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ABSTRACT 

Barbell Trajectory and Kinematics during Two International Weightlifting Championships 

by 

Aaron J. Cunanan 

Several methods have been used in the scientific literature to study the weightlifting pull. 

Broadly, these methods are used to measure kinematic or kinetic variables exhibited by the lifter, 

the barbell, or the lifter-barbell system. However, there is an apparent disconnect between 

weightlifting research and coaching practice that may reduce the perceived benefits of technique 

analysis among coaches and present some challenges for coaches who seek to incorporate 

technique analysis into their coaching practice. Differences and trends in the technique of 

competitive weightlifting performances are apparent from the available literature. However, 

there are also gaps in the literature due to infrequent analyses that are limited to narrow 

subgroups of the weightlifting population. Therefore, the purposes of this dissertation were to 1) 

update to the scientific knowledge of weightlifting technique and performance, 2) improve 

coaches’ ability to conduct and interpret technique analysis, and 3) enhance transferability of 

weightlifting in training to improve sport performance.  

 

A review of methods used to evaluate the weightlifting pull provides some practical guidance for 

coaches on the application and interpretation of weightlifting technique analysis. Video analysis 

is recommended as the most practicable method for coaches to implement technique analysis 

themselves. Methods used to study 319 lifts by women and men from two major international 

competitions demonstrate the feasibility and usefulness of video analysis as an inexpensive, 
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time-efficient, and user-friendly method for coaches to conduct reliable technique analysis. The 

results of this dissertation suggest that a variety of techniques can be used to achieve 

international weightlifting success and provide some evidence of changes in weightlifting 

technique since at least the mid-1980’s. These results also indicate that a stereotypical technique 

profile among elite international weightlifters does not exist, which further support the notion 

that strength is a primary determinant of weightlifting ability. 
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CHAPTER 1 

INTRODUCTION 

Weightlifting is a popular international sport consisting of the snatch and the clean and 

jerk. There is also wide professional interest in the weightlifting movements among coaches due 

to the demonstrated efficacy of the implementation of weightlifting movements in training to 

improve sport performance (Chaouachi et al., 2014; Hackett, Davies, Soomro, & Halaki, 2016; 

Seitz, Trajano, & Haff, 2014; Tricoli, Lamas, Carnevale, & Ugrinowitsch, 2005). While there is 

an extensive body of research on the technical and biomechanical aspects of weightlifting, it is 

important to bear in mind that the purpose of technique analysis should be to improve sport 

performance (Lees, 2002). Indeed, from a practical standpoint, technique analysis can be useful 

for coaches to devise teaching and coaching frameworks and may also provide rationale to 

implement the weightlifting movements in training to improve sport performance, weightlifting 

or otherwise. 

However, coaches have largely been restricted from conducting technique analysis due to 

financial, spatial, and temporal constraints. These barriers may reduce the perceived benefit of 

technique analysis among coaches and reduce the likelihood of them consulting the scientific 

literature. Thus, the translational impact of formal technique analysis and research may be 

diminished. Emerging commercial technologies that seek to leverage the capabilities of personal 

electronic devices show some promise to enable coaches to conduct extensive technique analysis 

themselves. However, the historic disconnect between research and practice may present some 

challenges for coaches who are inexperienced or untrained in conducting technique analysis. 

These challenges namely include issues of validity, reliability, and data interpretation.  
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While these issues do exist, one cannot negate the invaluable knowledge owed to the 

scientific literature. For example, the kinematic and kinetic structure of the lifter, the barbell, and 

the lifter-barbell system are well characterized. Such analyses often delineate the weightlifting 

pull into discrete phases based on the position and movement of the barbell and lifter (Akkuş, 

2012; Gourgoulis et al., 2002), which can be useful to identify key moments during the lift and to 

understand relationships between components of the lifter-barbell system throughout the lift.  

Furthermore, detailed study of barbell trajectory has given rise to a classification scheme for 

patterns of barbell displacement that aid in the assessment of an individual’s technical 

proficiency (Hiskia, 1997; Vorobyev, 1978).  

Several notable differences and trends in these aspects are also apparent from the existing 

literature. For example, the rate and magnitude of knee joint rotation during different phases 

differ based on strength and sex (Gourgoulis et al., 2002; Gourgoulis, Aggeloussis, Kalivas, 

Antoniou, & Mavromatis, 2004; Harbili, 2012; Kauhanen, Häkkinen, & Komi, 1984), and some 

variants of the velocity-time profile are more likely based on weight category (Hiskia, 1997). 

Additionally, differences in the relative frequencies of barbell trajectory types are apparent 

between different periods of competitive weightlifting history. For example, past investigations 

found the type 1 and 2 trajectories were most prevalent at international competitions during the 

1980’s with limited observations of the type 3 trajectory (Baumann, Gross, Quade, Galbierz, & 

Schwirtz, 1988; Garhammer, 1989, 1990). However, Hiskia observed the type 3 trajectory to be 

most prevalent at several international competitions in the early 1990’s (Hiskia, 1997). 

Subsequent studies of the 2010 World Weightlifting Championship have also found the type 3 

trajectory to be more prevalent, even among gold medalists, compared to past studies (Akkuş, 

2012; Harbili, 2012). Thus, it appears that weightlifting technique as assessed by barbell 
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trajectory has changed over time. Given these apparent changes in barbell trajectory, it is 

important to evaluate if similar trends are present in other technical and biomechanical aspects of 

weightlifting performance.  

Despite several notable studies, analysis of performances during international 

competitions are not frequently reported and have usually been limited to select groups of 

competitors (Akkuş, 2012; Baumann et al., 1988; Garhammer, 1981; Garhammer, 1991; Harbili, 

2012; Hiskia, 1997; Musser, Garhammer, Rozenek, Crussemeyer, & Vargas, 2014; Stone, 

O'Bryant, Williams, Johnson, & Pierce, 1998). Changes in technique over time may also occur 

due to changes in contested weight categories since anthropometric profiles differ based on 

weight category (Ford, Detterline, Ho, & Cao, 2000; Musser et al., 2014) and differences in 

anthropometrics contribute to differences in barbell and lifter kinematics (Musser et al., 2014). 

Thus, the infrequent and narrow analysis of competitive performances presents a gap in the 

scientific knowledge that may reduce the accuracy of existing technical models of effective 

weightlifting technique and the generalizability of such models to athletes of different skill, size, 

sex, or ability.  

Existing research provides a rich body of knowledge on weightlifting technique. 

However, several practical barriers may impede coaches from directly implementing or 

accessing technique analysis. Furthermore, the cross-sectional nature of most studies on 

weightlifting technique presents gaps in the literature that may reduce the applicability of 

research findings over time. These issues highlight that further efforts to bridge the gap between 

research and practice are warranted and ongoing study of weightlifting technique among a 

variety of athletes is necessary. It is also apparent that coaches may benefit from additional 

guidance on incorporating technique analysis into their everyday practice—whether applying 
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research findings or conducting technique analysis themselves. Therefore, the purposes of this 

dissertation were to 1) contribute to the scientific knowledge of weightlifting technique and 

performance, 2) improve coaches’ ability to conduct and interpret technique analysis, and 3) 

enhance transferability of weightlifting in training to improve sport performance.  
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CHAPTER 2 

METHODS TO EVALUATE THE WEIGHTLIFTING PULL: A PRACTICAL REVIEW 
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Abstract 

Several methods have been used to study the weightlifting pull. Broadly, these methods 

are used to measure kinematic or kinetic variables exhibited by the lifter, the barbell, or the lifter-

barbell system. Coaches should understand the utility of existing methods used to analyze and 

delineate the WL pull in order to improve their ability to effectively implement weightlifting 

technique analysis, integrate and apply findings across various methods, and promote evidence-

driven practices. Therefore, the objectives of this review are 1) to summarize methods used to 

analyze the weightlifting pull and its phases and 2) to provide practical guidance for coaches to 

interpret and apply weightlifting technique analysis.  
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Introduction 

The weightlifting (WL) movements and their derivatives form the basis of training for 

competitive weightlifters1 and are commonly implemented in the resistance training of other 

athletes2. Considerable research has elucidated the kinematic and kinetic structure of the WL 

movements with particular focus directed toward the WL pull and examining various phases 

within it. The WL pull refers to the portion of the snatch or the clean in which the barbell is 

raised from the ground to approximately waist height3. Interest in the WL pull derives from 

application of the theoretical concepts of transfer of training4-6 and specificity7, 8 through 

utilization of WL pulling movements to improve sport performance.  

Several methods have been used to study the WL pull. Broadly, these methods are used 

to measure kinematic or kinetic variables exhibited by the lifter, the barbell, or the lifter-barbell 

system. Criteria dependent on the selected method are used to delineate phases of the pull, which 

provide insight on qualitative and quantitative characteristics of WL technique and performance 

(e.g. joint displacement-time profiles, joint angular velocities). Such analyses can be used to 

guide exercise prescription in accordance with the principles of specificity and transfer of 

training.  

While an extensive body of research examining WL technique exists, coaches have 

historically been restricted from conducting instrumented technique analysis of their athletes 

largely due to financial, temporal, and spatial constraints. This apparent gap between research 

and practice among coaches may reduce the perceived benefits of formal technique analysis and 

research. Conversely, burgeoning consumer-based technologies may promote the incorporation 

of technique analysis into one’s coaching practice. However, the validity and reliability of many 
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of these emerging technologies are not well reported9, and lack of training or experience may 

lead well-intentioned coaches to waste their efforts using errant methods.  

Coaches should understand the utility of existing methods used to analyze and delineate 

the WL pull in order to increase their ability to effectively implement WL technique analysis, 

integrate and apply findings across various methods, and promote evidence-driven practices. 

Therefore, the purpose of this review is to improve coaches’ understanding of various methods to 

analyze WL technique and the delineation of phases during the WL pull. The objectives of this 

review are 1) to summarize methods used to analyze the WL pull and its phases and 2) to provide 

practical guidance for coaches to interpret and apply WL technique analysis. 

Technique Analysis 

‘Technique analysis’ refers specifically to the systematic evaluation of sport skill 

performance and encompasses both descriptive and analytic goals (e.g. how movements are 

made, determining a movement’s effectiveness or its effect on performance outcomes) ultimately 

to improve sport performance10. The kinematic and temporal features of a movement are of 

primary practical importance for coaches because these are visibly observable and provide a 

basis for instruction and immediate feedback11. Arend & Higgins12 further suggest careful 

examination to identify ‘critical features’, which they define as the ‘parts or phases of the 

movement [that] can be least modified by the performer in order to achieve the goal’. 

Additionally, knowledge of internal and external forces and patterns of muscle activation 

contribute to understanding the demands of a given technique and can inform exercise 

prescription. Indeed, considerable research has examined all these aspects of the WL pull, and 

some general features of basic technique of the WL pull are apparent from this literature.  
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Basic Technique of the Weightlifting Pull 

The WL pull consists of two main phases: the first pull and the second pull. The first pull 

refers to the initial raising of the barbell from the platform to approximately knee height13. 

During this phase, the lifter’s knees extend to a first maximum joint angle while maintaining 

relatively constant hip and torso angles. There is a ‘transition phase’ between the first and second 

pulls during which the lifter orients his or her torso vertically while the knees re-bend (the 

‘double knee bend’) prior to rapid, forceful extension of the hips, knees, and ankles during the 

second pull. The double knee bend positions the lifter to effectively produce vertical force 

against the ground, increases the mechanical advantage of the hip extensors, positions the knee 

extensors closer to their optimal length, increases stored elastic energy, and may initiate a 

myotatic reflex in the knee extensors3, 14-16.  

The barbell typically maintains a constantly increasing velocity during the first pull and 

reaches peak velocity during the second pull (Figure 1); although, peak velocity may occur 

during the first pull in rare instances17, 18. Barbell velocity may plateau or slightly decrease 

during the transition phase, which may occur more commonly in taller lifters17. A velocity 

decrease during the transition phase is also more likely to occur when there is greater velocity at 

the end of the first pull relative to peak velocity18-20 and may be influenced by other factors such 

as strength21 and skill14, 19, 20. Thus, while informative, the velocity-time profile alone does not 

predict successful performance, and optimal profiles may differ individually. 
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Figure 1. The barbell velocity-time profile may exhibit two maxima, each occurring during the 

first and second pull respectively, interceded by a plateau or slight decrease in velocity during 

the transition phase. Alternatively, velocity may rise continuously to a single peak. 

 

Barbell trajectory is one of the greatest indicators of WL pull technique. Vorobyev13 

identified three basic trajectory types based on the pattern of horizontal displacement relative to 

the lifter and crossing of a vertical reference line drawn to intersect the center of the barbell at 

the start of the pull (Figure 2). Both the type 1 and 2 trajectories consist of a ‘toward-away-

toward’ pattern with neither crossing the vertical reference line during the first ‘toward’ phase. 

The type 1 trajectory crosses the vertical reference line during the ‘away’ phase and may or may 

not cross again during the final ‘toward’ phase. The type 2 trajectory does not cross the vertical 

reference line at any point during the lift. The type 3 trajectory exhibits an ‘away-toward-away-

toward’ pattern. The barbell typically crosses the vertical reference line during the first ‘toward’ 

phase. If the barbell crosses again during the second ‘away’ phase, there is a possible subsequent 

third crossing during the final ‘toward’ phase. Notably, Hiskia17 identified a fourth trajectory 

type in which the barbell exhibits a ‘toward-away-toward-away-toward’ pattern that does not 
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necessarily cross the vertical reference line at any instant. However, two variants of the type 4 

trajectory may be observed following initial horizontal movement either toward, as during the 

type 1 or 2 trajectory, or away, as during the type 3 trajectory, from the lifter. As such, the type 4 

trajectory may more generally be characterized as exhibiting an interceding ‘away-toward’ phase 

between the first ‘toward’ phase and final ‘away-toward’ phase.  

