therefore, it will be unrealistic to expect a very high 

prediction rate based solely on the kinematical model. However, this study effectively 
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demonstrates the importance of kinematical analysis and the credibility of the kinematical 

susceptibility model to act as an independent variable along with other geo-factors to create 

a robust debris-slide susceptibility map of an area.  

This paper demonstrated a methodology for kinematical model of slope failure where 

knowledge of both engineering geology and GIS technology are required to successfully 

produce realistic results. Absence of debris-slide inventory data from the Great Smoky 

Mountain National Park was one of the main challenges in the study. Developing a debris-

slide inventory database was a difficult task and time consuming.  Hence, study of more 

satellite imagery and field investigations are required to enhance the present inventory 

database and incorporate the slides within other related formations, especially the 

Thunderhead formation. Field studies indicated smaller scale slope instability in the 

adjacent Thunderhead formation is also controlled by geologic discontinuities. In the study 

LiDAR DEM was the best available digital terrain model for topographical mapping 

especially considering spatial resolution and the amount of detail preserved. Slope faces 

were classified for each 0.76×0.76 m2 pixel, therefore, one could easily understand the 

amount of topographical details that have been analyzed and used in this study. However, 

derivatives of the DEM i.e., slope, aspect maps, in some places showed small linear strips, 

which are often associated with LiDAR DEM. The prediction rate of the model might have 

been improved if the linear stripes were not present in the LiDAR data, which broke the 

continuity of the predictive pixels in some part of the susceptibility map. However, 

considering the objective of the study and information sought, usage of the high resolution 

DEM has provided us a satisfactory result for the study area. 
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6. Conclusion 

This paper successfully demonstrates an effective methodology to perform rock 

kinematical analysis in a GIS platform. Traditional stereonet-based kinematical analysis is 

appropriate for detailed site-specific slope stability analysis, however, for a large and 

partially inaccessible area, adopting a GIS-based kinematic model can save considerable 

time and effort. Success of such a kinematical model relies heavily on the accuracy in 

measuring the orientation of geological discontinuities and collection of other auxiliary 

data. Hence, adapting a systematic approach to identifying the correct sets of 

discontinuities and calculating the mean orientation is key to developing a good 

kinematical model.  

In this study, four sets of bedrock discontinuities were identified in low-grade 

metasedimentary Anakeesta Formation, which included one bedding plane and three joint 

planes. Wedges formed due to the intersections of the bedding plane with other joint planes 

were found to be the most crucial mechanisms for slope instability in the study area. A 

moderate prediction rate of the kinematical model suggested the influence of additional 

factors in controlling debris-slide initiation. Pragmatically, orientation of geological 

structures single handedly cannot control slope stability or initiate a debris-slide in an area. 

Rather, unfavorable structural orientations combined with adverse spatial distribution of 

other factors like rainfall intensity, drainage pattern, landcover etc. as a whole controls the 

distribution of debris-slides. 

The final kinematical susceptibility model was developed using a two stage approach. In 

the first stage, deterministic models were developed by executing the kinematic equation 

in a GIS platform based on the mean orientation of the discontinuities and topographic 

slope angle and aspect. In the second stage, a weighted sum analysis was performed to 
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refine the models based on known debris-slide initiation areas. The final kinematical 

susceptibility map was produced that numerically predicted the probability of geological 

discontinuity-controlled failures in the area, which is also a function of topographical slope 

angle, aspect, and lithology. Therefore, the kinematical susceptibility map can replace all 

the above mentioned geo-factors in order to run multi-criteria analysis for debris or other 

landslide susceptibility models and act as an independent geo-factor. The study concluded 

that the kinematical susceptibility maps can serve as the base maps to identify target areas 

for detailed geotechnical surveys, which will save considerable amount of time and money. 
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CHAPTER 3 

Application of Knowledge-driven Method for Debris-Slide Susceptibility Mapping in Regional 

Scale 

Abstract 

Debris-slides are a frequent hazard in fragile decomposed metasedimentary rocks in the Anakeesta 
rock formation in Great Smoky Mountain National Park. The spatial distribution of existing debris-
slide areas could be used to prepare susceptibility maps for future debris-slide initiation zones. 
This work aims to create a debris-slide susceptibility map using a knowledge-driven method in a 
GIS platform in Anakeesta Formation of Great Smoky Mountains National Park. Six geofactors, 
namely, elevation, annual rainfall, slope curvature, land cover, soil texture and various slope 
failure modes were used to create the susceptibility map. Debris-slide locations were mapped from 
satellite imagery, previous studies, and field visits. A Weighted Overlay Analysis was performed 
to generate the final susceptibility map, where individual classes of geofactors were ranked and 
were assigned weights based on their influence on debris-slides. The final susceptibility map was 
classified into five categories: very low, low, moderate, high and very high susceptibility zones. 
Validation of the result shows very high category predicted ~10%, high and moderate categories 
predicted 75.5% and ~14.5% of the existing debris-slide pixels respectively. This study 
successfully depicts the advantage and usefulness of the knowledge-driven method, which can 
save a considerable amount of time and reduce complicated data analysis unlike statistical or 
physically based methods. However, the accuracy of the model highly depends on the researcher’s 
experience of the area and selection of appropriate geofactors.  
 
Keywords: Debris-slide Susceptibility; Heuristic; Weighted Overlay Analysis; Great Smoky 
Mountains National Park.  

1. Introduction 

Debris-slides are fast movements of earth materials, which occur mid-latitudes including 

subarctic regions (Rapp and Stromquist, 1976) and humid tropics (Simonett, 1970). Debris-

slides are common in the Appalachian Valley and Ridge, and Blue Ridge physiographic 

provinces of the United States (Bogucki, 1976). Van Westen (1993) discussed that under 

the presence of favorable causal and triggering factors, such as earthquakes and extreme 

rainfall, most of the mountainous terrains are susceptible to slope failure.   The same was 

pointed out by Bogucki (1976), who found that a combination of Appalachian slope and 

rainfall has eroded the mountains by several thousand noticeable debris-slides. About 2000 
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slides have formed in Georgia, North Carolina, Tennessee, Kentucky, West Virginia, and 

Virginia and as many as 200 deaths that may have been caused directly by slide activity 

from 1940 to recent (Scott 1972, Wooten, et al., 2016). Additionally, these events have 

caused damage to homes, property and road networks, and have had major impacts on 

federal lands.   

It is important to develop a detailed understanding of the causes and mechanisms of debris-

slide events for better prediction and risk assessment. One of the preliminary steps to 

evaluate events and predict future slide related hazards is to develop debris-slide 

susceptibility maps (Pradhan, 2011). These maps are used to identify zones that are prone 

to mass failures depending on geofactors that have caused slides in past. Presumably, the 

same factors would cause the slides in future (Varnes, 1978; Carrara et al., 1995; Guzzetti 

et al., 1999).  Geographic Information Systems (GIS) provides a powerful tool to analyze 

spatial hazard related data, and hence, it has become an indispensable tool for regional slope 

failure hazard and risk analysis. Several authors have applied different methods to map 

slope failure susceptibility and hazard (e.g., Nandi and Shakoor, 2010; Pradhan, 2011; Lee 

and Pradhan, 2007). Regional slope failure mapping is generally grouped into three 

categories: (i) heuristic or knowledge-driven methods (ii) data-driven methods and (iii) 

physically-based models.  The heuristic methods are again divided into direct or indirect 

methods. A direct heuristic method deals with detailed field investigation of area’s 

geomorphology, geology, and hydrology (Brabb, 1984). The accuracy of the method is 

highly dependent on the experience of the investigator and the precision level of the work 

(Ghosh et al., 2013). On the other hand, indirect heuristic methods are based on assigning 

weights or rating to individual geofactors according to their importance, which is solely 
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decided by the investigator, based on similar existing research (Hansen, 1984; Varnes, 

1984). 

Data-driven methods are mostly statistical, which include bivariate and multivariate 

analysis and are primarily based on observed data of landslide occurrences and relevant 

spatial geofactors (Nandi and Shakoor, 2010; Ghosh et al., 2013). In these methods, several 

causative factors for debris-slides are integrated with the slide inventory to statistically 

model the relationship between the geofactors and slope failure.(Van Westen, 1993).  Nandi 

and Shakoor (2017) used the same approach to study debris-slide susceptibility in Upper 

West Prong Little Pigeon River (WPLPR) watershed in the southern Appalachian 

Mountains, where debris-slide locations were identified from aerial photographs and 

satellite images. Topographical, bedrock geology, and hydrological data were collected, 

processed, and constructed into a spatial database using GIS.  A Logistic regression model 

was used to evaluate the role of these factors in controlling debris-slide susceptibility. 

While the method was rigorous and powerful, the limitations of the method were (i) time 

consuming and not recommended for urgent projects, and (ii) rock discontinuity data were 

not used as an input variable. Therefore, the objective of this research is to include bedrock 

discontinuity data that play crucial role in controlling the debris-slide events in the form of 

rock kinematical index, and create a knowledge-driven susceptibility model for predicting 

the spatial probability of debris-slide initiation zones. 

