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ABSTRACT

Taking Notes: Generating Twelve-Tone Music with Mathematics

by

Nathan Molder

There has often been a connection between music and mathematics. The

world of musical composition is full of combinations of orderings of different

musical notes, each of which has different sound quality, length, and em-

phasis. One of the more intricate composition styles is twelve-tone music,

where twelve unique notes (up to octave isomorphism) must be used before

they can be repeated. In this thesis, we aim to show multiple ways in which

mathematics can be used directly to compose twelve-tone musical scores.
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1 INTRODUCTION

Mathematics and music have often lived together in a form of symbiosis.

Reading and composing music can be broken down into mathematical ar-

rangements. Composers must choose what tempo to keep, how long a note is

sustained, and what should traditionally follow that note in sequence. Even

Pythagoras was a known musician, and is said to have discovered the ratios

between musical harmonies [8] such as the major third and fifth, which are

how common chords are constructed. Notes themselves are broken down

into weights of 1
2n

, where a whole note is held for an entire measure (i.e., 1
20

).

Compositions can be as simple as using the same three or four chords (ar-

rangements of three or more notes played simultaneously) played in different

or repeated progressions. There are, however, more non-traditional styles

of composition that offer more of a challenge. One of these styles is called

twelve-tone music.

Twelve-tone music structure was created by Austrian composer Arnold

Schoenberg [12], and refers to the arrangement of twelve notes in an octave:

C,C]/D[,D,D]/E[, E, F, F ]/G[,G,G]/A[,A,A]/B[,B.

“The technique... ensure[s] that all 12 notes of the chromatic scale are

sounded as often as one another in a piece of music while preventing the

emphasis of any one note through the use of tone rows, orderings of the 12

9



pitch classes [15].” These notes differ in sound by what is referred to as a

“semitone.” As seen above, a sharp note (denoted ]) has an aurally equiva-

lent flat note (denoted [). However, in the case of E and F , and B and C,

these notes already differ by a semitone. Without loss of generality, we will

opt for the sharp notation. These notes must be arranged in some permuta-

tion before another set of twelve notes can be introduced, hence the moniker

“twelve-tone music.”

There are a few important terms used throughout this paper that may

not be commonly known to mathematicians. A note’s weight is the length

of time over which a note is held. An octave is “the whole series of notes

[or] tones [...] comprised within [a musical] interval and forming the unit of

the modern scale [13].” A semitone is “a difference in sound that is equal

to 1
12

of an octave [14].” A time signature refers to the number of beats in

a measure. For example, 3/4 time denotes three beats per measure, where

each beat is worth one quarter-note. Similarly, 9/8 time denotes nine beats

per measure, where each beat is worth one eighth-note.

In this thesis, each twelve-set will be assembled and referred to as a single

vertex in the path graph that will represent our musical scores. Each of these

479, 001, 600 vertices is unique. As this yields a large number of vertices, this

thesis aims to mathematically generate twelve-tone musical scores using a

series of restrictions such as:

10



• No six-note arrangement from an ordered 12-set will be repeated in a

different 12-set.

• No symbols will be fixed.

• No single transposition will exist between any two 12-sets.

• The number of 12-sets will vary.

• Graphical representations of cycle types will be exemplified.

For the purposes of this thesis, choosing a time signature will not affect

the ordering of the notes, as only the arrangement of notes is important to

our goals. As such, this thesis will assume the time signatures will yield iso-

morphic musical scores. For example, arrange the notes in order of ascending

semitones from C to B. If the score is composed in 3/4 time, the order will

be the same as one composed in 4/4 time. However, at a certain point, time

signatures must be considered when determining the number of 12-sets used

in musical composition. Additionally, since this thesis only considers the

ordering of the elements in each 12-set, this thesis assumes that each note

gets the same weight. Also, no arrangements of elements will be removed for

the sole purpose of retaining an aurally pleasing sound, as this is a purely

theoretical approach, and pleasance is subjective.

11



2 THE FIRST RESTRICTION: NO SIX-NOTE ARRANGEMENT

FROM A 12-SET WILL BE REPEATED IN A DIFFERENT 12-SET

It has been established that there are almost half a billion possible ar-

rangements of twelve notes in a sequence. As such, it is clear that some

restrictions must be put into place in an attempt to eliminate as many of

these arrangements as possible. In this section, the Principle of Inclusion

and Exclusion will be used to eliminate any arbitrary arrangements of six-

element sequences that are used more than once across multiple 12-sets. For

example:

(
C C] D D] E F F] G G] A A] B
B G C] D D] E F F] A A] C G]

)
would be ineligible due to the repetition of the notes from C] to F].