 

Figure 2. Barbell trajectory type is determined by the pattern of horizontal displacement relative 

to the lifter during the first pull and number of crossings during the second pull of a vertical 

reference line drawn through the center of the barbell prior to lift-off. Redrawn from Vorobyev13 

and Hiskia17. 

 

Observations by Hiskia17 and Stone et al.18 have revealed that only the type 1 trajectory 

necessarily crosses the vertical reference line. Vorobyev13 initially theorized the type 1 trajectory 

to be the ideal pattern. However, several investigations have since found the type 2 trajectory to 

be more common among elite weightlifters during international competition14, 17, 20, leading some 

authors to suggest the type 2 trajectory to be preferable 18, 22. There is commonly a net rearward 

barbell displacement regardless of trajectory type, which is usually accompanied by the lifter 
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jumping backward to accommodate the barbell’s movement14, 18, 20, 23-25. Patterns of horizontal 

displacement are likely related to anthropometry26 and influenced by absolute and relative 

strength levels14, 18, 27; thus, the optimal trajectory pattern may differ individually28, 29.  

The lifter experiences shifts in balance due to changes in the lifter-barbell system center 

of mass (COM), which is influenced by the separate movements of the lifter and barbell COMs. 

The center of pressure (COP) through the foot begins near the ball or arch of the foot and moves 

rearward during the first pull, begins to shift anteriorly toward the ball of the foot during the 

transition, and finally ends in front of the vertical reference line at the end of the second pull30 

(Figure 3). Changes in COP location may reflect an athlete’s ability to effectively exert force 

against the ground throughout the pull31. It should be noted that COP movement during the first 

pull is correlated directly to the magnitude and time history of barbell horizontal displacement30. 

The anterior shift in COP after the first pull may influence the magnitude of the barbell’s forward 

horizontal displacement during the transition phase and second pull30. Furthermore, barbell 

horizontal displacement affects muscular effort during key positions, such as at the end of the 

first pull and transition phase3, 14, 30.  

While these general features provide a basic template of WL technique, a survey of 

methods used to study the WL pull may provide additional insights to inform coaching practices. 

Refer to Bartonietz19, Baumann et al.14, Enoka3, Hiskia17, and Vorobyev13 for detailed reviews of 

technique of the WL pull. 
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Figure 3. Center of pressure through the foot shifts anteroposteriorly during the weightlifting 

pull. A, balance location at lift-off; B, balance location at end of first pull; C, balance location at 

end of second pull. Balance locations may vary between lifts, load, and athlete. Mediolateral 

position not represented in figure. Redrawn and adapted from Garhammer & Taylor30. 

 

Methods of Analysis 

Kinematic analysis 

Kinematics is the study of motion without consideration of the forces producing or 

resulting from motion. Kinematic analysis involves both qualitative and quantitative approaches. 

These methods are used to measure or calculate variables related to the displacement, velocity, 

and acceleration of components of the lifter-barbell system (Table 1). Some methods of 

kinematic analysis have led to the delineation of several phases in addition to the first and second 

pull, which can be applied to both the snatch and clean. Although nomenclature and definitions 

may vary slightly across studies, typical phases derived from kinematic analyses are identified by 

changes in barbell height and direction and magnitude of knee joint rotation13, 22, 27, 32 (Figure 4), 

with some studies also identifying features from the velocity- or acceleration-time profiles that 
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coincide with the start and end points of some phases17. Additionally, many studies examine the 

snatch or clean in their entirety and so include phases that extend beyond the lifter’s final 

extension during the second pull. 

 

Figure 4. Although the snatch is depicted here, phases of both the snatch and clean can be 

determined by changes in barbell height and magnitude and direction of knee joint rotation. First 

pull, from lift-off until the first maximum knee extension; transition phase, from the end of the 

first pull until the second minimum knee angle; second pull, from the end of the transition phase 

until the second maximum knee angle; turnover phase, from the end of the second pull until 

maximum barbell height; and catch phase, from maximum barbell height until stabilization in the 

catch position32. 
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Table 1 

Methods of Kinematic Analysis 

Method Component evaluated Measurement Primary measured or calculated variable(s) of interest 

3D MOCAP Lifter, barbell, lifter-

barbell system 

Lifter: segment linear 

displacement; joint angular 

displacement 

Barbell: linear 

displacement 

Lifter: joint range of motion; segment displacement; 

segment/joint angular velocity; change in segment angle; 

center of mass location 

Barbell: vertical and horizontal displacement; vertical 

velocity; vertical and resultant acceleration; center of 

mass location 

Lifter-barbell system: center of mass location 

Film/video analysis Lifter, barbell Lifter: joint angle; segment 

angle relative to vertical or 

horizontal 

Barbell: linear 

displacement 

Lifter: joint range of motion; segment displacement; 

segment/joint angular velocity; change in segment angle 

Barbell: vertical and horizontal displacement; vertical 

velocity; vertical and resultant acceleration 

LPT Barbell Linear displacement Single LPT: vertical displacement 

Dual LPT: vertical and horizontal displacement; vertical 

axis rotation 

Accelerometer/IMU Barbell Linear acceleration Vertical and resultant acceleration; vertical velocity 

3D MOCAP, three-dimensional motion capture; IMU, inertial measurement unit; LPT, linear position transducer 
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Three-dimensional motion capture. Three-dimensional (3D) motion capture (MOCAP) 

typically uses an arrangement of multiple infrared cameras to record movement of reflective 

markers within an established 3D reference frame. Markers are placed to measure displacement 

of the barbell and joints or body segments of interest. 3D MOCAP is considered the gold 

standard of motion analysis with accuracy of some systems reported to be 0.058 to 0.068 mm33 

(95% confidence interval), mean absolute error < 0.5 mm34, and negligible system variability 

given proper calibration and procedures35. However, 3D MOCAP is uncommon outside of 

laboratory settings due to the exorbitant cost of equipment and complexity of data collection, 

processing, and analysis. Despite these practical limitations, the impeccable accuracy of 3D 

MOCAP in measuring displacement allows for extremely precise calculation of the (linear or 

angular) velocity or acceleration of the object(s) of interest through the single or double 

differentiation of the displacement-time data, respectively. Thus, 3D MOCAP allows 

comprehensive profiling of the displacement, velocity, and acceleration histories of various 

components of the lifter-barbell system. Additionally, when coupled with direct measurements of 

force, advanced processing of 3D MOCAP data enables complex biomechanical analysis such as 

inverse dynamics, which is discussed further in the section ‘Kinetic Analysis’. Markerless 

systems have recently entered the market but currently lack the accuracy of traditional marker-

based systems. Refer to Robertson et al.36 and van der Kruk and Reijne33 for a more detailed 

explanation of 3D MOCAP methods and analysis.  

Film/video analysis. Film analysis contributed greatly to early insight on WL technique 

due to its relative low cost and ease of data collection. A significant drawback of film analysis is 

manual frame-by-frame digitization of the object(s) of interest. The advent of digital video 

recorders eventually led to the replacement of film with digital video to record lifts. Current 
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methods of video analysis involve specialized software that can analyze a variety of video file 

types and perform automatic or semi-automatic object tracking, automatic calculation of 

variables of interest, and export of data to a spreadsheet for further analysis. Software range in 

cost from free, open-source computer programs (e.g. Kinovea) and free or low-cost mobile 

applications (e.g. BarSense, Coach’s Eye, Ubersense, WeightLifting Motion) to several thousand 

USD for a single license for some programs (e.g. Dartfish). Common program features include 

graphical overlay and annotation to highlight objects or events of interest. In addition, some 

programs utilize online or cloud-based systems that allow remote recording, analysis, and 

sharing of video files between athletes and coaches.  

These technological advances and the ubiquity of video recorders make video analysis a 

pragmatic method of technique analysis for both research and coaching purposes. However, 

camera specifications and arrangement will affect the accuracy, precision, and reliability of 

measurements and calculations. High frame rates (≥ 100 fps) are required for accurate 

determination of kinematic variables such as barbell displacement, velocity, and acceleration37. 

Observation of some component(s) of the lifter-barbell system may be obstructed depending on 

viewing angle. For example, in a side view to observe barbell trajectory, the plates will obstruct 

viewing of parts of the lifter’s body during portions of the lift. Similarly, viewing angle can 

influence the accuracy of measurements such as distance or joint angle due to perspective error. 

Detailed treatment of these and other considerations are presented by Garhammer and Newton37 

and Payton38. 

The use of a single camera only provides one vantage point, which impacts which 

component(s) of the lifter-barbell system can be analyzed and permits only two-dimensional 

(2D) analysis. 2D analysis of linear displacement requires calibration of the software’s distance 
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scale using an object of known length in the same plane of the object(s) of interest. For example, 

the diameter of the largest plate (45 cm) nearest to the camera can be used to calibrate the 

distance scale when analyzing barbell displacement from a side-view.  

A two-camera setup alleviates many of the limitations of single-camera methods and 

allows for 3D analysis. Cameras can be arranged to allow unobstructed viewing of the entire 

lifter-barbell system, and calibration of a 3D reference frame allows for the accurate calculation 

of linear and angular measurements outside the observation planes of the cameras. Both single 

and two-camera methods permit detailed analysis of barbell trajectory (Figure 5) and the 

identification of phases and subphases of the WL pull, such as those in Figure 4, to closely 

examine the relationships and interactions between components of the lifter-barbell system 

throughout the lift. However, synchronization of footage from multiple cameras requires 

additional equipment or data processing. Calibration procedures and data analysis are also more 

complex compared to typical 2D methods. 
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Figure 5. Several potential variables of interest can be quantified through video analysis. Xnet, net 

horizontal displacement from start position to catch; X1, horizontal displacement from start 

position to end of first pull; X2, horizontal displacement from end of first pull to most forward 

position during second pull; Ymax, maximum barbell height; Ycatch, height of barbell at catch; 

Ydrop, difference between (Ymax - Ycatch). Modified from Stone et al.18  

 

Linear position transducer.  Linear position transducers (LPTs) determine barbell 

displacement through movement of a wire that is connected to the sensor and tethered to the 

barbell. Measurement using a single LPT allows for one-dimensional (1D) analysis of 

displacement-time data and calculation of velocity and acceleration, which are both vector 

quantities, through the single and double differentiation of the displacement-time data, 

respectively. Because an LPT is only capable of measuring in one dimension, measurement error 

is introduced when the movement includes more than one dimension (e.g. includes both 
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horizontal and vertical components) or the object’s trajectory is not directly in line with the LPT 

axis. A dual-LPT setup where both LPTs are tethered to the same point on the barbell provides 

the ability to derive values in two dimensions through triangulation. Additionally, a system using 

two pairs of LPTs, with one pair attached to each side of the barbell, permits separate 2D 

analysis of the left and right sides of the barbell, which can differ with respect to vertical and 

horizontal displacement39-41 or due to rotation around the vertical axis39. Refer to Westenburg et 

al.42 for more information about dual-LPT setup and analysis.  

Transceiver systems. This technology was a predecessor to modern microsensors and 

consumer-based software programs. One example of these systems uses an array of transceivers 

to transmit infrared signals to and receive ultrasonic signals from a sensor attached to the end of 

the barbell. Some investigators have used multiple units to analyze barbell motion bilaterally41. 

Software then computes the 3D kinematics of the end of the barbell to which the sensor is 

attached. This technology produces accurate data that allows the determination of barbell linear 

kinematic variables and the calculation of force and power. Some notable studies using this 

technology have contributed insight on barbell trajectory and kinematics18, especially of lifts 

during international competition17. However, this type of transceiver system has been supplanted 

largely by the development of microsensors (e.g. accelerometers, inertial measurement units) and 

accompanying software and mobile applications. Refer to Hiskia17 for an example of analysis 

conducted using a transceiver system. 

Accelerometer/inertial measurement unit. An accelerometer is a type of microsensor 

that is attached or fixed to the barbell and measures changes in acceleration along a given axis. 

Many available devices are triaxial (i.e. 3D). However, barbell rotation during the lift changes 

the orientation of the sensor, and the data no longer reflect the linear movement of the barbell. 
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Inertial measurement units (IMUs) are accelerometers that incorporate gyroscopes to detect and 

correct for changes in sensor orientation making them more suitable to study the WL pull. Refer 

to Flores43, Sato44, and Wagner45 for more information and examples on the use of 

accelerometers and IMUs to study the WL pull. 

These devices yield acceleration-time data that can be analyzed directly and are often 

used to calculate velocity by single integration. Phases of positive acceleration indicate 

increasing velocity, while negative acceleration corresponds to decreasing velocity. Additionally, 

transitions in which the acceleration-time curve crosses zero indicate deflections in velocity. 

Positive-to-negative transitions of acceleration coincide with moving from a phase of increasing 

velocity to one of decreasing velocity and vice versa with negative-to-positive transitions of 

acceleration. Periods of zero acceleration indicate constant velocity. Furthermore, evaluation of 

component and resultant acceleration-time profiles may provide useful information about the 

nature of the lifter’s application of force to the barbell46. 

Kinetic analysis 

Kinetics is the branch of mechanics dealing with the forces and torques involved in 

producing or resulting from motion. Kinetic analysis includes both qualitative and quantitative 

approaches. In addition to the magnitude of involved forces or torques, kinetic variables of 

interest include impulse, power (expressed as the product of either force or torque multiplied by 

velocity), and rate of force or torque development (Table 2). 

