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ABSTRACT 

Electrodeposition of Hydrogen Molybdenum Bronze Films and Electrochemical Reduction of 

Carbon Dioxide at Low Over Potentials 

                                                               by  

                                                       Sami Alharbi 

Hydrogen molybdenum oxide, known has molybdenum bronze, is a material of interest due to 

catalyzing electron transfer reactions.  Specifically, molybdenum bronze is an electrocatalyst 

toward carbon dioxide reduction.  Electrochemical deposition from a peroxymolybdic acid 

solution is a method for preparing molybdenum bronze films.  This work demonstrates 

reproducible electrodeposition on indium tin oxide substrates and conductive carbon paper.  Film 

thickness depends on concentration, time and pH.  After characterization by film thickness, 

resistance, XRD and XPS, the as deposited films served as the working electrode for 

electrochemical reduction of carbon dioxide in 0.1 M NaHCO3.  Ion chromatography determined 

formate resulting in 8% faradaic efficiency at an applied potential of -0.4 V.  Interestingly, this 

potential is similar to use of formate dehydrogenase as an electrocatalyst. Carbon monoxide 

levels were attempted to be determined by GC in the headspace of an H type electrochemical 

cell.  Results show that these films are applicable towards electrochemical CO2 reduction to 

formate when supported on carbon.   
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CHAPTER 1 

INTRODUCTION AND PURPOSE OF RESEARCH 

Research efforts have been focused on reduction of carbon dioxide both photochemically 

and electrochemically.  One known problem in electrochemical reduction of carbon dioxide 

(CO2) is poisoning of metal catalysts by carbon monoxide (CO) on carbon supports.1  Recently, 

hydrogen molybdenum bronze films have been used as a catalytic support for platinum for 

oxidation of methanol.  The hydrogen molybdenum bronze was shown to prevent CO poisoning 

of platinum.2  A hydrogen bronze is normally molybdenum (Mo), vanadium (V) or tungsten (W) 

oxide with hydrogen intercalated in the solid matrix.  Bronzes can be prepared by a variety of 

methods. For example, chemical vapor deposition (CVD) followed by oxidation or 

electrodeposition results in molybdenum oxide (MoO3) films.3-10 The formula of the hydrogen 

bronze is HxMoO3, where x is between 0.46 and 1.63.11-13 Interestingly, hydrogen intercalation 

into the oxide matrix is electrochemically reversible.  These films are blue with hydrogen and 

colorless when hydrogen is removed.   Importantly, hydrogen bronze films have a high surface 

area and are excellent for catalyzing reactions involving transfer of electrons.12 An example of 

this is hydrogen molybdenum bronze used as an electron donor for the reduction of p-nitrophenol 

to p-aminophenol.14 This property serves as the rational for exploring hydrogen molybdenum 

bronze films as a catalyst supported on carbon for reduction of CO2.  The main goals are to lower 

the required overpotential and possibly reduce the effect of CO poisoning of the catalyst.  Thus, 

research work presented explores electrodeposition of hydrogen molybdenum bronze films on 

carbon for electrochemical reduction of CO2 to formate.     
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Hydrogen Bronze Materials 

A hydrogen bronze is a metal oxide film that has hydrogen present in the oxide matrix.  

For example, hydrogen molybdenum bronze has the formula HxMo +5
x Mo +

−
6

x1 O3.15  Tungsten and 

vanadium oxide are also examples of metals that form bronzes. These films are important 

because of exciting electromechanical properties and explored as chemical sensors, for 

neutralization of explosives, chemical catalysis as electron donors and use in solar cells.10,16-19  A 

hydrogen bronze may be prepared through a variety of strategies. These include metal vapor 

deposition followed by oxidation, sol-gel strategies, thermal decomposition of ammonium 

heptamolybdate or reacting the oxide with alcohols or glycols.3, 20-23  Hydrogen ions when 

intercalated into molybdenum oxide films form what is known as hydrogen bronze.  Hydrogen 

intercalation was studied using a hydrogen molybdenum bronze powder pressed as a pellet with 

one side exposed to sulfuric acid and silver paste on the other side. The sample was studied by 

cyclic voltammetry (CV) in dilute sulfuric acid showing reversible intercalation of hydronium 

ions into the molybdenum oxide lattice.24 Hydrogen bronze films may also be prepared as a film 

using electrochemical deposition. The bronze film maybe deposited on metal substrates or 

indium tin oxide (ITO). 24 Two essential techniques include either dissolution of molybdenum 

metal or powder in hydrogen peroxide making peroxymolybdic acid which also serves as the 

electrolyte for electrodeposition or dissolving sodium molybdate and adding hydrogen 

peroxide.7, 16, 25-28  The mechanism of electrodeposition is not fully understood.29  Adding 

hydrogen peroxide to molybdate forms peroxymolybdate shown in Equation (1).29   

[MoO4]2- + 2 H2O2  ⇌  [MoO2(O2)2]2- + 2 H2O   (1) 

The solution forms a yellow color which disappears over time due to the amount of hydrogen 

peroxide decreasing over time.29  This work found that adding additional peroxide after adjusting 
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to a pH of 2.0 using sulfuric acid with additional peroxide resulted in stable peroxymolybdic acid 

shown in Equation (2), which is yellow.29 

H+   + [MoO2(O2)2] 2-  ⇌  [HMoO2(O2)2] 2-   (2) 

This research investigates the electrodeposition of peroxymolybdic acid onto indium tin 

oxide (ITO) coated glass slides and carbon paper.  The films were utilized for reduction of CO2.  