The choice of identity vertex is arbitrary, and is isomorphic to any other

vertex up to relabeling the elements within. Without loss of generality, this

thesis will assume the starting vertex to be the identity vertex, where the

elements are arranged in ascending semitones from C to B.

Let U be the set of all permutations on twelve elements. Observe that

|U | = 12!. Let α1 be the set of permutations that contains C through F in

increasing semitonic order. These six elements are fixed, leaving the remain-

ing six elements to be placed in any order. There are seven starting locations

12



for the first fixed element in the set to appear. Thus, the cardinality of

α1 = 6! · 7 = 7! = 5040. Similarly, let α2 be the set of permutations that

contains C] through F] in increasing semitonic order. There are also 5040

ways to arrange these elements. Continuing in this fashion, there are seven

total subsets of U of order 5040, call these α1, α2, α3, α4, α5, α6, α7 ⊂ U . The

sum of the cardinalities of these sets is 7(7!) = 35, 280.

Now consider α1 ∩ α2. This is the set containing both C to F and C]

to F] in ascending semitonic order. The only way this is possible is if the

permutation contains both α1 and α2. There are 5! ways to arrange the

variable elements, and six starting locations for the first fixed element in the

set to appear. Therefore |α1 ∩ α2| = 6! = 720.

Similarly, α1 ∩ α3, the set containing C to G, has cardinality 5! = 120;

α1 ∩α4, the set containing C to G], has cardinality 4! = 24; |α1 ∩α5| = 3! =

6, |α1 ∩ α6| = 2, and |α1 ∩ α7| = 1.

Continuing this trend, the intersection of two sets is given in Table 1.

From this, it follows that the sum of the cardinalities of all sets containing

two intersecting six-sets is 6(6!) + 5(5!) + 4(4!) + 3(3!) + 2(2) + 1 = 5039.

It can be observed that for the intersection of three or more sets, the

intersection of the left and rightmost sets considered in the intersection are

13



Table 1: Intersection of Two Sets

Intersection # possible arrangements # occurrences
|αi ∩ αi+1|, i ∈ [1, 6] 6! 6
|αi ∩ αi+2|, i ∈ [1, 5] 5! 5
|αi ∩ αi+3|, i ∈ [1, 4] 4! 4
|αi ∩ αi+4|, i ∈ [1, 3] 3! 3
|αi ∩ αi+5|, i ∈ {1, 2} 2 2
|αi ∩ αi+6|, i = 1 1 1

the only contributing factors in determining the intersection of multiple sets,

as the intermediate sets will already exist in the larger set. For example,

|α1 ∩α2 ∩α3 ∩α4| = |α1 ∩α2 ∩α4| = |α1 ∩α3 ∩α4| = |α1 ∩α4|. As such, the

intersection of three sets is given in Table 2.

Table 2: Intersection of Three Sets

Intersection # possible # occurrences # intermediate
arrangements sets

|αi ∩ αi+2|, i ∈ [1, 5] 5! 5 1
|αi ∩ αi+3|, i ∈ [1, 4] 4! 4 2
|αi ∩ αi+4|, i ∈ [1, 3] 3! 3 3
|αi ∩ αi+5|, i ∈ [1, 2] 2 2 4
|αi ∩ αi+6|, i = 1 1 1 5

Therefore the sum of the cardinalities of all sets containing three inter-

secting six-sets is 5(5!) + 2(4)(4!) + 3(3)(3!) + 4(2)(2) + 5(1) = 867.

The intersection of four sets is given in Table 3.
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Table 3: Intersection of Four Sets

Intersection # possible # occurrences # intermediate
arrangements sets

|αi ∩ αi+3|, i ∈ [1, 4] 4! 4 1
|αi ∩ αi+4|, i ∈ [1, 3] 3! 3 3
|αi ∩ αi+5|, i ∈ [1, 2] 2 2 6
|αi ∩ αi+6|, i = 1 1 1 10

The sum of the cardinalities of all sets containing four intersecting six-sets

is 1(4)(4!) + 3(3)(3!) + 6(2)(2) + 10(1)(1) = 136.

The intersection of five sets is given in Table 4.

Table 4: Intersection of Five Sets

Intersection # possible # occurrences # intermediate
arrangements sets

|αi ∩ αi+4|, i ∈ [1, 3] 3! 3 1
|αi ∩ αi+5|, i ∈ [1, 2] 2 2 4
|αi ∩ αi+6|, i = 1 1 1 10

The sum of the cardinalities of all sets containing five elements is 1(3)(3!)+

4(2)(2) + 10(1)(1) = 44.