Although kinematics does not involve forces or torques, some kinematic measurements 

can be used to calculate variables such as force or power. For example, barbell displacement and 

velocity data can be used to calculate changes in the barbell’s potential and kinetic energy (i.e. 

work done on the barbell), which allows the calculation of instantaneous power or average power 
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over a given time interval such as during the first or second pull19, 47. Similarly, barbell 

acceleration can be used to calculate the barbell’s force—which is also a vector quantity—using 

the equation for Newton’s second law of motion (𝐹⃑ = 𝑚 ∙ 𝑎⃑). This calculated force is reflective 

of the force imparted by the lifter onto the barbell3. Some of the remaining methods in this 

section also involve the calculation of force or torque; however, they do primarily include direct 

measurement of force as part of their calculations. 
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Table 2 

Methods of Kinetic Analysis 

Method Component evaluated Measurement Primary measured or calculated variable(s) of interest 

Force plate Lifter-barbell system Ground reaction force Vertical and resultant ground reaction force; rate of force 

development; impulse; center of pressure location 

Inverse dynamics Lifter, barbell, lifter-

barbell system 

Lifter: segment linear 

displacement; joint angular 

displacement 

Barbell: linear 

displacement 

Lifter-barbell system: 

vertical ground reaction 

force 

Net and component muscle or joint forces or torques; 

joint power; rate of torque development 

EMG Lifter Muscle activation (i.e. 

motor unit action 

potentials) 

EMG signal frequency, amplitude, and rate of rise 

ANNs Predictive model of 

lifter, barbell, or lifter-

barbell system 

Model output of kinematic 

or kinetic data 

Model sensitivity or accuracy (typically to assess or 

predict joint torque, joint angular velocity, joint range of 

motion) 

ANN, artificial neural network; EMG, electromyography 
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Force plate. The WL pull requires the lifter to produce vertical ground reaction force 

(GRFZ) to perform vertical work to lift the barbell. Force plates are used to measure GRFZ 

using single or dual-platform arrangements. Most modern force plates contain multiple load 

cells, making it possible to also determine the COP. Additionally, triaxial force plates allow 

measurement of the resultant and component force vectors. Refer to Baumann et al.14, 

Enoka3, and Robertson et al.36 for more information and examples of force plate analysis of 

the WL pull. 

Unlike phases determined through kinematic analysis, force plate measurements have 

been used to identify phases based on changes in GRFZ relative to the system weight (i.e. 

total weight of the lifter and barbell load). There are two periods during which GRFZ is 

greater than the system weight, ‘Weighting I’ and ‘Weighting II’, and one ‘Unweighting’ 

phase during which GRFZ is less than the system weight3. Weighting I commences at barbell 

lift-off and lasts through nearly the entire first pull. Unweighting follows, beginning and 

ending slightly before the start and finish of the transition phase. Weighting II is the last 

phase and represents the final positive impulse to accelerate the barbell upward3. The barbell 

force- and acceleration-time profiles exhibit concordance with these phases3. Furthermore, 

both the barbell and GRFZ force-time profiles support the notion that the double knee bend 

enhances force production during the second pull3. Measurement of the WL pull using force 

plates reveals kinetic characteristics including the maximum force3, 14, 48-50, rate of force 

development14, 51-53, and impulse3, 48-50, 53 during the WL pull. This information is useful in 

understanding the kinetic demands of the WL pull and the potential transfer of the WL pull to 

sport performance.  

Inverse dynamics. Inverse dynamics differs from the calculation of force or power 

using only kinematic data. While inverse dynamics can be used to calculate 2D or 3D muscle 

forces or joint torques, it requires combined measurement of both kinematic (i.e. 
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displacement-time) and kinetic data (i.e. GRF) for these calculations. These data are then 

used to solve for the variable(s) of interest. Potential variables of interest in addition to 

muscle force54 and joint torque14, 55-57 include joint power55, 58, rate of torque development55, 

and whole body power47, 59-61. Refer to Kipp et al.56 and Robertson et al.36 for further 

discussion and examples of analysis using inverse dynamics. 

Inverse dynamics is valuable to gain insight on the internal forces involved during the 

WL pull that would otherwise be unobservable. Practically, such information provides 

knowledge of the nature of muscular effort and power output during the WL pull. For 

example, different loads are required to produce maximum joint power at the hips, knees, and 

ankles55, 58. Additionally, inverse dynamics has been used to identify asymmetries between 

left and right side internal joint loads during the snatch, which coaches may be interested in 

to inform training and evaluate movement performance62. 

Electromyography. Although electromyography (EMG) measures muscle activation 

(i.e. motor unit action potentials), it is often combined with other techniques that directly 

measure force. Some researchers have demonstrated the ability to predict muscle forces using 

EMG during a weightlifting movement63. However, while EMG amplitude alone does not 

necessarily indicate the level of muscle force, the pattern of the EMG signal may indicate 

changes in activation and motor unit recruitment in muscles of interest throughout the WL 

pull48, 49, 64. EMG pattern may also indicate differences in skill level65. Thus, EMG studies 

may be used to guide exercise prescription based on patterns of muscle activation and, 

potentially, muscle force. Additionally, some researchers have reported differences in muscle 

activation patterns66 and EMG signal67, 68 as a result of WL training. Refer to Enoka69, 

Häkkinen et al.48, and Robertson et al.36 for further details and examples of analysis using 

EMG. 
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Artificial neural networks. Artificial neural networks (ANNs) are a type of machine 

learning used to predict some output(s) of interest. ANNs consist of multiple nodes arranged 

in an input layer, one or more hidden layers, and an output layer. Information typically flows 

sequentially from the input layer through nodes in subsequent layers. Connections between 

nodes in neighboring layers comprise algorithms that use the outputs from preceding nodes to 

influence the interaction of subsequent nodes within the model. ‘Training’ of ANNs involves 

running multiple iterations of the model to manually tune each node or algorithm or to allow 

them to self-tune. Initial efforts to apply these approaches to the WL pull include qualitative 

assessment of lifter kinematics70 and predicting joint torques based on lifter kinematics71 or 

barbell mass and displacement data72. The development of robust models may allow for the 

accurate prediction of required muscle forces and joint torques and may contribute to the 

optimization of barbell and lifter kinematics. Refer to Schöllhorn73 for a review of 

biomechanical applications of ANNs. 

Practical Applications 

Personal electronics (e.g. smartphones, tablets, laptops) offer capable platforms for 

portable or microsensor technologies, mobile applications, and computer programs that 

broaden the coach’s ability to conduct technique analysis in everyday practice. Online and 

cloud-based systems provide additional flexibility across multiple devices and platforms. 

These technologies have the potential to democratize many methods of technique analysis 

that were previously restricted to laboratory settings. However, coaches must be aware of the 

potential tradeoff between convenience and a device or software’s validity and reliability9, 74, 

75. Furthermore, some devices and software may restrict users from accessing information 

about how data are processed or variables are calculated, which may complicate 

interpretation of results. Nevertheless, some methods, such as video analysis, can be 

implemented immediately with personal electronics many coaches are likely to already 
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possess and have clear guidelines to improve reliability and minimize error37, 38. Although 

coach-friendly options have practical benefits, the scientific literature remains indispensable 

to gain comprehensive knowledge of WL technique. Thus, coaches should have explicit 

knowledge of how to interpret information collected from technique analysis whether they 

are conducting technique analysis or consulting the literature. 

Kinematic analysis has provided insight into characteristic displacement-, velocity-, 

and acceleration-time profiles of both the lifter and barbell during the WL pull. Notable 

differences in these profiles have been observed due to skill level and sex, which further 

supports the role of kinematic analysis in the qualitative assessment of WL pull technique and 

to guide coaching practice. For example, women and less-skilled athletes exhibit a slower and 

shallower double knee bend21, 22, 27, 32, 49, 58, 76, which some authors have attributed to 

weakness in the hip and thigh musculature14, 22, 27, 32, 76. Thus, coaches may seek to emphasize 

strength development of the hip and thigh musculature in athletes from these groups. 

Furthermore, the delineation of phases in the WL pull also allows careful examination of the 

interactions that occur between components of the lifter-barbell system, especially at key 

positions or moments during the lift. For example, the pattern and magnitude of horizontal 

barbell displacement during the first pull may influence the amount of loop during the second 

pull18, so coaches may choose to focus on these parameters in an effort to optimize barbell 

trajectory. It is also apparent that horizontal barbell displacement affects the moment arms at 

each joint and has a profound effect on muscular demands, especially at the knee and hip 

joints, and that the lengths of these moment arms should be minimized14, 30. 

Kinetic analysis provides important information on the nature of the forces required to 

perform the WL pull, which can also provide rationale for the implementation of the WL pull 

in training. Specifically, kinetic analysis can identify the contributions of individual muscle 

forces and joint torques to produce GRFZ and barbell or whole body power. Such information 
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can be used to target joint specific adaptations to maximize joint torque, increase GRFZ, or 

improve power output. Muscle activation patterns from EMG may also help to identify 

muscles that require special emphasis in training or that may be developed by performing the 

WL pull. For example, WL training produced different muscle coactivation adaptations 

compared to traditional resistance training and was associated with greater improvements in 

jump performance66. Furthermore, kinetic analysis in relation to specific kinematic patterns 

or arrangements may also reveal differences in their effectiveness, which may influence a 

coach’s representation of idealized technique for each athlete or in general. Such analysis 

may contribute to optimization of barbell and lifter kinematics71, 72, 77, 78, with the 

development of ANNs being potentially useful in this regard. Coaches may also wish to 

consider the influence of anthropometry on kinematic and kinetic aspects of WL technique26, 

79. Furthermore, the monitoring of both kinematic and kinetic variables may be potentially 

useful for coaches to identify changes in skill21, 23, 58, 62, 65, 70, 78, 80-82, fatigue52, 70, 83, and 

adaptation19, 21, 49, 66, 84, 85.  

Conclusion 

Many methods have been used to conduct technique analysis of the WL pull and have 

contributed to an extensive knowledge of WL technique to help coaches in the 

conceptualization of idealized technique, the process of error correction, and the 

programming of training. However, coaches must consult the scientific literature to attain 

insight generated by several of these methods because they are generally inaccessible to 

coaches otherwise. Video analysis and portable or wearable devices are likely the most viable 

methods for the modern coach to conduct advanced technique analysis. While consumer-

based technologies are aimed at providing coaches with detailed kinematic data, some of 

these devices may be cost prohibitive in many cases, in addition to issues of validity, 

reliability, and durability.  
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The ubiquity of digital video cameras and the availability of free or low-cost video 

analysis software make video analysis a readily accessible method for coaches to employ 

without the need to purchase additional equipment. Most current personal electronic devices 

have built-in high-definition video cameras with many capable of recording at 120 fps or 

greater, making them suitable for quantitative analysis37. Automated enhancement of video 

frame rate may improve quantitative analysis of videos recorded at < 100 fps86, 87. Common 

video analysis software features include automated object tracking, graphical overlay, and 

automated calculation of kinematic variables such as displacement and velocity. These 

features enable the coach to provide augmented visual feedback and rapid determination of 

kinematic variables of interest. The use of spreadsheet templates or computer scripts (e.g. R 

or Python programming languages) can increase the efficiency of more extensive data 

analysis and visualization. Thus, video analysis is a practicable method for coaches to 

conduct WL technique analysis. 

Coaches must remain cognizant that technique is only one factor that contributes to 

performance outcomes. In fact, it is not unusual for the highest performers to display 

apparently ‘suboptimal’ technique. For example, only 3 out of 7 women snatch gold 

medalists from the 2010 World Weightlifting Championship displayed either of the ‘toward-

away-toward’ barbell trajectory patterns22. Such observations highlight that coaches must be 

discerning about which kinematic features of the WL pull they idealize and what aspects of 

technique they choose to focus on when teaching or coaching. Technique analysis may also 

be useful to identify kinetic factors associated with producing or resulting from a given 

technique or movement pattern. Kinematic and kinetic analyses thus provide extensive 

information to characterize various components of WL pull technique. This information can 

be beneficial for coaches to determine effective technique, target specific movement or 

performance outcomes, and, ultimately, improve sport performance.  
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Abstract: Analysis of elite performances are important to elucidate the characteristics of effective 

weightlifting technique at the highest level of achievement. The general technique of the 

weightlifting movements is well-established. However, it is also apparent that weightlifting 

technique can differ based on athlete characteristics. Thus, existing technical models may not 

accurately reflect current technique of top performers or be generalizable to athletes of different 

skill, size, sex, or ability. Therefore, the purpose of this study was to update the scientific knowledge 

of snatch technique of top international weightlifters. This study used video analysis to determine 

barbell trajectory and kinematics of successful snatch attempts from two major international 

competitions. Relative frequencies of barbell trajectory types differed based on competition, sex, 

category, and ranking. No statistical differences were observed among top-three performers of 

either sex for most kinematic variables, and there were no overall discernible patterns of effect size 

differences for individual or clusters of kinematic variables. Weightlifting success can be achieved 

with a variety of technique profiles. Strength is likely a primary determinant of weightlifting 

performance and ability that may also secondarily allow individuals to overcome suboptimal 

technique. 

Keywords: biomechanics; technique analysis; Olympic-style lifting 

 

1. Introduction 

Attempts completed during major international weightlifting competitions comprise maximum 

or near-maximum performances by the most-skilled performers of the weightlifting movements (the 

snatch, the clean, and the jerk), and these performances are instructive for the idealization of effective 

weightlifting technique. The general technique of the weightlifting movements is well-established [1-

5]. However, it is also apparent that weightlifting technique can differ based on athlete characteristics. 

For example, differences in the relative frequencies of barbell trajectory types among lifters in A 

versus B sessions during international competitions have been observed [4,6]. Several authors have 

also reported differences in lifter and barbell kinematics and kinetics based on skill level [6-8]. Other 

investigations of competitive performances provide evidence that weightlifting technique may also 
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be influenced by other factors such as anthropometry, weight category, and sex [4,6,9-12]. Such 

findings may provide some guidance to individualize teaching and coaching to best suit each athlete.  