Carbon dioxide and reduction strategies are discussed below. 

Carbon Dioxide 

The carbon cycle is the way nature reuses carbon.  Plants utilize sunlight and carbon 

dioxide for making sugar and release oxygen as shown in Equation (3).30 

6 CO2 + 6 H2O + Light energy → C6H12O6 + 6O2   (3) 

Carbon returns to the atmosphere by decay of plants, animals, as well as through the process of 

respiration. Dead plants that are buried turn into carbon based oils and fossil fuels over thousands 

of decades. Burning of fossil fuels results in adding this carbon back into the atmosphere.30  

Also, Oceans absorb carbon dioxide and the increasing uptake of carbon dioxide decreases the 

pH of the ocean resulting in ocean acidification due to the formation of carbonic acid. Over the 

last two centuries, oceans have absorbed more than 500 billion tons of carbon dioxide causing a 

30% increase of carbon levels in the oceans.30  Carbon dioxide also naturally comes from the 

decomposition of organic matter by soil-dwelling organisms such as bacteria and fungi.31 

Phytoplankton play critical role in regulating carbon cycle consuming carbon dioxide. When 

phytoplankton die, they sink to the bottom of the ocean, decompose and convert to organic 

matter resulting in dissolved carbon dioxide.31  Furthermore, a significant amount of carbon 

dioxide is also released during the process of respiration carried out by living organisms.32,33  
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This reaction is very important in all living organisms to produce energy and is shown in 

Equation (4).  

C6H12O6 + 6O2 → 6CO2 + 6H2O+ Energy (4) 

These processes and human activity have resulted in an increase in CO2 levels in the 

atmosphere overtime.  The average carbon dioxide emissions reported by the Global Carbon 

Project (GCP) was 37.1 billion tons during 2018.34  The GCP report suggests that carbon dioxide 

emissions increased by 2.7% in year 2018 compared to the previous year 2017, during which 

there was a 1.6% increase.35  According to the data presented by Statista, the global carbon 

dioxide emissions are expected to rise from 33.9 to 34.97 billion metric tons in the year 2019-

2020.36    

 

Figure 1. Atmospheric CO2 levels and year as measured by the Earth System Research 
Laboratory.  Reprinted by permission from NOAA/ESRL Global Monitoring Division 

 

The amount of atmospheric CO2 in ppm and year is shown in Figure 1 obtained from the 

National Oceanic and Atmospheric Administration’s Earth System Research Laboratory 

website.37  Many research groups are currently working on advanced technological interventions 
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that can convert carbon dioxide into useful products thus reducing CO2 levels.  There is 

significant interest in reduction of carbon dioxide to methane and formate, which are feedstocks 

for fuel cell technology.37   

Reduction of CO2 for Use in Fuel Cells 

Methane and formate may also be used in the fuel cells to generate electricity. In direct 

methane fuel cells, platinum is used as a catalyst to facilitate oxidation of methane to generate 

electricity.38  The individual half reactions, overall reaction and potentials with respect to the 

standard hydrogen electrode (SHE) for the methane fuel cell are given in Equations 5-7.38,39,40 

Anode:   CO2(g) + 8H+ + 8e –   ⇌ CH4(g) + 2 H2O E° = +0.169 V   (5)  

Cathode:   O2(g) + 4H+ + 4e-  ⇌ 2 H2O   E° = +1.23 V   (6) 

Overall:     CH4 + 2O2 ⇌ CO2 + 2H2O   E° = +1.06 V   (7)  

As an example, a methane fuel cell operating at 80° C provided 403 µW/mg using platinum(II) 

bipyridine complexes.38   

A formate fuel cell has the advantage of operating at lower temperatures compared to 

methane fuel cells and operate at standard temperature and pressure.41  The half cell reactions, 

potentials vs. the SHE and overall reaction for an air and formate fuel cell are given in Equations 

8-10.   

 
Anode:    CO3

2- + 2 H2O + 2 e−  ⇌  HCOO-   +  3 OH-   E° =  -1.05 V   (8)  
 

Cathode:   ½ O2 + H2O + 2 e− ⇌  2 OH-    E° = + 0.4 V   (9) 
 

Overall:          HCOO- + ½ O2 + OH- ⇌ CO3
2-+ H2O  E° = +1.45 V   (10) 

 
With the cathode on the right and hydroxide ions moving toward the anode on the left this results 

in an overall theoretical potential of +1.45 V.41  A recent example of a formate fuel cell resulted 
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in power density of 591 mW/cm2 at 60 °C.42  Basic conditions for fuel cell operation are 

preferred as under acidic conditions oxidation results in CO which passivates or poisons the 

catalytic metal surface.42  The output power of formate fuel cells is typically less than 50 W.42  

One extensive area of research is reduction of CO2 to value added compounds that can be used as 

a feedstock for fuel cells.  Reduction methods include photocatalytic and electrochemical 

reduction.  Carbon dioxide must be reduced efficiently to useful products to be realized as a 

feedstock for methane and formate fuel cells.  Reduction of CO2 to formate may be 

accomplished by either photochemical and/or electrochemical reduction.   Electrochemical 

reduction of CO2 is reviewed. 

