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ABSTRACT 

A Systematic Assessment of Socio-Economic Impacts of Prolonged Episodic Volcano Crises 

 
by 

Justin B. Peers 

Uncertainty surrounding volcanic activity can lead to socio-economic crises with or without an 

eruption as demonstrated by the post-1978 response to unrest of Long Valley Caldera (LVC), 

CA. Extensive research in physical sciences provides a foundation on which to assess direct 

impacts of hazards, but fewer resources have been dedicated towards understanding human 

responses to volcanic risk. To evaluate natural hazard risk issues at LVC, a multi-hazard, mail-

based, household survey was conducted to compare perceptions of volcanic, seismic, and 

wildfire hazards. Impacts of volcanic activity on housing prices and businesses were examined at 

the county-level for three volcanoes with a “very high” threat designation from the U.S. 

Geological Survey (USGS); LVC, (caldera system), Mount St. Helens, WA (stratovolcano), and 

Kīlauea, HI (shield volcano). A negative relationship was found between volcanic risk 

perception and preparedness. Additionally, the perception that housing prices declined after 

volcano alerts was confirmed by econometric modeling.  
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CHAPTER 1 

INTRODUCTION 

The public response to elevated unrest at the Long Valley Caldera (LVC), California, USA, 

has been a case study of focus in natural hazards studies for decades. Planning documents 

(Mader 1987), socio-economic studies (Bernknopf et al. 1990), and studies on challenges in risk 

communication and Volcanic Alert Level Systems (VALS) (Fearnley et al. 2012; Hill et al. 

2017) have discussed resentment of the scientific community by the public following a “Notice 

of Potential Volcanic Hazard,” released in 1982. Although no eruption occurred, a temporary 

local economic crisis radiated from a perceived loss of tourism to the ski destination town of 

Mammoth Lakes, CA on the southwest rim of the LVC.  

Volcanic events (unrest & eruptions) are physical phenomena while volcanic crises are social 

(Gregg and Houghton 2006). Furthermore, indirect losses are related to, but not entirely 

dependent on direct, physical losses due to hazard activity (Lindell et al. 2006). Therefore, this 

study first examined how perceptions of volcanic risk differed from wildfire and earthquake 

hazards at LVC. Then, economic trends were examined from 1974 to 2016 between three 

different volcanic regions in the United States—LVC, (caldera system), Mount St. Helens, WA 

(stratovolcano), and Kīlauea, HI (shield volcano). 

In contrast to unrest at LVC, Kīlauea Volcano on Hawaiʿi island has been erupting almost 

continuously since 1983, and exposure to lava flows has inundated subdivisions (Poland et al. 

2015; Neal et al. 2019). Additionally, the May 18, 1980 eruption of Mount St. Helens was the 

deadliest and costliest volcanic event in U.S. History. Financial losses were estimated at $1.1 

billion USD ($3.3 billion adjusted) by the United States International Trade Commission 

(USITC), (1980). There were also 57 confirmed human casualties(Brown et al. 2017). 
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Study 1 

To understand present community attitudes towards volcanic hazards in comparison to 

earthquake and wildfire hazards, we conducted a mail-based household survey (ETSU IRB#: 

c1017.18sd). 

Theoretical Background 

The perception of a hazard and behavioral responses to disasters are often more influenced 

by the societal nature of a geographic region rather than geophysical conditions. (Torry et al. 

1979; Gaillard and Dibben 2008). Whether or not a person will change their behavior to adopt a 

protective action, depends on whether are motivated to adjust their lives to confront a potential 

threat (Weinstein and Nicolich 1993). The prediction that risk perception is the motivation for 

protective action follows from a number of theories such as Protection Motivation Theory 

(Rogers 1975; Floyd et al. 2000) and the Protective Action Decision Model (PADM) (Lindell 

and Perry, 1992; Lindell 2018). The framework of this study was utilized in previous research 

that has also explored the relationship between personal perception of volcanic risk and the 

behavioral response of adopting protective actions(Perry and Lindell 1990; Perry and Lindell 

2008; Reeves 2018). 

Research Objective 

Study one examines how psychological variables including risk perceptions and hazard 

awareness as well as exogeneous variables such as scientific risk indicators (e.g., hazard zone 

proximity) and demographic variables influence the behavioral response of taking a protective 

action. This multi-hazard framework could provide insight on how different hazards are 

perceived in the same region. Additionally, issues in risk communication could be identified. 
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Study 2 

Data on County Business Patterns (CBP) from the Statistics of U.S. Businesses (SUSB), and 

Housing Price Indexes (HPI) (Bogin et al. 2016) were collected from 1974-2016. These data 

were analyzed in time series to understand differences in economic trends during prolonged 

volcanic unrest and eruptions.  

Theoretical Background 

The indirect losses that often follow natural disasters have been a topic of focus in socio-

economic journals for decades. Examples include, regional housing price impacts after 

earthquake (Murdoch et al. 1993), wildfire (Donovan et al. 2015), flood (Bin and Landry 2008), 

and hurricane (Ewing et al. 2007). Hazard proximity and impacts on housing prices have been 

examined for a variety of natural and technological hazards, often with inconsistent results. 

Generally, property located within or near flood hazard zones is lower than housing prices in less 

vulnerable areas (Bin and Landry 2008; Zhang and Cheng 2019). Furthermore, housing prices 

were found to decline regionally following tornado and hurricane events (Ewing et al. 2007) and 

large earthquakes (Murdoch et al. 1993). Still, some studies have found no significant difference 

between property values inside and outside of flood zones (Babcock and Mitchell 1980; 

Damianos and Shabman 1979; Fried et al. 1999; Zhang et al. 2009). 

Research Objective 

This study examined whether or not volcanic eruptions have a similar effect on economic 

trends as simply the issuance of a volcanic alert. Since direct losses are not necessary for an 

economic crisis to occur, (Lindell et al. 2006), this study considers volcanic eruptions and 

volcanic alerts as separate variables. This study does not attempt to assess the accuracy of 

volcanic alert levels over time, but rather analyses employ econometric time series regression 



13 

models to observe economic indicator trends during times of increased volcanic alert levels and 

potentially hazardous volcanic episodes as separate variables for U.S. counties at risk of 

exposure to hazards from three volcanoes—LVC, Mount St. Helens, and Kīlauea volcano, along 

with a non-volcanically active control region, Steamboat Springs, CO. 
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CHAPTER 2 

RISK PERCEPTIONS AND MULTI-HAZARD PREPAREDNESS AT LONG VALLEY 
CALDERA, CALIFORNIA 

 
Justin B. Peers,1 Christopher E. Gregg,1 Michael K. Lindell,2 Andrew T. Joyner,1 Ashleigh K. 
Reeves,1 David M. Johnston3 
 
1 East Tennessee State University, Johnson City, TN, USA. 
2 University of Washington, Seattle, WA, USA. 
3 Massey University, Wellington, NZ 
 
ABSTRACT 

Exposure to escalating volcanic unrest can lead to socio-economic crises with or without an 

eruption, as demonstrated by the post-1978 response to caldera unrest of the Long Valley 

Caldera, USA. Extensive research in volcano science of the Long Valley Volcanic Region 

(LVVR) provides an understanding of volcano-seismic activity, but comparatively fewer 

resources have been dedicated to understanding human processes in response to volcanic hazards 

and risk there. To understand community attitudes about relevant natural hazard risk issues, we 

conducted a multi-hazard, mail-based, sample survey research (N=229) study of 1,209 

households to compare volcanic hazards with seismic and wildfire hazards in the region. The 

study utilizes aspects of the Protective Action Decision Model (PADM) to understand how 

varying degrees of exposure to hazards (e.g., volcano, earthquakes, wildfire) may affect the 

relationship between risk perceptions and adoption of hazard adjustment/mitigation strategies. A 

negative relationship was found between risk perception factors and emergency preparedness for 

volcano hazards. That is, in this dataset, perceptions of higher volcanic risk are reported by those 

who also tend to adopt fewer protective actions.  
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1. INTRODUCTION 

Volcanic eruptions, unlike some other geologic hazards such as earthquakes, are often 

preceded by months to years of clear precursors (e.g. volcano seismicity, increased fumorolic 

activity, ground deformation and gas emissions) which offer opportunities to reduce volcanic 

risk, so long as community stakeholders are engaged in the risk management process. Still, 

exposure to volcano hazards can lead to crises; with or without an eruptive event. Therefore, it is 

important to distinguish that volcanic events (unrest & eruptions) are physical phenomena, while 

volcanic crises are social (Gregg & Houghton, 2006). The onset of prolonged volcanic unrest in 

the Long Valley Caldera (LVC) and the public response centralized around the resort community 

of Mammoth Lakes in the 1980’s emphasized the importance of identifying challenges in risk 

communication. Records of meetings held by scientists from the United States Geologic Survey 

(USGS) and the California Office of Emergency Services (CalOES) following the release of a 

volcano hazard warning suggest confusion about the uncertainty surrounding volcano hazard 

potential, and resentment of the scientific community by the public (Mader, 1987). A poor 

economic climate and temporary decline in tourism following the notice shifted concern from 

public safety to adverse impacts on previously thriving business and housing markets (Mader, 

1987). Although the level of volcanic unrest of the LVC has declined since 2001 relative to 

levels from 1978 to 2000, the volcanic potential remains, so it is important to examine the 

perception of volcanic risk with respect to natural hazards of which exposure is more frequent 

and persistent. 

The framework of this study was utilized in previous research that has also explored the 

relationship between personal perception of volcanic risk and the behavioral response of 

adopting protective actions (Perry & Lindell, 1990; Perry & Lindell, 2008; Reeves, 2018). 
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Comparatively fewer designs have observed volcano risk perceptions in a high threat, multi-

hazard environment (Perry & Lindell, 2008). This study explored the relationship between 

householder risk perception of and preparedness for volcano, earthquake, and wildfire hazards in 

communities surrounding the LVC, which has experienced episodic volcanic unrest and faced 

variations in volcano hazard communication over the past four decades.  

