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ABSTRACT

Perfect Double Roman Domination of Trees

by

Ayotunde Tolulope Egunjobi

A perfect double Roman dominating function of a graph G, abbreviated PDRD-

function, is a function f : V (G)→ {0, 1, 2, 3} satisfying the conditions that if f(u) =

0, then u is adjacent to exactly two vertices in V2 and no vertex in V3 or exactly one

vertex in V3 and no vertex in V2 and if f(u) = 1, then u is adjacent to exactly one

vertex in V2 and no vertex in V3. The perfect double Roman domination number,

denoted γpdR(G), is the minimum weight of a PDRD-function of G. We prove that if

T is a tree of order n ≥ 3, then γpdR(T ) ≤ 3
2
n.
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1 INTRODUCTION

Roman domination was motivated by the defense strategies used to defend the

Roman Empire during the reign of Emperor Constantine the Great, 274−337 AD.

Roman domination in graphs was first introduced by Cockayne, Dreyer and Hedet-

niemi in 2004 in [6]. It has been studied in the last decade and over 100 papers have

been published on various aspects of Roman domination in graphs including Roman

domination, independent Roman domination, weak Roman domination, double Ro-

man domination and perfect Roman domination. We need to define some terminology

and notation for the purpose of this thesis.

Let G be a finite, simple, and undirected graph with vertex set V = V (G) and

edge set E = E(G). The order of G, denoted |V (G)| = n, is the number of vertices

in G. The size of G, denoted |E(G)| = m, is the number of edges in G. For

any two vertices x, y ∈ V (G), x and y are adjacent if the edge xy ∈ E(G). The

open neighborhood of v in V is the set N(v) = {u ∈ V : uv ∈ E} and the closed

neighborhood of v ∈ V is the set N [v] = N(v)∪{v}. The open neighborhood of a set

D ⊆ V is the set N(D) = ∪v∈DN(v), and the closed neighborhood of a set D is the

set N [D] = N(D) ∪D. The degree of v is the cardinality of the open neighborhood

of v, or degG(v) = |N(v)|. A vertex with exactly one neighbor is called a leaf and

its neighbor is a support vertex. A support vertex with two or more leaf neighbors

is called a strong support vertex. The independence number of G, denoted α(G),

is the cardinality of the largest independent set of vertices in G. A path Pn is a

graph of order n and size n− 1 with vertices denoted v1, v2, ..., vn and edges vivi+1 for

i = 1, 2, ..., n − 1. A cycle Cn is a graph of order n and size n with vertices denoted
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v1, v2, ..., vn and edges v1vn, vivi+1 for i = 1, 2, ..., n− 1. A subgraph H of a graph G

is a graph contained in G, i.e., V (H) ⊆ V (G) and E(H) ⊆ E(G).

A dominating set of a graph G is a nonempty subset D of the vertex set V such

that for each u ∈ V −D, there exists a v ∈ D adjacent to u. Equivalently, a subset

D of V is a dominating set if for each v ∈ V , |N [v] ∩ D| ≥ 1. A dominating set

having the smallest cardinality among all dominating sets in a given graph is called

a minimum dominating set. The cardinality of a minimum dominating set in graph

G is called the domination number of G and is denoted γ(G).

Let f : V → {0, 1, 2} be a function having the property that for every vertex

v ∈ V with f(v) = 0, there exists a neighbor u ∈ N(v) with f(u) = 2. Such a

function is called a Roman dominating function (RDF ). The weight of a RDF is

the sum f(v) =
∑

v∈V f(v). The minimum weight among all RDF’s of G is called the

Roman domination number of G and is denoted γR(G). A RDF of G with weight

γR(G) is called a γR- function of G. A perfect Roman dominating function on a

graph G introduced in [12] is a function f : V → {0, 1, 2} satisfying the condition

that every vertex u ∈ V with f(u) = 0 is adjacent to exactly one vertex v for which

f(v) = 2. A function f : V → {0, 1, 2, 3} is a double Roman dominating function

on a graph G if the following conditions are met. Let Vi denote the set of vertices

assigned weight i by function f .

1. If f(v) = 0, then vertex v must have at least two neighbors in V2 or one neighbor

in V3.

2. If f(v) = 1, then vertex v must have at least one neighbor in V2 ∪ V3.

9



Now, we propose perfect double Roman domination. A perfect double Roman

dominating function of a graph G, abbreviated PDRD-function, is a function f :

V (G)→ {0, 1, 2, 3} satisfying the following conditions:

1. If f(u) = 0, then u is adjacent to exactly two vertices in V2 and no vertex in V3

or exactly one vertex in V3 and no vertex in V2.

2. If f(u) = 1, then u is adjacent to exactly one vertex in V2 and no vertex in V3.

The perfect double Roman domination number, denoted γpdR(G), is the minimum

weight among all PDRD-functions of G. That is,

γpdR(G) = min{w(f): f is a PDRD-function in G}.