2. Study area  

The study was conducted in the Anakeesta rock formation in the Upper West Prong Little 

Pigeon River watershed (WPLPR), Great Smoky Mountain National Park, TN. The 

elevation of the study area ranges from 1105 m to 2010 m.  Temperature in Great Smoky 
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Mountains varies from -2.2˚C (28 ˚F) to 31.1˚C (88˚F) at the base and -7.2˚C (19 ˚F) to 

18.3˚C (65˚F) at the ridges.  The area receives annual rainfall of 1397 mm (55 inches) at 

the base and 2159 mm (85 inches) at the highest point of the park. The rainfall increases 

with increase in elevation and is highest at the Anakeesta Formation. Torrential rainfall 

associated with severe thunderstorms and hurricanes are the main triggering factors for 

debris-slides in the study area (Bogucki, 1976; Clark, 1987). 

Geologically, the Anakeesta Formation is characterized by fine grained dark colored 

sedimentary and metasedimentary rock having craggy pinnacle structure i.e., needle-

shaped rock faces and steep slopes. The dark color of the rocks is mainly due to the 

presence of graphite and some part of the formation exhibit a rusty orange color due to the 

presence of iron sulfide minerals, mainly pyrite. The main rock types include phyllite, 

chloritoid slate, graphitic and sulfidic slate, feldspathic sandstone, laminated metasiltstone 

and coarse grained metagraywacke (Southworth et al., 2012).  Different sets of 

discontinuities exist in the form of joints, fractures and to some extent as cleavage, which 

enhances weathering along these discontinuity planes. 

 

 

 

Fig. 1. Study area (a), Debris-slide initiation zones photos in Anakeesta Formation (b, c). [Photo 
courtesy: Greg Hoover (b) gosmokies.knoxnews.com (c)] 

b 

c 
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3. Methodology  

The present study used both digital data and field investigation, which are described in the 

following sections. 

3.1. Digital Data  

To create the debris-slide susceptibility map, six geofactors, namely, elevation, rainfall 

accumulation, soil texture, land cover, slope curvature, and various bedrock 

discontinuity layers responsible for slope failures were used. Elevation and slope 

curvature maps were derived from LiDAR Digital Elevation Model (DEM) of 0.76 m 

spatial resolution. The LiDAR DEM for Tennessee is available at TNGIS website 

(http://www.tngis.org/). Soil texture, land cover and rainfall accumulation maps were 

collected from the National Park Service’s database 

(https://irma.nps.gov/DataStore/Search/Quick) (Fig.2.a-e).  Debris-slide initiation 

locations were digitized from historical to recent aerial photos and satellite imageries, 

and about 30% of the locations were confirmed during field studies.  The debris-slide 

initiation locations were used to evaluate the suitability of susceptibility analysis.    

3.2. Field investigation and Kinematical index 

Geometrical relationship between orientations of the topographic slope and geological 

discontinuities play an important role in controlling slope instability in an area; this is 

known as rock kinematics.  Slope instability analysis based on this mutual relationship 

is known as rock kinematic analysis. Factors like topographic slope angle and aspect, 

internal friction angle of the rock, and orientation of geological discontinuities relative 

to each other control slope stability within a rock mass. Depending upon the number 

of geological discontinuities and their orientations with the topography, three different 
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modes of rock failure can occur (i) Planar (ii) Wedge (iii) Topple (Eq. 1 and 2) (Ghosh 

et al., 2010).  

                     ϕ ≤ β  ≤ θ (for Plane and Wedge Failure)                                         (1) 

                       θ ≥ [ ϕ + (90° - β)] (for Topple Failure)                                                               (2) 

The kinematical index layer was prepared using the geometric relationship between 

geological discontinuities and the topographic slope angle and direction (Fig. 2f). 

From field mapping and previous work, structural orientations (dip angle and dip 

direction) of a total of 313 discontinuities were used in the study.  The internal friction 

angle (ϕ) of the bedrock was estimated from Rock Mass Rating system data collected 

in the field (Bieniawski, 1989). Topographic slope angle (θ) was obtained from the 

LiDAR DEM, dip/plunge angle (β) and direction of discontinuities were obtained by 

plotting the structural data in Stereonet 10 software (Allmendinger et al., 2012).  

Subsequently, equations 1 & 2 were used in ArcGIS to spatially detect the areas where 

slope failures were kinematically possible (Ghosh et al. 2010): 

Eleven combinations of planar, wedge, and topple failures were possible in the study 

area that produced 11 different kinematic layers susceptible to failure. Wedge type 

failures were dominant in the study area, and were more prevalent in bedding                                 

(52°       151°) and one of the joint plane (50°      255°) governed discontinuities. All 

layers were ranked based on presence of actual debris-slide initiation locations, and 

the ranked layers were combined into one kinematic index layer. A detailed 

description of the preparation of composite kinematic index layer is presented in a 

forthcoming paper (Das, et al., in preparation).  
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A Weighted Overlay Analysis was performed to generate the debris-slide 

susceptibility map, using a heuristic approach. Weighted Overlay Analysis tool is 

available in the Spatial Analyst extension in ArcGIS 10.5.  All geofactor layers were 

converted into raster format and rescaled to a 0.76 m grid size.  Based on field studies 

and prior knowledge of the study area, individual classes of the geofactors were ranked 

and relative weights were assigned to each individual geofactor. The weights 

represented the degree of influence of individual geofactors in producing debris-slides 

in the region on a scale of 0 to 100 that added up to 100%.  Table 1 summarizes the 

different geofactors and their corresponding weighting that were used in the 

susceptibility analysis. A flow chart provides a step by step process of the methodology 

(Figure 3). 

Table 1. Summary table of the geofactors. 
 

Geofactor Source Average (Range)  Weight 

Elevation Digital Elevation Model 1526 m (1105m – 2010m) 30 

Rainfall National Park Services 2051mm                                                          
(1854mm– 2159mm) 

25 

Soil National Park Services Channery loam, Channery 
silt loam, Loam, Slide area, 
Peat,                                               
Very Channery loam 

15 

Kinematical 
Index 

Digital elevation model 
and Lithological map 
(National Park Service)                                                      

5.68 (0 - 57.95) 15 

Land cover National Park Services Barren land, Deciduous 
forest, Developed Open 
space, Developed  low 
intensity, Developed 
medium intensity, 
Evergreen Forest, Mixed 
Forest, Shrub 

10 

Curvature Digital Elevation Model -6.62 (-6839   to + 11380) 5 
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Fig. 2. Geofactors used in generation of susceptibility model : (a) Land cover (b) Elevation (c) Curvature 
(d) Annual Rainfall (e)  Soil Texture (f) Kinematical Index. 
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Fig. 3. Flow chart of the methodology  
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4. Result 

In the study area, 256 debris-slide initiation zones were identified (Fig. 1a).  Majority of 

debris-slides were present in the Newfound Gap and Mt. LeConte areas in the northeastern 

corner.  The elevation of the area ranges from 1105 m to 2010 m with a mean of 1526.64 

m (Fig. 2b), rainfall varied from 1854.2 mm to 2159 mm (Fig. 2d) and curvature ranged 

from -6839.87 to +11380 with a mean of -6.62 (Fig. 2c) (Table 1).  A negative curvature 

value stands for upwardly convex surface and positive value indicates concave surface at 

that cell. 

The debris-slide initiation zone susceptibility map from the Weighted Overlay Analysis 

was classified into: very low, low, medium, high, and very high susceptibility categories 

(Fig. 4). Only 0.03 % and 9% of the total map area was located under very low and low 

susceptibility zones, respectively. When the map was compared with actual debris-slide 

initiation zones, these low and very low susceptibility areas exhibited no trace of past or 

recent slide activity. Medium susceptibility zones occupied 43.43% of the study area and 

predicted 14.44 % of actual debris-slide occurrence zones. High susceptibility zones 

represented the largest area in the map (45.43%) and accounted for 75.53 % of slides in the 

study area. Very high susceptibility covered only 2% of the total study area; however, 

nearly 10% of the known slide locations were in this zone (Fig. 5).   
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Fig. 4. Debris-slide susceptibility map. 

 

 
Fig. 5.  Debris-slide susceptibility zones compared to the known slide initiation areas. 

5. Discussion  

Anakeesta Ridge in the northeastern part of the study area has experienced failures in the 

past and is expected to experience failures under the present climatic, geological, and 
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hydrological conditions. Failures in high elevation, and high rainfalls area support the 

finding. Additionally, the very channery loam soil texture seems to have a positive 

correlation with debris-slide initiation zones. These soils are subangular, blocky, and friable 

earth materials derived from weathering of the phyllitic Anakeesta Formation. Evergreen 

forest and shrub are the dominant vegetation in the area and show strong spatial relation 

with debris-slides. Curvature does not reveal any trend with the initiation of slides, debris-

slides could be found in both concave and convex surfaces. The field study and spatial 

analysis suggested the presence of kinematically triggered failures due to movement of 

geological discontinuities within bedrock.  The investigation also suggested that initial 

wedge failures dominated the slides on steeper slopes and these slides were eventually 

converted into debris flows with increasing water content, and soil/decomposed 

plant/broken rock debris as they moved along existing drainage channels. The present 

drainage channels were probably paleo debris flow channels, but they were not studied 

during this research.  

The model predicted the existing debris-slides with high accuracy, where 86% of the known 

slides were situated in high and very high susceptibility categories. However, this study 

focused on rapid analysis using a heuristic approach. Success of a heuristic model relies on 

the expert’s opinion and selecting incorrect geofactors and assigning inappropriate 

weighting can lead to erroneous results.  Future work will apply data-driven statistical-

based approaches like logistic regression or artificial neural networks to model the debris-

slide susceptibility and compare the results with the heuristic approach used in the existing 

study.  