2. GEOGRAPHIC SETTING AND SOCIAL CONTEXT 

The LVC was formed approximately 760 ka when 600 km3 of magma was ejected during the 

eruption of the Bishop Tuff. The aftermath of the eruption left a 16 by 32-km depression in 

Earth’s surface, bound by the Sierra Nevada Mountains to the west and the White Mountains to 

the east. On the southwest rim of the LVC lies Mammoth Mountain, a 3,369 m steep-sided cone 

volcano formed by a series of dome-building events from 110-60 ka (Hildreth & Fierstein, 

2016). The volcano boasts a prominent ski-tourism industry, with the town of Mammoth Lakes 

positioned on its flank. From the western rim of the LVC, the Mono-Inyo Craters system 

stretches 40 km northward towards Mono Lake. The southern Inyo craters were formed from 

5.5-0.6 ka, and the northern Mono domes were formed from 65-0.6 ka. The Mono-Inyo craters 

system, along with Mammoth Mountain and LVC, form a complex volcanic system which is 

commonly referred to as the Long Valley Volcanic Region (LVVR), which collectively occupies 

areas of two state counties— Mono and Inyo. The most recent eruption in the LVVR occurred at 

Paoha Island in the middle of Mono Lake, around 1700 A.D. (Bevilacqua et al., 2018). The town 

of Mammoth Lakes, hosts a permanent population of ~8,000, which fluctuates to over 40,000 

during peak tourism (Hill et al., 2017). Some 58% of the total population of Mono County lives 

in Mammoth Lakes, and 60% of total business establishments in the county are within 10 km of 

town center (U.S. Census Bureau, 2010). Inyo County population follows a similar distribution, 
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with some 68% of the population residing in and around the immediate proximity of the town of 

Bishop, in North Inyo County, approximately 65 km from Mammoth Lakes. (Fig. 2.1). 

 

Fig. 2.1: Map of the Long Valley Volcanic Region (LVVR). 
 
2.1. Volcanic Unrest and Risk Communication  

The onset of prolonged volcanic unrest at the LVC began in 1978, with an M=5.8 earthquake 

14 km southeast of the caldera (Hill, 2006; Hill et al., 2017). In May 1980, one week after the 

eruption of Mount. St Helens, four M~6 earthquakes shook the southern rim of the LVC (Hill, 

2006, Hill et al., 2017). Numerous shallow earthquake swarms, along with uplift and 

deformation of the caldera floor amplified concerns in the scientific community of the possibility 

of an eruption—leading to increased volcano seismic monitoring and response planning by 
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stakeholders at the local, state and federal levels (Clarke & Savage & 1982; Miller, 1989; Hill et 

al., 2017).  These events prompted the release of an earthquake “Hazard Watch” in Mammoth 

Lakes in 1980, followed by a “Notice of Potential Hazard” for volcanic activity issued for the 

area in 1982 by the United States Geologic Survey (USGS) under authority of the Disaster Relief 

Act of 1974 (Bernknoph et al., 1990). At the time, the USGS hazard warning system had three 

levels. The level of “Notice of Potential Volcanic Hazard,” was defined as, “Information on the 

location and possible magnitude of a potentially hazardous geologic condition. However, 

available evidence is insufficient to suggest that a hazardous event is imminent or evidence has 

not been developed to determine the time of occurrence.” (Federal Register, 1977; Hill et al., 

2017). The threat of volcanic potential was met by confusion in the local community as there 

was no perceivable physical change in the environment to suggest volcanic activity (Mader, 

1987; Hill et al., 2017). The California Office of Emergency Services (CalOES) sponsored a 

workshop in which locals received presentations on the volcanic potential in their region, and 

could discuss emergency protocols. Records show that locals in attendance were less concerned 

with understanding and communicating uncertainty regarding volcanic events, and more 

interested in potential economic loss related to a decline in tourism (Mader, 1987). As the news 

of potential volcanic activity in the Long Valley region continued to gather widespread attention, 

the booming economic development of Mammoth Lakes seen through the 1960’s and 1970’s 

came to a halt and decline, sparking distrust between the public and the scientific community 

(Mader, 1987).  

An intense earthquake swarm on January 7, 1983 provided a seismic velocity profile which 

further proved the existence of, and constrained the geometry of, the large magma body beneath 

the LVC (Luetgert & Mooney, 1985).  The tremors increased public safety awareness—leading 
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to the authorization and creation of an alternate escape route, named Mammoth Scenic Loop. 

Mono and Inyo counties established an Incident Command System to coordinate emergency 

planning efforts between agencies, and many locals purchased earthquake insurance (Mader, 

1987). Attendance to regular meetings held by USGS and county officials dropped by May, 

1983, and public concern about volcano hazards again shifted from safety to loss of business 

(Mader, 1987).  Seasonal unemployment reached as much as 20% and taxable sales dropped 

3.2% in Mono County compared to a California state-wide increase of 9.6%. The local Bank of 

Mammoth reported approximately half a million dollars in loan delinquencies in 1983 (Mader, 

1987).  Two members of the Mono County Board of Supervisors that advocated the construction 

of the Mammoth Scenic Loop were voted out of office by November, 1983 (Mader, 1987; Hill et 

al., 2017). Despite the local economic crisis, tourism was at near record high levels for the 1983 

to 1984 ski season and continued to increase through the mid 1980’s (Mader, 1987).  

Strong volcanic unrest continued with the onset of CO2 gas emissions from the flanks of 

Mammoth Mountain in 1990 following an 11-month earthquake swarm (Hill et al., 2017). 

Fumorolic activity contributed human fatalities (one in 1998 and three on April 6, 2006) and tree 

kills (Brown et al., 2017; Hill et al., 2017). From 2000 to 2011, low level unrest was detected as 

inflation of the resurgent dome, minor seismicity, and continued fumorolic activity (Hill et al., 

2017). Caldera inflation and resurgent dome uplift increased after 2011 and continues today.  

2.1. Hazard Zones and Proximity 

The LVVR crosses over Mono and Inyo County boundaries as do volcanic ashfall (tephra) 

hazard zones, Peak Ground Acceleration (PGA) earthquake hazard zones, and wildfire hazard 

zones (Fig. 2.2). For earthquake hazards, proximity to epicenters in the region can also be 

examined.  
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Fig. 2.2: Three hazard maps of the Long valley region, a) volcanic ashfall zones, b) wildfire hazard potential, and c) Peak Ground 
Acceleration (PGA).  
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3. THEORETICAL BACKGROUND 

Whether or not a person will change their behavior to adopt a protective action depends on 

whether they are motivated to adjust their lives to confront a potential threat. Weinstein and 

Nicolich (1993) describe that high levels of risk perception are presumed to lead to higher levels 

of protective action, which would imply a positive correlation between risk perception and 

preparedness. Furthermore, a person that takes high levels of protective action to decrease risk 

may in turn express lower levels of risk perception—indicating a negative correlation. The 

prediction that risk perception is the motivation for protective action follows from a number of 

theories such as Protection Motivation Theory (Rogers, 1975; Floyd, Prentice-Dunn, & Rogers, 

2000) and the Protective Action Decision Model (PADM) (Lindell & Perry, 1992; Lindell, 

2018).  

As there is substantial uncertainty in predicting volcanic activity, there is arguably more 

uncertainty in predicting human behavior. To account for such uncertainty, this study utilizes the 

following psychological and exogeneous variables derived in part from the PADM (Lindell, 

2018; Lindell & Perry, 2012) to conduct a systematic examination of the social context of risk 

perceptions of volcano hazards, compared to wildfire and earthquake hazards. 

3.1. Expected Personal Consequences 

Risk perception is a multi-dimensional concept, composed of factors that contribute to a 

person’s expectation that a threat will impact them in some way. As noted above, social 

scientists look at correlations between risk perceptions and precautions to examine the accuracy 

of perceived risk, and whether or not these perceptions prompt behavioral responses. Expected 

personal consequences, or perceived personal risk are related to personal experiences with 

hazard events. If a person has not been exposed to a particular hazard, it is unlikely that they will 
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perceive a risk associated with an event of that nature (Paton et al., 2006). Expected impacts 

could include death or injury, damage to real property, and general disruption to daily activities 

(Lindell and Perry, 2012). Previous research in natural hazards and disasters has found that risk 

perception is generally positively correlated with and can predict protective action responses to 

earthquake (Lindell & Perry, 2012), volcanic (Perry & Lindell, 1990) hazards. However, in some 

circumstances, there may not be any causal association between perception and behavioral 

responses, rather social structure constrains behavior (Gaillard & Dibben, 2008).  

3.2. Hazard Intrusiveness and Affective Responses 

Hazard intrusiveness refers to the frequency in which a respondent thinks about a potential 

threat or discusses it with others (Ge, Peacock & Lindell, 2011; Lindell & Prater, 2000). 

Perception of risk has been found to be influenced by unrealistic optimism—a cognitive bias in 

which people believe themselves to be less vulnerable to exposure than others, and are therefore 

less likely to adopt preparedness measures (Shepperd, Klein, Waters, & Weinstein, 2013; 

Weinstein, 1980). Affective response refers to the degree to which a respondent feels anxious, 

nervous, or worried about a threat (Lindell et al., 2016; Wei & Lindell, 2017).  These variables 

have been found to be correlated with the adoption of hazard adjustments for earthquakes, 

hurricanes, and volcanic eruptions.  

3.3. Response Efficacy 

Self-efficacy, which describes an individual’s self-appraisal of their capability for taking 

action, influences people’s receptiveness to information and likelihood of adopting risk reduction 

behaviors (Dunning, 1999). Response efficacy refers to how well a person thinks that the actions 

that they have taken to protect them and their property from a threat. Response efficacy is 

postulated to be an essential component of protective action adoption in expectancy valence 
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models which attempt to describe why a person may be motivated to behave a certain way. 