A PDRD-function of G with weight γpdR(G) is called a γpdR-function of G. Note that

a PDRD-function always exist for all graphs by assigning weight 2 to every vertex in

the graph. Hence, a graph G of order n satisfies γpdR(G) ≤ 2n.

10



2 EXAMPLES

In this section, we consider the following examples.

c d

b e

a

Figure 1: Graph G

e f g h i j

a b c

Figure 2: Graph H

For the graph G in Figure 1, γdR(G) = γpdR(G) = 5. This is attained by assigning

weight 2 to each of c and e, weight 1 to a and weight 0 to b and d.

For the graph H in Figure 2, γdR(H) = 8. This is attained by assigning weight 3 to

each of a and c, weight 2 to g and weight 0 to all other vertices. But this is not a

PDRD-function of H as vertex b is over-dominated.

First, note that γpdR(H) ≤ 9, since the function assigning weight 3 to each a, b,

and c, weight 0 to all other vertices in H is a PDRD-function of H. We claim that

γpdR(H) ≥ 9. Suppose to the contrary that γpdR(H) ≤ 8. Note that any γpdR-function

f of H assigns a total weight of at least 3 to a and its leaf neighbors. Also, f assigns

11



weight at least 3 to c and its leaf neighbors. This means that f assigns at most weight

2 to b and g. If f(b) = 2 and f(g) = 0 or f(b) = f(g) = 1, then g is not double

Roman dominated. If f(b) = 0 and f(g) = 2, then either b is over-dominated or a is

assigned weight 0 leading to more than weight 3 on a and its leaf neighbors. Thus,

f(b) + f(g) ≥ 3, a contradiction. Hence, γpdR(H) ≥ 9 and equality follows.
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3 LITERATURE SURVEY

In this section, we review some background results to this thesis. These results present

the motivation and origin of perfect double Roman domination.

3.1 Double Roman Domination

The term domination was first used by Ore in [16]. He observed that for every

graph G of order n, γ(G) ≤ α(G). Since then, much work has been done on variants

of domination including Roman domination, Italian domination, 2-domination, total

domination and double Roman domination.

Double Roman domination was first introduced in [2]. The relationship between

the double Roman domination number of a graph G and its Roman domination

number as well as domination number was discussed in detail here. Also, in [2],

in a double Roman dominating function of weight γdR-function, no vertex needs to

be assigned the value 1. However, this is not the case with perfect double Roman

domination as it requires that vertices are not over-dominated. For example, the path

P4 has γpdR(Pn) = 5 and every γpdR-function of P4 must assign 1 to a leaf. Below are

some of the results we intend to use for the purpose of this thesis:

Corollary 3.1. [2] For any nontrivial connected graph G, γR(G) < γdR(G) < 2γR(G).

Proposition 3.2. [1] For the path Pn with n ≥ 1,

γdR(Pn) =


n if n ≡ 0 mod 3

n + 1 if n ≡ 1 or 2 mod 3.

13



Proposition 3.3. [1] For the cycle Cn with n ≥ 3,

γdR(Cn) =


n if n ≡ 0,2,3,4 mod 6

n + 1 if n ≡ 1 or 5 mod 6.

Also, the main result in [2] gives an upper bound for the double Roman domination

number of any tree T .

Theorem 3.4. [2] If T is a tree of order n ≥ 3, then γdR(T ) ≤ 5n/4.

This result will be useful in proving the upper bound for the perfect double Roman

domination number of trees.

3.2 Perfect Roman Domination

A perfect Roman dominating function of a graph G is defined in [12] as a function

f : V (G) → {0, 1, 2} satisfying the condition that every vertex u with f(u) = 0 is

adjacent to exactly one vertex for which f(v) = 2. The upper bound of the perfect

Roman domination number γpR(T ) for a tree T of order n ≥ 3 is 4
5
n with the family

of trees achieving this bound defined below.

Let F be the family of all trees T whose vertex set can be partitioned into sets,

each set inducing a P5 on five vertices, such that the subgraph induced by the central

vertices of these P5’s is connected. We call the subtree induced by these central

vertices the underlying subtree of the resulting tree T , and we call each such path

P5 a base path of the tree T . A tree in the family F with six base paths and whose

underlying subtree is a path P6 is illustrated below:

14



Figure 3: A tree T ∈ F
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4 BASIC RESULTS

Since every PDRD-function is a double Roman dominating function, we have the

following observations.

Observation 4.1. For any graph G, γdR(G) ≤ γpdR(G).

Observation 4.2. For any graph G of order n, γpdR(G) ≤ 2n with equality if and

only if G = Kn.

Observation 4.3. For any nontrivial graph G, γpdR(G) ≥ 3.

Proposition 4.4. Let G be a connected nontrivial graph of order n. Then γpdR(G) = 3

if and only if ∆(G) = n− 1.