 The study used 256 debris-slide initiation zones; however the dates of failure were 

unknown, therefore, several thunderstorms and hurricanes induced debris-slides could not 
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be studied. That hindered the spatio-temporal probability analysis of debris-slides in the 

area.  In the future, a time-stamped debris-slide inventory should be generated in order to 

provide a complete spatio-temporal hazard analysis of the area.  

6. Conclusion  

This paper successfully demonstrated the usefulness of the heuristic model or knowledge-

driven method to rapidly generate a debris-slide susceptibility map.  This study also 

introduced a kinematical index layer, which is a new addition, and could be included as one 

of the structural geology based geofactors for debris-slide susceptibility modelling.  A 

satisfactory result was achieved by using this new variable. Validation of the model shows 

most of the debris-slides (86%) were located in very high and high susceptible zones. 

Therefore, it can be concluded that the geofactors used in this study were appropriate for 

the region’s conditions and most likely are important inpredicting debris-slides in the study 

area.  
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CHAPTER 4 

Debris-slide Susceptibility Mapping Using Logistic Regression, Maxent, Information Value 

Method and Frequency Ratio in The Great Smoky Mountains National Park, TN 

Abstract 

Debris-slide is one of the main forms of slope failures that has been causing slope instability for 
the past couple of decades in the Anakeesta ridge of Great Smoky Mountains National Park 
(GRSM). Creating a debris-slide susceptibility map is one of the most effective ways to understand 
the spatial probability of any future debris-slide event. Methods for developing debris-slide 
susceptibility map can be broadly classified into two groups: data-driven and knowledge-driven. 
The objective of the study was to create four data-driven debris-slide susceptibility maps using 
two multivariate models (logistic regression and Maxent) and two bi-variate models (Information 
Value Method and frequency ratio) in the Anakeesta rock formation of GRSM and compare the 
efficacy of the models. In order to develop the models, six debris-slide causing factors or geo-
factors, including elevation, curvature, soil texture, land use, annual rainfall and geological 
discontinuity data (kinematic index) were used in the study. Debris-slide locations were mapped 
using satellite imagery and aerial photographs from 2004 to 2018, which were further verified 
during field surveys. Subsequently, the debris-slide data set was randomly divided into 75:25 ratio 
for training and testing purpose. 

Information Value Method and frequency ratio models were developed using ArcGIS 10.6.0. Both 
models calculate density of debris-slides within the individual classes of geo-factors, however, 
each uses a different statistical formula. Logistic regression model was developed in ArcGIS 
10.6.0 and SPSS, using dichotomous debris-slide data, where the regression coefficients were 
calculated in SPSS software and the logistic regression equation was executed in ArcGIS. Maxent 
model was generated in the standalone version of Maxent software using presence only debris-
slide data. The efficacy of the models was tested using area under the Receiver Operating 
Characteristic (ROC) curve, which yielded 0.855, 0.863, 0.856 and 0.853 for IVM, frequency ratio, 
logistic regression and Maxent respectively. Considering pros and cons of the models and the 
closeness of the ROC value, it was difficult to select the best model. However, frequency ratio 
performed slightly better than other models in terms of ROC curve value. These debris-slide maps 
contain important pieces of geo-technical information that might be helpful to administrators and 
planners to select places for further infrastructure development as well as to carry out detailed geo-
technical investigation in selected locations.   

Keywords: Debris-slide Susceptibility, Great Smoky Mountains, Information Value method, 
Frequency Ratio, Logistic regression, Maxent. 
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1. Introduction  

Throughout the history of the earth, mountainous terrains have been subjected to various 

large and small-scale mass movements, resulting in degradation of slopes and shaping of 

the landscape. Under the presence of favorable causal and triggering factors, such as 

earthquakes and extreme rainfall, most mountainous terrain has undergone at least one type 

of slope failure (Van Western, 1993). Mass movements in terms of rockslide, debris-slide, 

mudflow, avalanche etc. are one of the major natural disasters, which cause significant 

infrastructural damage, and loss of life and properties. Therefore, it is important to develop 

a detailed understanding of the causes and mechanisms of such events for better prediction 

and prevention planning. The terminology “landslide” includes a wide range of mass 

movement processes that cause slope instability due to downward movement of slope 

material such as rock, soil, secondary weathered material, or combination of these. Debris-

slide is one category of landslides that involves chaotic movement of rock fragments and 

debris within coarser soil type (Varnes, 1978). Debris-slides generate when unconsolidated 

rock fragments mixed with sand or soil become saturated with water and roll rapidly 

downslope from the steeper slopes. With increase in water content, a debris-slide can gain 

more speed and transform into a debris flow or debris avalanche. 

All 50 states in United States are prone to landslides, however, physiographic provinces 

like the Rocky Mountains, Appalachian Mountains, and Pacific Coastal Ranges are marked 

as zones of “severe landslide problems” by USGS (www.usgs.gov). On average, landslides 

cause 25-50 casualties each year in the United States (USGS). Direct effects of landslides 

includes loss of human life, damage of properties and natural resources, interruption in 

communication etc. (Gupta and Joshi, 1990). Because landslides occur at a local scale, and 
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therefore, despite their magnitude and effect, they may remain unrecognized so that people 

often don’t consider landslides as a major hazard (Henderson, 1997). 

While addressing the debris-slide or other slope failure phenomena, it is important to 

develop a detailed understanding of the factors causing failure and their relationship with 

different types of slope failure. Debris-slide causative factors includes local geology, slope 

angle, relief, lithology, soil type, land use, drainage pattern etc. (Nandi and Shakoor, 2010; 

Ghosh et al., 2013). The primary causative factors for a landslide can be determined by 

examining the landslide patch that has experienced repeated sliding over a long period of 

time and hence, this makes landslide a predictable geological hazard (Jones, 1992). One of 

the primary steps to predict the zones for future landslide is to develop a landslide 

susceptibility map based on these landslide causative factors often known as geo-factors. 

Therefore, accuracy of a landslide susceptibility map heavily relies on the identification of 

the correct sets of geo-factors and importance of these geo-factors considerably varies in 

different physical environment (Ghosh et al., 2013). Landslide susceptibility maps aim to 

demarcate future landslide zones with the assumption that the factors responsible for past 

landslide, most likely will cause sliding again in the future (Varnes, 1978; Carrara et al., 

1995; Guzzetti et al., 1999). 

To develop the landslide susceptibility map, varieties of methods are available, which are 

broadly classified into three groups (i) knowledge driven or heuristic, (ii) data driven or 

empirical, and (iii) deterministic. Heuristic approaches are entirely based on the judgement 

of the expert/scientist, who collects data and conducts the survey. The main advantage of 

this method is that it is independent of historic landslide data. However, the validation of 

the model becomes difficult in this situation (Ghosh et al., 2013). The heuristic approach 
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can also be termed as ‘Expert Evaluation Approaches’ (Lerio, 1996) are further divided 

into two types, (i) direct method and (ii) indirect method. In the direct heuristic method, 

the scientist directly carries out a detailed landslide assessment based on his/her experience 

of dealing with similar kind of situations in other areas and performs a slope instability 

analysis directly from geomorphological mapping (Aleotti and Chowdhury, 1999). 

However, absence of explicit rules for the assessment and subjectivity in selection of 

causative factors and techniques for the evaluation are some disadvantages of this method, 

which creates difficulties for other investigators to update the landslide susceptibility maps 

and compare their results (Leroi, 1996; Van Westen et al., 2003). While applying the 

indirect heuristic approach, the expert selects the geo-factors responsible for landslides 

based on his/her personal experience and assign weighted values to the factors depending 

upon the contribution of factors in causing the slope instability (Soeters and Van Westen, 

1996). Further, numerical rating of indirect method can be either predefined e.g., Bureau 

of Indian Standard (BIS) method in India or expert driven such as Multi-class overlay, 

Fuzzy-logic etc. (van Western, 1996).  Again, in the case of indirect methods, the 

subjectivity of assigning weights to the individual classes of the factors is at the sole 

discretion of the experts; therefore, assignment of weights to the geo-factor will 

significantly vary among the investigators. However, heuristic methods allow more 

flexibility to understand the role of different geo-factors in causing slope instability in a 

specific geo-environment, as the role of these geo-factors might changes with changes in 

geo-environmental condition (Ghosh et al., 2013). 

Data driven or empirical methods apply the statistical and mathematical relationship 

between the landslide causing factors and occurrence of landslides. Statistical methods use 

a data driven approach for landslide susceptibility analysis for the historical landslide data 
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and associated causing factors to determine their relative importance and inter relationships 

(van Westen, 1993; Guzzetti et al., 1999; Ghosh et al., 2013). With emergence of GIS 

technology, application of statistical approaches became popular in landslide susceptibility 

analysis (Aleotti and Chowdhury, 1999), as they enable susceptibility analysis at a greater 

spatial extent. Currently, upgraded versions of GIS softwares provide advanced tools to 

perform complex statistical analysis and have become indispensable for landslide 

susceptibility analysis. Statistical approaches can be either bivariate or multivariate. In 

bivariate analyses different landslide causing geo-factors such as terrain slope angle, 

lithology, land use, elevation etc. are evaluated individually against occurrence of the 

landslide. Information Value Method (IVM), Frequency ratio, Weight of Evidence (WofE) 

are some of the bivariate models, which calculate the density of landslides in different 

classes geo-factors using different statistical equations. A multivariate statistical approach 

involves simultaneous processing of multiple geo-factors against the landslide data. 