Metal Electrodes for Electrochemical Reduction of Carbon Dioxide 

Several metals have been used as electrodes for electrochemical reduction of CO2. 

Indium, tin, mercury and lead are selective for formic acid formation, while zinc, gold and silver 

favor carbon monoxide production, and copper favors formation of alcohols and hydrocarbons.43  

In a research study by Kaneco and co-workers, the electrochemical reduction of carbon dioxide 

at a copper electrode in methanol was investigated with various supporting electrolytes.44  The 

findings of the study reported that the highest faradic efficiency was 70.5% using a 

NaClO4/methanol-based electrolyte.  When higher reduction potentials are used, byproducts such 

as ethane and methanol result.44  At these high overpotentials a carbon monoxide is produced 

which inhibits catalytic activity. Another study investigated the conversion of carbon dioxide to 

methane at the copper electrode in the presence of methanol. The solution was enhanced with 

salt compounds at temperatures of 243 K. The reaction was successful in yielding carbon 

monoxide, methane and formic acid. This work was selective for electrochemical reduction of 

CO2 to methane.44 
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Tin used as an electrode was investigated for formate production. The study showed that 

tin served as an effective catalyst for production of formate, hydrogen and carbon monoxide.45  

In all potentials the FE was observed to range between 90% and 100%.  Hydrogen and formate 

were initially detected at -0.44V versus the reversible hydrogen electrode (RHE) whereas carbon 

monoxide was observed at -0.59 V.45  Formate was the major product at -0.8V and reached a 

maximum FE of 70% between -0.9 and -1.0 V whereas the maximum FE for CO was 17% at the 

potential of -0.76 V.  Through protonation the carbonate anion forms the formate ion which 

desorbs into the electrolyte.  The electrochemical reduction of CO2 is dependent on the potential 

applied, the transport of carbon dioxide and the metal used in the cathode. Tin, mercury, lead or 

indium result in formate with faradaic efficiencies of 80% to 100%.45  These metals are 

established to have high hydrogen overpotentials reducing the amount of hydrogen gas 

generated. Tin has been favored of the four metals in carbon dioxide reduction.45  In addition, 

significant work has been done using carbon supported catalysts for electrochemical reduction of 

CO2.  

Electrocatalysts for Reduction of Carbon Dioxide 

The standard reduction potential of CO2 to formate is -0.20 vs the RHE and is pH 

dependent.  The pH dependence is expressed by the equation (-0.2 + 0.059[pH-4]), when pH is 

greater than 4.46  Carbon dioxide has also been reduced electrochemically to several other 

products using electroactive catalysts.  For instance, electrochemical alloying of polycrystalline 

gold with zinc using ethylene glycol and 1.5 M ZnCl2 followed by dealloying  using heat and 

sulfuric acid can result in a 3D nanoporous structure for efficient electrochemical reduction of 

carbon dioxide to carbon monoxide.47  According to the results obtained, dealloyed gold had 

current density over 65 times higher compared to the polycrystalline gold surface and three times 
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higher than the gold-zinc alloy at −0.6 V vs. RHE in a CO2 saturated solution of 0.1 M 

NaHCO3.47  The Faradaic efficiency (FE) of dealloyed gold at the applied potential of −0.6 V for 

10 hours was high (95.9%).47  This is an indication that surface structure plays a critical role in 

electrochemical reduction of carbon dioxide to carbon monoxide.  

In a similar experiment gold was functionalized with different thiol-tethered ligands for 

electrochemical reduction of CO2.48 These thiol-tethered ligands included 2-mercaptopropionic 

acid, cysteamine and 4-pyridinylethanemercaptan. In comparison to the gold foil, a 2 fold 

increase in FE and 3 fold increase in the amount of formate produced was observed when 4-

pyridinylethanemercaptan was used.  In addition, the use of 2- mercaptopropionic acid ligands 

resulted in a FE of close to 100% for evolution of hydrogen. On the other hand, a 2-fold increase 

in the production of both hydrogen gas and carbon monoxide was observed when a cysteamine 

modified electrode was used.48 Other studies that have been conducted in the bid to carry out 

selective reduction of carbon dioxide to formate using metal electrodes. 49  Reduction of carbon 

dioxide on a copper electrode resulted in the formation of a thick film of copper (II) oxide.50 