The intersection of six sets is given in Table 5.

Thus the sum of the cardinalities of all sets containing six intersecting

six-sets is 1(2)(2) + 5(1)(1) = 9.
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Table 5: Intersection of Six Sets

Intersection # possible # occurrences # intermediate
arrangements sets

|αi ∩ αi+5|, i ∈ [1, 2] 2 2 1
|αi ∩ αi+6|, i = 1 1 1 5

For the intersection of seven sets, there is |α1 ∩ α7| = 1 possible way to

arrange these elements, which makes sense due to this being the identity.

Recall the goal of this section was to find the number of twelve-sets that

do not contain a repetition of a six-note subset of the chosen identity set. By

the Principle of Inclusion and Exclusion, the number of possible twelve-sets

satisfying the condition is

|U | −
∑
|αi|+

∑
|αi ∩ αj| −

∑
|αi ∩ αj ∩ αk|+

∑
|αi ∩ αj ∩ αk ∩ αl|

−
∑
|αi ∩ αj ∩ αk ∩ αl ∩ αm|+

∑
|αi ∩ αj ∩ αk ∩ αl ∩ αm ∩ αn|

−
∑
|αi ∩ αj ∩ αk ∩ αl ∩ αm ∩ αn ∩ αp|

= 479, 001, 600− 35, 280 + 5039− 867 + 136− 44 + 9− 1

= 478, 970, 592.

As such, using this method has only eliminated 31, 008 possible arrange-

ments. To continue this iteratively, the choice of the next element would

16



not be arbitrary. The idea, however, is to choose a second 12-set from the

remaining 478, 970, 592, then determine how many remaining 12-sets do not

have any six-note repetitions from either of the two that have already been

selected. Our desired restriction is that each 12-set is considered separately;

that is, repetitions of six notes will only be considered for each 12-set dis-

jointly (i.e., the last three elements from the first 12-set and the first three

elements from the second 12-set can be repeated, provided this string is not

also contained in a single 12-set).

With that stated, due to the relatively small amount of 12-sets removed

from the original half-billion, it may be more lucrative to build up using

different parameters instead of tearing away at the universal set.

17



3 THE SECOND RESTRICTION: NO 12-SET WILL LEAVE ANY

SYMBOLS FIXED

This section will eliminate any use of fixed points in any string. That is,

when compared to the identity permutation, no symbol can be mapped to

itself when crafting the next string.

As this is a very exhaustive process, it will prove beneficial to examine

the conjugacy classes of the group S12, as shown in Figure 1.

The conjugacy class of a group is a representation of an equivalence rela-

tion acting on equivalence classes, called orbits, in such a way that the group

in question is acting on itself. Element a is said to be conjugate to b if, for

some g ∈ G, we have a = g−1bg. In this case, G = S12, and a, b ∈ G. Further,

a cycle type is a sequence of cycle lengths ki such that ki ≥ ki+1, where the

cycle type of α is denoted (k1, k2, ..., ki, ..., kn) [16]. Theorems 3.1 and 3.2 are

given for completeness.

Theorem 3.1. [9] Let Sn be the symmetric group on n symbols (n ≥ 1), and

let ρ and τ be permutations on Sn. Then ρ and τ are conjugate if and only

if they are of the same cycle type.

Theorem 3.2. [6] Every nonidentity permutation in Sn is uniquely (up to

the order of the factors) a product of disjoint cycles, each of which has length

at least 2.

18



Figure 1: A list of conjugacy classes for S12 generated in Sage.

So in simpler terms, conjugation is just a switching of symbols in permu-

tations. In other words, think rotations, cycles of up to length k, “flips,” and

other group actions. In addition, the cycle type is how each conjugacy class

is broken down, such that one element in the cycle is mapped to another

(one-symbol cycles are fixed points, two-symbol cycles are transpositions).

Now all that must be done is to eliminate any conjugacy class that does

not contain all elements of the 12-set. It can be determined that there are

19



twenty-one total conjugacy classes that permute all twelve symbols. Further,

these conjugacy classes can be represented by direct products of cyclic groups.

Now all that must be done is to start with the selected identity element and

permute each item with respect to the operations defined in the conjugacy

classes. Tables 6 and 7 shows one possible result.