Logistic regression and discriminant analysis are two of the frequently used multivariate 

statistical approaches in landslide study (Ayalew and Yamagishi, 2005). Discriminant 

analysis works well with continuous variables (Clerici and Dall’Olio, 1995); whereas, 

logistic regression can handle both continuous variables such as slope, relief, curvature etc. 

and categorical variables like lithology, soil type etc. as well as the ordinal variables or 

ranked variables. However, most of the multivariate analyses somewhat work as a black-

box model and one of the main constraints of the model is that it does not consider inherent 

relationships between landslide and geo-factors while generating the landslide 

susceptibility model (Ghosh et al., 2013). A summary of pros and cons of these models 

have been provided in Table 1. Deterministic approaches are widely used in site-specific 
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engineering projects to determine the slope stability in terms of Factor of Safety calculation 

(Aleotti and Chowdhury, 1999). 

In the Appalachian highlands, debris-slides and debris flows are very frequent events and 

more than 3000 slides have been recorded in this region (Pariseau and Voight, 1979). Since 

1940, as many as 200 deaths have been reported in the Appalachian region as a direct effect 

of mass movement activities (Scott 1972, Wooten, et al., 2016).  

Table 1: Comparison of different models. 

Parameters Knowledge-driven 
method 

Data-driven method 

Debris-slide inventory Not required Required. 
Expert input Highly required. Only for selecting geo-factors. 

Rule for selecting weightage or 
co-efficient of the geo-factors. 

Selected by the expert. Calculated based on statistical 
or mathematical relationship 
with occurrence of debris-

slide. 

Model generation process Mostly explicit. Most of the bi-variate models 
are explicit but multivariate 
models work as black box. 

Model Validation Difficult for qualitative 
models. 

Mostly done using the ROC 
curve. 

Software requirement Can be done in GIS. Bi-variate models can be 
generated in GIS but 

multivariate models require 
addition software. 

Complexity involved Flexible Moderate to highly 
complicated. 

Time Model can be generated 
in a short amount of 

time. 

Model generation is a rigorous 
and time-consuming process. 
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2. Objective of the study 

The primary objective of the study is to compare the efficacy of four different debris-slide 

susceptibility models using Information Value Method (bivariate), Frequency Ratio 

(bivariate), Logistic Regression (multivariate) and Maximum Entropy Model 

(multivariate). The secondary objective is to identify the most import geo-factors for 

causing debris-slide in the area.  

3. Background  

3.1. Study area 

3.1.1. Climate 

The study was conducted in the Anakeesta rock formation; surrounding the 

Anakeesta Ridge, part of the Upper West Prong Little Pigeon River watershed 

in Great Smoky Mountains National Park (GRSM) (Fig. 1). Elevation of 

Anakeesta ridge ranges from 1105 m (3625 feet) to 2010 m (6594 feet). The 

Climatic pattern of the GRSM varies significantly with change in elevation and 

the area hosts variety of microclimates, which are mainly caused by difference 

in solar illumination, altitude, and orographic effects (Band and Moore, 1995). 

GRSM receives annual rainfall of 1397 mm (55 inches) in valleys to over 2195 

mm (85 inches) on park ridges. Maximum intensity in rainfall can be observed 

during the summer time ranging from >1inch/hour to > 3inch/24 hours (TVA, 

1937). Both intensity and amount of rainfall increases with increase in the 

elevation (Bogucki, 1972). Anakeesta Ridge receives the highest annual rainfall 

within the park, which triggers debris-slide in the area (Bogucki, 1970; Scott, 

1972). Temperature varies from -2.22˚C (28 ˚F) to 31.11˚C (88˚F) at the base 
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and -7.2˚C (19˚F) to 18.33˚C (65˚F) at the top of ridges. The area receives 

average (annual) 2.45 cm (1 inch) snow at the base and nearly 60.96 (24 inches) 

at the top (Fig. 1). 

Figure 1: Digital Elevation Model of the study area with debris-slide locations in the 

GRSM. 
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3.1.2. Geological setting 

Metasedimentary rocks dominate the lithology of the Great Smoky Mountains 

National Park with occasional occurrence of igneous rocks (Fig. 2). The rock 

types of the study area belong to Ocoee Supergroup, which is primarily 

characterized by metasedimentary rocks such as sandstone, interbedded slates, 

phyllites and schists. Sedimentary rocks of Ocoee series were originally 

deposited as unconsolidated sand, silt, clay and fine gravel at the bottom of the 

ocean during the Cambrian period, which eventually consolidated together into 

sedimentary rock layer with a thickness over 20,000 feet  (King et al., 1950) 

(Fig.3). The formation shows the signature of varying grade of metamorphism 

along with complexly folded and faulted structures (King et al., 1968). The 

underlying basement complex is composed granite and metasedimentary gneiss 

of earlier Precambrian age (Moore, 1988). The Ocoee series of rocks occur 

beyond the Great Smoky Mountains and has a spatial extent from Asheville, 

North Carolina to Cartersville, Georgia, encompassing a distance of more than 

225 km (175 miles) (King et al., 1968). 
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Figure 2: Geological Map of the Study Area. (Source: King, Neuman, and Hadley, 1968). 
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Figure 3: Stratigraphy of Great Smoky Mountain National Park and Vicinity 

(Source: Philip B. King et al., 1968). 

The Ocoee series is divided into three groups: Snowbird, Great Smoky and 

Walden Creek Group, which are separated from each other by major thrust 

faults (King et al., 1958). The study area is part of Anakeesta Formation of 

Great Smoky group. Outcrops of the Anakeesta Formation are characterized by 

craggy pinnacle structures, having steep slope and consisting of numerous 

bedding, joint and cleavage planes that provides abundant discontinuity 

surfaces for slope failure (Delcourt and Delcourt, 1985). The Anakeesta 
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Formation hosts a variety of rock types and shows significant contrast in color, 

which varies from dark grey due to presence of graphite to rusty orange due to 

sulfide minerals (Fig. 2). The dominant rock type of the formation includes 

phyllite, chloritoidal slate, dark grey graphitic and sulfidic slate, feldspathic 

sandstone, laminated metasiltstone and coarse grained metagraywacke 

(Southworth et al., 2005).  

Three major faults of the Great Smoky Mountain play a crucial role in the 

structural arrangement of the rocks (Moore, 1988). The Great Smoky group is 

separated from the underlying Snowbird group by a low angle NE-SW trending 

thrust fault called Greenbrier Fault, which is located north of the study area. 

The Oconaluftee fault is a right lateral fault located southwestern part of the 

study area that separates lower tongue of the Anakeesta Formation from 

Copperhill formation by approximately 0.8 km (Ryan, 1989). The fault trends 

NW-SE and dips towards southeast with an angle of 25˚ to 55˚ (Bogucki, 1970). 

The Mingus fault is a high angle reverse fault that trends almost east west and 

goes through the Anakeesta Formation (Hadley and Goldsmith, 1963). The 

Mingus fault has displaced the outcrop of Anakeesta Formation by 

approximately 1.5 km (Ryan, 1989). 

 

3.2. Debris-slide History 

Most of the debris-slides in the area are triggered by torrential rainfall associated with 

thunderstorms and hurricanes (Henderson, 1997). Previous research has reported a 

steady increase in landslide activity since 1940 (Clark, 1987; Ryan, 1989; Henderson, 

1997) and along with the formation of new debris-slide scars, the older scars have 
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enlarged and many of these have moved retrogressively towards the crest of the 

mountain (Ryan, 1989). However, despite of having such a long history of debris-slide 

activity, no systematic documentation of past debris-slide documentation exists. A 

very few debris-slide events were recorded but no data about the spatial extent or 

volumetric loss during these events are available (Table 2). 

On January 16th 2013, a massive slope failure took place on U.S highway 441 that 

destroyed about 200 m road segment. As per National Park Service report, the slide 

generated 70,000 cubic meters of material and moved nearly 243 meters downslope. 

The slide was caused by torrential rainfall as the area received more than 8 inches 

(203.2 mm) of rainfall in a 24-hour period before the sliding, which eventually 

saturated the soil and debris with water and triggered the disaster. 

Table 2: Past Debris-slide events in the area. 

Date Type of Storm Area 
10 July 1942 Thunderstorm Newfound Gap 
1 September 1951 Cloudburst Mt. Leconte 
15 June 1971  Mt. Leconte 
March 1975 – through 1983 Multiple Storm  Anakeesta Ridge 
August 3,1978 Thunderstorm Mt. Leconte 
Mar / Sep 1985 Thunderstorm Anakeesta Ridge 
July 1984 Thunderstorm Anakeesta Ridge 
10 August 1984  Thunderstorm Anakeesta Ridge 
28 June , 1993 Cloudburst Mt. Leconte 
October 4-6, 1995 Hurricane Opal Mt. Leconte / Anakeesta Ridge  
16-17 September, 2004 Hurricane Ivan Mt. Leconte / Anakeesta Ridge 
August 5-6, 2012 Thunderstorm Anakeesta Ridge 
January 16, 2013 Torrential Rainfall U.S. highway 441 
Sept. 10-14, 2017  Hurricane Irma Anakeesta Ridge 
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4. Methodology 

The study consisted of three distinct parts. First data were collected, including mapping of 

debris-slide initiation zones. Second, four data-driven debris-slide susceptibility models 

were developed using Information Value Method (IVM), frequency ratio, logistic 

regression and Maximum Entropy Model (Maxent). Of the four models, IVM and 

frequency ratio are bi-variate models and logistic regression and Maxent are multivariate 

models. The models were developed in ArcGIS and SPSS, except Maxent, which was 

developed using the standalone version of Maxent software. Finally, the models were 

verified using the area under ROC curve in SPSS software. 