These include Protection Motivation Theory which postulates that people protect themselves on 

perceived threat levels, probability of occurrence, efficacy of the preventative behavior, and self-

efficacy (Rogers, 1983), and Person Relative to Event Theory which emphasizes the influence of 

increased threat levels on preparedness behavior (Mulilis & Duval, 1997). Many natural hazard 

studies have reported that response efficacy is positively related to hazard adjustment adoption 

(Perry & Lindell, 2008; Lindell & Prater, 2002; Terpstra & Lindell, 2013). 

3.4. Hazard Experience, Proximity, and Tenure  

Hazard experience is commonly correlated to hazard proximity (Lindell & Perry, 2012). 

However, proximity to a hazard does not always suggest hazard awareness. For example, one 

third of the local population near Mount St. Helens was not aware that it was a volcano before its 

eruption in 1980 (Lindell & Perry, 1993). Furthermore, perception of a hazard and behavioral 

responses to disasters are more influenced by the societal nature of a geographic region rather 

than geophysical conditions. (Gaillard & Dibben, 2008; Torry, 1979). Past tenure, or the length 

of time a person has lived in a place, has been positively correlated with emergency preparedness 

(Wei & Lindell, 2017) and hazard proximity (Lindell & Hwang, 2008). Lindell and Hwang 

(2008) also hypothesized that tenure would be negatively related to perceived personal risk, 

however results showed no significant correlation.  

3.5. Hazard Adjustments  

3.5.1. Emergency and Evacuation Preparedness 

Hazard adjustment refers to a protective action that a person adopts in response to a threat. 

Protective actions can be non-hazard specific such as stocking general emergency preparedness 

items in the home (e.g. food rations, water, medications, flashlights) and evacuation planning for 
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specific hazards, among others. Hazard-specific adjustments include purchasing respiratory 

protection for volcanic ash, maintaining a defensible space around the home as a buffer from 

wildfire, or purchasing earthquake insurance. It is common in multi-hazard surveys (e.g., Lindell 

& Hwang, 2008; Perry & Lindell, 2008) to create hazard-specific preparedness variables. 

Generally, hazard studies indicate that household preparedness levels are low (Bourque et al., 

2012; Lindell & Perry, 2000; Wei & Lindell, 2017). 

3.5.2. Information Seeking 

Information search is a fundamental element of hazard adjustment. Whether or not a person 

chooses to seek additional, or different, information on a risk begins to move them through the 

process of choosing whether or not to adopt a protective action (Lindell & Perry, 2012). Risk 

information search may be influenced by a number of factors including; risk perceptions, 

affective responses, demographics, and personal perceptions about information channels (Griffin 

et al., 1999; Wei & Lindell, 2017). When a risk is perceived as imminent, people actively engage 

in the search for more information about hazards and protective actions from a variety of 

information channels (Lindell & Perry, 2012). 

3.7. Research Objective 

The variables outlined in this theoretical framework were chosen to best examine 

relationships between theoretically interrelated psychological and physical variables as they 

affect emergency preparedness and information search. These variables include personal risk 

perceptions, hazard intrusiveness, affective responses, and response efficacy, as well as 

exogeneous variables such as scientific risk indicators (e.g., hazard zone proximity), past tenure 

and hazard experience, and demographic variables. Fig. 3 graphically summarizes the model 
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used to analyze this information and provides context for the structure in which the results will 

be reported in this paper.  

 
Fig. 2.3: Path diagram representation of the theoretical framework. 
 
4. MATERIALS AND METHODS 

4.1. Survey Procedure  

This study utilized a mail-based questionnaire distributed to 1,209 households between 

February and June, 2018. The questionnaires were modelled after those used by Greene et al. 

(1981), Perry and Greene (1983), Lindell and Whitney (2000), Davis et al. (2006), Perry and 

Lindell (2008), Apatu et al. (2015), Wei and Lindell (2017), and Reeves (2018). Households 

were randomly selected from three tephra hazard zones (Fig. 2a). Beginning on February 22, 

each household was sent a packet of materials including the questionnaire, an Informed Consent 

Document (ICD), and a pre-addressed postage paid return envelope. The ICD included 

information about the study, instructions, and contact information of the investigators. Some 89 
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(7.4%) of packets were returned as undeliverable or otherwise rendered unusable. A total of 229 

usable questionnaires were returned for a response rate of 18.9%. 

4.2. Measures 

4.2.1. Dependent Variables  

A preparedness index was created from the average responses for a series of protective 

actions taken (No=0; Yes=1). The framework of this survey allowed for the creation of unique 

preparedness indices for each of the three hazards studied. Respondents were asked about short 

and long-term hazard adjustments. For short-term adjustments,  they were asked, “Do you have 

any of the following emergency items in your home: (a1) battery powered radio with spare 

batteries, (b1) at least 4 gallons of water in plastic containers, (c1) a complete first-aid kit, (d1) 4 

day supply of dehydrated or canned food for your entire family, (e1) at least one week supply of 

prescription medicines, (f1) disposable breathing protection (mask) for ash and dust in the air, 

(g1) off grid electric power (gas-powered generator or solar-powered). For long-term 

adjustments, they were asked,  “Have you taken any of the following precautions for the place 

where you live: (a2) clear cut a 100 foot defensible space around your home, (b2) installed fire 

resistance on roof/structures, (c2) strapped water heaters, tall furniture, and heavy objects to the 

building walls, (d2) secured your home’s structure to its foundation, (f2) learned where and how 

to shut off water, gas, and electric utilities. Additionally, respondents were asked, “Have you 

planned where to go if you need to evacuate from home?” and “Have you planned what route to 

take if you need to evacuate from home?” The earthquake preparedness index included items a1-

e1, g1, and c2-g2, which had an internal consistency reliability of a = .73. For wildfire 

preparedness, items a1-g1, a2, b2, and f2 were included (a = .72). The volcano preparedness 

index included items a1-g1, c2, d2, and f2 (a = .73). Each hazard preparedness index also 
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included responses on evacuation planning, “Have you planned where to go [what route to take] 

if you need to evacuate from home.” To assess information search, respondents were asked, 

“How likely is it that in the near future you will seek information about hazards and protective 

actions for: (a) wildfires, (b) earthquakes, (c) volcanic activity?” Each item was rated on a five - 

point Likert scale (from Not at all likely= 1 to Very great extent=5).  

4.2.2. Independent Variables  

The index of expected personal consequences was constructed by asking respondents “How 

likely do you think it is that in the next 10 years there will be a(n) (earthquake, wildfire, or 

volcano hazard) that will cause: (a) major damage to property in your community, (b) major 

damage to your home, (c) injury or illness to you or members of your immediate family, (d) 

disruption to daily activities such as working and shopping.” The mean ratings on a 5-point 

Likert scale (from Not at all likely= 1 to Very great extent=5) were combined into an expected 

personal consequences scales for earthquake risk (a = .89), wildfire risk (a = .76), and volcano 

risk (a = .97).  

To assess hazard intrusiveness, respondents were asked two separate questions about “How 

often do you think to yourself [talk to other people] about: (a) wildfires, (b) earthquakes, (c) 

volcanic activity?” Mean scores of hazard intrusiveness in time (daily = 1, weekly = 2, monthly 

= 3, yearly = 4, and never = 5) were computed for wildfires (a = .82), earthquakes (a = .77), and 

volcanic activity (a = .74). Questions considering affective responses asked, “To what extent 

does the possibility of (wildfires, earthquakes, or volcanic activity) make you feel: (a) nervous, 

(b) fearful, (c) worried?” Responses on a 5-point Likert scale (from Not at all likely = 1 to Very 
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great extent=5) were combined for each hazard to create scales with reliability estimates of 

a=.96, .97, and .98, for wildfire, earthquake, and volcano hazards, respectively.  

In addition, perceptions of response efficacy were assessed by asking respondents “To what 

extent do you think that the actions you have taken will protect you and your family from death, 

injury, or illness from; and, “To what extent do you think that the actions you have taken will 

protect your property from damage from: wildfires, earthquakes, and volcanic activity.” 

Responses were anchored by a 5-point Likert scale ranging from Not at all = 1 to Very great 

extent = 5. The resulting response efficacy variable had a reliability of a = .80 for wildfires, a = 

.76 for earthquakes, and a = .84 for volcano hazards. Past hazard experience was assessed 

through responses (No=0; Yes=1) to the following questions “Is any of the following true about 

your experience with (wildfires, earthquakes, or volcanic activity): your immediate family’s 

property has been damaged, you or an immediate family member has been injured, property of 

someone else you know personally has been damaged, someone else you know personally has 

been injured?” The mean of these items produced a scale with a reliability of a = .80for 

wildfires, a = .78 for earthquakes, and a = .84 for volcano hazards. 

Demographic variables included gender (Male = 0; Female = 1); age; and tenure in the 

Mono-Inyo County area, current community, and current residence. Ethnicity was measured as 

White (0) and Minority (1), which included Hispanic, African American, Asian/Pacific Islander, 

Native American, Mixed, or Other as the number of respondents with non-white ethnicity was 

small. Marital status was indicated as married, divorced, single, or widowed and recoded to Not 

Married (= 0) or Married (= 1). Education level was measured by Less than high school (= 1), 

High school (= 2), Some college/vocational school (= 3), College Graduate (= 4), and Graduate 
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school (= 5). Respondents were asked to select their yearly household income from Less than 

$15,000 (= 1), $15,000-30,000 (= 2), $30,000-45,000 (= 3), $45,000-60,000 (= 4), and More 

than $60,000 (= 5). Household size was computed by adding the number of members in each of 

the three age groups less than 18 years, 18-65 years, and Over 65 years.  

4.3. Statistical Analysis 

Two multiple regression-based models were used to understand which variables were 

significant predictors of the emergency preparedness and information seeking hazard 

adjustments. To test the effect of residence in a hazard zone, all respondents received a code for 

their respective federally designated hazard zone from models for tephra fall (Miller & USGS, 

1989), wildfire hazard potential (Dillon, Menakis & Fay, 2015), PGA, and earthquake proximity 

(Fig. 2) (USGS, 2017). Analysis of Variance (ANOVA) models tested the effects of residence in 

these hazard zones or proximity to the hazard source. Pearson correlations were tested at 95% 

and 99% confidence levels to evaluate the relationships among all independent and dependent 

variables in the models.  