Proof. Suppose γpdR(G) = 3. Let f = (V0, V1, V2, V3) be a γpdR-function of G. Since

f(V ) = 3, if V3 6= ∅, then | V3 |= 1 and V2 = V1 = ∅ with V0 = V −V3. In this case, let

V3 = {v}. Then v is adjacent to all vertices in V0 and deg(v) = ∆(G) = n−1. Hence,

we may assume that V3 = ∅, for otherwise the result holds. Then f(V ) = 3 = 2 | V2 |

+ | V1 | and this implies that | V2 |≤ 1. Thus, V0 = ∅ and | V2 |=| V1 |= 1 which

means n = 2 and G ∼= P2 with ∆(G) = n − 1. Conversely, suppose ∆(G) = n − 1.

By Observation 3, we note that γpdR(G) ≥ 3 for any nontrivial graph G. Now, let

v ∈ V (G) such that deg(v) = ∆(G) = n− 1. Then the function f that assigns 3 to v

and 0 to other vertices in G is a PDRD-function of G with weight w(f) = 3. Hence,

γpdR(G) ≤ w(f) = 3 and equality follows.

16



Corollary 4.5. For complete graphs and stars, γpdR(Kn) = γpdR(K1,n−1) = 3.

Proposition 4.6. For the paths Pn,

γpdR(Pn) =


n if n ≡ 0 mod 3

n + 1 if n ≡ 1 or 2 mod 3.

Proof. Let the vertex set of Pn be defined as V (Pn) : u1, u2, ..., un. We consider three

cases based on n:

Case 1: n ≡ 0 mod 3.

We can partition Pn into P3’s. The function f that assigns the weight 3 to the cen-

tral vertex of each P3 and weight 0 to other vertices is a PDRD-function of Pn with

w(f) = n. Thus, γpdR(Pn) ≤ w(f) = n. By Observation 4.1 and Proposition 3.2,

γpdR(Pn) ≥ γdR(Pn) = n. Hence, γpdR(Pn) ≥ n and equality follows.

Case 2: n ≡ 1 mod 3.

If n is even, say n = 2k. Let f be a function that assigns weight 2 to u1, u3, u5, ..., u2k−1,

the weight 0 to u2, u4, u6, ..., u2k−2 and weight 1 to u2k. Then, f is a PDRD-function

of Pn with w(f) = 2n
2

+ 1 = n + 1. Hence, γpdR(Pn) ≤ w(f) = n + 1. If n is odd,

say n = 2k + 1, then the function f that assigns the weight 2 to u1, u3, u5, ..., u2k+1

and weight 0 to all other vertices is a PDRD-function of the Pn with w(f) = 2(n+1)
2

=

n + 1. Thus, γpdR(Pn) ≤ w(f) = n + 1. By Observation 4.1 and Proposition 3.2,

γpdR(Pn) ≥ γdR(Pn) = n+ 1. Hence, γpdR(Pn) ≥ n+ 1 and equality follows.

Case 3: n ≡ 2 mod 3.

Suppose n = 3k+2. Let f be a function that assigns weight 3 to u2, u5, u8, ..., u3k−1, u3k+2,

the weight 0 to all other vertices. Then, f is a PDRD-function of Pn with w(f) =

17



3(n−2)
3

+ 3 = n + 1. Hence, γpdR(Pn) ≤ w(f) = n + 1. By Observation 4.1 and

Proposition 3.2, γpdR(Pn) ≥ γdR(Pn) = n + 1. Hence, γpdR(Pn) ≥ n + 1 and equality

follows.

Proposition 4.7. For the cycles Cn,

γpdR(Cn) =


n if n ≡ 0,2,3,4 mod 6

n + 1 if n ≡ 1 or 5 mod 6.

Proof. Let the vertex set of the Cn be defined as V (Cn) : u1, u2, u3, ..., un−1, un. We

consider these cases based on n.

Case 1: n ≡ 0,2,4 mod 6.

The function f that assigns the weight 2 to u1, u3, u5, ..., un−1 and weight 0 to other

vertices is a PDRD-function of Cn with weight w(f) = 2n/2 = n. Hence, γpdR(Cn) ≤

w(f) = n. By Observation 4.1 and Proposition 3.3, γpdR(Cn) ≥ γdR(Cn) = n. Hence,

γpdR(Cn) ≥ n and equality follows.

Case 2: n ≡ 1 mod 6.

Suppose f is a function that assigns weight 2 to u1, u3, u5, ..., un−2, un and weight 0

to other vertices. Then f is a PDRD function of Cn with weight w(f) = 2(n−1)
2

+ 2 =

n + 1. Hence, γpdR(Cn) ≤ w(f) = n + 1. By Observation 4.1 and Proposition 3.3,

γpdR(Cn) ≥ γdR(Cn) = n+ 1. Hence, γpdR(Cn) ≥ n+ 1 and equality follows.

Case 3: n ≡ 3 mod 6.

Suppose f is a function that assigns weight 3 to u1, u4, u7, ..., un−2 and weight 0 to

other vertices. Then f is a PDRD-function of Cn with weight w(f) = 3n/3 = n.