4.1. Data  

4.1.1. Debris-slide location  

Debris-slide patches were mapped using satellite imageries and aerial 

photographs from the year 2004 to 2018, which were also verified during the 

field survey (Fig. 1). In total, 256 debris-slide initiation zones were identified 

in the study area, with a cumulative area of 307,658 m2. The debris-slide data 

set was randomly divided into 75:25 ratio, where 75% of the data were used for 

building debris-slide initiation zone susceptibility models and 25% were kept 

for model validation.  

4.1.2. Digital Elevation Model (DEM) 

The LiDAR Digital Elevation Model having spatial resolution of 0.76 meter 

(2.49 feet) was used in this study. LiDAR DEM for the entire state of Tennessee 

is available in TNGIS website (http://www.tngis.org/). The DEM was 

http://www.tngis.org/
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processed in ArcMap 10.6.1 to generate elevation (Fig. 4a) and slope curvature 

(Fig. 4b) maps of the study area. 

4.1.3. Kinematic Index layer 

The geometrical relationship between the orientations of topographical slope 

and aspect with geological discontinuities can play a crucial role in controlling 

slope stability within a rock mass. This mutual relationship is known as rock 

kinematic and slope instability analysis based on this relationship is termed as 

rock kinematic analysis. Rock kinematic analysis includes different factors like 

topographic slope and aspect, orientation of geological discontinuities and 

internal friction angle of the bedrock to calculate the stability of a slope. 

Depending upon topographical orientation and geological discontinuities, three 

different modes of failure can occur within a rock mass, (i) Planar (ii) Wedge 

and (iii) Topple failures (Godman and Bray, 1976, Hoek and Bray, 1981) based 

on the following relationships (Ghosh et al., 2010): 

ϕ ≤ β  ≤ θ (for Plane and Wedge Failure)                           (1) 

θ ≥ [ ϕ + (90° - β)] (for Topple Failure)                            (2) 

where, ϕ = Internal friction angle of the rock, β = Dip/plunge of the 

discontinuity and θ = Topographic slope. 

In this study, the kinematic index layer for the study area was developed by 

using ArcGIS 10.5.1. A total of 313 geological discontinuity data points were 

used in the study, which were directly collected from the field mapping and a 

previous study (Ryan, 1989). These data were plotted in Stereonet 10 software 

(Allmendinger et al., 2012) to identify the different sets of discontinuities in the 
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study area. Internal friction of the rock was empirically derived using the Rock 

Mass Rating system data (Bieniawski, 1989), which were collect during the 

field survey. Topographic slope angle was extracted from LiDAR DEM. 

Subsequently, Eq. 1 & 2 were applied in ArcGIS to identify areas where slope 

failures are kinematically possible (Ghosh et al. 2010). The detailed description 

of the preparation of composite kinematic index layer is presented in a 

forthcoming paper (Das, et al., in preparation) and in the second chapter of the 

thesis. The kinematic index layer is the function of topographic slope angle, 

aspect, lithology, and geological discontinuity, hence, it can substitute for 

individual layers and act as one independent variable or geo-factor in debris-

slide susceptibility modelling (Fig. 4c).  

4.1.4. Other variables 

 Land cover, annual rainfall and soil texture (Fig.4 d, e, f) data were collected 

from the National Park Service’s database 

(https://irma.nps.gov/DataStore/Search/Quick). The rainfall map was further 

processed and converted from a categorical variable to a continuous variable 

using Inverse Distance Weighted interpolation method. Whereas, land cover 

and soil texture maps were used as categorical variables in the analysis. 

In the debris-slide susceptibility analysis, six geo-factors or independent 

variables were used namely, elevation, curvature, kinematic index, land cover, 

soil texture and annual rainfall. The details of the geo-factors are summarized 

in Table 3. 

 

https://irma.nps.gov/DataStore/Search/Quick
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Table 3: Summary of the geo-factors 

Geo-factor Source Average (Range) 

Elevation Digital Elevation Model 1526 m (1105m – 2010m) 

Rainfall National Park Services 2051mm                                                          
(1854mm– 2159mm) 

Soil National Park Services Channery loam, Channery 
silt loam, Loam, Slide area, 
Peat,                                               
Very Channery loam 

Kinematical 
Index 

Digital elevation model 
and Lithological map 
(National Park Service)                                                      

5.68 (0 - 57.95) 

Landcover National Park Services Barren land, Deciduous 
forest, Developed Open 
space, Developed  low 
intensity, Developed 
medium intensity, Evergreen 
Forest, Mixed Forest, Shrub 

Curvature Digital Elevation Model -6.62 (-6839   to + 11380) 
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Figure 4 : Geo-factors map of the study area: (a) Elevation (b) Curvature (c) Kinematic index (d) 
Land cover (e) Annual rainfall (f) Soil texture. 
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4.2. Analyis 

The analysis was performed using four different statistical methods including 

Information Value Method (IVM), frequency ratio, logistic regression and Maxent 

model. 

4.2.1. Information Value Method (IVM) : 

Information Value Method is a bivariate statistical method that was originally 

proposed by Yin and Yan (1988), while van Western slighly modified the 

equation (1997) and introduced it for landslide hazard zonation (Saha et al., 

2005). This is one of simplest statistics that calculates the weights of individual 

classes of geofactor as a ratio of the density of landslide in a particular class to the 

landslide density of the total study area (Sarkar et al., 2013). Following is the 

equation for weight calculation: 

 

                                                 Wi   = ln
NPix(Si)

NPix(Ni)�

ΣNPix(Si)
ΣNPix(Ni)�

                                        (3) 

where, Wi = Weight of a class of a geo-factor; NPix(Si) = Number of pixel of 

debris-slide within class i; NPix(Ni) = Number of pixel of class i; ΣNPix(Si) = 

Total number of debris-slide pixels within the entire study area ; ΣNPix(Ni) = 

Total number of pixel of the study area. Natural logarithm is used to control the 

large variation in the weights.  

A positive weight indicates positive correlation between the individual classes of 

the geofactor with the occurrence of debris-slide. The higher the values, the 

stronger the influence of the geo-factor on debris-slide occurence. Similarly, a 

negative weight depicts negative correlation between the geo-factor and debris-

slide occurence, which indicated that the geo-factor is not a good predictor of 

debris-slide. 

To generate the debris-slide susceptibility map, Debris-slide Susceptibility Index 

(DSI) was calculated pixel-by-pixel by summing the weighted values of each geo-

factor as shown below: 
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                                           DSI (IVM)= ∑  M
j=1 Xj × Wi                                        (4)                           

where, X is the geo-factor and j = 1, 2, ....M, M = Total number of geofactors. Wi 

= Weight of a class of a geo-factor. 

The calculation was done in ArcGIS 10.6.1, where the weights of individual 

classes of the geofactors were calculated and the debris-slide susceptibility map 

was generated by adding up the weights of the geofactors. The model was 

validated using 25% test data in SPSS software. 

 

4.2.2. Frequency Ratio (FR) 

Frequency ratio is a bivariate statistic, which has been extensively used for 

landslide susceptibility modelling (Lee, S. and Sambath, 2006; Lee and Pradhan, 

2007; Yilmaz, 2009). The FR model reveals the relationship between landslide 

causative factors and occurrence of landslide by quantifying the correlation 

between them. The FR is a ratio of probability of presence and absence of 

landslide (Lee and Pradhan, 2007). Higher the FR value is, the stronger the 

correlation between landslide and the individual class of the geo-factor. Following 

is the equation for FR value calculation: 

 

                                      FR =
𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁(𝑆𝑆𝑆𝑆)

𝛴𝛴𝛴𝛴𝛴𝛴𝛴𝛴𝛴𝛴(𝑆𝑆𝑆𝑆)�

𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁(𝑁𝑁𝑁𝑁)
𝛴𝛴𝛴𝛴𝛴𝛴𝛴𝛴𝛴𝛴(𝑁𝑁𝑁𝑁)�

                                 (5) 

where, FR = Weight of a class of the geo-factor; Npix(Si) = Number of pixel of 

debris-slide within class i; NPix(Ni) = Number of pixel of class i; ΣNPix(Si) = 

Total number of debris-slide pixels within the entire study area ; ΣNPix(Ni) = 

Total number of pixel of the study area. 

Debris-slide Suscepetibility Index (DSI) can be calculated by summing the values 

of the individual geo-factors using the following formula: 

                     DSI(FR) =∑ 𝐹𝐹𝐹𝐹𝑁𝑁
𝑗𝑗=1  ×Xj                                                     (6) 

where, X is the geo-factor and j = 1,2,3,…N, N= total number of geo-factors. 

DSI is calculated for every individual  pixels in the study area and the higher the 

DSI value the greater the probability of occurrence of debris-slide in the pixel. 
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DSI was calcualted for every geofactors using ArcGIS 10.6.1 and efficacy of the 

model was tested using rest of the 25% data in the SPSS software. 

 

4.2.3. Logistic Regression (LR)  

Logistic regression is a widely used multivariate statistical method in landslide 

susceptibility studies to determine the relationship between a dependent variable 

with several independent variables or geo-factors (Lee and Pradhan, 2007). LR 

predicts the outcome of an event in dichotomous form i.e., presence/absence, 

true/false based on the values of several independent variables. It uses a link 

function called logit, which transforms the non-linear model to a linear model. 