5. RESULTS 

5.1. Correlation Analysis 

The correlations of the hazard adjustments with the psychological variables showed that 

emergency preparedness had a significant negative correlation with expected personal 

consequences (r = -.17) for volcano hazards, but was not significantly correlated with wildfire or 

earthquake preparedness. Volcano hazard preparedness (r = .20), wildfire preparedness (r = .49), 

and earthquake preparedness (r = .37) were all significantly correlated with response efficacy. 

Information seeking was significantly correlated with expected personal consequences for 

volcano (r = .34), wildfire (r = .41) and earthquake (r = .30) hazards. Information seeking for 
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volcano (r = .25) and earthquake (r = .21), but not wildfire hazards, was also significantly 

correlated with response efficacy. Information seeking for volcano (r = .37), wildfire (r = .43), 

and earthquake hazards (r = .33) were significantly related to affective response. Last, 

preparedness for volcano (r = .14), wildfire (r = .15), and earthquake (r = .13) hazards was 

significantly related to experience with wildfire hazards.  

The correlations of the dependent variables with the demographic variables showed that 

information seeking for volcano hazards and protective actions had a significant negative 

correlation with community tenure (r = -.15). Wildfire information seeking had negative 

correlations of r = -.30, -.34, and -.25 for time lived locally, within the same community, and in 

the same residence, respectively. For earthquake information seeking, local, community, and 

residential tenure were negatively correlated—r = -.23, -.25, -.16, respectively. Information 

seeking for wildfire hazards was significantly correlated with education level (r = .19). 

Additionally, information seeking for wildfire (r = .20) and earthquake (r = .19) was significantly 

correlated with households with more children less than 18 years old. Preparedness for wildfire 

(r = .14) and earthquake (r = .16) hazards, but not volcano hazards, were significantly correlated 

with only one demographic variable, income. Finally, preparedness (r= -.17, -.16, -.17) for 

volcano, wildfire, and earthquake preparedness had negative relationships with female gender. 

However, information seeking for wildfire (r = .18) and earthquake (r = .17), but not volcano 

hazards, had positive correlations with female gender.  

Significant inter-item correlations among the risk perception variables show that expected 

personal consequences is significantly related to hazard intrusiveness (r = .17, .31, and .26) for 

volcano, wildfire, and earthquake hazards, respectively. Response efficacy is related to affective 

responses for volcano (r = .21) and earthquake (r = .19). Affective responses were correlated 
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with expected personal consequences (r = .66, .53, .56) for volcano, wildfire, and earthquakes, 

respectively. Hazard experience was also significantly correlated with expected personal 

consequences (r = .16, .17) for wildfire and earthquake hazards, but not volcano hazard. 

Affective responses were related to volcano (r = .16) and wildfire (r = .20) experience, and 

hazard intrusiveness was related to experience with wildfires (r = .30) and earthquakes (r = .14). 

Additionally, response efficacy was significantly related (r = .23) with wildfire experience, but 

not to volcano and wildfire experience.
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Table 2.1: Means, standard deviations and correlations for variables. *95% confidence, **99% confidence. 
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5.2. Linear Regression 

Linear regressions of the emergency preparedness and information seeking measures onto the 

five risk perception variables and eight demographic variables for each hazard individually are 

summarized in Table 2.1. Each regression model was significant at the 95% confidence level. 

Response efficacy was the most consistently significant independent variable (p < .05) in all 

three models for volcano, wildfire, and earthquake preparedness, as well as in the information 

seeking models for volcano and earthquake hazards. Expected personal consequences was a 

significant predictor for volcano preparedness and wildfire information seeking. Hazard 

intrusiveness was a significant predictor for seeking information about volcano and earthquake 

hazards. Affective response was a significant predictor for information seeking about volcano 

and wildfire hazards. For emergency preparedness, risk perception factors accounted for 13% of 

the variance for volcano (R2 = .19; adjusted R2 = .13), 34% of the variability for wildfire (R2 = 

.38; adjusted R2 = .34), and 21% of the variability for earthquake (R2 = .19; adjusted R2 = .21) 

hazards.  
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Table 2.2: Regression results for multi-hazard preparedness and information seeking models. 
Variables Volcano   Wildfire   Earthquake 
Preparedness Model b SE Beta t Sig.   b SE Beta t Sig.   b SE Beta t Sig. 
Expected Personal 
Consequences -.07 .02 -.28 

-
2.97 .00  -.01 .02 -.03 -.37 .71  -.02 .02 -.07 -.89 .38 

Hazard Intrusiveness .02 .02 .11 1.54 .13  .01 .02 .05 .71 .48  .02 .02 .07 1.00 .32 

Affective Responses .03 .03 .10 1.01 .31  .01 .01 .03 .42 .68  -.02 .02 -.09 
-

1.08 .28 
Response efficacy .05 .01 .24 3.32 .00  .14 .02 .57 9.22 .00  .09 .02 .41 6.16 .00 
Hazard Experience .11 .18 .04 .61 .54  -.03 .08 -.02 -.37 .71  .00 .05 .00 -.03 .98 
Adusted R2 .13  .34  .21 
df 179.00   194.00   190.00 
Information Seeking Model                                 
Expected Personal 
Consequences .20 .13 .14 1.48 .14  .33 .13 .21 2.60 .01  .18 .13 .11 1.33 .18 
Hazard Intrusiveness .20 .09 .16 2.38 .02  .17 .11 .12 1.59 .11  .20 .10 .14 2.01 .05 
Affective Responses .33 .17 .18 1.99 .05  .24 .10 .20 2.50 .01  .23 .12 .16 1.87 .06 
Response efficacy .29 .08 .26 3.67 .00  .06 .10 .04 .62 .54  .27 .09 .20 2.88 .00 
Hazard Experience 1.37 .99 .09 1.38 .17  -.21 .52 -.03 -.41 .69  .29 .35 .06 .82 .41 
Adjusted R2 .20  .22  .19 
df 189.00   192.00   189.00 
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5.3. Spatial Analysis by Hazard Zone and Proximity 

No significant spatial relationships were found between the variables explored in this study 

for volcano, earthquake, or wildfire hazard zones. However, earthquake-specific preparedness 

was significantly correlated (r = .19) with distance from recent earthquake epicenters during the 

time frame of this study. Additionally, earthquake proximity was a significant predictor for all 

emergency preparedness models, but not for the information seeking models. 

6. DISCUSSION 

6.1. Risk Perceptions and Hazard Adjustments  

This study provided a unique opportunity to discuss examples of the correct interpretations of 

correlations between risk perceptions and protective action adoption as outlined by Weinstein 

and Nicolich (1993) and how to interpret these correlations. 

6.1.1. Emergency Preparedness 

The most notable finding of this paper is that expected personal consequences were 

negatively correlated with volcano-specific emergency preparedness (r = -.17). Furthermore, 

regression analysis (Table 2.2) shows that expected personal consequences was a significant 

predictor in the volcano hazard preparedness model. Consistent with the analysis of Weinstein 

and Nicolich (1993), it would be inappropriate to interpret this negative correlation between 

volcanic risk perception and preparedness as indicating that higher levels of risk perception 

caused people to refrain from taking emergency preparedness actions. Instead, it is quite possible 

that the causality runs in the reverse direction—the adoption of more emergency preparedness 

actions caused people to experience lower levels of expected personal consequences. 

Furthermore, suggesting the presence of a bias, wildfire hazard experience is positively 
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correlated with wildfire risk perception, and preparedness and earthquake hazard experience is 

significantly positively related to earthquake risk perception. These same results are of no 

significance for volcano hazards.  

Bernknoph et al. (1990) surveyed resident and non-resident property owners in the LVC on 

their risk perceptions of earthquake and volcano hazards preceding and following each hazard 

notice. They observed an increase in the perceived risk of death and property damage following 

each hazard announcement. The results showed that while perception of personal injury returned 

to near background levels by 1984 for both hazards, the perception of property damage from 

each hazard persisted. They reported that 30% more respondents indicated the lowest level of 

perceived risk of property damage from a volcano than from an earthquake. This result is similar 

to differences in mean response ratings observed between volcano and earthquake hazards for 

the expected personal consequences in this study. The mean response rating for earthquake risk 

perception was some 38% higher than volcanic risk perception. Additionally, the mean response 

rating for wildfire risk perception was the highest of the three—some 41.8% greater than levels 

indicated for volcano risk perception.   

6.1.2. Information Search 

In contrast to the significant negative relationship between volcano risk perception and 

preparedness, this study found a strong, significantly positive correlation between wildfire risk 

perception and information search (r = .41). Regression analysis shows that expected personal 

consequences is a significant predictor in information search for wildfire risks, but not for 

earthquake or volcano risks. Here, the positive correlation can be interpreted as higher levels of 

wildfire risk perception causing a behavioral response to adopting more protective actions. This 

is not surprising when considering that this survey was mailed in February, 2018, after the most 
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destructive wildfire season recorded in the history of California with 5,053 km2 burned and 

nearly 12 billion dollars of insurance claims (Aon Benfield, 2017) 

6.2. Other Variables 

 Risk perceptions can change over time as people learn new information about a hazard, and 

encounter varying risk over time (Weinstein & Nicolich, 1993). Some 61.2% of respondents 

indicated that they had lived in the region for greater than 20 years, which puts them in the range 

of time of elevated unrest levels at LVC. Furthermore, 42.9% lived in the area for over 30 years, 

indicating that their perceptions of volcanic hazards could have been influenced by events that 

took place locally during the 1980’s. Although past tenure was significantly negatively 

correlated with wildfire expected personal consequences and wildfire hazard intrusiveness, it was 

not a significant predictor in any regression models.  