Also, formate is a reduction product when using boron doped palladium catalysts.51  Ruthenium 

complexes are also well known electroactive catalysts for reduction of CO2 resulting in Faradaic 

efficiencies from 8 to 90% for formate.52  Table 1 is a list of ruthenium complexes, conditions 

and Faradaic efficiencies for comparative purposes.  Carbon has been used as a support for 

electrocatalytic reduction of CO2. 
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Table 1. Ruthenium complexes for electrochemical reduction of CO2. Reproduced from 
reference 52 by permission of The Royal Society of Chemistry 
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Carbon Supported Metal Catalysts for Electrochemical Reduction of CO2 

Carbon supports for electrochemical reduction of CO2 is of interest because of having the 

capacity to covalently load metal and metalorganic catalysts.  The effect is to improve faradaic 

efficiency.40 For example, palladium incorporated into a carbon ink on titanium foil has been 

shown to carry out electrochemical reduction of CO2.  In 0.5 M NaHCO3 saturated with CO2 the 

FE diminishes by 80% at -0.35 V after three hours because of carbon monoxide poisoning.53   

Palladium nanoparticles drop dried on carbon support is another example in which faradaic 

efficiency for reduction of CO2 is 97%.  After an hour the FE drops rapidly because of catalytic 

poisoning.54 Just last year, sulfur doped copper catalysts on carbon maintained a faradaic 

efficiency of up to 80% for over 12 hours.  However, an over potential of -0.8 V vs. the Normal 

Hydrogen Electrode (NHE) was necessary.55 Iron, nickel and cobalt nitrogen doped carbon 

electrocatalyts carried out reduction of CO2 to CO with a FE of 93% demanding an over 

potential of 0.560 V. However, the FE decreases over the first two hours and held 63% percent 

efficiency following 12 hours.56  Carbon supported metal alloys have also been used for CO2 

reduction. 

Carbon Supported Metal Alloys for Electrochemical Reduction of CO2 

In a 2016 study, a tin-lead alloy on a carbon support was used as the electrocatalyst.57  

The electrochemical impedance spectroscopy measurements of the combined alloy exhibited a 

lower charge-transfer resistance value compared to the use of single metal electrodes.57   The CV 

and X-ray Photoelectron Spectroscopy (XPS), on the other hand, showed that the tin present in 

the alloy favored the formation of tin oxide, whereas lead favored the formation of a lead oxide 

film. Moreover, the analysis showed that the alloy had a higher reduction current than the use of 

single electrodes. The Faradaic efficiency was investigated at -2.0 V vs. the silver-silver chloride 
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electrode using an H type electrochemical cell. The highest FE obtained using the lead tin alloy 

was 79.8% for formate, which was 16% higher than the use of tin or lead electrodes.57 

Platinum and palladium has been used as an alloy for electrochemical reduction of CO2.  

Another study investigated the electrochemical reduction of carbon dioxide to formic acid at low 

overpotentials using a palladium/platinum catalyst on a carbon paper support, and compared the 

reduction reaction with the reverse oxidation reaction of formic acid to carbon dioxide.58  The 

selection of the two metals was based on the high catalytic activity of the two metals 

individually.58  Electrodeposited palladium layers on the platinum substrate exhibited a reduction 

in the formation rate for formic acid compared to the use of bulk palladium.58  The palladium-

platinum nanoparticles have a low reduction potential of carbon dioxide to formate at 0 V which 

approaches the theoretical equilibrium potential of +0.02 V vs. the NHE.  Moreover, the use of 

Pd(70%):Pt(30%) alloy exhibited a formic acid FE of 88% after electrolysis for 1 hour at -0.4 V. 

The combination of the two metals also allowed for the reverse oxidation of formic acid to 

carbon dioxide at the electrode. However, the formation of formic acid was limited by the 

formation of a carbon monoxide film at the catalyst surface.58   

This recent example of carbon supported catalyst points to the need for reducing the over 

potential needed for electrochemical reduction of CO2 and address CO poisoning of catalysts 

supported on carbon.   This research work pursued using hydrogen molybdenum films to lower 

the required overpotential and potential for reducing the effect of CO poisoning.  Additionally, 

the films may be more selective for formate.   Hydrogen molybdenum bronze films were 

prepared by electrodeposition of peroxymolybdic acid.  Carbon dioxide was electrochemically 

reduced to formate and quantified by ion chromatography. The amount of formate and charge 

was used to calculate FE.  Interestingly, this research shows that using a hydrogen molybdenum 
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bronze film resulted in reduction of CO2 to formate with 8% FE at an applied potential of -0.4 V 

vs the silver/silver chloride (Ag/AgCl) reference electrode.   While the FE for formate is low, 

this applied potential was found to be similar to using formate dehydrogenase as an 

electrocatalyst for reduction of CO2 to formate. 
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CHAPTER 2 

METHODOLOGY 

Chemicals and Materials 

Chemicals used were 3% hydrogen peroxide purchased locally, ITO glass substrates (14 

Ω/square) purchased from Deposition Research Inc, carbon dioxide and nitrogen gas from 

Airgas. A 3.6 mM sodium carbonate solution was used as the eluent for ion chromatography. 