Some of the advantages of LR models are that it can process both categorical and 

continuous variables simultaneously and variables don’t need to be normally 

distributed which is uncommon in natural environment (Lee, 2005). The logistic 

link function is applied when the dependent variable is binary, which calculates 

the probability of an event on an S-shaped logistic curve that ranges between 0 to 

1. LR model uses the following formula to fit the dependent variables and 

calculate the probability:    

                                               P = 1/(1+e-z)                                                                 (7) 

where, P is the probability of occurrence of debris-slide and z is the linear 

combination of  independent variables. Z can be calculated using the following 

formula: 

                                          Z= b0 + b1X1 + b2 X2 +……bnXn                                                          (8) 

Where, b0 is the intercept of the model, the bi (i = 0, 1, 2, … , n) are the regression 

coefficients of the logistic regression model, and the Xi (i = 0, 1, 2, … , n) are the 

independent variables. 

IBM SPSS Statistics 25 softwarewas used to calculate the regression coefficient. 

Debris-slide data were classified into binary format based on presence (1) or 

absence (0) of debris-slide (Fig. 5). Debris-slide absence points were generated 

randomly using ArcGIS 10.6.1. Although SPSS is capable of processing categorical 

variables, however, it generates the coefficient values for n-1 numbers of classes of 

the categorical variable i.e., if a variable has five different classes, SPSS would 
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generate coefficient values for 4 classes. Therefore, to overcome this ambiguity, 

dummy variables were generated to calculate regression coefficients for all 

individual classes of the categorical variables. After calculating the regression 

coefficients, eq. 8 &7 were used in ArcGIS raster calculator to calculate the spatial 

probability of debris-slide in the study area. Values closer to 1 depict greater 

probability of debris-slide, whereas, values closer 0 zero indicate stability of the 

slope i.e., lower probability of debris-slide. 

 

4.2.4. Maximum Entropy Model (MaxEnt) 

Maxent is a widely used program for species distribution modeling which uses 

presence only data. MaxEnt predicts suitable habitat for occurrences of a species 

based on certain environmental factors or covariance.  The probability of presence 

of the species, conditioned on environment: Pr (y = 1|z)                           

Where z is the covariance or factor that influences the presence or absence of a 

species e.g., temerarure, rainfall etc. and y= 1 is presence of a species (Elith. et 

al., 2011). 

Similar concept has been applied in this study, where suitable locations for the 

future debris-slide are being predicted based on the present conditions, which are 

causing debris-slide in the study area (Felicisimo et al., 2013). The model adapts a 

multivariate approach to find out suitable zones for debris-slide based on the 

influence of the geo-factors. Before running the model, all geo-factors or 

independent variables were resized into similar spatial extent and pixels size (0.76 

m) was made same for all the geo-factors. Subsequently, the geo-factors were 

converted to ASCII format; as Maxent doesn’t process any raster format expect 

ASCII. The entire analysis was performed using the standalone version of Maxent 

software (Phillips et al., 2010). 

A flow chart provides the entire process of methodology in Figure. 6. 
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Figure 5: Presence and absence debris-slide points. 
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Figure 6. Flow chart of the methodology.  
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5. Results 

5.1. Information Value Method (IVM) 

A quite satisfactory result was achieved using bivariate Information Value Method 

(Fig. 7) in comparison with the multivariate methods. The overall IVM coefficients of 

the model range from -7.18 to 3.88 (Table 4). A positive value indicates more 

influence of the class on debris-slide and vice-versa. Barren land has the highest IVM 

coefficient (3.88) that signifies a high influence on debris-slide followed by 

shrubs/scrubs with a value of 2.17. Two soil texture classes, slide area and very 

channey loam, have a positive correlation while the rest of the classes are negatively 

correlated with debris-slide. Kinematic index has relatively high number of classes 

associated positively with debris-slides. Of five classes of kinematic index, four 

classes are positively associated with debris-slides and the IVM coefficient value 

increases with an increase in the kinematic index. The same correlation can be 

observed in the case of elevation; the IVM coefficient value steadily increases with 

increase in elevation and lower elevations have negative coefficient values. Large 

negative IVM coefficient values, such as in  low elevation range (1105 m – 1339 m), 

low rainfall (73 mm to 77mm) were indicative of less to no debris-slide occurrence in 

the study area.   

Curvature did not appear to influence debris-slide occurrence differently as both 

concave and convex curvatures had a positive IVM coefficient. Rainfall showed 

positive correlation with the sliding activity. The model achieved an AUC value of 

0.855 or the prediction accuracy of the model is 85.5% and hence, falls under the 

category of ‘Good’ model (Fig. 8). 
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Figure 7: Debris-slide susceptibility model using IVM

                                                                
Figure 8: ROC curve of IVM model. 

AUC = 0.855 
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5.2. Frequency Ratio 

Frequency Ratio yielded result very similar to the IVM (Fig. 9). The value of FR 

coefficients range from 0 to 48.76 (Table 4). An absolute zero value indicates total 

absence of debris-slide in that class. While, values less than 1 indicates a lower 

correlation and greater than 1 signify higher correlation between debris-slide and 

classes of geo-factors. Barren land is the highest contributor towards debris-slides 

having a coefficient of 48.76. Considering the overall contribution of the geo-factors, 

elevation and kinematic index have strong influence on debris-slides as individual 

geo-factors because most of the classes within these geo-factors show positive FR 

coefficient values. Curvature does not reveal any trend in controlling debris-slide as 

both positive and negative coefficient values occur in concave and convex curvature. 

The model achieved a good prediction rate with 0.863 AUC value that classify the 

model as a good predictor of debris-slide (Fig. 10). 
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Figure 9: Debris-slide susceptibility model using FR 

                                             
Figure 10: ROC curve of FR model. 

AUC = 0.863 
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5.3. Logistic Regression (LR) 

To obtain regression coefficients for the geo-factors, logistic regression was 

performed using SPSS software (Table 6). The study included four continuous 

variables of which elevation, kinematic index, and rainfall were statistically 

significant, whereas, curvature was statistically insignificant and was eliminated from 

the final model. Categorical geo-factors were analyzed by generating dummy 

variables for individual categories of geo-factors. Only four classes (deciduous forest, 

developed area, evergreen forest and mixed forest) from the Land cover category and 

two classes (channery loam, old slide area) from the Soil Texture category were 

statistically significant. Multi-collinearity tests among the independent revealed that 

the values of Variation Inflation Factor (VIF) are well within prescribed limits (Table 

5). VIF value greater than 3 indicates probability of multicollinearity among the 

independent variables and value greater than 10 indicates definite multicollinearity 

between variables. All the variables in the study have the VIF well below the threshold 

limit of 3 (Table 5). Therefore, the independent variables were not correlated with 

each other. A statistically significant Chi-square value was obtained in Omnibus Tests 

of Model coefficients, which indicates that the model performed better than the model 

with no predictors. The model also yielded a Narelkerke R square value of 0.541 that 

indicates the model is moderate to good predictor of the variables within the data set. 

Finally, the logistic regression model was obtained by incorporating the coefficient 

values in the Eq. 7 & Eq. 8 using ArcGIS as shown below (Fig. 11): 
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Z = 12.160+ Kinematic Index × 0.037 + Elevation × 0.005 + Rainfall ×   

(-0.227) + Deciduous × (-1.90) + Developed Area × (-2.28) + Evergreen 

forest × (-1.61) + Mixed forest × (-1.04) + Channery Loam × (-1.75) + Old 

slide area × (0.85).  

Validation of the model using Receiver Operating Characteristic (ROC) to calculate 

the area under the Curve (AUC) showed the AUC value of .856 that suggests the 

model to be good to excellent one (Fig. 12). 

 

Figure 11: Debris-slide susceptibility model using LR. 
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Figure 12: ROC curve of LR model. 

 

5.4. Maxent 

The Jackknife test for training data shows (Fig. 13) that the soil texture has the highest 

gain when used in isolation, which indicates that the soil texture has the most useful 

information among the geo-factors and is a good predictor of distribution of debris-

slide in the area. On the other hand, the gain is lowest for curvature, which appears to 

have the least useful information and is not useful to predict the distribution of the 

debris-slide. The overall gain of the model decreases the most when rainfall is omitted, 

which suggests the rainfall possesses highest information among the geo-factors. The 

overall gain of the model increases the most if curvature is removed from the training 

model. In the case of test data, soil texture seems to have the most useful information 

as well as the highest information among the variables (Fig. 14). It is important to 

note, that the omission of kinematic index from the test data significantly reduces the 

AUC = 0.856 
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gain of the model. It contains the second most information among the geo-factors and 

has third highest useful information in the test data. However, it not possible from this 

model to determine the coefficient or the relative weight of importance of the geo-

factors.  

In the final debris-slide susceptibility map (Fig. 15) Soil has the highest percentage of 

contribution to the model with 35.9% followed by elevation and land cover having 

contribution of 22.7% and 18.4% respectively (Table 7). Whereas, curvature seems to 

contribute least to the debris-slide model with 0.1% of contribution. The model 

achieved AUC values of 0.853 for the test data, which indicates the model to be a good 

one for predicting debris-slide in the study area (Fig. 16). 