Response efficacy was a significant predictor in each model except for wildfire information 

seeking. Not surprisingly, response efficacy was also highly correlated with emergency 

preparedness, similar to results reported by Perry and Lindell (2007) and Lindell and Prater 

(2002). 

The correlations between earthquake proximity and hazard preparedness for each hazard, 

along with being a significant predictor in all emergency preparedness models, suggests that 

householders in the LVVR are aware of local earthquake activity, even when this is at low levels 

of seismicity. These findings are consistent with Lindell and Hwang (2008) as well as Rajapaksa 

et al. (2016). 
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7. CONCLUSIONS 

The results from this study’s correlation and regression analyses show not only that volcanic 

risk in the LVVR is perceived differently than earthquake and wildfire risk, but also that volcanic 

risk perceptions may not be accurate. This is a noteworthy finding—especially considering the 

regional social context in the LVVR. Given the similarities of this study’s findings to those of 

Bernknoph et al. (1990), along with documented issues in volcano risk communication stemming 

from the uncertainty surrounding volcanic unrest (Mader, 1987), these results could be used to 

further investigate issues in risk communication and perception of information channels, 

specifically caldera unrest. Positive relationships between level of exposure and hazard 

adjustments for wildfire hazards; and between level of exposure and risk perception of 

earthquake hazards are not unexpected, due to the relative imperceptible physical effects of 

prolonged volcanic unrest.  
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ABSTRACT 

Social and economic vulnerability can result from direct and indirect losses caused by 

volcanic unrest and eruption. In this study, indirect losses from volcanic eruptions and volcanic 

alert levels are examined as independent variables. We explore economic vulnerability as a 

function of these variables using econometric time series analysis. Regional economic impacts of 

volcanic activity on housing prices and business patterns were examined for three different types 

of volcanos with a “very high” threat designation from the United States Geological Survey 

(USGS)—Long Valley Caldera (LVC), CA (caldera system), Mount St. Helens, (MSH) WA 

(stratovolcano), and Kīlauea, HI (shield volcano). To understand how local economic trends 

compared to regions that are not volcanically active, yet are largely economically dependent on 

tourism, we use Steamboat Springs, CO as a control community as it is a major winter ski-

tourism destination much like Mammoth Mountain in LVC, but it is not geologically part of any 

volcanic system. Analyses indicate there are significant negative relationships between housing 

prices during 1) episodic lava flow crises at Kīlauea volcano from 1983 to 2016 and 2) increased 

hazard alert levels at LVC from 1982 to 1983 and 1991 to 1997. Economic trends in volcanic 

regions were also more highly variable than the control region. Findings suggest that indirect 
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losses resulting from volcanic eruptions and increased volcanic alert levels should be examined 

independently to more completely understand volcanic impacts in economic vulnerability and 

risk assessments as well as risk management strategies.  

1. INTRODUCTION 

Studies on the impacts of natural and technological hazards in hazard and disaster sciences 

are generally focused on determining and assessing direct losses resulting from physical damages 

of hazardous events through empirical and probabilistic models. However, socio-economic crises 

can occur with or without direct impacts of a hazardous event, as was evidenced from public 

response to elevated unrest of Long Valley Caldera (LVC), California, USA beginning in 1978. 

The indirect losses that often follow natural disasters have been a topic of focus in socio-

economic journals for decades. Examples include, regional housing price impacts after 

earthquake (Murdoch, Singh, & Thayer, 1993), wildfire (Donovan, Champ, & Butry, 2007), 

flood (Bin & Landry, 2008), and hurricane (Ewing, Kruse, & Wang, 2005). All of these studies 

have one important element in common that differ from the framework of our research—they 

were conducted after a specific physical natural disaster event occurred, and a socio-economic 

crisis ensued. In contrast, this study more broadly explores longer term indirect loss data using 

decadal time series analyses to look at impacts with and without direct impacts from physical 

volcano events. 

Indirect losses are related to, but not entirely dependent on direct, physical losses due to 

hazard activity (Lindell, Prater & Perry, 2006). For example, earthquakes, tsunami and volcanic 

eruptions often adversely affect structures such as roads, buildings, and utilities and precipitating 

indirect losses such as lost revenue from lodging and eating establishments (Gregg & Houghton, 

2006). In contrast, elevated alert levels of a potential impending hazard such as the threat of 
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hurricane landfall or volcanic eruption can lead to both direct and indirect losses due to human 

response to the threat of, rather than contact with a hazard (Lindell et al., 2006).  

Consequently, this study compares the impacts of volcanic alerts issued from different U.S. 

Geological Volcano (USGS) volcano observatories on local housing prices and businesses. It is 

important to establish that the issuance of a volcanic alert does not mean that an eruption is 

imminent, or even that there will be a perceptible change in the environment around a volcano. 

Rather, a volcano alert is a public statement issued about the status of a volcano—standardized 

across all U.S. volcano observatories in 2006 by a four-level Volcanic Alert Level System 

(VALS) (Gardner & Guffanti, 2006). Furthermore, VALS were historically not standardized 

prior to 2006, so they were inconsistent between observatories, beginning with the development 

of the first VALS following the 1980 eruption of Mount Saint Helens. This study does not 

attempt to assess the accuracy of volcanic alert levels over time, but rather analyses employ 

econometric time series regression models to observe economic indicator trends during times of 

increased volcanic alert levels and potentially hazardous volcanic episodes as separate variables 

for U.S. counties at risk of exposure to hazards from three volcanoes—LVC, Mount St. Helens, 

and Kīlauea volcano. Quite simply, we try to answer the question of whether or not the presence 

of information about volcanic potential in the form of a volcanic alert has a similar effect on 

local economic trends (e.g., number of employees and residential housing sales) compared to 

regions that have experienced numerous direct losses (e.g., property and infrastructure damage) 

volcano crises? 
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2. STUDY REGIONS 

2.1. Mount St. Helens 

Mount St. Helens (MSH) is one of many active strato-volcanos in the Cascade Range. As the 

region’s population increases and develops land closer to and within Cascade volcano hazard 

zones (Fig. 3.1), the potential for direct and indirect losses increases risk associated with both 

eruption and elevated VAL due to unrest. 

 
Fig. 3.1: Map showing the Mount St. Helens region and USGS designated Cascades volcano 
hazard zones. 



47 

 
On May 18, 1980 a M 5.1 earthquake triggered the collapse of the north flank of MSH 

(Global Volcanism Program [GVP], 1980). The debris avalanche permitted the eruption of a 

lateral blast which sent ash up to 23 km into the stratosphere, and nearly instantaneously 

destroyed everything within 10 km of the explosion (GVP, 1980). Debris flows of mud, melted 

ice, and volcanic material (lahars) began within minutes of the blast—filling river channels and 

causing major flooding, which damaged critical infrastructure and personal property more than 

120 km away (Lipman, Mullineaux, & USGS, 1982).  For over 9 hours, the eruption vigorously 

fed a vertical ash plume which deposited 1.08 km3 of ash over 11 states and nearly 57,000 km2 

(Lipman et al., 1982). Mount St. Helens was the costliest and deadliest volcanic eruption in U.S. 

history. Estimated financial losses were $1.1 billion USD ($3.3 billion adjusted; United States 

International Trade Commission (USITC), 1980). There were also 57 confirmed human 

casualties (Brown et al. 2017).  

Volcanic activity at MSH continued with intermittent explosions and dome building 

eruptions until October 28, 1986. Relatively smaller eruptive episodes occurred from December 

7, 1989 to January 6, 1990 and from November 5, 1990 to February 14, 1991 (GVP, 2013). On 

October 1, 2004, the volcano began an eruptive episode which lasted until January 27, 2008. 

Volcano-seismic activity has remained at background levels since 2008.  

Despite catastrophic volcanic potential, the regional economy in the footprint of MSH (see 

Fig. 3.1) has benefited from tourism to the volcano— accelerated by the establishment of Mount 

St. Helens National Monument in 1982. As of 2015, some 15% of employment was represented 

by the travel and tourism industry in Cowlitz, Lewis, and Skamania counties that border the 

monument area (Headwaters Economics, 2017).  
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2.2. Long Valley Caldera (LVC) 

Calderas are formed when a volume of magma is emptied from its shallow reservoir, causing 

the volcanic edifice to collapse, leaving a depression in the surface. The modern 16 by 32 km 

LVC (see Fig. 3.2) was formed when 600 km3 of magma was violently expelled about 760 ka 

during the eruption of the Bishop Tuff (Hill, 2006; Hill, Mangan, & McNutt, 2017). In 

comparison, the volume displaced during the May 18, 1980 eruption of Mount St. Helens was 

2.79 km3 (Brantley, Myers, & USGS, 2000). The greater Long Valley Volcanic Region (LVVR) 

consists of a series of lava dome complexes called the Mono-Inyo Craters that stretch 40 km 

from Mammoth Mountain on the southwest rim of LVC northward to Mono Lake. The most 

recent eruption in the LVVR was at Paoha Island in 1790 CE, in Mono Lake at northernmost end 

of the Mono-Inyo Craters in Mono county (Bevilaqua et al., 2018). 
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Fig 3.2: Map showing the geographic setting of the Long Valley Volcanic Region in Eastern 
California, USA. 
 

One week after the May 18, 1980 eruption of MSH, four M~6 earthquakes at LVC’s 

southern margin amplified concern of high levels of caldera unrest that began in 1978 (Hill et al., 

2017). In May, 1982, following four years of shallow earthquake swarms along with uplift and 

ground deformation of the caldera floor, the USGS released a “Notice of Potential Hazard,” 

about the volcanic potential at LVC (Mader, 1987). Mader (1987), Bernknoph, Brookshire and 

Thayer, (1990), and Hill et al. (2017) report that the public response to the statement was one of 

confusion and outrage. It was perceived that the hazard notice was linked to a decline in tourism 

and overall economy in the Long Valley region, sparking contention in the local community with 

volcano scientists and emergency managers (Hill et al., 2017). However, in contradiction to this 
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perception, Mader (1987) reported that tourism numbers following 1982 were reported near 

record levels. Despite this report of an uptick in visitor numbers, we found no data concerning 

the performance of the overall economy.  