18



Hence, γpdR(Cn) ≤ w(f) = n. By Observation 4.1 and Proposition 3.3, γpdR(Cn) ≥

γdR(Cn) = n. Hence, γpdR(Cn) ≥ n and equality follows.

Case 4: n ≡ 5 mod 6.

The function f that assigns the weight 2 to u1, u3, u5, ..., un−2, un and weight 0 to

other vertices is a PDRD function of Cn with weight w(f) = 2(n−1)
2

+ 2 = n + 1.

Hence, γpdR(Cn) ≤ w(f) = n+ 1. By Observation 4.1 and Proposition 3.3, γpdR(Cn) ≥

γdR(Cn) = n+ 1. Hence, γpdR(Cn) ≥ n+ 1 and equality follows.

Proposition 4.8. For the double star Sr,s,

γpdR(Sr,s) =


5 if 1 = r = s

6 otherwise

Proof. Let u and v be non-leaves in Sr,s and suppose u is adjacent to r leaves and v

is adjacent to s leaves. We consider three cases based on r and s:

Case 1: 1 = r = s

In this case, Sr,s
∼= P4 and γpdR(P4) = 5.

Case 2: Sr,s � P4

First, we consider the case where 1 = r < s. In this case, the function f that assigns

weight 3 to each of u and v and weight 0 to other vertices is a PDRD-function of

Sr,s with weight w(f) = 6. Hence, γpdR(Sr,s) ≤ w(f) = 6. Now, we claim that

γpdR(Sr,s) ≥ 6. Suppose to the contrary that γpdR(Sr,s) ≤ 5. To perfectly double

Roman dominate v and its leaf neighbors, we need at least weight 3. This means that

we have to use weight of at most 2 on u and its leaf neighbor, say r. If f(u) = 2 and
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f(r) = 0 or if f(u) = f(r) = 1, then r is not perfectly double Roman dominated. Also,

if f(u) = 0 and f(r) = 2, then either u is over-dominated or v is assigned 2, implying

that v and its leaf neighbors have total weight at least 4. Hence, f(u) + f(r) ≥ 3, a

contradiction. Thus, γpdR(Sr,s) ≥ 6 and equality follows. Next, we consider the case

where 2 ≤ r ≤ s. In this case, the function f that assigns weight 3 to each of u and

v and weight 0 to other vertices is a PDRD-function with weight w(f) = 6. Hence,

γpdR(Sr,s) ≤ w(f) = 6. Now, we claim that γpdR(Sr,s) ≥ 6. Suppose to the contrary

that γpdR(Sr,s) ≤ 5. To perfectly double Roman dominate v and its leaf neighbors,

we need at least weight 3. This means that we have to use at most weight 2 on u

and its leaf neighbors. If f(u) = 2, then its leaf neighbors are not perfectly double

Roman dominated. Also, if f(u) = 0, and we assign 2 to one of its leaf neighbors,

then the other leaf neighbors of u are not dominated. Hence, we need at least 3 to

perfectly double Roman dominate u and its leaf neighbors, which is a contradiction.

Thus, γpdR(Sr,s) ≥ 6 and equality follows.

20



5 MAIN RESULTS

In this section, we present a family of trees where γpdR(T ) > γdR(T ). Further, we

prove that for any tree T of order n, γpdR(T ) ≤ 3n/2.

Proposition 5.1. Let T be a tree of order n. If there exists three vertices u, v and w

such that G[{u, v, w}] = P3 where w is adjacent to exactly one leaf or deg(w) = 2 and

f(u) = f(v) = 3 for every γdR-function and γpdR-function of T , then γpdR(T ) > γdR(T ).

Proof. Suppose T is a tree of order n and suppose for every γdR-function f =

(V0, V1, V2, V3) of T , there exists u, v ∈ V3 such that d(u, v) = 2 and the uv path

in T contains vertex w where w is adjacent to exactly one leaf. In this case, since

w is adjacent to only one leaf, say x, then f assigns weight 2 to x to double Roman

dominate x. However, this is not the case for perfect double Roman domination as

it leads to over-domination of w. Hence, to perfectly double Roman dominate w and

x, we assign total weight 3 to w and x. This is attained either by assigning w weight

3 and x weight 0 or assigning w weight 2 and x weight 1. Hence, γpdR(T ) > γdR(T )

in this case. Now, we may assume deg(w) = 2. In this case, f assigns weight 0

to w. Again, this is not the case for perfect double Roman domination and any

γpdR−function assigns weight 2 to w. Thus, γpdR(T ) > γdR(T ).

Now we show that the family of trees of order n attaining the upper bound of

5n/4 on γdR(T ) in [2] also has γpdR(T ) = 5n/4. We define the family T of trees as

follows:

Let T ′ be an arbitrary tree of order n′ ≥ 1, and let T be the tree of order n = 4n′

obtained from T ′ by adding to each vertex of T ′ three new vertices v1, v2, v3 and edges

21



Figure 4: A tree T ∈ T

vv1, vv2 and v2v3. Then v1 is a leaf neighbor of v, while v2 is a neighbor of v with

degree 2 and v3 is a leaf neighbor of v2. Note that T contains P4. We call T ′ the

underlying subtree of T . For each v ∈ V (T ′), we call the P4 = (v1, v, v2, v3) a base

path. An example of a tree T in the family T whose underlying subtree is a path P5

is illustrated in Figure 4.