Table 6: Conjugacy classes applied to the identity permutation

Conjugacy Class Result (Applied to Identity)
(Direct Product Representation)

(1, 2)(3, 4)(5, 6)(7, 8)(9, 10)(11, 12) (C],C)(D],D)(F,E)(G,F])(A,G])(B,A])
(Z2 × Z2 × Z2 × Z2 × Z2 × Z2)

(1, 2, 3)(4, 5, 6)(7, 8)(9, 10)(11, 12) (D,C,C])(F,D],E)(G,F])(A,G])(B,A])
(Z3 × Z3 × Z2 × Z2 × Z2)

(1, 2, 3)(4, 5, 6)(7, 8, 9)(10, 11, 12) (D,C,C])(F,D],E)(G], F],G)(B,A,A])
(Z3 × Z3 × Z3 × Z3)

(1, 2, 3, 4)(5, 6)(7, 8)(9, 10)(11, 12) (D],C,C],D)(F,E)(G,F])(A,G])(B,A])
(Z4 × Z2 × Z2 × Z2 × Z2)

(1, 2, 3, 4)(5, 6, 7)(8, 9, 10)(11, 12) (D],C,C],D)(F],E, F )(A,G,G])(B,A])
(Z4 × Z3 × Z3 × Z2)

(1, 2, 3, 4)(5, 6, 7, 8)(9, 10)(11, 12) (D],C,C],D)(G,E, F, F ])(A,G])(B,A])
(Z4 × Z4 × Z2 × Z2)

(1, 2, 3, 4)(5, 6, 7, 8)(9, 10, 11, 12) (D],C,C],D)(G,E, F, F ])(B,G],A,A])
(Z4 × Z4 × Z4)

(1, 2, 3, 4, 5)(6, 7, 8)(9, 10)(11, 12) (E,C,C],D,D])(G,F, F ])(A,G])(B,A])
(Z5 × Z3 × Z2 × Z2)

(1, 2, 3, 4, 5)(6, 7, 8, 9)(10, 11, 12) (E,C,C],D,D])(G], F, F ],G)(B,A,A])
(Z5 × Z4 × Z3)

(1, 2, 3, 4, 5)(6, 7, 8, 9, 10)(11, 12) (E,C,C],D,D])(A,F, F],G,G])(B,A])
(Z5 × Z5 × Z2)

20



Table 7: Conjugacy classes applied to the identity permutation (cont.)

(1, 2, 3, 4, 5, 6)(7, 8)(9, 10)(11, 12) (F,C,C],D,D], E)(G,F])(A,G])(B,A])
(Z6 × Z2 × Z2 × Z2)

(1, 2, 3, 4, 5, 6)(7, 8, 9)(10, 11, 12) (F,C,C],D,D], E)(G], F],G)(B,A,A])
(Z6 × Z3 × Z3)

(1, 2, 3, 4, 5, 6)(7, 8, 9, 10)(11, 12) (F,C,C],D,D], E)(A,F],G,G])(B,A])
(Z6 × Z4 × Z2)

(1, 2, 3, 4, 5, 6)(7, 8, 9, 10, 11, 12) (F,C,C],D,D], E)(B,F],G,G],A,A])
(Z6 × Z6)

(1, 2, 3, 4, 5, 6, 7)(8, 9, 10)(11, 12) (F], C, C],D,D], E, F )(A,G,G])(B,A])
(Z7 × Z3 × Z2)

(1, 2, 3, 4, 5, 6, 7)(8, 9, 10, 11, 12) (F], C, C],D,D], E, F )(B,G,G],A,A])
(Z7 × Z5)

(1, 2, 3, 4, 5, 6, 7, 8)(9, 10)(11, 12) (G,C,C],D,D], E, F, F ])(A,G])(B,A])
(Z8 × Z2 × Z2)

(1, 2, 3, 4, 5, 6, 7, 8)(9, 10, 11, 12) (G,C,C],D,D], E, F, F ])(B,G],A,A])
(Z8 × Z4)

(1, 2, 3, 4, 5, 6, 7, 8, 9)(10, 11, 12) (G],C,C],D,D], E, F, F ],G)(B,A,A])
(Z9 × Z3)

(1, 2, 3, 4, 5, 6, 7, 8, 9, 10)(11, 12) (A,C,C],D,D], E, F, F ],G,G])(B,A])
(Z10 × Z2)

(1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12) (B,C,C],D,D],E, F, F ],G,G],A,A])
(Z12)

21



Notice that this is arguably the simplest way to apply the operations

induced by the conjugacy classes. Further, for any cycle, any notes can be

chosen (order matters). For example, in the first conjugacy class from the

table above, any two notes can be permuted, not just if they are sequentially

adjacent. For (1, 2), the two notes could have been chosen to be F and C].