Mammoth Lakes (see Fig. 3.2) is an alpine ski-resort town on the slopes of Mammoth 

Mountain—with populations fluctuating from ~8,000 to ~40,000 during peak tourism (Hill et al., 

2017). On-going caldera unrest at LVC has involved both ground deformation and emissions of 

magmatic CO2 gas through the flanks of Mammoth Mountain. Ground deformation has involved 

some 41cm of elevation and subsidence of the caldera floor and 85 cm of resurgent dome uplift 

(Savage & Clark, 1982; Hill et al., 2017). Magmatic CO2 gas moving upward through the root 

zones killed trees (Hildreth, 2016) and pooling of the invisible and tasteless gas in low areas is 

responsible for four human fatalities, one in 1998 and three on April 6, 2006 (Brown et al. 2017). 

2.3. Kīlauea Volcano, Hawaiʻi Island 

Hawaiʻi Island (see Fig 3.3a.) was built by five overlapping basaltic shield volcanoes—three 

of which (Kīlauea, Mauna Loa and Hualālai) have been active in modern history (since ca. 

1800). The majority of the island’s land mass is covered by Mauna Loa, which last erupted in 

1984, threatening the town of Hilo with lava flows (Trusdell, 2012).  Kīlauea Volcano in the 

southeast of Hawaiʻi Island is one of the most active volcanoes in the world, and until June 2018 

erupted nearly continuously since 1983, primarily from Puʻu ʻŌʻō on the East Rift Zone (ERZ). 

Kīlauea also had a lava lake between 2008 and 2018 (Neal et al., 2019). Unlike hazards 

associated with large magnitude, explosive volcanism characteristic of strato-volcanoes and 

caldera systems, the greatest losses from volcanism in Hawaiʻi typically result from relatively 

slow-moving lava flows. Kīlauea lava flows have covered the entire subdivision of Royal 

Gardens and inundating most of the village of Kalapana (Fig. 3.3b). On May 3, 2018, the 
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eruption at Puʻu ʻŌʻō moved further down the volcanoes Lower East Rift Zone (LERZ), when a 

series of fissures opened in Leilani Estates (a residential subdivision), destroying hundreds of 

homes (Neal et al., 2019). 
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Fig 3.3: a) Map of Hawaiʻi Island with historic and recent lava flows and b) zoomed in on the most recently active Kīlauea Volcano 
and Puna District. 
 

a. b. 
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The Hawaiʻi Property Insurance Association (HPIA) was created in 1991 to provide property 

insurance to homeowners who were not able to insure their homes in the private market because 

of the ongoing eruption at Kīlauea. During the 2014 lava flow, HPIA declared a moratorium on 

new insurance policies and a hold on increasing existing coverage for the Puna district (Donlon, 

2014). Although there were minimal direct losses from contact of the 2014 lava flow with real 

property (one house and out building were destroyed, a portion of a loading/unloading zone at a 

solid waste transfer station and an electrical power pole were covered by lava), real estate prices 

suffered temporary losses and 10-15% of the Pahoa region moved from the region (Nakaso, 

2015b, Poland et al., 2016). Most direct losses derived from mitigation activities by Hawaiʻi 

County, Hawaiʻi State and federal agencies in preparation for the lava flow, rather than from 

losses due to contact with lava. Mitigation activities included grading of three alternate roads, 

relocating several primary and secondary area schools and establishment of redundant critical 

facilities (e.g., police, fire, electric).  In 2015, the State of Hawaiʻi enacted Senate Bill 589, 

which acknowledged that part of the impact from the lava flow crisis was, “due to the imposition 

of a moratorium on the sale of new insurance policies in certain areas in the Puna district.” The 

bill allowed homeowners that already had insurance to renew their insurance policies and 

provide coverage for new buyers of the property. However, moratoriums can still be emplaced 

by HPIA during lava flow disasters for new insurance policies, as they were during the 2018 

eruption at the LERZ (Callis, 2018).  

2.4. Steamboat Springs 

Steamboat Springs is a ski resort town in Routt County, Colorado. Some 64% of the 

population of Routt lives within 10 km of the town of Steamboat Springs (U.S. Census Bureau, 

2010). There is no volcanic potential in the region.  



54 

3. BACKGROUND 

3.1. Alert Level Systems 

In 1977, the USGS developed a non-hazard specific three-level warning system for all 

potential hazards within their responsibility under provisions of the Disaster Relief Act of 1974 

(Mader, 1987). Major volcanic crises in the 1980’s led to not only the establishment of new 

volcano observatories, (Cascades, Long Valley, and Alaska), but also to the development of 

Volcano Alert Level Systems (VALS) that were unique to volcano hazards particular to each 

observatory, with the exception of Hawaiʻi Volcano Observatory (HVO) (Fearnley et al., 2012).  

As MSH erupted from May 1980 to 1986, the newly established Cascades Volcano 

Observatory (CVO) began to develop and implement the first VALS (Fearnley & Beaven, 2018).  

CVO used this warning system to issue alerts for 19 of 21 explosions during the 1980’s (Brantley 

et al., 2000).  

A prolonged period of heightened unrest of LVC beginning in 1978 prompted the issuance of 

a “Notice of Potential Volcanic Hazard” in 1982, the lowest alert at the time (Federal Register, 

2007). In 1983, the national three-level system was dropped to one tier following contentions 

with the local community and scientific stakeholders surrounding LVC and the town of 

Mammoth Lakes. The Long Valley Monitoring Project—which evolved into the Long Valley 

Observatory (LVO) and then to the California Volcano Observatory (CalVO)—was established 

in December, 1982 with the responsibility for coordinating research, monitoring, and hazard 

communication to the public (Hill et al., 2017). As with MSH, the LVO was unable to utilize a 

single level warning system, and implemented two different VALS before the national USGS 

standardization of VALS in 2006 (Hill et al., 2017).  
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In contrast to more recent establishments of CVO and LVO/CalVO, the Hawaiʻi Volcano 

Observatory (HVO) was established in 1912, but it never developed a VALS until the 

standardization in 2006.  Until then, HVO scientists communicated directly with local agencies 

and stakeholders to develop sophisticated response procedures to volcanic hazards (Fearnley et 

al., 2012) 

With such disparity between the VALs used by different observatories over the past four 

decades, it is difficult to assess the effectiveness of variable warning systems in the 

communication of volcano hazards. Winson et al. (2014) found that for events ending in an 

eruption, 19% (~30% for VEI > 3) of VALs issued between 1990 and 2013 accurately reflected 

the hazard before the eruption. Furthermore, the number of “accurate” VALs increases from 19% 

to 55% over time, and an increase in number of hazard alerts were issued where the alert level 

was increased, but there was ultimately no corresponding eruption. This research suggests that 

the success rate of volcanic alerts reflecting relative hazard level has improved over time.   

3.2. Social and Economic Trends 

Hazard proximity and impacts on housing prices have been examined for a variety of natural 

and technological hazards, often with inconsistent results. Generally, property located within or 

near flood hazard zones is lower than housing prices in less vulnerable areas (Bin et al. 2008; 

Zhang et al. 2009). Furthermore, housing prices were found to decline regionally following 

tornado and hurricane events (Ewing et al. 2006) and large earthquakes (Murdoch et al. 1993). 

Still, some studies have found no significant difference between property values inside and 

outside of flood zones (Babcock & Mitchell, 1980; Damianos & Shabman, 1979; Fried et al., 

1999; Zhang et al., 2009). Donovan et al., (2007) found that housing prices for parcels that were 

at high risk to wildfire were positively correlated before wildfire risk ratings were posted on the 
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Colorado Springs Fire Department website. After the information was posted, there was no 

correlation. 

Atreya and Ferreira (2015) found that housing prices were substantially lower in areas that 

had been inundated by floods, compared to properties within the same floodplain that had not 

been inundated. Additionally, Graham and Hall (2001, 2002) found that there were declines in 

housing prices after successive hurricanes. Collectively, these studies suggest that variability in 

the recency, frequency and severity of hazard events can influence risk perceptions, and 

ultimately the price that people are willing to pay for a home in a high-risk region (Lindell and 

Perry, 2004; Zhang et al. 2009). Furthermore, Zhang et al. (2009), suggest that property values 

are not always entirely dependent on hazard proximity, and that risk perceptions can be offset by 

the presence of amenities such as the world class alpine recreation at LVC and MSH, and 

proximity to coastlines and tropical forests in Hawaiʻi. 

Several studies have suggested that economic losses in the Long Valley region during the 

early 1980’s could be attributed to the presence of earthquake and volcano hazard notices 

(Mader, 1987, Bernknoph et al. 1990, Hill et al. 2017). Bernknoph et al. (1990) concluded that 

property values declined noticeably in the Long Valley region following increased perceived 

personal risk of property damage from earthquake or volcano hazards. Additionally, and in a 

multi-hazard survey of household preparedness in the LVVR, Peers (2019) found that the mean 

response ratings for earthquake risk perception were some 38% higher than volcanic risk, similar 

to a 30% difference between the hazard risk perceptions reported by Bernknoph et al. (1990).   

There were several national recessions recognized by the National Bureau of Economic 

Research (NBER) for the time period of this study (1974-2016) (NBER, 2012). There was an oil 
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crisis and stock market crash from November 1973 to March 1975. A short recession also 

occurred from Jan 1980 to July 1980 after interest rates were raised to counteract inflation in the 

1970s. The Iranian revolution and increasing oil prices also drove the USA into a deep recession 

from July 1981 to November 1982 (NBER, 2012). High interest rates and oil prices drove 

another recession from July 1990 to March 1991. The dot-com bubble and the terrorist attacks on 

9/11 (September 11, 2001) also lead to a recession from March 2001 to November 2001. Most 

prominently though, the Great Recession was caused by the subprime mortgage crisis from 

December 2007 to June 2009 (Grusky, Western, & Wimer, 2011).  