Lemma 5.2. If T is a tree of order n that belongs to T with underlying tree T ′, then

the following hold:

(a) γpdR(T ) = 5n/4

(b) There exists a γpdR-function that assigns the weight 0 to every vertex in the

underlying tree T ′. Further, there exists a γpdR-function of T that assigns weight

of 2 to every vertex in the underlying tree T ′.

Proof. Let T ∈ T have order n, and let the underlying subtree T ′ of T have order

k and so n = 4k (with k ≥ 1). We claim that the sum of the weights on any base

path is at least 5. To see this, let f be an arbitrary γpdR-function of T and suppose

P : v1vv2v3 is an arbitrary base path of T . Then v1 and v3 are leaves in T . Suppose

to the contrary, that the weight of f on P is at most 4.

If f(v1) = 0, then f(v) = 3 leaving exactly one of v2 and v3 to be assigned 1 and the
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other assigned weight 0. If f(v2) = 0 and f(v3) = 1, then v3 is not double Roman

dominated. Similarly, if f(v2) = 1 and f(v3) = 0, then neither v2 nor v3 is perfectly

double Roman dominated. Hence, f(v1) ≥ 1. If f(v1) = 1, then f(v) = 2 to perfectly

double Roman dominate v1. Then, as before, either v3 or both v2 and v3 are not

perfectly double Roman dominated in this case. Hence, f(v1) ≥ 2. But there is no

way to perfectly double roman dominate both v2 and v3 using total weight of at most

2 on v, v2 and v3. Thus, the sum of the weight on any arbitrary base path is at least 5.

Since there are k such (vertex-disjoint) base paths in T , each of which receives a total

weight of at least 5 under f , the weight of f is w(f) ≥ 5k. Since f is an arbitrary

γpdR-function of T , this implies that γPdR(T ) ≥ 5k = 5n/4. The function g that assigns

the weight 2 to vertex v in the base path P defined above, the weight 1 to its leaf

neighbor v1, weight 2 to v3, and weight 0 to v2 is a PDRD-function of weight 5 on

P . Since there are k such (vertex-disjoint) base paths in T , each of which receives a

total weight of 5 under g, then w(g) = 5k. Thus, γPdR(T ) ≤ w(g) = 5k = 5n/4. This

proves (a).

Clearly, the function g defined above applied to each base path is a γPdR(T )-function

of T that assigns 2 to every vertex of the underlying tree. Further, we note that the

function h that assigns the weight 0 to v, weight 2 to v1 and v2, and weight 1 to v3

to each base path in T is a γpdR-function of T that assigns weight 0 to every vertex of

the underlying tree. This proves (b).

However, there are trees having γpdR(T ) > 5n/4. For example, the tree T in Figure

6 has γpdR(T ) ≈ 9n/7. We next show that 3n/2 is an upper bound for γpdR(T ) for trees
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of order n. Note that a rooted tree T is a tree with distinguished vertex r called the

root. In a rooted tree, the parent of a vertex is the vertex connected to it on the path

to the root; every vertex except the root has a unique parent. A child of a vertex v

is a vertex of which v is the parent. In a rooted tree, all vertices have at most one

parent. Also, for a tree T rooted at a vertex r and a vertex v 6= r of T , let Tv denote

the subtree rooted at v, consisting of v and its descendants in T . Further, let T − Tv

denote the tree rooted at r formed by removing the subtree Tv from T . Note that the

vertices and edges of Tv and the edge from v to its parent in T are removed from T

to form T − Tv and that T − Tv is a tree.

Theorem 5.3. For any tree T of order n ≥ 3, γpdR(T ) ≤ 3n/2.

Proof. We proceed by induction on the order n ≥ 3 of a tree T . If n = 3, then

T ∼= P3 and γpdR(T ) = 3 < 3n/2. This establishes the base case. Let n ≥ 4 and

assume that if T ′ is a tree of order n′, where n′ < n, γpdR(T ′) ≤ 3n′/2. Let T be a tree

of order n. If diam(T ) = 2, then T is a star. Hence, the function f that assigns weight

3 to the central vertex and weight 0 to every leaf of the star is a PDRD-function of T

with weight w(f) = 3. So, γpdR(T ) ≤ 3 < 3n/2. Hence, we may assume diam(T ) ≥ 3.

Suppose diam(T ) = 3, then T is a double star Sr,s where r ≥ s ≥ 1. Suppose u and

v are vertices of T that are not leaves, where u has r leaf neighbors and v has s leaf

neighbors. If r = s = 1, then T ∼= P4 and γpdR(T ) = 5 < 3n/2. Also, if r > s = 1, then

by Proposition 4.8, γpdR(T ) = 6 < 3n/2. Further, if r ≥ s > 1, then by Proposition

4.8, γpdR(T ) = 6 < 3n/2. Hence, we may assume that diam(T ) ≥ 4.