Sodium bicarbonate, sodium hydroxide, carbon paper with a resistivity of 80 mΩ·cm, fritted salt 

bridges, and sodium molybdate dihydrate were purchased from VWR and used as received. 

Formate standard, (1,000 ppm) was provided by Metrohm. 

Equipment 

A CHI 604E electrochemical work station with CHI software version 15.08 was used for 

all electrochemical deposition and reduction experiments.  All potentials are reported using the 

silver/silver chloride reference electrode. Electrochemical reduction was carried out using two 

beakers containing the electrolyte connected by a salt bridge containing 1.0 M NaSO4.  An H- 

type electrochemical cell (VWR) was also utilized for electrochemical reduction of CO2 to 

determine CO in the headspace.  In all experiments the hydrogen molybdenum bronze film 

electrodeposited on carbon paper was the working electrode, the silver/silver chloride electrode 

was the reference and a platinum disc (2 mm) served as the counter electrode.   

Electrodeposition of Hydrogen Molybdenum Bronze Films 

Hydrogen molybdenum bronze films were prepared by electrodeposition on ITO and 

carbon paper. Sodium molybdate dihydrate, 2.5 g, was dissolved in 50 mL of deionized water 

and 11 mL of 3% hydrogen peroxide was added. This results in a yellow solution that was stirred 

for 24 hours. After turning clear, an additional 11 mL of 3% hydrogen peroxide was added.  The 
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solution was adjusted to a pH of 2 using a calibrated Vernier® pH electrode by adding 

concentrated sulfuric acid dropwise.  until a pH of 2 measured. The yellow peroxymolybdic acid 

solution was used for deposition of hydrogen molybdenum bronze films. A three electrode 

system was used in this experiment. The silver/silver chloride referene electrode was used as a 

reference, a 2 mm platinum disk was the counter electrode and the carbon paper or ITO was the 

working electrode. Bulk electrolysis reduced peroxymolybdic acid to a blue hydrogen bronze 

film on ITO or carbon paper using an applied potential of -2.0V. Separate films were deposited 

for 150, 300, 700 and 1,400 seconds. Films were prepared on ITO and sent for film thickness 

measurements as well as X-ray Photoelectron Spectroscopy (XPS).  Characterization of films 

deposited on carbon paper is ongoing.  

Characterization of Films 

Film thickness measurements and conductivity were performed by Dr. Toby Nelson at 

Oklahoma State University.  The four-point probe method was used to measure electrical 

conductivity of the thin films. Resistance was measured using a Lucas Labs Pro 4-point probe 

connected to a Keithley 2400 source meter.  Film thickness was measured using a Bruker 

DektakXT® Stylus Profiler.  This instrument uses deflection of a cantilever to determine 

thickness.  X-Ray Photoelectron Spectroscopy was performed by Dr. Nicholas Materer also at 

Oklahoma State University. The XPS measurements were carried out using the Mg anode of a 

PHI 300W twin anode X-ray source and a PHI double pass cylindrical mirror analyzer having a 

pass energy of 50 eV. X-Ray Diffraction of films was performed by Dr. Dwight Myers at East 

Central University using a Bruker D2 Phaser X-Ray Diffractometer.   
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Electrochemical Reduction of CO2 

The electrolyte, 0.1 M NaHCO3, was used with the hydrogen bronze films on carbon 

paper for electrochemical reduction of CO2.  Figure 2 shows two beakers and a fritted salt bridge 

which was filled with 0.1 M Na2SO4 to connect the anode and cathode.   

 

 

Figure 2. The electrochemical cell used for CO2 reduction experiments 

 

The cathode beaker includes the reference electrode, hydrogen bronze film (working 

electrode) and 0.1 M NaHCO3 or blue peroxymolybdic acid solution as supporting electrolyte 

mixed by bubbling CO2.  The anode was a 2 mm platinum disc electrode in 20 mL of 0.1 M of 

NaHCO3 magnetically stirred.  During that time, applied potentials used were -0.2, -0.4, -0.6, -

0.8, -1, -1.2, and -1.4 V.  The CHI software plotted current, time and integrated the data 

providing total charge in Coulombs.   



 

26 
 

Ion Chromatography Quantifying Formate 

A 930 Metrohm ion chromatogram was used to analyze for formate. Metrohm 

Application Note S-260 used a Metro Sep a Supp 16-250/4.0 column at 45°C and at a flow rate 

of 0.7 mL/minute Sodium carbonate, 3.6 mmol is the eluent and 5 mM H2SO4 chemically 

suppresses the conductivity.15  Standards of formate were prepared by diluting with 0.1 M 

NaHCO3. Formate is identified at 4.6 minutes and peak area was used to quantify formate. The 

background was determined by bubbling both nitrogen and carbon dioxide into the electrolyte 

for one hour without an applied potential.  