The only important factor is that if two notes have been switched (or rotated,

in the case of larger subclasses), they cannot be moved by another subclass of

the same conjugacy class. In general, each conjugacy class essentially states

that for each cycle of length k of the conjugacy class, k ≤ 12, choose k notes

from C to B to be elements of the subclass. Then apply a permutation on

those elements, or a transposition if only two elements.

22



4 THE THIRD RESTRICTION: NO SINGLE TRANSPOSITIONS

BETWEEN 12-SETS

This section will eliminate any instances of a single transposition between

two 12-sets. For example,(
C C] D D] E F F] G G] A A] B
C C] D D] E F F] G G] A B A]

)
would not be an eligible 12-set, since it only differs by a single transposition.

Similarly to Section 3, we consider the conjugacy classes seen in Figure 1.

However, this time, fixed points are included, but any conjugacy class con-

taining transpositions are eliminated. From Tables 8 and 9, we see that there

are thirty-four conjugacy classes that do not contain single transpositions.

Table 8: Conjugacy Classes - No Transpositions.
(1, 2, 3)

(1, 2, 3)(4, 5, 6)
(1, 2, 3)(4, 5, 6)(7, 8, 9)

(1, 2, 3)(4, 5, 6)(7, 8, 9)(10, 11, 12)
(1, 2, 3, 4)

(1, 2, 3, 4)(5, 6, 7)
(1, 2, 3, 4)(5, 6, 7)(8, 9, 10)

(1, 2, 3, 4)(5, 6, 7, 8)
(1, 2, 3, 4)(5, 6, 7, 8)(9, 10, 11)

(1, 2, 3, 4)(5, 6, 7, 8)(9, 10, 11, 12)
(1, 2, 3, 4, 5)

(1, 2, 3, 4, 5)(6, 7, 8)
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Table 9: Conjugacy Classes - No Transpositions (cont.).

(1, 2, 3, 4, 5)(6, 7, 8)(9, 10, 11)
(1, 2, 3, 4, 5)(6, 7, 8, 9)

(1, 2, 3, 4, 5)(6, 7, 8, 9)(10, 11, 12)
(1, 2, 3, 4, 5)(6, 7, 8, 9, 10)

(1, 2, 3, 4, 5, 6)
(1, 2, 3, 4, 5, 6)(7, 8, 9)

(1, 2, 3, 4, 5, 6)(7, 8, 9)(10, 11, 12)
(1, 2, 3, 4, 5, 6)(7, 8, 9, 10)

(1, 2, 3, 4, 5, 6)(7, 8, 9, 10, 11)
(1, 2, 3, 4, 5, 6)(7, 8, 9, 10, 11, 12)

(1, 2, 3, 4, 5, 6, 7)
(1, 2, 3, 4, 5, 6, 7)(8, 9, 10)

(1, 2, 3, 4, 5, 6, 7)(8, 9, 10, 11)
(1, 2, 3, 4, 5, 6, 7)(8, 9, 10, 11, 12)

(1, 2, 3, 4, 5, 6, 7, 8)
(1, 2, 3, 4, 5, 6, 7, 8)(9, 10, 11)

(1, 2, 3, 4, 5, 6, 7, 8)(9, 10, 11, 12)
(1, 2, 3, 4, 5, 6, 7, 8, 9)

(1, 2, 3, 4, 5, 6, 7, 8, 9)(10, 11, 12)
(1, 2, 3, 4, 5, 6, 7, 8, 9, 10)

(1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11)
(1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12)
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5 COMBINING THE SECOND AND THIRD RESTRICTIONS

Proceeding with the same mindset in Sections 3 and 4, consider the conju-

gacy subclasses seen in the above sections. The only thing that must be done

to find subgroups that do not contain any fixed points or transpositions, is

to check where there are overlapping conjugacy classes between both lists.