Let u and r be two vertices at maximum distance apart in T . Necessarily, u and

r are leaves in T and d(u, r) = diam(T ). We now root the tree T at the vertex r. Let
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v be the parent of u, w the parent of v, x the parent of w and let y be the parent of

x. We note that if diam(T ) = 4, then y = r, otherwise y 6= r.

Claim 1. If deg(v) ≥ 5, then γpdR(T ) < 3n/2.

Proof. Suppose that deg(v) ≥ 5. Let T ′ be the tree obtained from T by deleting

u. Therefore, v is a strong support vertex in T ′ and n′ ≥ 3. Applying the inductive

hypothesis to T ′, we have γpdR(T ′) ≤ 3n′/2. Let f ′ be a γpdR-function of T ′. If f ′(v) = 3,

we can form a PDRD-function f of T by letting f(z) = f ′(z) for all z ∈ T ′ and assign

weight 0 to u. Thus, γpdR(T ) ≤ w(f) = w(f ′) ≤ 3n′/2 = 3(n−1)/2 < 3n/2. Hence, we

may assume that f ′(v) ≤ 2 for otherwise, the desired result holds. If f ′(v) = 2, then

we can form a PDRD-function f of T by letting f(z) = f ′(z) for all z ∈ T ′ and assign

weight 1 to u. Thus, γpdR(T ) ≤ w(f) = w(f ′)+1 ≤ 3n′/2+1 = 3(n−1)/2+1 < 3n/2.

Now, we may assume that f ′(v) ≤ 1. In this case, the leaf neighbors of v in T ′ would

each have to be assigned weight 2 or 3 which leads to over-domination of v. This

implies that f ′ is not a PDRD-function of T ′ and we are finished.

Claim 2. If deg(v) = 4, then γpdR(T ) < 3n/2.

Proof. Let T ′ be the tree obtained from T as follows: delete v and the three leaf

children of v and add three new vertices, w1, w2 and w3 and new edges ww1, ww2,

and w2w3. Then n′ = n − 4 + 3 = n − 1 ≥ 6. Applying the inductive hypothesis

to T ′, we have that γpdR(T ′) ≤ 3n′/2 = 3(n − 1)/2. Let f ′ be a γpdR-function of T ′.

Notice that if f ′(w) ≥ 2, then a total weight of 3 is assigned to the vertices w1, w2,

and w3. On the other hand, if f ′(w) ≤ 1, then a total weight of 5 is assigned to

the vertices w1, w2, and w3. If f ′(w) ≥ 2, then the function f of T that assigns 3
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to v, 0 to each leaf child of v, and f(z) = f ′(z) for all z ∈ V (T ′) \ {w1, w2, w3} is

a PDRD-function of T . Thus, γpdR(T ) ≤ 3(n − 1)/2 + 3 − 3 < 3n/2. If f ′(w) = 1,

then it follows that f ′(w1) = 2 and all other neighbors of w in T ′ are assigned 0

or 1 under f ′. Hence, the function f of T that assigns 2 to v, 1 to each leaf child

of v, and f(z) = f ′(z) for all z ∈ V (T ′) \ {w1, w2, w3} is a PDRD-function of T .

Thus, γpdR(T ) ≤ 3(n − 1)/2 + 5 − 5 < 3n/2. If f ′(w) = 0, then one of the following

holds: f ′(w1) = 3 and all other neighbors of w in T ′ are assigned 0 or 1 under f ′, or

f ′(w1) = 2, f ′(w2) = 2, and all other neighbors of w in T ′ are assigned 0 or 1 under

f ′, or f ′(w1) = 2, f ′(x) = 2, and all other neighbors of w in T ′ are assigned 0 or 1

under f ′. If f ′(w1) = 3, then function f of T that assigns 3 to v, 0 to each leaf child

of v, and f(z) = f ′(z) for all z ∈ V (T ′)\{w1, w2, w3} is a PDRD-function of T . Thus,

γpdR(T ) ≤ 3(n − 1)/2 + 3 − 5 < 3n/2. If f ′(w1) = 2 and f ′(w2) = 2, then again the

function f of T that assigns 3 to v, 0 to each leaf child of v, and f(z) = f ′(z) for all

z ∈ V (T ′)\{w1, w2, w3} is a PDRD-function of T . Thus, γpdR(T ) ≤ 3(n−1)/2+3−5 <

3n/2. If f ′(w1) = 2 and f ′(x) = 2, then the function f of T that assigns 2 to v, 1

to each leaf child of v, and f(z) = f ′(z) for all z ∈ V (T ′) \ {w1, w2, w3} is a PDRD-

function of T . Thus, γpdR(T ) ≤ 3(n− 1)/2 + 5− 5 < 3n/2.