3.4. Research Objective 

The objective of this study is to compare housing prices and business patterns of the three 

volcanic regions in Hawaiʻi, California and Washington State and compare them with the control 

community in Colorado. The Long Valley region experienced volcanic alerts in response to high 

levels of unrest, while Kīlauea and Mount St Helens experienced direct losses from volcanic 

eruptions. Steamboat Springs was selected to observe economic trends in regions that are largely 

economically dependent on revenue from tourism, but are not threatened by active volcanoes. 

The analyses employ econometric methods to assess alert level and hazard level independently. 

4. METHODS 

4.1. Econometric Framework  

This study assessed economic climates from 1974 to 2016 by utilizing economic indicator 

indices in two annual time series econometric regression models for each of seven counties at 

risk to exposure of the three volcanoes Kīlauea, LCV and MSH. County Business Patterns (CBP) 

are annual data provided by the U.S. Census Bureau since 1964. Establishment numbers, annual 

payroll, and mid-March employment are useful for studying economic changes spatially and 



58 

temporally (Statistics of U.S. Businesses, 2018). The digital records for CBP in years prior to 

1986 were provided by the National Historical Geographic Information System (NHGIS). 

Regression and correlation analyses were run on the entire dataset. Additionally, trending growth 

rates for housing prices and business patterns were explored in detail. 

4.2. Dependent Variables 

4.2.1. Establishment, Employment and Payroll  

Establishment per 1000 km2, Employees per 1000 inhabitants, and Payroll per employee 

(EEP), were aggregated to create a composite indicator of business health. The EEP index was 

created following guidelines for developing composite indicator variables by the Organization 

for Economic Co-operation and Development (OECD). The variables were normalized by 

subtracting the mean over time, and dividing by the mean absolute difference and adding 100 as 

in the following equation: 

!"# =
%" − '"#
|')*#|

+ 100	

Where Its=Indexed time series 

xt= value at time t 
'"#=mean over time 
')*#=mean absolute value of difference from mean 

 
4.2.2. Housing Price 

This study utilized local Housing Price Indices (HPI) published by The Federal Housing 

Finance Agency (FHFA) (Bogin et al., 2016) to assess the behavior of the housing market over 

time. These data are annual, and referenced to a base year of 2000, from 1975 to 2017—

complete for most counties in this study.  
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4.3. Independent Variables 

4.3.1. Volcanic Alert and Hazard 

Past bulletin reports from the GVP and from the USGS were analyzed to capture the relative 

historic volcanic alert level. MSH was the only volcano that had a consistent distribution of alert 

levels on a comparable four-point scale to USGS standardized VALS. Therefore, MSH  received 

both an ordinal scale (no alert = 0, heightened unrest = 1, volcano advisory = 2 and volcano alert 

= 3) on the highest alert level based on the four level system used by CVO from 1980 to 2006 

issued per year, and (non-eruptive = 0, potentially hazardous eruption = 1).  

For LVC, only dichotomous variables were used to represent both published hazard 

statements and times of heightened unrest. Years in which reports indicate that an elevated alert 

level statement was issued for levels of unrest above background received a code of “1.” The 

years in which no alert was issued, or alerts were cancelled received a “0.” For example, the 

years of 1982 and 1983 received a code of “1” because of the release of the “Notice of Potential 

Volcanic Hazard” in 1982. In 1983, the notice was cancelled until 1991 when a five-level 

alphabetic alert system was emplaced. Therefore, the years 1983 to 1991 received a code of “0” 

despite high levels of caldera unrest. From 1991 to 1997, the alerts moved between lower levels 

of a 5-level alert system (Hill et al. 2017), all of which received a code of “1.” To account for 

years in which unrest levels could have warranted an alert above background levels that were not 

communicated due to the absence of a VALS at LVC, a binary (background levels = 0, elevated 

unrest = 1) scale was coded following archived USGS reports on volcanic activity. 

Since no VALS was in place for Kīlauea until 2006, and it has been erupting since 1983, 

codes were assigned by following FEMA Major Disaster Declarations (MDD) that were issued 
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for Kīlauea volcano. For each year that received an MDD, a code was assigned for the number of 

months of the incident period in that year.  

4.3.2. Recession 

This analysis included a variable to examine whether study regions experienced economic 

trends that followed national recessions. Years that the National Bureau of Economic Research 

(NBER) recognized a national recession received a code of “1,” while all other years received a 

code of “0.” Additionally, a separate dichotomous variable was created for the subprime 

mortgage price from 2007-2009.  

5. RESULTS 

5.1. Economic Trends 

The linear economic trends are summarized in Fig. 4a-d. From 1974 to 1981 both Mono and 

Inyo County’s EEP increased exponentially, and Inyo HPI increased some 65% from 1977 to 

1981. From 1981 to 1982 Inyo HPI decreased by some 21%, but rose 30% by 1983. During 1982 

and 1983, the average rate of change for EEP declined by some 84% for Mono County, but 

continued to increase for Inyo County. From 1984 to 1990, Mono County EEP increased relative 

to 1982-1983, while Inyo remained relatively the same, and Inyo HPI rose some 45%. Inyo HPI 

remained relatively constant from 1984 to 1987 and then increased some 45% until 1993 when 

Mono and Inyo HPI fell 6% and 3% respectively from 1993 to 1994. Mono EEP dropped sharply 

in 1991 and fluctuated for the remainder of the 1990’s. Mono HPI dropped about 8% from 1993 

to 1996. While EEP also declined from 1992 to 1993 for Inyo County, it quickly surpassed Mono 

by 1999. After EEP declined sharply from 1999-2000 for Inyo and Mono, both counties 

experienced positive overall growth in EEP and exponential increases in housing prices until 

2007.  
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With the exception of Skamania EEP during the 1990’s, MSH regional HPI and EEP growth 

were quite consistent between counties. On average, EEP rate of change was over 100% lower 

from 1978 than from 1975-1978 for Skamania, Cowlitz, and Lewis. Skamania EEP began to 

increase from 1980-1982, while growth in Cowlitz and Skamania returned in 1982. HPI 

increased slightly for Cowlitz and Lewis from 1979-1980, and declined 25% from 1980-1981 in 

Lewis. Cowlitz HPI continued to increase until 1981 at which time it decreased some 17% until 

1983. Lewis HPI rose by 37% from 1981 to 1982. Regional HPI remained relatively stagnant for 

the remainder of the 1980’s. Regional EEP fluctuated until 1986, at which point both Lewis and 

Cowlitz increased steadily until 1999 with the exception of minor fluctuations in the 1990’s. 

However, Skamania EEP declined to 1980 levels from 1988-1992. EEP declined from 1999 

through the early 2000’s for all three counties before reaching a maximum in 2007.  

The average rate of change for Hawaiʻi County EEP declined some 68% from 1983 to 1985 

relative to growth from 1974 to 1982. HPI fell about 2% from 1983 to 1987. Increases in 

Hawaiʻi EEP and HPI during the late 1980s leveled off around 1990 until dropping off sharply 

until 1995. From 1991 to 1997, Hawaiʻi HPI declined some 12% until rapidly increasing from 

the early 2000’s to 2007. 

Routt County (Steamboat Springs), the control in this study, saw steady increases in EEP 

from 1974 through 2007 with minor fluctuations in the 1980’s.  Similarly, HPI increased steadily 

from 1986 to 2003 with an accelerated increase to 2007 until a dramatic decline as evidenced in 

every dataset. 
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Fig. 3.4: Linear trends of housing prices and business patterns from 1974-2016. 
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5.2. Correlations 

Not surprisingly, Hawaiʻi County HPI had a significant negative relationship with months in 

which there was a disaster declaration for Kīlauea Lava flow (r = -.39) (see Table 1).  More 

importantly, HPI was also significantly negatively related to times in which a volcanic alert was 

issued for Mono (r = -.70) and Inyo Counties (r = -.31). Similarly, the dichotomous hazardous 

variable created for LVC was related to both Mono and Inyo HPI with r = -.54. Additionally, for 

LVC, alert level and hazard were only weakly interrelated (r = .36). 

Alternatively, HPI was either not related to, or had a significant positive correlation with 

MSH alerts (r = .47) and hazard (r = .62) for Skamania county. Unlike the weak correlation 

between alert and hazard level at LVC, MSH alert level and hazard were strongly correlated (r 

=.80). Despite HPI and EEP being strongly intercorrelated for all counties, none were 

significantly correlated with any volcano alert or hazard variables. 
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Table 3.1: Means, standard deviations, and correlations. *95% confidence, **99% confidence 

 

Case Variable Mean Std. N 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19
1 YEAR 1995 12.56 43