Technique differences may also be suggestive of a need for different training objectives or 

emphases to address deficiencies that may influence weightlifting success or sport performance. For 

example, some authors have suggested that the ability to execute a stretch-shortening cycle during 

the transition phase may be improved by increasing knee flexor concentric strength [6,8] or knee 

extensor eccentric strength [9,11,13]. Additionally, coaches may employ physical training to increase 

an athlete’s speed of moving under the barbell after completing the second pull [7]. 

It is worth noting that the best performers may exhibit apparently suboptimal technique [9]. 

However, it is unclear whether top performers with suboptimal technique achieve success because 

of or despite their technique. Furthermore, the observed technique differences in many of the 

aforementioned studies are confounded by differences in weightlifting ability (i.e. absolute load 

lifted), and the technique an individual exhibits is partly dependent on her or his absolute and relative 

strength. Thus, strength is likely to be a primary determinant of weightlifting success [14]. 

These technique and strength differences notwithstanding, analyses of performances during 

major international competitions are infrequent [4,6,9,11,12,15-17] or limited to select rankings or 

weight categories [9,11]. Thus, existing technical models may not accurately reflect current technique 

of top performers or be generalizable to athletes of different skill, size, sex, or ability. Accurate 

technical models are important for coaches to devise frameworks for teaching and coaching the 

weightlifting movements. Technical and biomechanical analyses can also provide rationale for 

coaches to implement the weightlifting movements in training on the basis of specificity [18-20] and 

transference of training [21,22].  

Cross-sectional analyses contribute to the cumulative scientific knowledge on weightlifting 

technique with the potential to inform coaching practices. Analysis of elite performances is important 

to elucidate the characteristics of effective weightlifting technique at the highest levels of 

achievement. Additionally, observed technique differences indicate the need for serial investigations 

encompassing multiple subgroups of performers. Therefore, the purpose of this study was to update 

the scientific knowledge of snatch technique of top international weightlifters. The primary aim of 

this study was to elucidate technical and biomechanical parameters of successful snatch attempts by 

lifters at the 2015 World Weightlifting Championship (WWC) and 2017 Pan-American Weightlifting 

Championship (PAWC). 

2. Materials and Methods 

2.1. Participants 

This study was an investigation of the heaviest successful snatch attempt for all athletes who 

lifted in the A sessions of WWC and PAWC. The heaviest successful snatch attempt by each of the 

top three finishers at the time of competition in each women’s and men’s weight category for WWC 

and PAWC was also identified for separate analyses. Seven women’s and 8 men’s weight categories 

were contested at WWC, and 8 weight categories each for both women and men were contested at 

PAWC. Three eligible attempts each from both WWC and PAWC were not recorded due to 

software/hardware error, so those lifters and their results were excluded from analysis. Excluded 

lifters included the 3rd place finisher in the women’s 75 kg category from WWC and the 3rd place 

finisher in the women’s 48 kg category from PAWC. Seven lifters from WWC and 4 lifters from 

PAWC did not complete any successful attempts in the snatch and were also excluded from analysis. 

In total, 77 women (24.1 ± 3.1 y) and 82 men (25.0 ± 3.3 y) from WWC and 75 women (25.2 ± 5.1 y) and 

85 men (23.8 ± 4.2 y) from PAWC were included in this study (Tables 1 and 2). A total of 159 lifts from 

WWC and 160 lifts from PAWC were analyzed.   
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Table 1. Athlete characteristics for 2015 World 

Weightlifting Championship. 

 
n Age (y) BW (kg) 

Women 
   

  48 11 23.5 ± 2.7 47.65 ± 0.23 

  53 12 25.3 ± 2.8 52.53 ± 0.71 

  58 11 25.8 ± 2.5 57.49 ± 0.51 

  63 12 23.0 ± 3.2 62.45 ± 0.59 

  69 10 24.5 ± 2.7 68.24 ± 0.81 

  75 10 24.3 ± 2.3 74.53 ± 0.40 

  +75 11 22.7 ± 4.1 114.06 ± 16.69 
 

77 24.1 ± 3.1 67.77 ± 21.64 

    

Men 
   

  56 7 24.1 ± 4.0 55.79 ± 0.13 

  62 11 25.4 ± 3.0 61.82 ± 0.14 

  69 11 24.4 ± 2.9 68.78 ± 0.15 

  77 11 24.7 ± 4.1 76.60 ± 0.30 

  85 10 24.2 ± 3.0 84.36 ± 0.38 

  94 10 25.0 ± 2.4 93.46 ± 0.48 

  105 10 24.9 ± 3.4 104.54 ± 0.45 

  +105 12 26.5 ± 3.7 148.74 ± 6.96 
 

82 25.0 ± 3.3 88.76 ± 29.02 

Values are mean ± SD; BW, bodyweight. 

Table 2. Athlete characteristics for 2017 Pan-

American Weightlifting Championship. 

  n Age (y) BW (kg) 

Women 
   

  48 11 24.9 ± 4.8 47.67 ± 0.31 

  53 9 25.5 ± 6.0 52.35 ± 1.10 

  58 9 27.2 ± 5.2 57.44 ± 0.68 

  63 9 27.1 ± 5.1 62.70 ± 0.28 

  69 9 21.9 ± 3.3 67.89 ± 0.96 

  75 10 24.8 ± 4.3 74.58 ± 0.38 

  90 9 25.7 ± 6.4 85.58 ± 4.22 

  +90 9 24.4 ± 5.2 110.01 ± 18.24 
 

75 25.2 ± 5.1 69.25 ± 20.07 

Men 
   

  56 10 23.2 ± 6.4 55.78 ± 0.23 

  62 15 22.5 ± 3.1 61.40 ± 0.60 

  69 14 23.8 ± 4.1 68.31 ± 0.62 

  77 10 21.4 ± 3.3 76.54 ± 0.56 

  85 8 24.3 ± 5.6 84.42 ± 0.43 

  94 10 25.4 ± 4.3 92.29 ± 2.62 

  105 9 24.7 ± 2.0 103.88 ± 1.22 

  +105 9 25.8 ± 3.7 135.76 ± 18.17 
 

85 23.8 ± 4.2 81.83 ± 24.47 

Values are mean ± SD; PAWC; BW, bodyweight. 

It should also be noted that the International Weightlifting Federation changed the official 

women’s weight categories in 2016. Thus, the women’s 90 kg category from PAWC was excluded 

from comparative analysis, and the women’s +75 category from WWC and +90 category from PAWC 

were considered equivalent during comparative analysis. 

The ethics committee of East Tennessee State University determined this study to not be human 

subjects research. Therefore, subjects were not required to provide informed consent for inclusion in 

this study. 

2.2. Data Collection 

Lifts were recorded at both competitions using a GoPro HERO4 Black digital video camera (San 

Mateo, CA, USA) in 720p resolution (1280 × 720 pixels [px]) at 240 fps. Camera setup conformed to 

recommendations to minimize measurement error of sagittal plane barbell kinematics [23]. The 

camera was arranged on a tripod 15 m and 11 m from the left edge of the competition platform at 

WWC and PAWC, respectively, to avoid interference with competition proceedings. The camera lens 

was centered and leveled 0.71 m above the competition platform surface facing in line and parallel 

with the platform center for both competitions. 

2.3. Video Analysis 

Video analysis was conducted using Kinovea software (version 0.8.27). The software's working 

area was set to 400% zoom to improve accuracy of digitized marker placement and distance 
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calibration. Kinovea’s automatic tracking feature was used to determine barbell displacement, 

recorded in px, by placing a digitized marker on the center of the visible end of the barbell prior to 

lift-off. Raw displacement data was exported to a spreadsheet for subsequent analysis using a custom 

Labview program. Raw data was converted from px to cm using a respective scaling coefficient 

(WWC: 0.70740 cm∙px-1; PAWC: 0.67497 cm∙px-1) and smoothed using a 20-point moving average. 

Outcome variables were determined from the converted, smoothed data. 

2.3.1. Calibration variability and inter-rater reliability 

Scaling coefficients for WWC and PAWC were determined from 20 lifts from the respective 

competition using the following procedures. Ten lifts each for both women and men with at least one 

lift from each weight category were randomly selected. Kinovea’s line tool was used to draw a line 

on the image along the vertical diameter of the largest plate (45 cm) nearest to the camera prior to lift-

off. The length of the line was recorded in px and converted to a scaling factor (cm:px) for each file. 

The mean scaling factor for each set of 20 lifts were also determined. Outcome variables were 

determined for each file using both the original scaling factor associated with each file and the 

respective mean scaling factor.  

The mean ± SD of calibration factors was 0.70740 ± 0.007 cm∙px-1 for WWC and 0.67497 ± 0.008 

cm∙px-1 for PAWC (95% confidence intervals: 0.70440 to 0.71039 cm∙px-1 and 0.67146 to 0.67847 cm∙px-

1, respectively). The 95% confidence intervals for % coefficient of variation for each set of original 

calibration scales was 0.6 to 1.3% for WWC and 0.8 to 1.6% for PAWC.  

Repeated measures ANOVAs for each outcome variable revealed no statistical differences 

between methods (F(1,19) = 0.00040 to 0.23; p = .6 to > .9 and F(1,19) = 0.0024 to 0.14; p = .7 to > .9 for WWC 

and PAWC, respectively). 95% confidence intervals for Pearson’s correlation coefficients for pairs of 

outcome variables determined from both methods were r = 0.988 to 0.999 and r = 0.982 to 0.999 for 

WWC and PAWC respectively (p < .001). 95% confidence limits of the standard error of measurement 

for all displacement variables ranged from a lower limit of -0.7 cm to an upper limit of 2.1 cm for 

WWC. For PAWC, 95% confidence limits of the standard error of the measurement for all 

displacement variables ranged from a lower limit of -0.8 cm to an upper limit of 2.5 cm. 95% 

confidence intervals for the standard error of measurement for peak vertical velocity ranged from -

0.01 to 0.04 m∙s-1 for WWC and -0.02 to 0.05 m∙s-1 for PAWC. 95% confidence intervals for ICC 

reliability coefficients for the determination of all outcome variables between both methods were 

0.977 to 0.999 and 0.969 to 0.999 for WWC and PAWC, respectively, based on a single measure, 

absolute agreement, 2-way random effects model (p < .001). Thus, the likely amount of error between 

the two methods was deemed to be negligible. 

2.4. Outcome Variables 

Barbell trajectory type was classified using definitions from Cunanan et al. [24], which are based 

on work by Vorobyev [5] and Hiskia [4] (Figure X). Barbell kinematic variables were modified from 

Stone et al. [17] and included peak vertical velocity (Vmax), maximum barbell height (Ymax), height at 

catch (Ycatch), difference between Ymax and Ycatch (Ydrop), ratio of Ycatch divided by Ymax (Catchrel), angle 

relative to vertical reference line from start position to position at X1 (θ1), net horizontal displacement 

from start position to most rearward position during first phase of displacement toward the lifter 

(X1), horizontal distance from X1 to most anterior position between X1 and Ymax (X2), horizontal 

distance from position at X2 to position at catch (Xloop), net horizontal displacement from start position 

to Ycatch (Xnet) (Figure X). For determination of Ydrop and Xloop, the catch was defined as the first instance 

after the phase of negative vertical velocity following Ymax that the barbell reached a vertical velocity 

of 0 m∙s-1. 
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Figure X. Barbell trajectory types determined by pattern of horizontal displacement and crossing of 

vertical reference line. Figure redrawn and adapted from Vorobyev [5]and Hiskia [4]. 

 

 
 

Figure X. Barbell kinematic variables of displacement. Ymax, maximum height; Ycatch, height at catch; 

Ydrop, difference between Ymax and Ycatch; θ1, angle relative to vertical reference line from start position 

to X1; X1, net horizontal displacement from start position to most rearward position during first phase 

of displacement toward the lifter; X2, horizontal distance from X1 to most anterior position between 

X1 and Ymax; Xloop, horizontal distance from X2 to Ycatch; Xnet, net horizontal displacement from start 

position to Ycatch. Modified and adapted from Stone et al. [17].  
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2.5. Statistical Analysis 

The count and relative frequency of each barbell trajectory type was categorized by competition, 

sex, weight category, and continent. Descriptive statistics of each kinematic variable from all A 

session lifts, separated by competition, sex, and weight category, were calculated.  

Separate omnibus 2x3 between-subjects ANOVAs for women and men were conducted to 

compare the main effects of competition (WWC, PAWC) and placement (1, 2, 3) and the interaction 

effect of competition and placement on each of the kinematic variables from the top-three women 

and men finishers from both WWC and PAWC. Assumptions of normality and homoscedasticity 

were assessed using Shapiro-Wilk test and Levene’s test, respectively. No outliers were present in 

the data. In cases where assumptions of normality or homoscedasticity were violated, a robust 

ANOVA procedure was conducted [25]. Critical alpha was set at α = .05. Cohen’s d effect size was 

calculated to evaluate the magnitude of all cell and marginal mean differences between groups. 

3. Results 

3.1. Descriptive Analysis 

3.1.1. Barbell Trajectory 

Relative frequencies of each trajectory type were similar between WWC and PAWC. Top-three 

finishers at WWC and PAWC exhibited some differences in relative frequencies of trajectory types 

compared to A session lifters within and between competitions (Tables X-X). 

The type 3 trajectory was the most prevalent type among all A session lifters at both WWC and 

PAWC (53% and 59%, respectively), with heavier men’s categories exhibiting a greater relative 

frequency than other categories. The type 3 trajectory was also the most common type among top-

three finishers at both meets (43% and 49%, respectively); although, it was less prevalent among 

women compared to men at WWC (30% vs. 54%) and PAWC (43% vs. 54%). The type 2 trajectory 

was exhibited by approximately 30% of women and men at both WWC and PAWC. The type 1 

trajectory accounted for 13% and 8% of lifts at WWC and PAWC, respectively. The type 4 trajectory 

occurred least frequently at both WWC and PAWC (6% and 3%, respectively). 