Claim 3. If deg(v) = 3, then γPdR(T ) < 3n/2.

Proof. If deg(v) = 3, then v has exactly two leaf children in T . Let T ′ = T − u,

then n′ ≥ 3. Applying the inductive hypothesis to T ′, we have γpdR(T ′) ≤ 3n′/2.

Suppose f ′ is a γpdR-function of T ′. If f ′(v) = 3, we can form a PDRD-function

f of T by letting f(z) = f ′(z) for all z ∈ T ′ and assign weight 0 to u. Thus,

γpdR(T ) ≤ w(f) = w(f ′) ≤ 3n′/2 = 3(n − 1)/2 < 3n/2. If f ′(v) = 2, then we can
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form a PDRD-function f of T by letting f(z) = f ′(z) for all z ∈ T ′ and assign weight

1 to u. Thus, γpdR(T ) ≤ w(f) = w(f ′) + 1 ≤ 3n′/2 + 1 = 3(n − 1)/2 + 1 < 3n/2.

Now, we may assume that f ′(v) ≤ 1 for otherwise, the result holds. If f ′(v) = 1,

then the leaf neighbor of v in T ′ is assigned weight 2 and f ′(w) ≤ 1, for otherwise v

will be over-dominated. Therefore, we can form a PDRD-function f on T by letting

f(z) = f ′(z) for all z ∈ T ′− v, reassign weight 0 to v and assign weight 2 to u. Thus,

γpdR(T ) ≤ w(f) = w(f ′)+1 ≤ 3n′/2+1 = 3(n−1)/2+1 < 3n/2. If f ′(v) = 0, then we

consider two cases based on the weight assigned to the leaf child of v in T ′, say t. Note

that if f ′(v) = 0, then f ′(t) ∈ {2, 3}. If f ′(t) = 3, then f ′(w) ≤ 1 and we can form a

PDRD-function f of T by letting f(z) = f ′(z) for all z ∈ T ′ − t and assign weight 2

to each of t and u. Hence, γpdR(T ) ≤ w(f) = w(f ′)+1 ≤ 3n′/2+1 = 3(n−1)/2+1 <

3n/2. Now, if f ′(t) = 2, then f ′(w) = 2 to ensure that v is perfectly double Roman

dominated. We can form a PDRD-function f on T by letting f(z) = f ′(z) for all

z ∈ T ′ − {v, t}, reassign weight 3 to v and assign weight 0 to both t and u. Thus,

γpdR(T ) ≤ w(f) = w(f ′) + 1 ≤ 3n′/2 + 1 = 3(n− 1)/2 + 1 < 3n/2.

Henceforth, we may assume that deg(v) = 2.

Claim 4. If deg(v) = 2 and deg(w) = 2, then γPdR(T ) < 3n/2.

Proof. Let T ′ = T − Tw. Since diam(T ) ≥ 4, T ′ has order n′ ≥ 2. If n′ = 2, then

T ∼= P5 and γpdR(T ) = 6 < 15/2 = 3n/2. Hence, we may assume that n′ ≥ 3 and we

can apply the inductive hypothesis to T ′. Thus, γpdR(T ′) ≤ 3n′/2. Recall that x is

the parent of w. Suppose f ′ is a γpdR-function of T ′. If f ′(x) = 3, then we can form

a PDRD-function f of T by letting f(z) = f ′(z) for all z ∈ T ′, assign weight 0 to
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Figure 5: Tree H3

both w and v, and weight 3 to u. Thus, γpdR(T ) ≤ w(f) = w(f ′) + 3 ≤ 3n′/2 + 3 =

3(n−3)/2+3 < 3n/2. Now, we may assume that f ′(x) ≤ 2. If f ′(x) = 2, then we can

form a PDRD-function f of T by letting f(z) = f ′(z) for all z ∈ T ′, assign weight 0 to

w, weight 2 to v and weight 1 to u. Thus, γpdR(T ) ≤ w(f) = w(f ′) + 3 ≤ 3n′/2 + 3 =

3(n − 3)/2 + 3 < 3n/2. If f ′(x) ≤ 1, then we can form a PDRD-function f of T by

letting f(z) = f ′(z) for all z ∈ T ′, assign weight 0 to both w and u, and weight 3 to

v. Thus, γpdR(T ) ≤ w(f) = w(f ′) + 3 ≤ 3n′/2 + 3 = 3(n− 3)/2 + 3 < 3n/2.

We now complete the proof of the theorem. Henceforth, we may assume that

deg(v) = 2 and deg(w) ≥ 3, for otherwise the result holds.

Claim 5. If deg(v) = 2 and deg(w) ≥ 3, then γPdR(T ) ≤ 3n/2.