GC Analysis for Carbon Monoxide 

An H-type electrochemical cell was sealed with three-hole stoppers containing the reference and 

hydrogen bronze film on the left and platinum counter electrode on the right.  Figure 3 shows the 

electrochemical cell setup used for sampling the headspace for GC analysis to determine CO. An 

applied potential of –0.4V was used due to finding the most amount of formate at this applied 

potential.  The amount of CO at other potentials are ongoing experiments.  The headspace was 

analyzed by GC for carbon monoxide.  
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Figure 3:  Sealed electrochemical H cell for CO determination 
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CHAPTER 3 

RESULTS AND DISCUSSION 

Film Characterization:  Film Thickness 

Electrodeposition of the films was carried out at -2.0 V in the yellow peroxymolybdic 

acid solution using bulk electrolysis.  Films were prepared on ITO for XPS and film thickness 

measurements while films prepared on carbon paper were used for electrochemical reduction 

experiments. Figure 4 shows the carbon paper film before electrodeposition and Figure 5 shows 

the film after 100 seconds of electrodeposition.  While the blue color is difficult to see in Figure 

6, electrodeposition on ITO results in a blue film that is easier to see as shown in Figure 6. 

 

Figure 4: Carbon paper before the electrodeposition 

 

Figure 5: Hydrogen molybdenum bronze film after 100 seconds of electrodeposition on carbon 
paper 

 

Figure 6: Hydrogen molybdenum bronze film on ITO after 100 seconds of electrodeposition 
showing the blue color of the film 
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Table 2 lists the time of electrodeposition and measured hydrogen molybdenum bronze film 

thickness measurements provided by Dr. Toby Nelson using a Bruker DektakXT® Stylus 

Profiler.   

 

Table 2. Film thickness measurements (µm) of the electrodeposited films on ITO versus time 

Time(s) Thickness (µm) Error (± µm) 
100 129 16 
300 142 4 
700 194 6 
1400 462 17 

 

As time of deposition increases so does film thickness.  One goal was to be able 

determine how long to deposit films for to obtain a desired thickness as this relationship is not 

known.  This led to a linear plot fitting thickness and time as shown in Figure 7. 

 

Figure 7:  Plot of inverse film thickness (µm) versus time (s) 

 

Equation (11) below is the linear fit with an R2 value of 0.9995. 
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µm-1 = -4.4 x 10-6(
s

m 1−µ )t + 825.2µm-1             (11) 

The error bar at 100 seconds is large in this plot due to a small thickness and a typical error of 6-

17 µm. This results in a much larger error at lower films thicknesses compared to the error of 

thicknesses measured after 1,400 seconds of electrodeposition. Within error, the plot of inverse 

film thickness with time is linear indicating that electrodeposition is a second order process. 

Film Characterization:  Film Conductivity 

One significant parameter of an electrocatalytic film is that the film be conductive. If the 

film acts as an insulator, this will cause an undesirable impedance or inhibit the exchange of 

electrons.  Sheet resistance measurements were obtained by using a 4-point probe and reported in 

units of Ω/square. Table 3 below shows the sheet resistance of the films as the function of 

deposition time. 

 

Table 3. Conductivity of the hydrogen bronze film as a function of deposition time 

Time(s) Sheet Resistance 
(Ω/square) 

Error 
(± Ω/square) 

100 3.63 0.03 
300 3.81 0.02 
700 3.31 0.03 
1400 3.58 0.04 

 

While film thickness ranges from 129-462 µm, the sheet resistance is the same in this 

range. There are two reasons that account for this result. In one situation the four points of the 

probe reached the ITO substrate.  In this case the sheet resistance should match the value of the 

ITO layered substrate given by the manufacturer, 14 Ω/square.  The second possibility is that the 

electrodeposited sheet film resistance is independent of film thickness.  The four point probe 
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measurements result in a sheet resistance less than the ITO layer.  This supports the fact that the 

hydrogen molybdenum bronze films resistance was measured and not the ITO layer. 

Film Characterization:  XPS and XRD  

X-Ray Photoelectron Spectroscopy was used to characterize the electrodeposited films. 

Figure 8 shows the XPS and assigned peaks confirming that molybdenum and oxygen are 

present.  When hydrogen is present in the molybdenum oxide lattice, the film is known to be a 

blue color.15, 17 Hydrogen can not be determined by XPS.  Experiments are ongoing to determine 

the hydrogen content in the films using Rutherford Backscattering.   Carbon paper with and 

without electrodeposited films was also analyzed by X-Ray Diffraction shown in Figure 9. 

 

 

Figure 8:  The XPS spectrum of the electrodeposited hydrogen molybdenum bronze film 
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Figure 9:  X-Ray Diffraction of conductive carbon paper only (top) and the deposited hydrogen 
bronze film (bottom) 

 

The carbon paper only shows a broad peak at approximately 20°.  The carbon paper with 

electrodeposited film however shows no clear peak meaning that the film amorphous. 
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Film Characterization:  Cyclic Voltammetry 

Cyclic voltammetry of the hydrogen bronze film on carbon paper was attempted in 0.5 M 

H2SO4 to study hydrogen intercalation.  After a few cycles, the film completely dissolved into 

the bulk solution.  There were no clear oxidation or reduction peaks.  This result is consistent 

with experiments that confirm oxidation of electrodeposited films results in mass loss of the 

film.59 

Cyclic Voltammetry of CO2 Reduction 

Figure 10 shows the CV of carbon paper in nitrogen and CO2 saturated 0.1 M NaHCO3, 

while Figure 11 is the same experiment using electrodeposited films on carbon paper. 