Fortunately, Table 10 gives that there are only eight total conjugacy classes:

Table 10: Combining the Second and Third Restrictions

Conjugacy Class Result (Applied to Identity)
(Direct Product Representation)

(1, 2, 3)(4, 5, 6)(7, 8, 9)(10, 11, 12) (D,C,C], F,D], E,G], F ],G,B,A,A])
(Z3 × Z3 × Z3 × Z3)

(1, 2, 3, 4)(5, 6, 7, 8)(9, 10, 11, 12) (D],C,C],D,G,E, F, F ], B,G],A,A])
(Z4 × Z4 × Z4)

(1, 2, 3, 4, 5)(6, 7, 8, 9)(10, 11, 12) (E,C,C],D,D],G], F, F ],G,B,A,A])
(Z5 × Z4 × Z3)

(1, 2, 3, 4, 5, 6)(7, 8, 9)(10, 11, 12) (F,C,C],D,D], E,G], F ],G,B,A,A])
(Z6 × Z3 × Z3)

(1, 2, 3, 4, 5, 6, 7)(8, 9, 10, 11, 12) (F], C, C],D,D], E, F,B,G,G],A,A])
(Z7 × Z5)

(1, 2, 3, 4, 5, 6, 7, 8)(9, 10, 11, 12) (G,C,C],D,D], E, F, F ], B,G],A,A])
(Z8 × Z4)

(1, 2, 3, 4, 5, 6, 7, 8, 9)(10, 11, 12) (G],C,C],D,D], E, F, F ],G,B,A,A])
(Z9 × Z3)

(1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12) (B,C,C],D,D],E, F, F ],G,G],A,A])
(Z12)

This table gives the list of conjugacy classes that contain neither trans-
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positions nor fixed points.

Now that we have reduced the number of conjugacy classes, we can start

setting new restrictions. Some ideas worth exploring include:

• Restricting the ordering of sequential 12-sets, so a certain number of

unique cycle types must be used before repeating one, for all cycle types

used.

• Selecting a cycle type and using a graph representation of the distinct

cycles (see Section 7).
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6 THE FIFTH RESTRICTION: VARYING THE NUMBER OF 12-SETS

For this section, time signatures will play a significant part in choosing

the number of 12-sets used in composing any musical scores. We will be

composing songs in either 3/4 or 4/4 time. As such, consider a three-minute

song, composed in 4/4 time. Assume the tempo to be 120 beats per minute.

This yields a total of 360 beats. Assuming each note gets exactly one beat,

this gives 360 notes. Dividing this by twelve, which comes from the order of

the original set, gives a required thirty total 12-sets. Similarly, a four-minute

song will require forty total 12-sets.

It is useful to observe that the order of the symmetric group S12 is 12!,

so the set of all permutations on any 12-set is isomorphic to S12. As such,

instead of listing all possible combinations of 12-sets and choosing thirty to

forty of them, it may be more beneficial to determine how many subgroups

of the symmetric group S12 have order between thirty and forty.

Another useful idea is to choose a cycle type from Figure 1, then choose

an element π from this cycle type. Find an element of some subgroup of S12

that has order between thirty and forty (as opposed to searching for all of

them), call this element ρ. As a rule of generation, let π = π0 be our first

12-string. Then, take ρπ0ρ
−1 = π1 to be our next 12-string. Continuing this

process, wherein πn = ρπn−1ρ
−1, given |ρ| = 35, this will generate thirty-five
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unique 12-strings, which can then form a three minute, thirty second song,

assuming 120 beats per minute. Similarly, if we choose our element ρ such

that |ρ| = 40, then it will generate forty unique 12-strings, giving us a four

minute song (at 120 beats per minute).

We will let π0 = (1, 2, 3, 4)(5, 6, 7, 8)(9, 10, 11, 12). We chose an element

of the cycle type [4, 4, 4] to make it easier to see how each πi is placed into

the musical score. Let ρ = (4, 6, 5, 9, 12, 7, 1)(11, 2, 10, 8, 3). This implies

ρ−1 = (3, 8, 10, 2, 11)(1, 7, 12, 9, 5, 6, 4), and |ρ| = 35 for this example. Table

11 gives each iteration given by the equation πi = ρπi−1ρ
−1, starting at π0 :

Table 11: Musical Score Iterations

πi ρπi−1ρ
−1 π17 (1, 3, 10, 4)(2, 9, 5, 8)(6, 11, 7, 12)