A greater proportion of women’s top-three finishers at both WWC and PAWC exhibited the type 

2 trajectory compared to their A session counterparts (50% vs. 29% and 39% vs. 29%, respectively). 

The top-three finishers in the men’s 105 and +105 categories at both WWC and PAWC exhibited the 

type 3 trajectory exclusively.  

European top-three finishers from WWC most frequently exhibited the type 3 trajectory (57%), 

while Asian top-three finishers from WWC most frequently exhibited the type 2 trajectory (43%). 

There were no top-three finishers from North America, South America, or Africa at WWC. The type 

4 trajectory accounted for 7% of the lifts among top-three finishers at WWC. 

South American top-three finishers at PAWC most commonly exhibited the type 3 trajectory 

(55%) followed by the type 2 trajectory (38%). North American top-three finishers at PAWC had an 

equal distribution of type 2 and 3 trajectories (39% each) with the remainder being the type 1 

trajectory (22%). No top-three finishers at PAWC exhibited the type 4 trajectory.  
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Table X. Distribution of barbell trajectory type of each athlete’s heaviest successful snatch attempt in A 

sessions at 2015 World Weightlifting Championship. 

 Type 1 Type 2 Type 3 Type 4 

Women     

  48 - 7  (64) 4  (36) - 

  53 1   (8) 1   (8) 8  (67) 2  (17) 

  58 1   (9) 5  (45) 5  (45) - 

  63 2  (17) 3  (25) 7  (58) - 

  69 1  (10) 4  (40) 5  (50) - 

  75 4  (40) 1  (10) 5  (50) - 

  +75 1   (9) 1   (9) 9  (82) - 

 10  (13) 22  (29) 43  (56) 2   (3) 

Men     

  56 2  (29) 3  (43) 1  (14) 1  (14) 

  62 3  (27) 6  (55) 1   (9) 1   (9) 

  69 1   (9) 3  (27) 5  (45) 2  (18) 

  77 1   (9) 5  (45) 4  (36) 1   (9) 

  85 2  (20) 1  (10) 7  (70) - 

  94 - 2  (20) 8  (80) - 

  105 1  (10) - 8  (80) 1  (10) 

  +105 - 3 (25) 8  (67) 1   (8) 

 10  (12) 23 (28) 42  (51) 7   (9) 

Continent     

  North America 1  (17) 2  (33) 3  (50) - 

  South America 3  (25) 4  (33) 4  (33) 1   (8) 

  Asia 6   (9) 26  (39) 31  (46) 4   (6) 

  Europe 9  (14) 10  (15) 43  (65) 4   (6) 

  Africa 1  (13) 3  (38) 4  (50) - 

Grand Total 20  (13) 45  (28) 85  (53) 9   (6) 

Values are count (% relative frequency). 
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Table X. Distribution of barbell trajectory type of each athlete’s heaviest successful snatch attempt in A 

sessions at 2017 Pan-American Weightlifting Championship. 

 Type 1 Type 2 Type 3 Type 4 

Women     

  48 2  (18) 6  (55) 2  (18) 1   (9) 

  53 - 6  (67) 3  (33) - 

  58 2  (22) 2  (22) 5  (56) - 

  63 1  (11) 3  (33) 5  (56) - 

  69 1  (11) 1  (11) 6  (67) 1  (11) 

  75 - 2  (20) 8  (80) - 

  90 - 1  (11) 8  (89) - 

  +90 3  (33) 1  (11) 4  (44) 1  (11) 

 9  (12) 22  (29) 41  (55) 3   (4) 

Men     

  56 1  (10) 2  (20) 7  (70) - 

  62 1   (7) 11  (73) 3  (20) - 

  69 - 4  (29) 9  (64) 1   (7) 

  77 - 4  (40) 6  (60) - 

  85 1  (13) 2  (25) 5  (63) - 

  94 1  (10) 1  (10) 8  (80) - 

  105 - 1  (11) 8  (89) - 

  +105 - - 8  (89) 1  (11) 

 4   (5) 25  (29) 54  (64) 2   (2) 

Continent     

  North America 9  (11) 26  (32) 46  (56) 1   (1) 

  South America 4   (5) 21  (27) 49  (63) 4   (5) 

Grand Total 13   (8) 47  (29) 95  (59) 5   (3) 

Values are count (% relative frequency). 
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Table X. Distribution of barbell trajectory type of each top-three finisher’s heaviest successful snatch attempt at 

2015 World Weightlifting Championship. 

 Type 1 Type 2 Type 3 Type 4 

Women     

  48 - 2 1 - 

  53 - - 1 2 

  58 - 2 1 - 

  63 - 2 1 - 

  69 1 2 - - 

  75* 1 1 - - 

  +75 - 1 2 - 

 2  (10) 10  (50) 6  (30) 2  (10) 

Men     

  56 1 1 1 - 

  62 2 1 - - 

  69 1 - 1 1 

  77 - 1 2 - 

  85 1 1 1 - 

  94 - 1 2 - 

  105 - - 3 - 

  +105 - - 3 - 

 5  (21) 5  (21) 13  (54) 1   (4) 

Continent     

  North America - - - - 

  South America - - - - 

  Asia 4  (13) 13  (43) 11  (37) 2   (7) 

  Europe 3  (21) 2  (14) 8  (57) 1   (7) 

  Africa - - - - 

Grand Total 7  (16) 15  (34) 19  (43) 3   (7) 

Values are count (% relative frequency); * one lift not recorded due to 

hardware/software error. 
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Table X. Distribution of barbell trajectory type of each top-three finisher’s heaviest successful snatch attempt at 

2017 Pan-American Weightlifting Championship. 

 Type 1 Type 2 Type 3 Type 4 

Women     

  48* 1 1 - - 

  53 - 2 1 - 

  58 - 2 1 - 

  63 1 1 1 - 

  69 1 - 2 - 

  75 - 2 1 - 

  90 - - 3 - 

  +90 1 1 1 - 

 4  (17) 9  (39) 10  (43) - 

Men     

  56 - 2 1 - 

  62 - 2 1 - 

  69 - 2 1 - 

  77 - 2 1 - 

  85 1 - 2 - 

  94 1 1 1 - 

  105 - - 3 - 

  +105 - - 3 - 

 2   (8) 9  (38) 13  (54) - 

Continent     

  North America 4  (22) 7  (39) 7  (39) - 

  South America 2   (7) 11  (38) 16  (55) - 

Grand Total 6  (13) 18  (38) 23  (49) - 

Values are count (% relative frequency); * one lift not recorded due to 

hardware/software error. 

3.1.2. Kinematic Variables 

Overall, the direction of the cell mean difference of most kinematic variables from WWC and 

PAWC was inconsistent over weight categories for both sexes (Tables X and X). Heavier lifters tended 

to exhibit greater Vmax, Ymax, and Ycatch, which is partly due to heavier lifters tending to also be taller 

[2,4,10,12]. Despite differences in Ymax and Ycatch, Ydrop did not exhibit an increasing or decreasing trend 

over weight categories for either sex. Heavier lifters also tended to exhibit greater X2, which is likely 

partly attributable to differences in anthropometric variables among weight categories [12]. There 

were no discernible trends in barbell kinematics within weight categories among top-three finishers 

for either sex at WWC or PAWC (Tables X and X). 
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Table X. Load and kinematic variables for heaviest successful snatch attempt for A session lifters at 2015 World Weightlifting Championship. 

  Load Vmax Ymax Ycatch Ydrop Catchrel θ1 X1 X2 Xloop Xnet 

 (kg) (m∙s-1) (m) (m) (m) (%) (°) (m) (m) (m) (m) 

Women 
    

 
   

  
 

  48 82 ± 4 1.82 ± 0.10 0.89 ± 0.05 0.73 ± 0.04 0.16 ± 0.04 82 ± 4 7 ± 3 0.05 ± 0.02 0.05 ± 0.02 0.09 ± 0.04 0.09 ± 0.07 

  53 90 ± 6 1.81 ± 0.11 0.93 ± 0.05 0.77 ± 0.06 0.16 ± 0.04 83 ± 4 5 ± 3 0.04 ± 0.02 0.05 ± 0.02 0.10 ± 0.04 0.09 ± 0.06 

  58 100 ± 7 1.84 ± 0.13 0.95 ± 0.04 0.79 ± 0.05 0.17 ± 0.04 83 ± 4 7 ± 4 0.06 ± 0.03 0.05 ± 0.02 0.11 ± 0.04 0.12 ± 0.09 

  63 104 ± 7 1.90 ± 0.11 0.97 ± 0.06 0.81 ± 0.05 0.16 ± 0.03 83 ± 3 6 ± 4 0.06 ± 0.03 0.06 ± 0.03 0.10 ± 0.06 0.11 ± 0.11 

  69 112 ± 6 1.78 ± 0.11 0.98 ± 0.06 0.82 ± 0.06 0.16 ± 0.04 84 ± 4 6 ± 3 0.06 ± 0.03 0.06 ± 0.02 0.11 ± 0.04 0.12 ± 0.08 

  75 114 ± 9 1.88 ± 0.10 1.02 ± 0.05 0.86 ± 0.06 0.16 ± 0.03 84 ± 3 5 ± 2 0.05 ± 0.02 0.08 ± 0.03 0.09 ± 0.05 0.06 ± 0.10 

  +75 126 ± 12 1.99 ± 0.11 1.10 ± 0.06 0.96 ± 0.06 0.15 ± 0.03 87 ± 2 7 ± 2 0.07 ± 0.02 0.07 ± 0.02 0.15 ± 0.05 0.15 ± 0.08 
 

104 ± 16 1.86 ± 0.13 0.98 ± 0.08 0.82 ± 0.09 0.16 ± 0.04 84 ± 4 6 ± 3 0.06 ± 0.03 0.06 ± 0.03 0.11 ± 0.05 0.10 ± 0.09 

Men 
    

 
   

  
 

  56 126 ± 9 1.79 ± 0.11 0.92 ± 0.07 0.77 ± 0.06 0.15 ± 0.03 84 ± 3 10 ± 5 0.06 ± 0.03 0.05 ± 0.02 0.08 ± 0.03 0.09 ± 0.05 

  62 138 ± 7 1.77 ± 0.07 0.92 ± 0.01 0.77 ± 0.04 0.15 ± 0.04 84 ± 4 7 ± 4 0.06 ± 0.04 0.05 ± 0.03 0.09 ± 0.07 0.10 ± 0.14 

  69 149 ± 8 1.73 ± 0.09 0.95 ± 0.04 0.79 ± 0.06 0.16 ± 0.04 83 ± 4 6 ± 2 0.05 ± 0.02 0.05 ± 0.02 0.10 ± 0.03 0.11 ± 0.06 

  77 162 ± 7 1.82 ± 0.09 0.99 ± 0.04 0.86 ± 0.04 0.13 ± 0.04 87 ± 4 7 ± 3 0.06 ± 0.02 0.05 ± 0.02 0.09 ± 0.04 0.10 ± 0.07 

  85 168 ± 7 1.83 ± 0.12 1.02 ± 0.05 0.89 ± 0.03 0.13 ± 0.04 87 ± 4 5 ± 1 0.04 ± 0.01 0.06 ± 0.02 0.09 ± 0.04 0.07 ± 0.07 

  94 176 ± 4 1.84 ± 0.10 1.07 ± 0.03 0.90 ± 0.06 0.17 ± 0.04 84 ± 4 5 ± 3 0.05 ± 0.04 0.07 ± 0.02 0.09 ± 0.03 0.08 ± 0.09 

  105 182 ± 6 1.88 ± 0.08 1.10 ± 0.03 0.93 ± 0.05 0.17 ± 0.03 84 ± 3 5 ± 2 0.05 ± 0.02 0.08 ± 0.02 0.11 ± 0.03 0.09 ± 0.05 

  +105 196 ± 8 1.88 ± 0.14 1.17 ± 0.08 1.02 ± 0.07 0.15 ± 0.04 87 ± 3 6 ± 3 0.07 ± 0.03 0.08 ± 0.02 0.13 ± 0.05 0.12 ± 0.09 
 

164 ± 22 1.82 ± 0.11 1.02 ± 0.10 0.87 ± 0.10 0.15 ± 0.04 85 ± 4 6 ± 3 0.06 ± 0.03 0.06 ± 0.03 0.10 ± 0.05 0.10 ± 0.08 

Values are mean ± SD. 
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Table X. Load and kinematic variables for heaviest successful snatch attempt for A session lifters at 2017 Pan-American Weightlifting Championship. 