 

 

Figure 10. The CV of carbon paper in nitrogen and CO2 saturated 0.1 M NaHCO3 using the 
silver chloride as a reference electrode 
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Figure 11.  The CV of carbon paper with the hydrogen molybdenum bronze film in nitrogen and 
CO2 saturated 0.1 M NaHCO3 using the silver chloride as a reference electrode 

 

Figure 10 shows that there is no increase in current using carbon paper when the electrolyte is 

saturated with CO2 compared to that of nitrogen.  However, Figure 11 shows that the onset of 

reduction of CO2 starts at an applied potential of -0.4 V.   This is evident by an increase in 

current compared to the CV of carbon paper and hydrogen molybdenum bronze film in nitrogen 

saturated electrolyte.  As such, electrodeposited hydrogen molybdenum bronze films on 

conductive carbon carries out catalytic reduction.  One possible product is formate which was 

quantified by ion chromatography using reduction potentials from -0.2 V to -1.4 V. 

Electrochemical Reduction of Carbon Dioxide and Quantifying Formate 

Figure 12 shows a typical ion chromatogram identifying formate in 0.5 M NaHCO3.    
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Figure 12:  Typical ion chromatogram of conductivity (µS/cm) and time (minutes) identifying 
formate in 0.5 M NaHCO3 with a retention time of 4.6 minutes 

 

A 1,000 ppm solution of formate was diluted with 0.1 M NaHCO3 to make standard 

solutions. The calibration of peak area and formate concentration is shown in Figure 13. 

 

 

Figure 13:  Calibration for determination of formate 

Table 4 shows the applied potential, amount of formate (ppm), charge in Coulombs and  
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Faradaic efficiency.  The equation for faradaic efficiency for reduction of CO2 to formate is 

shown below in Equation 12.60 

ε =  nformatenF
Q

 x 100% (12) 
 

where ε is Faradaic efficiency, F is Faraday’s constant 96,485 Coulombs/mol, nformate is moles of 

formate, n is two electrons for reduction of carbon dioxide to formate and Q is the charge in 

coulombs for the duration of electrochemical reduction of CO2. 

 

Table 4. The applied potential using the silver chloride electrode as a reference, amount of 
formate (ppm), charge and FE for electrochemical reduction of CO2 

Potential 
(V) 

Formate 
(ppm) 

Charge 
(Coulombs) 

Faradaic 
efficiency 

(%) 
-1.4 0.23 26.44 0.07 
-1.2 0.41 23.925 0.13 
-1.0 0.96 9.66 0.93 
-0.8 0.615 3.133 1.75 
-0.6 0.286 0.55 4.67 
-0.4 0.129 0.15 8.34 
-0.2 0 0 0 

 

Figure 14 is a plot of Faradaic efficiency and applied potential to the working electrode.   
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Figure 14.  Faradaic efficiency (%) plotted against applied potential 

 

These results show that the hydrogen molybdenum bronze film is catalytic for reduction of 

carbon dioxide.  A maximum amount of formate was obtained at -1.0 V (0.96 ppm).  The 

reduction potential for CO2 to formate vs the RHE at a pH of 8.3 is calculated to be +0.054 V.46  

An applied potential of -0.4 V vs the silver/silver chloride reference corresponds to +0.3 V vs the 

RHE.  This potential is much more positive compared to use of palladium and platinum alloys 

deposited on carbon, -0.5 V vs the RHE.58  Interestingly, formate dehydrogenase is known to 

contain molybdenum and tungsten active sites for reduction of CO2 to formate.61  Formate 

dehydrogenase was used as an electrocatalyst for reduction of CO2 to formate.  In a solution of 

10 mM CO2 and formate buffered to a pH of 8.0 the reduction potential was found to be 

approximately -0.45 V vs the SHE.62  The reduction potential becomes more positive as the pH 

decreases from 8.0 to 6.0.   A similar study using formate dehydrogenase at a pH of 6.5 resulted 

in a maximum FE for reduction of CO2 to formate using an applied potential of -0.41 V vs. the 
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SHE.61  In this work a maximum FE for formate was obtained at -0.4 V (-0.165 V vs SHE).  This 

is more positive compared to use of formate dehydrogenase likely due to carrying out reduction 

of CO2 at a pH of 8.3.  This result indicates that the electrodeposited hydrogen molybdenum 

bronze films are likely capable of biomimicking formate dehydrogenase due to containing 

molybdenum as an active metal site for electrochemical reduction.  In this work a maximum FE 

was obtained at -0.4 V (8.34 %).  Compared to Table 1, this result matches the lowest FE 

obtained using ruthenium electrocatalysts.  Future strategies are aimed at improving the faradaic 

efficiency of electrodeposited hydrogen bronze films toward CO2 reduction to formate.  