The final debris-slide susceptibility aggregate map was prepared by adding all 

individual debris-slide susceptibility maps, which represents the outcome of all four 

susceptibility models (Fig. 17). 
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Figure 13: Result of Jackknife test of the variables for training data. 

 

Figure 14: Result of Jackknife test of the variables for training data. 
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Figure 15: Debris-slide susceptibility model using Maxent 

                                                                                

Figure 16: ROC curve of Maxent model. 

AUC = 0.853 
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Figure 17: Debris-slide susceptibility aggregate map. 
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Table 4: Weights of different classes of geo-factors. 

Geo-factors IVM Coefficient FR Coefficient 
Curvature (Range) 

-6839 – -194 
-194 – -51 
-51 – 19 
19 – 162 

162 – 11380 

 
0.585 
0.77 
-0.12 
-0.03 
0.44 

 
1.79 
1.08 
0.88 
0.96 
1.56 

Elevation (Range) 
1105 m – 1339m 
1339 m – 1478 m 
1478 m – 1602 m 
1602 m – 1737 m 
1737 m – 2010 m 

 
-4.25 
-1.03 
0.14 
0.41 
0.78 

 
0.014 
0.35 
1.15 
1.51 
2.19 

Annual Rainfall 
73in 
75in 
77in 
79in 
81in 
83in 
85in 

 
-7.18 
-7.18 
-7.18 
-0.99 
0.15 

0.0078 
1.18 

 
0 
0 
0 

0.36 
1.79 
0.47 
3.28 

Kinematic Index 
0 – 2.95 

2.95 – 11.36 
11.36 – 20.68 
20.68 – 27.27 
27.27 – 57.95 

 
-0.45 
0.89 
0.36 
1.14 
1.28 

 
0.63 
2.44 
1.43 
3.13 
3.62 

Land cover 
Barren land 

Developed Open Space 
Developed Low Intensity 

Developed Medium Intensity 
Mixed forest 

Deciduous Forest 
Shrub/Scrub 

Evergreen Forest 

 
3.88 
-2.47 
-7.18 
-7.18 
-0.45 
-1.17 
2.17 
-0.03 

 
48.76 
0.08 

0 
0 

0.63 
0.30 
8.80 
0.96 

Soil Texture 
Channery Loam 

Very Channery Loam 
Old slide area 

Peat  
Channery Silt Loam 

Loam 

 
-1.22 
1.04 
2.14 
-7.53 
-7.18 
-7.18 

 
0.29 
2.84 
8.57 

0.000 
0 
0 
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Table 5: Multi-collinearity test of geo-factors for logistic regression model. 

Geo-factors Tolerance VIF 
Curvature .997 1.003 
Elevation .376 2.663 
Rainfall .426 2.349 

Barren land .910 1.099 
Developed area .910 1.099 
Evergreen forest .569 1.758 

Mixed forest .892 1.121 
Shrub .553 1.809 

Channery loam .762 1.313 
Channery silt loam .859 1.164 

Loam .809 1.236 
Peat .921 1.086 

Old slide area .903 1.107 
Dependent variable: kinematic index 

Table 6: Variables included in the equation for logistic regression model. 

Geo-factors Coefficient Statistical Significance 
Kinematic Index 0.037 .000 

Elevation 0.005 .000 
Rainfall -0.227 .000 

Deciduous -1.908 .000 
Developed Area -2.284 .001 
Evergreen Forest -1.618 .000 

Mixed Forest -1.049 .003 
Channery Loam -1.753 .000 

Channery Silt -20.596 .998 
Loam -19.951 .997 
Peat -20.381 .998 

Old slide area 0.856 .020 
Intercept 12.160 .002 

 

Table 7: Analysis of relative contributions of the geo-factors in Maxent model. 

Variable Percentage Contribution Permutation Importance 
Soil Texture 35.9 10.8 

Elevation 22.7 55.1 
Land Cover 18.4 4.8 

Rainfall 12.9 22.6 
Kinematic 10.1 6.4 
Curvature 0.1 0.2 
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6. Discussion 

Mass wasting is a complex phenomenon, highly controlled by different causing factors 

with varying degrees of influence. Debris-slides and debris-flows are very common in the 

Great Smoky Mountains National Park and different authors have addressed this problem 

by adopting different approaches (Bogucki, 1970; Ryan, 1989; Henderson, 1997; Nandi 

and Shakoor, 2017). Most of the researchers in this area agree that excessive rainfall is the 

main triggering factor for the gigantic slides in the area (Bogucki, 1970; Harp, 1983; Clark, 

1987; Ryan, 1989). However, some minor earthquake activity was reported from this area 

but no major landslide or debris-slide has been reported because of earthquake induced 

slope failure. The Great Smoky Mountains National Park is comprised of complex 

geological structures, especially Anakeesta Formation, which possesses numerous failure 

planes due to the pattern of geological structures such as joints, bedding, fractures etc. 

Studies have been conducted to identify the orientation of these discontinuities and their 

possible role to initiate the debris-slide in the area (Ryan, 1989; Das et al., in preparation). 

It is evident from aerial photo, satellite imagery, and field surveys that most slope failures 

in the area form wedge structure due to the intersection of different discontinuities. Hence, 

the role of structural geology is evident in generating the debris-slide or debris-flow. 

Adverse orientation of topographic slope and direction with the orientation of geological 

discontinuity plays a very crucial role in terms of controlling the slope stability of an area 

(Ghosh et al., 2010). The study conducted by Das and Nandi (2018), suggests a strong 

control of geological discontinuities over generating debris-slide in the Anakeesta 

Formation. 

Data-driven methods provide advantages over other models as the former can process large 

amount of data in a timely manner using the GIS software. Researchers in this study area 
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have previously applied multivariate statistics such as logistic regression (Henderson, 

1997; Nandi and Shakoor, 2017) to model debris-slide susceptibility, however, did not 

address geological discontinuities in spatial scale. This study has also used the logistic 

regression statistics, however, Kinematic index map, a product of geological 

discontinuities with respect to topographic orientation that could cause slope failure were 

used to map the debris-slide susceptibility. Along with the logistic regression model, three 

other models namely Information Value Method (IVM), Frequency Ratio (FR) and 

Maximum Entropy model (Maxent) were applied to map the susceptible zone for future 

debris-slide in the area (Fig.11,7,9,13). Based on model validation using ROC curve, all 

models ranged from AUC of 0.85 to 0.86, with FR model showing a slightly better output. 

All these methods have their own advantage and disadvantages. IVM and FR are 

some of the simple statistical models, which require meticulous calculation of the attributes 

of the geo-factors in order to generate the debris-slide susceptibility map. The entire 

bivariate analysis can be done only using ArcGIS software. Whereas, performing a more 

complicated multivariate analysis like logistic regression requires advanced statistical 

software like SPSS or SAS in addition to  ArcGIS. In IVM and FR, analysis can be done 

either manually or the process can be automated using Python or model builder within the 

ArcGIS. However, the calculation in bivariate analyses are explicit and clearly depict how 

weights or coefficients are being assigned to the individual classes of the geo-factors. On 

the other hand, logistic regression is more complicated, where user has no control over the 

generation of coefficients and the process of generating data is implicit.  Nevertheless, 

statistical packages provide numerous functions, which allow the user to develop a better 

understanding about the data and execute complicated analysis to enhance the capacity of 

the model. Standalone version of Maxent software is freely available, which is extensively 
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used in species distribution modelling. Maxent requires the input data to be processed in 

ASCII format and generates useful information in a very simple way, which can be 

comprehensible to the user easily.  

The prediction accuracy of all four models is similar and each model came out with some 

unique information about the geo-factors. Therefore, it is very difficult to select the best 

model. However, it has been observed that the efficacy of Maxent model is slightly lower 

than the other models. Maxent model uses presence only data and does not calculate 

coefficients or weights for individual geo-factors, which makes it difficult to comprehend 

the interrelationship of geo-factors with debris-slide. However, the jackknife diagrams 

display some crucial information about the relative influence of geo-factors on the debris-

slide and Table 7. shows the contribution of each geo-factor on the model. The model 

works well with continuous data but statistical information about the individual classes of 

categorical variable cannot be obtained from the model. 

  All models except LR established a positive correlation between rainfall and debris-

slide. LR model suggests an increase in rainfall decreases the possibility of debris-slide, 

which is somewhat inconsistent with our observation and findings of previous studies. One 

good explanation of this ambiguity can be that LR model includes both presence and 

absence data while generating the model and pseudo absence points for debris-slide were 

generated randomly, many of which fell within the high precipitation zone and therefore, 

associated with non-debris-slide points. That may be responsible for creating a negative 

correlation between precipitation and debris-slides. The Additionally, number of debris-

slide and non-debris-slide points within a class can highly influence the correlation 

between them. On the other hand, the rest of the models used presence only data to develop 

the susceptibility map and draw the correlation between individual classes of geo-factors 
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and debris-slide solely based on true presence of debris-slide. Kinematic index has been 

introduced in this study for the first time, which has reduced the number of variables in the 

analysis. The bivariate models showed a notable association of kinematic index with the 

debris-slide. Per the assumption, the higher the value of kinematic index the greater 

possibility of debris-slide. Both the IVM and FR models revealed that higher debris-slide 

density was associated with high kinematic index value (Table 4). The LR model, which 

showed a positive regression coefficient value for the kinematic index, has supported the 

same assumption i.e., increase in one unit of the kinematic index value is associated with 

a 0.037 unit increase in the odds (i.e., e0.037 ) of debris-slide event (Table 6). In the Maxent 

model especially for the test data, the model lost a significant amount of gain if the 

kinematic index layer was removed. In soil texture, historic slide area indicated strong 

positive correlation with debris-slide. Old slide area was classified as a soil texture where 

old debris-slides have occurred, thus, some of the debris-slides mapped were exactly 

situated within this zone. Therefore, the density of debris-slide was very high within 

historic slide area, which yielded a high coefficient for IVM and FR model. While, in LR 

model most of the slide area was represented by the presence of debris-slide points that 

established a positive correlation between debris-slide and historic slide area. In summary, 

soil texture, kinematic index, rainfall were the most important geo-factors, whereas, 

curvature was the least important geo-factor in this study as debris-slides took place 

irrespective of surface curvature (both in concave and convex surfaces) and all four models 

supported the fact. 