π0 (1, 2, 3, 4)(5, 6, 7, 8)(9, 10, 11, 12) π18 (1, 7, 5, 2)(3, 10, 12, 9)(4, 11, 8, 6)
π1 (1, 3, 9, 5)(2, 7, 12, 8)(4, 10, 11, 6) π19 (1, 9, 10, 4)(2, 3, 5, 6)(7, 12, 11, 8)
π2 (1, 7, 3, 10)(2, 5, 6, 8)(4, 11, 12, 9) π20 (1, 7, 2, 3)(4, 12, 8, 6)(5, 10, 11, 9)
π3 (1, 11, 8, 4)(2, 7, 12, 6)(3, 10, 9, 5) π21 (1, 10, 11, 4)(2, 12, 9, 8)(3, 5, 6, 7)
π4 (1, 7, 5, 10)(2, 3, 6, 4)(8, 12, 9, 11) π22 (1, 11, 9, 5)(2, 6, 4, 8)(3, 10, 7, 12)
π5 (1, 9, 8, 4)(2, 3, 7, 12)(5, 6, 10, 11) π23 (1, 7, 11, 8)(2, 12, 9, 4)(3, 10, 5, 6)
π6 (1, 7, 10, 11)(2, 9, 5, 8)(3, 6, 4, 12) π24 (1, 2, 3, 4)(5, 11, 8, 9)(6, 10, 7, 12)
π7 (1, 8, 2, 4)(3, 10, 12, 9)(5, 6, 7, 11) π25 (1, 7, 5, 8)(2, 3, 12, 9)(4, 10, 11, 6)
π8 (1, 2, 9, 5)(3, 10, 6, 4)(7, 12, 11, 8) π26 (1, 9, 3, 4)(2, 5, 6, 8)(7, 12, 10, 11)
π9 (1, 7, 2, 3)(4, 10, 12, 9)(5, 6, 11, 8) π27 (1, 7, 8, 2)(3, 10, 9, 5)(4, 12, 11, 6)
π10 (1, 10, 11, 4)(2, 3, 9, 5)(6, 8, 7, 12) π28 (1, 3, 10, 4)(2, 5, 6, 7)(8, 12, 9, 11)
π11 (1, 7, 5, 3)(2, 6, 4, 8)(9, 10, 11, 12) π29 (1, 10, 9, 5)(2, 3, 7, 12)(4, 11, 8, 6)
π12 (1, 9, 11, 4)(2, 7, 12, 8)(3, 10, 5, 6) π30 (1, 7, 10, 11)(2, 3, 5, 6)(4, 8, 12, 9)
π13 (1, 7, 3, 10)(2, 6, 4, 12)(5, 11, 8, 9) π31 (1, 8, 2, 4)(3, 7, 12, 6)(5, 10, 11, 9)
π14 (1, 11, 8, 4)(2, 3, 12, 9)(5, 6, 7, 10) π32 (1, 7, 5, 11)(2, 12, 9, 8)(3, 10, 6, 4)
π15 (1, 8, 9, 5)(2, 3, 6, 4)(7, 12, 10, 11) π33 (1, 9, 2, 4)(3, 10, 7, 12)(5, 6, 11, 8)
π16 (1, 7, 8, 2)(3, 12, 9, 4)(5, 6, 10, 11) π34 (1, 7, 11, 8)(2, 3, 9, 5)(4, 12, 10, 6)
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Once each symbol is mapped to a musical note, transposing these symbols

in this order will generate a song three and a half minutes long, assuming

120 BPM and each note having a weight of one quarter-note. Also, notice

that this process is modular, that is, π|ρ| = π0. This means we can change

the length of the song simply by choosing a ρ of different order.

This process can also be generated by a series of Sage commands. Figure 2

shows how Table 11 can be generated exactly as if done by hand. This process

can help to easily change starting values for ρ and π in order to create new

compositions. One thing to notice, however, is that when done by hand, we

multiplied from right to left, whereas Sage multiplies from left to right. The

resulting set is equivalent, but the order will differ when multiplying from

opposite directions. As such, the Sage code’s multiplying function reflects

ρ−1πρ instead of our choice of ρπρ−1.
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Figure 2: Generation of Sets using ρπρ−1 Function in Sage
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7 BUILDING A SONG GRAPHICALLY

After determining which and how many vertices we wish to use, with

each vertex representing some permutation of S12, we can craft our song by

setting restrictions on the edge set of the graph induced by these vertices. For

example, if repetition of vertices is allowed, we can set a restriction such as

“no vertex can be revisited before k ≤ n−1 vertices have been visited,” where

k is the number of intermediate vertices we must “visit” before returning to

a vertex, and n is the number of vertices in the graph.

For this section, we will be considering the cycle type [4, 4, 4] taken from

Figure 1 and considering the Cayley graph (a graph with vertices representing

a “flip,” “rotation,” or a combination of the two with respect to its generating

element) representations of three groups of order four.

Figure 3: Cayley graphs of Z4, V4, and D4
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We want to find transposition representation commonalities amongst all

three groups. The idea is to find a way to assign each vertex a note, then

allow movement specifically along the edges induced by the graph itself. That

is, for the resulting graph, each note must be followed by an adjacent note,

and the only adjacencies between subgraphs (which are isomorphic to Z4, V4

and D4) are those that share transposition structure.