Headspace analysis of the electrochemical cell is critical to show that hydrogen bronze films 

electrodeposited on carbon paper may prevent CO poisoning.   

Determining Headspace CO 

The H type cell was used to attempt investigating the amount of CO generated in the 

electrochemical reduction of CO2.  The 0.1 M NaHCO3 solution was saturated with CO2, sealed 

with a stopper and magnetically stirred with an applied potential of -0.4 V for reduction due to 

finding the highest amount of formate.  The headspace was analyzed for CO.  Due to CO being 

detected in air, three measurements were performed to determine if electrochemical reduction 

resulted in CO.  The first measurement purged the electrochemical cell with CO2, sealed with a 

stopper and the headspace sampled to determine background CO.  The second measurement 

followed the same steps adding carbon paper with no hydrogen bronze film as the working 

electrode and reducing CO2.  The third measurement repeated reduction of CO2 using the 

hydrogen molybdenum bronze film on carbon paper.  During these experiments, the discovery 

was made that the sensitivity for CO in the presence of CO2 is significantly reduced complicating 

the quantification of CO in the headspace.  Towards this goal, methods for detection of CO and 
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other products are ongoing.  This effort includes experiments carrying out reduction of CO2 for 

longer periods of time and other detection methods for CO2.  One such example is the MQ-7 CO 

sensor. 
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                                                        CHAPTER 4 

CONCLUSIONS 

The purpose of this research work was to prepare hydrogen molybdenum bronze films 

using electrodeposition and carry out electrochemical reduction of CO2.  A yellow 

peroxymolybdic acid solution was prepared by dissolving sodium molybdate dihydrate in water 

and adding hydrogen peroxide.  After adjusting to an acidic pH and adding more hydrogen 

peroxide, this resulted in a stable yellow peroxymoybdic acid solution for electrodeposition of 

hydrogen bronze films.  The carbon paper and/or glass/ITO substrates were used to carry out 

bulk electrolysis at -0.7 V vs. the silver chloride reference electrode to deposit the hydrogen 

molybdenum bronze films.  Deposition was carried out at different times ranging from 100 to 

1,400 seconds. The thickness of the films was approximately 200-500 µm. The inverse of film 

thickness vs. time was found to be a linear.  This fit allowed determining film thickness simply 

based on time of electrodeposition.   

The resistance of the electrodeposited hydrogen molybdenum bronze films was found to 

be approximately 4 Ω/square, which is less than ITO coated glass, 14 Ω/square.   This confirmed 

that the resistance measurement was directly of the electrodeposited film and not the resistance 

of the conductive substrate.  The presence of molybdenum and oxygen was confirmed by using 

XPS.  Hydrogen is also present in these films.  Experiments are ongoing using Rutherford 

Backscattering to quantify hydrogen content in the electrodeposited hydrogen molybdenum 

bronze films.  There were no clear peaks present in XRD of the films on carbon paper. This 

indicated that the prepared hydrogen molybdenum bronze films were amorphous in nature 

meaning not crystalline.  Future work includes electrodeposition for longer times to determine 

the effect on crystalline structure. 
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The films were found to be catalytic toward the electrochemical reduction of carbon 

dioxide.  Cyclic voltammetry was carried out using both carbon paper only and carbon paper 

with hydrogen bronze films in nitrogen saturated and carbon saturated 0.1 M NaHCO3 

electrolyte.  Compared to carbon paper only, when using the hydrogen molybdenum bronze film 

as the working electrode, an increase in measured current occurs at an applied potential of -0.4 V 

vs. the silver chloride reference electrode indicating catalytic reduction of CO2 is occurring.  In 

using hydrogen bronze films on carbon paper, the highest FE was 8% at an applied potential of -

0.4 V using the silver chloride reference.  At more negative potentials the Faradaic efficiency 

decreases but the measured current compared to using carbon paper with a hydrogen 

molybdenum bronze film in nitrogen electrolyte increases.  Interestingly, an applied potential of 

-0.4 V matches electrocatalytic work using formate dehydrogenase as an electrocatalyst.  This is 

due to the molybdenum active site of the enzyme.  This result indicates that the electrodeposited 

hydrogen molybdenum bronze film is capable of biomimicking formate dehydrogenase. 

Measuring headspace for CO was attempted at an applied potential of -0.4 V vs. the 

silver chloride reference electrode using a sealed H type electrochemical cell.  Analysis of the 

headspace initially revealed that there was no CO.  However, the method suffers from 

significantly reduced sensitivity to CO in the presence of CO2 and experiments are ongoing. 

While the FE for formate is low compared to other literature results, these films are cheap 

and easy to prepare.  Ongoing experiments include measuring CO at applied potentials, carrying 

out reduction under neutral and acidic conditions as well as using tungsten to carry out ion 

exchange with hydrogen which should improve the biomimicking capabilities of the 

electrodeposited bronze film.  The expectation is an improved Faradaic efficiency reducing CO2 

to formate. 
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