All four models used in the study have achieved a good prediction accuracy and preserved 

some exclusive information. Hence, it would be difficult to pick the best predictive model. 

However, usage of the models highly depend on the objective of the work and availability 
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of technical as well as financial resources of the organization. Following is the summary 

of advantages and disadvantages of the models. 

Table 8: Comparison of the models 

 Logistic 

Regression 

Information Value 

Method 

 Frequency Ratio Maxent 

Technical 
skill 

Strong skillset in 
Statistics and 

GIS. 

Strong GIS skills. Entire 
work can be done only 

using GIS. 

Strong GIS skill. Entire 
work can be done 

using GIS. 

GIS and 
Maxent 
skills. 

Financial 
aspect 

Statistical 
softwares are 
costly. Hence 
suitable for 
established 

academic and 
professional 
industries. 

Can cost money but free 
GIS softwares are available. 
Best for small relative small 

or new 
company/organization. 

Can cost money but 
free GIS softwares are 

available. Best for 
relatively small or new 
company/organization. 

Maxent is 
free. 

Analysis Involves 
complicated 

analysis that are 
time consuming. 

Automation of the 
methodology can save 

significant amount of time. 

Automation of the 
methodology can save 
significant amount of 

time 

Data 
preparation 

is time-
consuming 

process. 
Interpretation 
skill 

Required good 
statistical 

interpretation 
skill. 

Explicit data set makes 
interpretation easier. 

Explicit data set makes 
interpretation easier. 

Results are 
easy to 

interpret.  

Level of 
complication 

High Moderate  Moderate Moderate to 
high 
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7. Conclusion 

Preparation of a debris-slide susceptibility map is the primary step towards slope instability 

management and mitigation planning. Landslide susceptibility maps greatly assist in 

selection of areas for further infrastructure development and may act as a base map. 

Nowadays, GIS serves as a very powerful tool to process large data sets and complex 

equations for executing statistics based analysis for landslide or debris-slide hazard 

mapping. In this study, four debris-slide susceptibility models were developed in the Great 

Smoky Mountains National Park and the efficacy of the models was compared using the 

on the Area Under the Curve (AUC) method to evaluate prediction accuracy of each model. 

High and similar AUC values were achieved for all four models. Therefore, it is hard to 

determine the best model out of the four. However, Frequency Ratio had a slight edge over 

others with 86.3% prediction accuracy, which was followed by Logistic Regression, 

Information Value Method, and Maxent with prediction accuracies of 85.6%, 85.5%, and 

85.3% respectively.  

Apart from finding out the best-suited model for predicting debris-slide, it is also important 

to evaluate the role of the geo-factors for controlling the slides.  Different model showed 

varying degree of influence of different geo-factors. However, elevation and kinematic 

index seemed to have a positive influence in all four models, hence, could be regarded as 

the most important factors for initiating debris-slide. Despite its negative correlation in 

Logistic Regression model, which was mainly due to random distribution of pseudo non-

debris-slide data, rainfall can surely be considered as one of the positive influencers for 

debris-slide in the study area, which were confirmed by rest of the models.  Distribution of 

non-debris-slide data can highly influence the role of geo-factors in predicting debris-slides 

using Logistic Regression model. This suggests high level of sensitivity of the model 
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associated with spatial distribution of data and should be explored in a future study. Most 

of the debris-slide events reordered in the area were triggered by torrential rainfall and 

spatial distribution of slide patches suggest a strong positive correlation between quantity 

of annual rainfall and number of debris-slides. Soil texture and land cover have moderate 

influence in terms of generating debris-slide. On the other, all four models affirmed 

curvature to be an insignificant geo-factor for initiating debris-slides. 

Frequency Ratio and Information Value methods are simple statistical models, where large 

data sets can be processed in GIS environment and the process of data calculation is 

explicit, which helps the user to fully understand the process of generating the debris-slide 

susceptibility map. On the other hand, multivariate statistics such as Logistic Regression 

and Maxent involve conversion of data into different formats before processing them in 

GIS. Moreover, processing data in Logistic Regression and Maxent is a time consuming 

process and requires additional knowledge in statistical packages like SPSS, SAP, and/or 

in Maxent. Considering the time and complexity involved in Maxent and Logistic 

Regression models, the bivariate models seem to be less complicated, yet effective. 

Selection of causative factors or geo-factors can significantly affect the accuracy of the 

model, as there is no specific guideline for selecting geo-factors. However, it is important 

to note that landslide or debris-slide susceptibility mapping is a scale dependent process 

and for any site-specific assessment, these models might not be very useful but could serve 

as reference. Nevertheless, the maps certainly indicate some specific regions, which are 

very prone to debris-slides and such areas should be taken into consideration for detailed 

survey, which indeed will save time and effort for debris-slide hazard mitigation planning. 
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CHAPTER 5 

CONCLUSION 

Study 1: The study successfully depicted an effective methodology for performing GIS 

based kinematic analysis. A kinematical susceptibility map was developed using the geological 

discontinuities and topographical orientation, which predicted nearly about 67% of the debris-

slide locations.  A higher prediction rate couldn’t be achieved because debris-slide is a complex 

phenomenon and controlled by the influence of other factors such as rainfall, slope curvature, 

drainage, lands use etc. This kinematical susceptibility layer was named as “Kinematic index’, 

which is function of topographic slope and aspect, lithology and geological discontinuities. This 

layer can be used as an independent geo-factor for debris-slide susceptibility mapping. 

Study 2: A knowledge-driven debris-slide susceptibility map was developed using 

Weighted Overlay method in ArcGIS. Geo-factors used in the study were the important for 

predicting debris-slides in the study area. For a qualitative model validation of the model 

becomes difficult, however, 86% of the debris-slides were predicted by the very high and high 

susceptible zones. This indicates that a GIS based knowledge-driven method can be effective for 

debris-slide susceptibility model, if correct set of geo-factors are selected and assigned with 

appropriate weights. This kind of model is beneficial for rapid analysis for a region in a short 

amount of time. 

Study 3: Four different data-driven models were generated using IVM, FR, LR and 

Maxent. Prediction rate of the models were very close to each other, however, FR performed 

slightly better than the other models having area under ROC curve value of 0.863. Therefore, 

considering the performance and other pros and cons of these models, we would say that 

bivariate models (IVM, FR) are less complicated than multivariate model (LR, Maxent) and 
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processing the data are much easier, less tedious, GIS friendly and cost effective in bi-variate 

models than multivariate models. The outcome of three different studies has been summarized in 

the Table 1.  

Table 1: Comparison of three studies. 

 Study 1 Study 2 Study 3 

Purpose Generate a debris-slide 
initiation susceptibility 
map based on geometrical 
relationship between 
orientations of topography 
with geological 
discontinuities. 

Generate a knowledge 
guided debris-slide 
initiation susceptibility 
map based on our 
observation and 
understanding. 

Generate four data-driven 
debris-slide initiation 
susceptibility map using 
different statistics and 
create a debris-slide 
susceptibility aggregate 
map using all four models. 

Variables used Geological discontinuities, 
lithology, topographical 
slope and aspect. 

Elevation, annual rainfall, 
land cover, soil texture, 
curvature and kinematic 
index (from study 1). 

Elevation, annual rainfall, 
land cover, soil texture, 
curvature and kinematic 
index (from study 1). 

Methodology Rock Kinematic analysis. Weighted Overlay 
analysis. 

Information Value 
Method (IVM), Frequency 
Ratio (FR), Logistic 
Regression (LR), 
Maximum Entropy model 
(Maxent)  

Primary 
information 
obtained 

Susceptibility zones due 
to kinematic property of 
rocks. 

Susceptibility zones due 
to influence of different 
variables used in the 
study. 

Susceptibility zones due 
to influence of different 
variables used in the 
study. 

Implication  The final map can be used 
as an independent variable 
for debris-slide 
susceptibility modelling 
and also for obtaining 
rock kinematic 
information for geo-
technical survey.  

Useful for reconnaissance 
survey and selecting sites 
for detailed geo-technical 
investigation. 

Four different debris-slide 
susceptibility models were 
combined to a single map. 
This highly precise map 
can be used for reducing 
areas for detailed geo-
technical survey.  

 

Future study may include a spatio-temporal analysis of debris-slide hazard, which we 

couldn’t do this time due to absence of time-stamped debris-slide inventory. Dates of these 

debris-slides will help to get the information about rainfall amount and duration during these 
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events, which will be required to calculate the rainfall threshold value for initiating the debris-

slides.  Therefore, a time-stamped debris-slide inventory should be created in order to perform a 

debris-slide hazard analysis in the study area. 
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