  Load Vmax Ymax Ycatch Ydrop Catchrel θ1 X1 X2 Xloop Xnet 

 (kg) (m∙s-1) (m) (m) (m) (%) (°) (m) (m) (m) (m) 

Women 
   

 
    

  
 

  48 68 ± 10 1.78 ± 0.10 0.92 ± 0.03 0.77 ± 0.05 0.16 ± 0.03 83 ± 3 8 ± 2 0.06 ± 0.01 0.05 ± 0.02 0.09 ± 0.03 0.10 ± 0.04 

  53 83 ± 3 1.77 ± 0.09 0.93 ± 0.05 0.76 ± 0.06 0.17 ± 0.03 81 ± 4 8 ± 2 0.08 ± 0.02 0.04 ± 0.02 0.12 ± 0.04 0.16 ± 0.06 

  58 89 ± 5 1.89 ± 0.08 0.99 ± 0.02 0.81 ± 0.03 0.18 ± 0.04 82 ± 4 5 ± 2 0.05 ± 0.02 0.05 ± 0.01 0.10 ± 0.02 0.09 ± 0.04 

  63 89 ± 5 1.88 ± 0.08 1.00 ± 0.04 0.86 ± 0.05 0.14 ± 0.03 86 ± 3 7 ± 2 0.06 ± 0.01 0.05 ± 0.03 0.13 ± 0.06 0.14 ± 0.09 

  69 93 ± 9 1.94 ± 0.10 1.05 ± 0.04 0.86 ± 0.04 0.19 ± 0.04 82 ± 3 5 ± 3 0.05 ± 0.03 0.07 ± 0.03 0.10 ± 0.04 0.08 ± 0.10 

  75 99 ± 6 1.85 ± 0.06 1.05 ± 0.04 0.87 ± 0.07 0.17 ± 0.04 83 ± 4 0 ± 18 0.05 ± 0.03 0.07 ± 0.03 0.11 ± 0.04 0.09 ± 0.08 

  90 101 ± 13 1.83 ± 0.08 1.04 ± 0.03 0.89 ± 0.04 0.15 ± 0.04 86 ± 4 6 ± 5 0.06 ± 0.05 0.07 ± 0.02 0.12 ± 0.04 0.11 ± 0.10 

  +90 99 ± 22 1.99 ± 0.12 1.12 ± 0.07 0.98 ± 0.09 0.14 ± 0.04 87 ± 4 8 ± 4 0.08 ± 0.04 0.08 ± 0.03 0.13 ± 0.05 0.13 ± 0.10 
 

90 ± 15 1.86 ± 0.11 1.01 ± 0.07 0.85 ± 0.09 0.16 ± 0.04 84 ± 4 6 ± 7 0.06 ± 0.03 0.06 ± 0.03 0.11 ± 0.04 0.11 ± 0.08 

Men 
   

 
    

  
 

  56 102 ± 10 1.77 ± 0.11 0.95 ± 0.07 0.81 ± 0.05 0.14 ± 0.04 85 ± 3 6 ± 3 0.05 ± 0.03 0.04 ± 0.03 0.11 ± 0.04 0.11 ± 0.09 

  62 113 ± 11 1.84 ± 0.16 0.97 ± 0.06 0.82 ± 0.07 0.14 ± 0.04 85 ± 4 9 ± 3 0.08 ± 0.03 0.03 ± 0.02 0.12 ± 0.06 0.17 ± 0.10 

  69 120 ± 16 1.79 ± 0.10 0.99 ± 0.05 0.85 ± 0.05 0.14 ± 0.04 86 ± 4 7 ± 3 0.07 ± 0.04 0.06 ± 0.04 0.10 ± 0.05 0.11 ± 0.12 

  77 145 ± 8 1.81 ± 0.10 1.02 ± 0.04 0.86 ± 0.03 0.16 ± 0.03 84 ± 3 6 ± 3 0.06 ± 0.04 0.03 ± 0.02 0.13 ± 0.04 0.16 ± 0.09 

  85 155 ± 5 1.78 ± 0.12 1.03 ± 0.04 0.89 ± 0.06 0.14 ± 0.04 86 ± 4 5 ± 2 0.05 ± 0.02 0.04 ± 0.02 0.13 ± 0.04 0.15 ± 0.06 

  94 153 ± 12 1.85 ± 0.09 1.08 ± 0.06 0.91 ± 0.05 0.17 ± 0.05 84 ± 4 5 ± 3 0.05 ± 0.03 0.05 ± 0.03 0.11 ± 0.05 0.11 ± 0.10 

  105 163 ± 11 1.84 ± 0.15 1.12 ± 0.06 0.97 ± 0.08 0.15 ± 0.03 86 ± 3 4 ± 4 0.04 ± 0.04 0.07 ± 0.02 0.09 ± 0.05 0.06 ± 0.10 

  +105 165 ± 11 1.96 ± 0.12 1.20 ± 0.07 1.05 ± 0.06 0.15 ± 0.05 87 ± 4 5 ± 3 0.06 ± 0.03 0.08 ± 0.02 0.11 ± 0.04 0.09 ± 0.05 
 

136 ± 25 1.83 ± 0.13 1.03 ± 0.09 0.88 ± 0.09 0.15 ± 0.04 85 ± 4 6 ± 3 0.06 ± 0.03 0.05 ± 0.03 0.11 ± 0.05 0.12 ± 0.10 

Values are mean ± SD. 
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Table X. Load and kinematic variables for heaviest successful snatch attempt for top-three women in each weight 

category at 2015 World Weightlifting Championship. 

  Load Vmax Ymax Ycatch Ydrop Catchrel θ1 X1 X2 Xloop Xnet 

 (kg) (m∙s-1) (m) (m) (m) (%) (°) (m) (m) (m) (m) 

Women 
   

 
    

  
 

  48 
   

 
    

  
 

     1 88 1.80 0.86 0.67 0.19 78 9 0.07 0.03 0.13 0.18 

     2 85 1.93 0.94 0.74 0.21 78 0 0.00 0.06 0.06 0.00 

     3 85 1.73 0.81 0.70 0.12 86 5 0.04 0.03 0.12 0.12 

  53 
   

 
  

 
 

  
 

     1 101 1.61 0.82 0.66 0.16 80 2 0.01 0.04 0.18 0.15 

     2 96 1.78 0.88 0.74 0.15 83 2 0.02 0.07 0.07 0.02 

     3 96 1.68 0.89 0.70 0.20 78 5 0.04 0.04 0.08 0.08 

  58 
   

 
  

 
 

  
 

     1 112 1.94 0.94 0.78 0.16 83 8 0.07 0.04 0.09 0.12 

     2 108 1.71 0.88 0.71 0.17 80 11 0.11 0.00 0.18 0.29 

     3 106 2.10 1.02 0.88 0.15 86 7 0.06 0.06 0.13 0.13 

  63 
   

 
  

 
 

  
 

     1 113 1.79 0.92 0.75 0.17 82 7 0.07 0.03 0.15 0.18 

     2 112 1.74 0.99 0.82 0.17 83 7 0.07 0.05 0.11 0.12 

     3 112 1.86 0.94 0.81 0.14 86 9 0.08 0.06 0.11 0.12 

  69 
   

 
  

 
 

  
 

     1 120 1.79 0.95 0.76 0.19 80 6 0.06 0.03 0.20 0.22 

     2 116 1.69 0.97 0.77 0.20 80 8 0.08 0.04 0.09 0.14 

     3 116 1.94 1.11 0.89 0.22 80 5 0.05 0.07 0.07 0.05 

  75 
   

 
  

 
 

  
 

     1 127 1.94 0.99 0.86 0.13 87 5 0.05 0.08 0.09 0.07 

     2 125 1.88 0.98 0.82 0.16 84 7 0.07 0.02 0.13 0.18 

     3* - - - - - - - - - - - 

  +75 
   

 
  

 
 

  
 

     1 148 1.95 1.07 0.96 0.10 90 7 0.08 0.04 0.11 0.15 

     2 145 1.92 1.06 0.94 0.12 88 5 0.06 0.04 0.13 0.15 

     3 136 2.18 1.14 1.02 0.12 90 8 0.08 0.05 0.14 0.17 

* Lift not recorded due to hardware/software error. 
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Table X. Load and kinematic variables for heaviest successful snatch attempt for top-three men in each weight 

category at 2015 World Weightlifting Championship. 

 
Load Vmax Ymax Ycatch Ydrop Catchrel θ1 X1 X2 Xloop Xnet 

 (kg) (m∙s-1) (m) (m) (m) (%) (°) (m) (m) (m) (m) 

Men 
   

 
    

  
 

  56 
   

 
    

  
 

     1 139 1.67 0.93 0.73 0.20 78 11 0.07 0.07 0.06 0.06 

     2 132 1.87 0.85 0.76 0.09 89 2 0.01 0.03 0.05 0.03 

     3 131 1.62 0.82 0.67 0.15 82 8 0.05 0.05 0.07 0.06 

  62 
   

 
  

 
 

  
 

     1 151 1.68 0.91 0.72 0.19 79 5 0.04 0.07 0.01 -0.02 

     2 150 1.87 0.93 0.76 0.17 82 12 0.11 0.01 0.22 0.32 

     3 141 1.72 0.92 0.81 0.11 88 6 0.05 0.07 0.05 0.03 

  69 
   

 
  

 
 

  
 

     1 160 1.80 0.98 0.84 0.14 86 5 0.04 0.06 0.08 0.07 

     2 160 1.78 0.91 0.81 0.10 89 6 0.05 0.02 0.11 0.13 

     3 158 1.84 0.99 0.82 0.17 83 1 0.01 0.06 0.07 0.02 

  77 
   

 
  

 
 

  
 

     1 175 1.87 1.03 0.89 0.15 86 8 0.07 0.05 0.09 0.11 

     2 171 1.85 1.00 0.86 0.14 86 6 0.05 0.05 0.08 0.09 

     3 167 1.69 0.94 0.83 0.11 88 3 0.04 0.03 0.12 0.13 

  85 
   

 
  

 
 

  
 

     1 178 1.94 1.05 0.92 0.13 87 7 0.07 0.04 0.17 0.20 

     2 176 1.70 0.95 0.88 0.07 93 6 0.05 0.06 0.07 0.06 

     3 173 1.79 0.96 0.85 0.11 88 6 0.02 0.08 0.08 0.03 

  94 
   

 
  

 
 

  
 

     1 181 2.02 1.05 0.96 0.09 91 4 0.04 0.05 0.08 0.07 

     2 180 1.70 1.01 0.80 0.21 79 5 0.05 0.05 0.09 0.08 

     3 178 1.95 1.09 0.89 0.20 82 11 0.12 0.05 0.12 0.19 

  105 
   

 
  

 
 

  
 

     1 192 1.87 1.15 0.92 0.23 80 4 0.04 0.08 0.15 0.11 

     2 191 1.79 1.07 0.93 0.14 87 8 0.07 0.10 0.08 0.05 

     3 186 1.85 1.07 0.92 0.16 85 7 0.08 0.07 0.06 0.07 

  +105 
   

 
  

 
 

  
 

     1 211 1.79 1.14 0.99 0.15 87 8 0.10 0.08 0.12 0.14 

     2 207 1.95 1.30 1.17 0.13 90 4 0.06 0.09 0.09 0.05 

     3 203 1.89 1.09 1.01 0.08 93 1 0.01 0.10 0.03 -0.05 
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Table X. Load and kinematic variables for heaviest successful snatch attempt for top-three women in each weight 

category at 2017 Pan-American Weightlifting Championship. 

 
Load Vmax Ymax Ycatch Ydrop Catchrel θ1 X1 X2 Xloop Xnet 

 (kg) (m∙s-1) (m) (m) (m) (%) (°) (m) (m) (m) (m) 

Women 
   

 
    

  
 

  48 
   

 
    

  
 

     1 77 1.69 0.92 0.77 0.15 84 6 0.08 0.00 0.10 0.17 

     2 77 1.63 0.94 0.79 0.15 84 5 0.05 0.06 0.04 0.02 

     3* - - - - - - - - - - - 

  53 
   

 
  

 
 

  
 

     1 88 1.85 1.03 0.84 0.19 82 9 0.09 0.04 0.08 0.13 

     2 86 1.70 0.88 0.71 0.18 80 8 0.06 0.04 0.11 0.13 

     3 86 1.78 0.95 0.76 0.18 81 9 0.09 0.04 0.12 0.16 

  58 
   

 
  

 
 

  
 

     1 94 1.84 0.97 0.80 0.17 83 9 0.07 0.06 0.09 0.10 

     2 94 1.85 1.00 0.82 0.18 82 2 0.02 0.05 0.12 0.09 

     3 93 1.85 0.98 0.82 0.15 85 7 0.06 0.05 0.10 0.11 

  63 
   

 
  

 
 

  
 

     1 97 2.01 1.03 0.90 0.14 87 7 0.06 0.10 0.05 0.02 

     2 93 1.86 0.98 0.81 0.17 82 6 0.06 0.03 0.19 0.22 

     3 93 2.01 1.02 0.93 0.09 91 7 0.06 0.07 0.09 0.08 

  69 
   

 
  

 
 

  
 

     1 107 1.85 0.99 0.78 0.20 80 8 0.08 0.02 0.18 0.24 

     2 100 1.94 1.04 0.87 0.17 84 3 0.03 0.08 0.08 0.03 

     3 99 2.00 1.05 0.88 0.17 84 4 0.03 0.07 0.08 0.04 

  75 
   

 
  

 
 

  
 

     1 110 1.85 1.00 0.84 0.16 84 -39 0.00 0.07 0.08 0.01 

     2 103 1.78 1.07 0.88 0.19 82 7 0.08 0.04 0.16 0.20 

     3 101 1.78 1.01 0.82 0.19 81 7 0.07 0.03 0.13 0.17 

  +90 
   

 
  

 
 

  
 

     1 120 2.16 1.24 1.14 0.10 92 7 0.07 0.10 0.11 0.09 

     2 119 1.86 1.17 1.02 0.15 87 11 0.15 0.05 0.24 0.34 

     3 118 1.92 1.11 0.99 0.11 90 6 0.07 0.08 0.12 0.11 

* Lift not recorded due to hardware/software error. 
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Table X. Load and kinematic variables for heaviest successful snatch attempt for top-three men in each weight 

category at 2017 Pan-American Weightlifting Championship. 