Proof. By our choice of u, every child of w is either a leaf or a support vertex of

degree 2 (similar to v). Let s be the number of leaf children of w and t be the number

of degree 2 children of w. Since deg(v) = 2 and deg(w) ≥ 3, it follows that t ≥ 1

and s + t ≥ 2. Let T ′ be the tree obtained from T by removing all the descendants

of w. Note that w is a leaf in T ′ and n′ = n − s − 2t ≥ 3. Applying the inductive

hypothesis to T ′, we have that γpdR(T ′) ≤ 3n′/2 = 3(n− s− 2t)/2 = (3n− 3s− 6t)/2.

Let f ′ be a γpdR-function of T ′. If f ′(w) = 2, then the function f of T that assigns 1
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to each leaf child of w, 0 to each degree 2 child of w, 2 to each leaf vertex distance 2

from w, and f(z) = f ′(z) for all z ∈ V (T ′) is a PDRD-function of T . Thus, γpdR(T ) ≤

(3n−3s−6t)/2 + s+ 2t = (3n− s−2t)/2 < 3n/2. Assume that f ′(w) = 3. It follows

that f ′(x) 6= 1. Furthermore, f ′(x) = 0, otherwise the weight on w can be reduced.

Thus, the function f of T that reassigns 1 to x and 2 to w, and assigns 1 to each

leaf child of w, 0 to each degree 2 child of w, 2 to each leaf vertex distance 2 from w,

and f(z) = f ′(z) for all z ∈ V (T ′) \ {x,w} is a PDRD-function of T . Hence, again,

γpdR(T ) ≤ (3n − 3s − 6t)/2 + s + 2t = (3n − s − 2t)/2 < 3n/2. If f ′(w) = 1, then

f ′(x) = 2 to double Roman dominate w. The function f of T that reassigns 2 to w

and and assigns 1 to each leaf child of w, 0 to each degree 2 child of w, 2 to each leaf

vertex distance 2 from w, and f(z) = f ′(z) for all z ∈ V (T ′)\{w} is a PDRD-function

of T . Hence, again, γpdR(T ) ≤ (3n − 3s − 6t)/2 + 1 + s + 2t = (3n − s − 2t + 2)/2.

Thus, γpdR(T ) ≤ 3n/2 if s + 2t ≥ 2. If f ′(w) = 0, then f ′(x) = 3 to double Roman

dominate w. The function f of T that reassigns 2 to w and and assigns 1 to each

leaf child of w, 0 to each degree 2 child of w, 2 to each leaf vertex distance 2 from

w, and f(z) = f ′(z) for all z ∈ V (T ′) \ {w} is a PDRD-function of T . Hence, again,

γpdR(T ) ≤ (3n− 3s− 6t)/2 + 2 + s+ 2t = (3n− s− 2t+ 4)/2. Thus, γpdR(T ) ≤ 3n/2

if s+ 2t ≥ 4. In all cases, the result holds if s+ 2t ≥ 4. Hence, we may assume that

s+ 2t ≤ 3. Since s+ t ≥ 2, t ≥ 1, and s+ 2t ≤ 3, the only possibility for s and t is if

s = t = 1.

In this case, Tw is a path P4. Let T ′ = T − Tw. Then n′ = n − 4. If n′ = 2,

then T is the tree H3 (the corona of a P3). But then n = 6 and γpdR(T ) = 7, so

γpdR(T ) < 3n/2. Therefore, we may assume that n′ ≥ 3 and applying our inductive

29



hypothesis to T ′, we have γpdR(T ′) ≤ 3n′/2 = 3(n − 4)/2 = (3n − 12)/2. Let f ′ be a

γpdR-function of T ′. If f ′(x) ≥ 2, then the function f of T that assigns 2 to w, 1 to the

leaf child of w, 0 to v, 2 to u, and f(z) = f ′(z) for all z ∈ V (T ′) is a PDRD-function

of T . Thus, γpdR(T ) ≤ (3n − 12)/2 + 5 < 3n/2. If f ′(x) ≤ 1, then the function f of

T that assigns 0 to w, 2 to the leaf child of w, 2 to v, 1 to u,and f(z) = f ′(z) for

all z ∈ V (T ′) is a PDRD-function of T . Again, γpdR(T ) ≤ (3n − 12)/2 + 5 < 3n/2.

Hence, the result holds if s = t = 1.

Note that we have not been able to find extremal trees attaining the bound of

Theorem 5.3. In fact, we believe that this bound can be improved to 9n/7. A member

of a family of trees achieving this bound is shown in Figure 6.

Figure 6: A tree T with γpdR(T ) ≈ 9n/7.
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6 CONCLUDING REMARKS

We obtained a lower and upper bound of the perfect double Roman domination

number for trees. Specifically, we noted that for any nontrivial tree T of order n,

3 ≤ γpdR(T ) ≤ 3n/2. We also obtained the exact values of the perfect double Roman

domination number for paths, cycles, complete graphs and stars.

Open Problems

1. Construct a polynomial algorithm to compute the value of γpdR(T ) for any tree

T .

2. Find a family of trees achieving the upper bound. That is, trees with γpdR(T ) =

3n/2.

3. Find a relationship between γpdR(G) and γpR(G).
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