Table 12: Cayley graphs of groups of order four, along with their cycle

notation

Z4 V4 D4

v1 = (1)(2)(3)(4) = e v5 = (1)(2)(3)(4) v9 = (1)(2)(3)(4)
v2 = (1, 2, 3, 4) v6 = (1, 3)(2)(4) v10 = (1, 4)(2, 3)
v3 = (1, 3)(2, 4) v7 = (1)(2, 4)(3) v11 = (1, 2, 3, 4)
v4 = (1, 4, 3, 2) v8 = (1, 3)(2, 4) v12 = (1, 3)(2, 4)

v13 = (1, 3)(2)(4)
v14 = (1)(2, 4)(3)
v15 = (1, 4, 3, 2)
v16 = (1, 2)(3, 4)

We see that there are two induced C3 graphs between the three subgraphs;

these represent a shared representation of permutations. Also, no notes have
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been assigned at this point, so simply creating the graph will not be enough

to compose the music. Before assigning a note to each vertex, we must

address the issue that stems from the fact that the order of the vertex set

|V (G)| = 16. The Pigeonhole Principle states that, given n labels and k

vertices to assign them, if k > n, then at least one of the n labels must be

used at least twice. This creates a problem with our structure, as we cannot

construct our musical score unless twelve unique notes have been used. We

must tread carefully in our selection; we must still adhere to the restriction

of using all twelve notes before repeating any. We must find a way to avoid

or otherwise solve the issue created here.

First, we must figure out where each edge connects between these vertices.

Referring to Table 12, we can see where the C3 graphs are created when

adding edges between vertices of similar labeling. In order to avoid repeating

certain edges from Z4 to any other graph can simply serve as a bridge to get to

another graph. That is, think of specific edges from Z4 to V4 or D4 as lateral

transitions instead of paths, such that when traveling on these edges, we

select a different note unless the destination vertex completes a C3 subgraph.

Depending on how many times this happens, this could eliminate the issue

of having too many vertices to label with a note.
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v1 v2

v3v4

v7

v5

v8

v6

v9 v11

v12v15

v10

v14 v16

v13

Figure 4: Cayley Graphs with Labeled Vertices

For the graph combining these three subgraphs, the edge set

E(G) = {vivj ∈ G : vi = vj, i, j ∈ [16], i 6= j} ∪ E(Z4) ∪ E(V4) ∪ E(D4).

While it is true that we used group theory to construct this graph, let us

only follow the graph to compose our score, ignoring for the moment the

permutations induced by the vertex labeling. Consider the problem given by

the Pigeonhole Principle above. By construction of our edge set, notice that

v1 = v5 = v9, and v3 = v8 = v12. Instead of assigning a unique note to each

of these vertices, let the equivalence also carry over to the assignment of the

note. This reduces our required number of labels to exactly twelve. We can

now assign a note to each vertex. For example, let v1 = v5 = v9 = C, v2 =

C], v3 = v8 = v12 = D, v4 = D], v6 = E, v7 = F, v10 = F], v11 = G, v13 =

G], v14 = A, v15 = A], v16 = B. Now let the score be constructed such that,

given a vertex vi, vj ∈ N(vi). Further, we must carefully choose each vertex

such that no vi appears more than once in the same string of twelve symbols.
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8 CONCLUSION

We have demonstrated three methods that can be used in order to com-

pose musical scores using Schoenberg’s twelve-tone technique. The most

promising method was the variation of vertices, in which we used an element

of specific order, multiplied on either side by either another element of S12 or

that element’s inverse. The maximum order of the chosen middle element is

sixty (this is left to the reader to verify) by using Z5×Z3×Z2, which would

yield a six-minute song if our parameters were otherwise unchanged.

There seems to be promising potential with using the principle of inclu-

sion and exclusion as found in the first restriction; however, we must first

determine what kind of effect our choice in the second 12-set has on the

iterative method we chose.

Using the Cayley graphs for different cycle types shows promise, as we can

use different algorithms to construct path subgraphs in order to construct

different strings of twelve symbols. For example, by assigning weights to each

edge, we can use Kruskal’s algorithm to determine a minimum spanning tree

to choose our first twelve unique symbols, then reorder the weights on each

edge.
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Some open problems include:

For the element of maximum order in S12, use Cayley graphs to con-

struct a minimum spanning tree to determine potential strings of twelve

symbols.

Change the first restriction in this thesis to disallow four symbols to

be repeated. Use Sage to choose a remaining element, then continue

the process.
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