 
Load Vmax Ymax Ycatch Ydrop Catchrel θ1 X1 X2 Xloop Xnet 

 (kg) (m∙s-1) (m) (m) (m) (%) (°) (m) (m) (m) (m) 

Men 
   

 
    

  
 

  56 
   

 
    

  
 

     1 119 1.61 0.86 0.75 0.11 87 6 0.05 0.03 0.12 0.14 

     2 118 1.70 0.87 0.80 0.07 92 6 0.05 0.00 0.14 0.19 

     3 108 1.85 0.95 0.79 0.16 83 6 0.06 0.01 0.17 0.22 

  62 
   

 
  

 
 

  
 

     1 125 1.71 0.92 0.81 0.11 88 8 0.07 0.02 0.13 0.18 

     2 124 1.71 0.91 0.75 0.15 83 11 0.10 0.03 0.06 0.13 

     3 123 1.85 0.95 0.78 0.18 82 4 0.03 0.05 0.04 0.03 

  69 
   

 
  

 
 

  
 

     1 145 1.93 0.99 0.90 0.09 91 10 0.11 0.01 0.16 0.25 

     2 143 1.65 0.96 0.79 0.17 82 5 0.05 0.04 0.13 0.14 

     3 137 1.71 0.98 0.82 0.16 84 5 0.06 0.03 0.12 0.15 

  77 
   

 
  

 
 

  
 

     1 162 2.00 1.02 0.81 0.20 80 8 0.08 0.01 0.15 0.22 

     2 152 1.69 0.99 0.84 0.15 85 10 0.11 0.02 0.14 0.23 

     3 151 1.77 0.95 0.82 0.13 86 8 0.09 0.01 0.23 0.31 

  85 
   

 
  

 
 

  
 

     1 160 1.78 1.05 0.88 0.17 84 7 0.08 0.01 0.19 0.25 

     2 159 1.77 1.07 0.90 0.17 84 3 0.03 0.03 0.17 0.17 

     3 158 2.00 1.09 0.99 0.10 91 4 0.04 0.06 0.08 0.06 

  94 
   

 
  

 
 

  
 

     1 169 1.93 1.05 0.89 0.16 85 8 0.08 0.03 0.11 0.16 

     2 166 1.86 1.07 0.87 0.20 82 4 0.04 0.02 0.18 0.20 

     3 166 2.01 1.24 0.99 0.25 79 6 0.06 0.07 0.05 0.03 

  105 
   

 
  

 
 

  
 

     1 182 1.78 1.13 0.97 0.16 86 2 0.02 0.05 0.10 0.07 

     2 175 1.93 1.12 0.98 0.13 88 4 0.05 0.09 0.06 0.02 

     3 167 1.63 1.15 0.94 0.21 82 2 0.02 0.04 0.08 0.07 

  +105 
   

 
  

 
 

  
 

     1 178 2.08 1.21 1.15 0.06 95 2 0.02 0.07 0.14 0.09 

     2 176 1.78 1.16 0.99 0.16 86 8 0.09 0.06 0.07 0.10 

     3 175 1.86 1.13 0.98 0.15 87 5 0.05 0.10 0.09 0.04 
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3.2. Comparative Analysis 

3.2.1. Women 

Ycatch, θ1, and X1 from PAC did not meet the assumption of normality (p = .01, < .001, and .005, 

respectively; all other p = .1 to > .9). θ1 also did not satisfy the assumption of homoscedasticity (p = .002; 

all other p = .1 to > .9). A statistical main effect of competition was found only for Ymax (η2 = 0.106; F(1,34) = 

4.2; p = .049). Ymax mean ± SD was 0.96 ± 0.09 m for WWC and 1.02 ± 0.08 m for PAWC (Cohen’s d 95% 

confidence interval = -1.3 to -0.02). No statistical main or interaction effects were found for any other 

variable (p = .2 to > .9) (Table X). Magnitude and directionality of effect sizes varied considerably among 

variables (Cohen’s d = -0.87 to 0.77) (Figure X).  

 

Table X. Results of omnibus 2x3 between-subjects ANOVAs for women. 
 Competition  Placement  Competition by placement 

 η2 F p  η2 F p  η2 F p 

Vmax 0.0017 0.06 .8  0.092 1.8 .2  0.020 0.38 .7 

Ymax 0.11 4.2 .049*  0.011 0.21 .8  0.019 0.37 .7 

Ycatch‡ - - .3  - - .4  - - > .9 

Ydrop 0.0011 0.041 .8  0.050 0.90 .4  0.0036 0.066 > .9 

Catchrel 0.024 0.89 .4  0.048 0.88 .4  0.0010 0.018 > .9 

θ1‡ - - > .9  - - .8  - - .9 

X1‡ - - > .9  - - .8  - - .9 

X2 0.043 1.6 .2  0.026 0.48 > .9  0.006 0.11 .9 

Xloop 0.0059 0.23 .6  0.025 0.48 .7  0.090 1.7 .2 

Xnet 0.0045 0.16 .7  0.018 0.33 .8  0.032 0.58 .6 

*, statistical effect at p < .05; ‡, η2 and F statistic were not included in robust ANOVA procedure output. 
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        1st WWC  vs.  1st PAWC 

(a) 

1st WWC  vs.  2nd WWC 

(d) 

1st PAWC  vs.  2nd PAWC 

(g) 

        2nd WWC  vs.  2nd PAWC 

(b) 

1st WWC  vs.  3rd WWC 

(e) 

1st PAWC  vs.  3rd PAWC 

(h) 

        3rd WWC  vs.  3rd PAWC 

(c) 

2nd WWC  vs.  3rd WWC 

(f) 

2nd PAWC  vs.  3rd PAWC 

(i) 

Figure X. Cohen’s d effect size with 95% confidence interval for main effects of competition (a-c) and 

placement (d-i) among top-three women: (a) 1st place at WWC vs. 1st place at PAWC; (b) 2nd place at 

WWC vs. 2nd place at PAWC; (c) 3rd place at WWC vs. 3rd place at PAWC; (d) 1st place at WWC vs. 2nd 

place at WWC; (e) 1st place at WWC vs. 3rd place at WWC; (f) 2nd place at WWC vs. 3rd place at WWC; (g) 

1st place at PAWC vs. 2nd place at PAWC; (h) 1st place at PAWC vs. 3rd place at PAWC; (i) 2nd place at 

PAWC vs. 3rd place at PAWC; WWC, 2015 World Weightlifting Championship; PAWC, 2017 Pan-

American Weightlifting Championship. 
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3.2.2. Men 

No variable violated assumptions of normality or homoscedasticity (p = .1 to > .9). A statistical main 

effect of competition was found for X2 (η2 = 0.17; F(1,42) = 8.8; p = .005), Xloop (η2 = 0.10; F(1,42) = 5.6; p = .02), 

and Xnet (η2 = 0.13; F(1,42) = 6.5; p = .01). Mean ± SD for X2 was 0.06 ± 0.02 m for WWC and 0.04 ± 0.03 m for 

PAWC (Cohen’s d 95% confidence interval = 0.24 to 1.48). Mean ± SD for Xloop was 0.09 ± 0.04 m for WWC 

and 0.12 ± 0.05 m for PAWC (Cohen’s d 95% confidence interval = -1.3 to -0.06). Mean ± SD for Xnet was 

0.08 ± 0.08 for WWC and 0.14 ± 0.08 m for PAWC (Cohen’s d 95% confidence interval = -1.3 to -0.13). No 

statistical main or interaction effects were present for any other variable (p = .1 to > .9) (Table X). Effect 

sizes showed considerable variation with no clear pattern within or across factor levels (Cohen’s d = -1.06 

to 0.68) (Figure X). 

 

Table X. Results of omnibus 2x3 between-subjects ANOVAs for men. 
 Competition  Placement  Competition by placement 

 η2 F p  η2 F p  η2 F p 

Vmax 0.00026 0.01 > .9  0.036 0.81 .5  0.031 0.69 .5 

Ymax 0.020 0.87 .4  0.0059 0.13 .9  0.021 0.47 .6 

Ycatch 0.0097 0.45 .5  0.010 0.24 .8  0.086 2.0 .1 

Ydrop 0.010 0.45 .5  0.0046 0.10 > .9  0.0079 0.17 .8 

Catchrel 0.0017 0.08 .8  0.0087 0.20 .8  0.068 1.5 .2 

θ1 0.00029 0.01 > .9  0.027 0.59 .6  0.0049 0.11 > .9 

X1 0.015 0.66 .4  0.042 0.94 .4  0.0020 0.04 > .9 

X2 0.17 8.8 .005*  0.024 0.62 .5  0.016 0.41 .7 

Xloop 0.10 5.1 .03*  0.045 1.1 .3  0.0090 0.22 .8 

Xnet 0.13 6.6 .01*  0.057 1.5 .2  0.0060 0.16 .9 

*, statistical effect at p < .05. 
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        1st WWC  vs.  1st PAWC 

 
(a) 

1st WWC  vs.  2nd WWC 

 
(d) 

1st PAWC  vs.  2nd PAWC 

 
(g) 

        2nd WWC  vs.  2nd PAWC 

 
(b) 

1st WWC  vs.  3rd WWC 

 
(e) 

1st PAWC  vs.  3rd PAWC 

 
(h) 

        3rd WWC  vs.  3rd PAWC 

 
(c) 

2nd WWC  vs.  3rd WWC 

 
(f) 

2nd PAWC  vs.  3rd PAWC 

 
(i) 

Figure X. Cohen’s d effect size with 95% confidence interval for main effects of competition (a-c) and 

placement (d-i) among top-three men: (a) 1st place at WWC vs. 1st place at PAWC; (b) 2nd place at WWC 

vs. 2nd place at PAWC; (c) 3rd place at WWC vs. 3rd place at PAWC; (d) 1st place at WWC vs. 2nd place at 

WWC; (e) 1st place at WWC vs. 3rd place at WWC; (f) 2nd place at WWC vs. 3rd place at WWC; (g) 1st place 

at PAWC vs. 2nd place at PAWC; (h) 1st place at PAWC vs. 3rd place at PAWC; (i) 2nd place at PAWC vs. 

3rd place at PAWC; WWC, 2015 World Weightlifting Championship; PAWC, 2017 Pan-American 

Weightlifting Championship. 
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4. Discussion 

The aim of this study was to identify technical and biomechanical factors that might characterize 

successful performances of the snatch lift for elite weightlifters. This study involved 1) descriptive 

analysis of barbell trajectory and kinematics of the snatch lift for A session lifters at two major 

international competitions and 2) comparative analysis of barbell kinematics between top-three 

performers in the snatch lift from each meet. 

The pooled relative frequencies of type 2 and 3 trajectories for women at WWC and PAWC were 

similar to those observed for women at the 1993 and 1994 World and European Weightlifting 

Championships [4]. Pooled data show that women at WWC and PAWC exhibited the type 1 trajectory 

less frequently (~10%) than the women included in the report by Hiskia [4]. Antoniuk et al. observed 

from 137 women competing at several World and European Weightlifting Championships that the type 

2 trajectory was most common [26]. It is unclear in what years 2 out of the 4 competitions included in that 

study took place. A subsequent report by this group presented data from a total of 304 attempts by 140 

women presumably from the same competitions reported in their first study that the type 1 trajectory 

was most common with the remainder sharing an equal distribution of type 2 and 3 trajectories [15]. Both 

studies reported a greater prevalence of the type 3 trajectory among the +75 category [15,26]. Pooled data 

for men at WWC and PAWC show similar relative frequency of the type 1 trajectory, lower relative 

frequency for the type 2 trajectory (~14%), and higher relative frequency for the 3 trajectory (~9%) 

compared to men at the 1993 and 1994 World and European Championships [4]. To the authors’ 

knowledge, the present study is the first to quantify the prevalence of the type 4 trajectory at any 

competitive level; it is thus unknown how reclassification of data from prior studies to include the type 

4 trajectory would affect comparison to the results of the present study. 

The present results corroborate the findings of Akkuş [9] who observed that female world 

champions at the 2010 World Weightlifting Championship exhibited a variety of trajectory types. Musser 

et al. [12] found that no women snatch medalists at the 2009 Pan-American Weightlifting Championship 

exhibited the type 1 trajectory. However, the results of the present study demonstrate that top-three 

women at the Pan-American championship level can also likely exhibit a variety of trajectory types 

including the type 1 trajectory. The differences in relative frequencies of trajectory types between this 

study and previous reports [4,12,15,26] are likely due to different athlete pools, and it is unclear whether 

the success of certain trajectory types are exclusive to or more likely to occur in particular weight 

categories. However, it is likely from these differences that the relative frequencies of trajectory types 

observed among women at different major international competitions do vary and that high placement 

is not exclusive to any existing trajectory type. Although, some trajectory types may potentially be more 

common among top performers in some weight categories partly due to anthropometry [10,12]. 

Although Baumann et al. [6] did not report counts or relative frequencies of barbell trajectory type, 

they did indicate that ‘nearly all’ men in the A sessions at the 1985 World Weightlifting Championship 

exhibited the type 2 trajectory, with the remainder presumably exhibiting the type 1 trajectory. Baumann 

et al. [6] did not report any occurrences of the type 3 trajectory. Limited data from Garhammer do indicate 

the presence of the type 3 trajectory for the snatch and the clean among women and men world and 

Olympic champions during the 1980’s [27,28]. However, the type 3 trajectory does not appear to have 

been common among top international lifters during that period [6,27]. In fact, Garhammer suggested 

that technique assessed by barbell trajectory had not changed from the mid-1970’s to the late-1980’s [27]. 

Subsequently, Hiskia [4] found the type 3 trajectory to be the most common among both women and men 

in the A sessions of the 1993 and 1994 World and European Weightlifting Championships. Data from 

Akkuş [9] of all women snatch gold medalists and Harbili [11] of women and men in the A session of 

their respective 69 kg categories at the 2010 World Weightlifting Championship indicate increased 

prevalence of the type 3 trajectory among top international weightlifters at that competition. Collectively, 

these data seem to indicate that the relative frequencies of barbell trajectory types likely vary between 
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and within international competitions. Furthermore, the available evidence indicates a likely shift in 

technique among international weightlifters based on barbell trajectory.  

The observed differences in the prevalence of trajectory types among top international weightlifters 

may reflect changes in coaching philosophy, teaching methods, and/or training methods to accommodate 

what have previously been considered ‘suboptimal’ technique (i.e. type 2 and 3 trajectories) [5,9,27]. 

Furthermore, the differences observed between women in this study and women in previous 

investigations may partially be due to the selective pressure of elite competition. Given the longer history 

of men’s weightlifting, such selective pressure is less likely to be a factor for men currently. Kinematic 

differences due to body size and anthropometry [4,10,12] may also partly explain observed differences 

for both sexes due to periodic changes in weight categories. Serial investigations can help to delineate 

any apparent trends across extant cross-sectional analyses and future competitions. Furthermore, 

continued study of the relative frequency of trajectory types over a range of competitive levels and 

subgroups among them can help to identify which trajectory type(s), if any, is most characteristic of a 

given group. 

The observations in this and recent studies [9,11] of high placing individuals at the world 

championship level who exhibit the type 3 trajectory is noteworthy. The type 1 trajectory was initially 

considered to be most favorable [5,27]. Some authors have more recently suggested the type 2 trajectory 

to be advantageous [17]. However, the type 3 trajectory is generally regarded to be non-beneficial and 

potentially detrimental [5,17] based on several biomechanical and theoretical bases. Garhammer and 

Taylor [29] found that anterior barbell displacement at lift-off, such as occurs with the type 3 trajectory, 

results in a forward shift of the lifter’s center of pressure, or balance point. Such barbell displacement also 

increases moment arm length between the barbell center of mass and joint centers, thereby increasing 

joint moments and muscular forces required to lift the barbell [6]. Furthermore, anterior displacement 

during the first pull can increase mechanical work and decrease lift efficiency [30,31]. Thus, the 

prevalence of the type 3 trajectory among top-three finishers—especially among the men’s 105 and +105 

categories, who lifted the heaviest loads—at both WWC and PAWC emphasize the importance of high 

levels of absolute strength, possibly to overcome apparent technical deficiencies [17]. Greater lower limb 

length may also partly explain the increased prevalence of the type 3 trajectory among heavier categories 

[12], and anthropometric variables may partly explain differences in the prevalence of trajectory types 

more generally [12,32]. Nonetheless, numerous observations of the gamut of trajectory types among A 

session and top-three international weightlifters somewhat challenges the notion that barbell trajectory 

type is a useful criterion of effective weightlifting technique at this level. 

Few statistical effects were observed in this study. The observed main effect of competition for Ymax 

among top-three women in this study could be due to differences in stature [2,6,10,33], skill [7,8], or load 

lifted [33]. However, the lack of accompanying statistical or clear effect size differences for Ydrop, which 

has also been suggested to depend on skill [7,8], and observations of weightlifters who lifted heavier 

loads to greater absolute and relative vertical displacements compared to lower caliber athletes in the 

same weight category [8] suggest stature to be a more likely explanation of Ymax differences observed in 

this study. Top-three men at WWC, who lifted the heaviest loads of any group in this study, exhibited 

greater X2 and less Xnet and Xloop than top-three men at PAWC. It is unlikely that greater X2 itself is 

beneficial for performance, as greater X2 would increase the overall work and energy required to 

complete the lift [6,34-36] and may increase instability during the catch [6]. These effects could be 

compounded by a potential subsequent increase of Xloop, which is likely to be less during successful 

attempts [17]. Greater X2 among individuals of greater weightlifting ability may be consequent to the 

larger forces and accelerations associated with lifting heavier loads [3,6,8,14,37]. As such, it is not 

recommended that individuals attempt to deliberately increase X2 such as by ‘hipping’ or swinging the 

bar away during the second pull [17,38]. The reduced Xloop and Xnet among top-three men at WWC likely 

indicate that they jumped backward less than top-three men at PAWC. These results support the findings 

of Stone et al. that, while net rearward displacement is generally not detrimental or disadvantageous, 
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smaller relative Xloop and Xnet are likely associated with greater weightlifting success and ability [17]. 

Several authors have suggested that the direction of force application is important especially during the 

second pull [17,38,39]. The observations of reduced Xloop and Xnet among stronger weightlifters possibly 

reflect these individuals’ ability to produce greater vertical force and acceleration [3,6,8,36,40]. Stronger 

individuals are also more likely to produce faster rates of force development [41], which may improve 

their ability to counteract greater X2 through a more effective reversal of anterior horizontal barbell 

acceleration during the second pull and turnover phase thereby reducing Xloop and Xnet [38,39]. Altogether, 

these results suggest that greater strength may improve energy flow, force application, and vertical 

acceleration to favorably influence horizontal barbell kinematics that affect weightlifting performance 

and ability. 

 Studies that have identified kinematic and kinetic differences based on skill or sex have consistently 

identified factors that partly depend on strength [8,9,11,37]. For example, greater strength improves the 

ability to perform stretch-shortening cycle tasks [42-44], such as occurs during the transition phase of the 

weightlifting pull. Thus, strength likely mediates the rate and magnitude of knee flexion during the 

transition phase [9,11,13]. Several studies have also made direct comparisons between different groups 

of weightlifters (e.g. women vs. men [45], adolescent vs. adult [37], district vs. national/international [14]) 

and found overall similarity in kinematic and kinetic structure. However, when considering differences 

in weightlifting ability, there are notable differences in maximum ground reaction force [3,14,46], rate of 

force development [14,47], and absolute and relative joint and whole body power [31,37,48-50], which 

are all dependent on maximum strength [41]. The lifters in this study generally lifted heavier loads 

compared to lifters in the same or similar weight categories in previous studies [6,9,11,12,36] while 

exhibiting no clear differences in technique, lending further credence to the notion that strength is the 

primary determinant of weightlifting ability. 

 Indeed, there exists strong relationships between measures of maximum strength and weightlifting 

ability among weightlifters of a variety of competitive level. For example, Stone et al. reported Pearson’s 

r = 0.79 to 0.95 for the relationships between back squat one-repetition maximum (1RM) and snatch and 

clean 1RMs and Pearson’s r = 0.83 to 0.84 for the relationships between isometric peak force assessed 

using the isometric mid-thigh pull and snatch and clean 1RMs in national and international level junior 

and senior weightlifters from the United States [51]. Lucero et al. reported Pearson’s r = 0.91 to 0.94 for 

the relationships between self-reported back and front squat 1RMs and snatch and clean 1RMs among 

male competitive weightlifters in the United States [52]. Furthermore, greater strength levels may also be 

beneficial for the expression of other desirable physical characteristics, such as rate of force development, 

impulse, and power [41]. 

The observed variety of barbell trajectory types and overall lack of pattern among individual or 

clusters of kinematic variables in this study suggest no standard ‘technique profile’ is requisite for high 

achievement in weightlifting. In fact, several investigations have had limited success differentiating 

kinematic profiles of successful versus unsuccessful weightlifting attempts [38,39]. However, such 

findings should not be interpreted to suggest that technique is not an important determinant of 

weightlifting success at any level. Rather these findings more likely reflect the fact that the weightlifting 

movements are influenced by multiple degrees of freedom [17,53-55], and the varied results of this study 

may reflect individualized solutions to the degrees of freedom problem in weightlifting. The results of 

this study thus suggest the possibility of a variety of effective individualized technique profiles for 

weightlifting performance and ability.  

It is purported that individual weightlifting technique stabilizes after only a few months of training 

[1]. However, the amount of intra-individual variation of lifter or barbell kinematics and kinetics during 

maximal attempts under competition conditions is yet to be elucidated. The results presented in two 

studies by Antoniuk et al., which analyzed different sets of snatch attempts from the same pool of athletes 

and competitions, substantiates that an individual can exhibit different barbell trajectories across 

attempts [15,26]. Nonetheless, the reliability of individual technique profiles is unclear. These 
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uncertainties notwithstanding, individual technique profiles consisting of any or some technical or 

biomechanical parameters may potentially be useful for evaluating, monitoring, or predicting 

weightlifting performance and ability.  

There are a variety of laboratory and field-based technologies available to conduct weightlifting 

technique analysis [24], and both researchers and coaches should explore the development of individual 

technique profiles. The methods of this study provide support for the implementation of video analysis 

for determining barbell kinematics and developing technique profiles. The total time to analyze a single 

video file including calibration during this study was less than two minutes. Use of the Kinovea’s built-

in graphics and analysis functions could reduce this time to 15 to 30 seconds. Additionally, Carson et al. 

reported a case study that demonstrate another such approach that involved long-term monitoring of 

lifter kinematics during an intervention intended to change weightlifting technique [56]. This case study 

and the anecdotal experiences of athletes and coaches highlight the complexity and difficulty of instilling 

changes to technique that are robust enough to persist during attempts at high relative intensities [56]. 

Thus, the relatively short latency of weightlifting technique stabilization and the associated challenges of 

technique correction underscore the importance of establishing sound technique during the earliest 

stages of a weightlifter’s career.  

Instructional and coaching methods should generally be guided by principles and tenets from the 

fields of biomechanics, motor learning, and physiology. While the available evidence has not identified 

universal optimal technique, there are general guidelines for basic weightlifting technique apparent from 

the extensive body of scientific literature [2-6,24]. However, coaches should consider and make 

appropriate accommodations for individual differences that may manifest nuances or peculiarities in 

technique. 

5. Conclusions 

The methods used in this study demonstrate an inexpensive, time-efficient, and user-friendly 

method to conduct technique analysis. The error and reliability of the methods herein can be improved 

by optimizing camera setup and specifications [23,35,57], controlling conditions during data collection 

(e.g. barbell placement [58] and lighting [59]), and selecting appropriate data smoothing or filtering 

techniques [59-61]. Video analysis may aid coaches in determining barbell kinematics and developing 

technique profiles. Such technique profiles may be useful in the evaluation, monitoring, or prediction of 

weightlifting performance and ability. 

A variety of barbell trajectories were observed with differences based on competition, sex, category, 

and ranking. There was no discernible pattern of statistical or effect size differences for most of the 

kinematic variables observed in this study. Incidentally, the variability of individual weightlifting 

technique at any level requires further determination. Thus, while practically relevant, barbell trajectory 

or any of the examined kinematic variables alone is unlikely to reliably indicate weightlifting ability at 

this level. Therefore, coaches may consider evaluating weightlifting technique within a more general 

framework. 

It seems apparent from this study’s results and the available evidence that strength may be the most 

important determinant of weightlifting performance and ability [2,11,14,17,37,47,51,52]. It is possible that 

greater strength may also aid weightlifting performance by compensating for apparent technical 

deficiencies [17]. Thus, once an individual’s technique is established, weightlifting training should 

primarily emphasize the development of strength and other related physical characteristics using a 

periodized approach [62,63] while incorporating complementary methods to refine technique [56]. 
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CHAPTER 4 

SUMMARY AND FUTURE DIRECTIONS 

 This dissertation was designed to 1) update to the scientific knowledge of weightlifting 

technique and performance, 2) improve coaches’ ability to conduct and interpret technique 

analysis, and 3) enhance transferability of weightlifting in training to improve sport performance. 

The methods used in this dissertation involved video recording of lifts performed during the 

2015 World Weightlifting Championship (WWC) and 2017 Pan-American Weightlifting 

Championship (PAWC), with subsequent analysis using the free, open-source software program 

Kinovea (version 0.8.27) and a custom Labview program. These methods were chosen because 

they offer a valid, reliable, and inexpensive way to collect and analyze a large volume of data. 

Secondarily, these methods demonstrate a practicable method for coaches to incorporate 

technique analysis into their daily practice. The total time to analyze a single video file was less 

than 2 minutes. This process can be reduced to 15 to 30 seconds by using Kinovea’s built-in 

graphics and analysis functions. 

 The heaviest successful snatch attempts by 319 weightlifters competing in the A sessions 

at WWC and PAWC were analyzed during this project, which is the largest sample of athletes of 

this caliber included in a study since 1997 (Hiskia, 1997). This dissertation builds upon the 

findings of previous research to conclude that weightlifting technique assessed by barbell 

trajectory has changed since the 1980’s. Most notably, the type 3 trajectory was most commonly 

observed, even among top-three finishers, in the present study. These changes may reflect 

changes in coaching philosophy, teaching methods, and/or training methods. The results of this 

dissertation also suggest that the barbell kinematic variables analyzed cannot be used to reliably 

differentiate international weightlifters by competition or ranking. These results further suggest 
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that optimal technique is likely individualized. Therefore, coaches may be interested in 

developing individual technique profiles to evaluate, monitor, or predict weightlifting 

performance and ability. The results of this dissertation also suggest that strength may be the 

primary determinant of weightlifting ability. Thus, once individual weightlifting technique is 

established, coaches should seek to develop maximum strength and other related characteristics 

using a periodized approach while incorporating complementary methods to refine technique. 

 It is apparent that individuals exhibit technique differences between attempts; however, 

the degree of intra-individual variation in weightlifting technique is unclear. Therefore, an 

important objective for future research is to establish the reliability of various indices of 

weightlifting technique for diverse samples to aid coaches in developing technique profiles. 

While top international weightlifters represent the most highly skilled performers of the 

weightlifting movements, it is also necessary to characterize weightlifting technique across a 

broad range of levels to better understand potential differences between levels. Thus, more 

research dedicated to examining weightlifting technique among different levels is needed. 

Although there is a high degree of similarity between the snatch and the clean, there is a lack of 

studies examining technical and biomechanical parameters of the clean. Direct comparison 

between the snatch and the clean, especially intra-individual comparison, also merits 

investigation. Additionally, future research can help to elucidate technical and biomechanical 

differences between successful and unsuccessful attempts. 
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