2 LVCVALS .21 .41 43 -.15

3 LVCBI .67 .47 43 -.17 .36
*

4 HELENSBI .42 .50 43 .00 -.09 .09
5 HIVO 4.07 5.58 43 -.26 .49

**
.49

**
.08

6 2007-09 .07 .26 43 .29 -.14 -.20 .32
*

-.20

7 INYOHPI 105.90 54.73 40 .90
**

-.31
*
-.54

**
.14 -.48

**
.48

**

8 MONOHPI 132.89 48.59 25 .74
**
-.70

**
-.54

**
.75

**
-.62

**
.50

*
.99

**

9 COWHPI 84.69 38.09 42 .95
**

-.19 -.35
*

.05 -.41
**

.47
**

.96
**

.93
**

10 LEWISHPI 91.46 42.38 41 .94
**

-.21 -.42
**

.07 -.45
**

.50
**

.97
**

.94
**

.99
**

11 SKAHPI 125.85 26.61 22 .77
**

-.55
**

-.44
*
.62

**
-.41 .58

**
.95

**
.93

**
.99

**
.98

**

12 HAWAIIHPI 115.21 54.58 40 .90
**

-.20 -.49
**

.13 -.39
*

.48
**

.98
**

.95
**

.95
**

.96
**

.97
**

13 ROUTTHPI 104.81 51.13 31 .93
**

-.46
**

-.57
**

.23 -.80
**

.54
**

.95
**

.92
**

.98
**

.98
**

.97
**

.92
**

14 INYOEEP 100 .92 43 .84
**

-.09 -.03 .14 -.16 .28 .81
**

.60
**

.86
**

.83
**

.29 .77
**

.68
**

15 MONOEEP 100 1.00 43 .82
**

.02 .08 .19 .07 .29 .78
**

.83
**

.81
**

.79
**

.69
**

.78
**

.72
**

.93
**

16 HAWAIIEEP 100 1.05 43 .89
**

-.01 -.15 .05 -.12 .35
*

.86
**

.92
**

.90
**

.88
**

.86
**

.88
**

.80
**

.90
**

.88
**

17 COWEEP 100 .89 43 .79
**

.11 -.02 -.09 -.05 .24 .66
**

-.07 .81
**

.76
**

-.31 .68
**

.41
*

.90
**

.86
**

.92
**

18 LEWISEEP 100 1.02 43 .86
**

.01 -.13 -.04 -.10 .31
*

.79
**

.55
**

.88
**

.85
**

.37 .80
**

.67
**

.93
**

.89
**

.96
**

.97
**

19 SKAEEP 100 .81 43 .82
**

-.45
**

-.25 .20 -.33
*

.39
**

.84
**

.89
**

.81
**

.81
**

.90
**

.81
**

.79
**

.74
**

.71
**

.73
**

.57
**

.68
**

20 ROUTTEEP 100 .82 43 .99
**

-.17 -.20 .04 -.31
*

.36
*

.93
**

.88
**

.98
**

.97
**

.90
**

.91
**

.96
**

.89
**

.85
**

.91
**

.83
**

.89
**

.823
*
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5.3. Regression 

The alert and hazard variables for the LVC region were not significant predictors in the 

regression models. The only significant volcano variable of the 14 regression models was for 

Skamania County for MSH. The 2007 to 2009 Great Recession variable and annual trend 

variables were significant predictors in nearly every model. Table 3.2 summarizes these results.
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Table 3.2: Regression results by volcanic region and county. 

 
 

Volcano County Variable B Std. Error Beta t Sig. Adj R2 B Std. Error Beta t Sig. Adj R2
LVCVals -32.38 19.55 -0.29 -1.66 0.11 0.38 0.22 0.16 1.73 0.09
Year 2.97 1.16 0.45 2.57 0.02 0.07 0.01 0.82 8.85 0.00
Crash 51.39 17.64 0.35 2.91 0.01 0.28 0.36 0.07 0.79 0.44
LVCVals -11.04 8.20 -0.09 -1.35 0.19 0.09 0.20 0.04 0.48 0.63
Year 3.79 0.31 0.81 12.41 0.00 0.06 0.01 0.83 9.19 0.00
Crash 47.95 13.17 0.23 3.64 0.00 0.19 0.32 0.05 0.57 0.57
HI MDD -0.07 0.67 -0.01 -0.10 0.92 0.03 0.01 0.14 1.97 0.06
Year 3.84 0.33 0.82 11.60 0.00 0.08 0.01 0.89 12.47 0.00
Crash 49.62 13.65 0.24 3.64 0.00 0.51 0.29 0.12 1.76 0.09
MSH Alert 0.80 3.21 0.01 0.25 0.80 -0.20 0.18 -0.11 -1.09 0.28
Year 2.75 0.13 0.89 21.23 0.00 0.06 0.01 0.78 7.76 0.00
Crash 31.18 6.44 0.21 4.84 0.00 0.16 0.37 0.05 0.45 0.66
MSH Alert 4.38 3.57 0.05 1.23 0.23 -0.15 0.17 -0.07 -0.87 0.39
Year 3.09 0.15 0.88 20.89 0.00 0.07 0.01 0.83 9.87 0.00
Crash 37.92 7.08 0.24 5.36 0.00 0.36 0.35 0.09 1.02 0.31
MSH Alert 15.86 5.56 0.29 2.85 0.01 0.26 0.14 0.16 1.78 0.08
Year 2.64 0.36 0.65 7.27 0.00 0.05 0.01 0.79 8.99 0.00
Crash 24.85 7.67 0.33 3.24 0.01 0.35 0.29 0.11 1.22 0.23
Year 4.78 0.22 0.85 22.22 0.00 0.06 0.00 0.96 36.09 0.00
Crash 54.24 6.51 0.32 8.34 0.00 0.25 0.09 0.08 2.96 0.01

0.96 0.97

0.81

0.94 0.64

0.94 0.728

0.84 0.71

LVC

Kilauea

MSH

None

Model 1 (HPI) Model 2 (EEP)

0.70 0.67

0.85 0.69

Hawaii

Cowlitz

Lewis

Skamania

Routt

Mono

Inyo

0.85
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6. DISCUSSION 

The correlation results from this study show that there is a similar and significant negative 

relationship between housing prices and volcanic alert at LVC, and between major lava flow 

disasters and housing prices at Kīlauea. This finding suggests that indirect losses from the 

increased threat of a volcano hazard could have significant, short-term impacts on property 

values comparable to direct impacts in volcanic regions largely dependent on revenue from 

tourism-based activities. It is understandable that housing prices may be substantially lower in 

areas that have been inundated by lava flows in recent history. This was supported by Atreya and 

Ferreir (2015) which found that prices for properties that had been physically inundated by 

floods were lower than prices within the same floodplain which had not been inundated.   

The threat of the June 27, 2014 Puʻu ʻŌʻō lava flow caused substantial indirect losses to the 

Pahoa region of Hawaiʻi, though the flow ceased before causing extensive direct physical losses 

(Poland et al. 2016). These losses were shared across county, state and federal governments 

along with taxpayers in general due to the various levels of government response. Although 

Poland et al. (2016) discuss a considerable impact to housing prices and residential migration 

from the Pahoa region in response to the lava flow, in this dataset, there is no noticeable trend in 

the island HPI or EEP during this period. Additionally, Hawaiʻi Senate Bill 589 acknowledges 

substantial impacts to businesses and property values, as the reason that insurance laws were 

“improved.” 

Claims in literature about the unrest of LVC (Mader, 1987; Bernknoph et al., 1990, Hill et 

al., 2017) leading to poor economic climate in the early 1980’s perceived by public as a result of 

the “Notice of Potential Volcanic Hazard” issued in 1982, is an understandable reaction from 

time series data observations in this study. Inyo HPI fell substantially from 1981-1982 and both 
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Mono and Inyo HPI growth was limited while LVO was using their first 5-level VALS (1991-

1997), which indicated low levels of unrest above background for most years (Hill et al., 2017). 

Additionally, although EEP was not significantly correlated with either volcano related variable 

for LVC, regional business growth rates declined during these times overall from previous rates. 

Economic trends of the MSH region show an immediate decline after 1980, accelerated from 

a downward trend beginning in 1978 for all counties. With the exception of Skamania county 

EEP in the mid 1990’s, overall trends resumed positive growth rates after 1982.  A 2015 report 

by Headwaters Economics supports this finding by claiming that the region experienced strong 

growth overall after the establishment of Mount St. Helens Monument. These findings, paired 

with close proximity to the major metropolitan of Portland OR, a major hub in the technological 

industry, could directly or indirectly contribute to the overall resilience of the regional economy.  

Additionally, periods of declining growth rates in these study regions often correspond 

linearly to national recessions recognized by NBER in the early 1980’s and 1990’s. However, 

statistically, pre-2007 recessions were not significantly correlated to economic indicators. Only 

the 2007-2009 Great Recession was a significant predictor variable in this study. In the control 

region of Steamboat Springs, the 2007 to 2009 recession was also a significant predictor of 

economic trends. 

Ultimately, the results of this study suggest that volcanic alert levels at the LVC caused a 

decline in economic trends, but the decline was only temporary and recoverable. Similar trends 

were observed at MSH and Kīlauea, which have experienced persistent episodic eruptions since 

the early 1980’s. These findings are consistent with findings from other natural hazards studies 
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including Graham and Hall (2001, 2002) which noticed immediate, but temporary declines in 

housing prices following successive hurricane events.  

7. CONCLUSIONS 

This study provides evidence that indirect impacts of volcanic alerts and volcanic activity 

should be examined independently. Volcano alerts and eruptions can both have impacts on 

housing markets and businesses in the short term, but these events are not significant predictors 

of long-term economic trends as with the affects from global recessions as seen during the Great 

Recession from 2007 to 2009. Overall, the volcanic regions in this study have experienced more 

annual variability since 1974 during episodic activity and unrest than non-volcanically active 

destination tourism regions such as Steamboat Springs, CO. Furthermore, volcano tourism could 

have a positive effect on regional economy as seen overall in the post-1982 Mount St. Helens 

region. 

Econometric analysis suggests that considerable direct losses from volcanic activity are not 

necessary to cause indirect losses that may result in a socio-economic crisis evidenced by the 

2014 lava flow crisis at Kīlauea and elevated unrest of the LVC. We identified an important 

issue to be addressed in disaster resilience—as federal government assistance is provided during 

the disaster response and recovery phase for direct impacts of Presidentially designated major 

disasters, there is limited or no assistance for indirect impacts as they are much more 

immeasurable or observable.  

The framework used in this study has implications to increase understanding surrounding 

social and economic activity in response to hazards and hazard alerts of all types. For volcano-

specific hazards, this methodology could be applied systematically to all regions at risk to 
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exposure from volcanic hazards. Additionally, as time series databases become more robust, this 

framework could be applied to smaller geographic regions within counties to further reduce 

uncertainty in quantifying impacts of volcanic activity.
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CHAPTER 4 

CONCLUSIONS AND FUTURE RESEARCH 

Ultimately, the two studies in this manuscript identify challenges in volcano risk 

communication, and disaster resilience in general. The results suggest that it may not necessary 

for a catastrophic volcanic event to occur for a social or economic crisis to occur. This notion has 

been implied specifically to the LVC case study by Mader (1987), Bernknoph et al. (1990), and 

Hill et al. (2017). The methods employed in this systematic examination provide insight into how 

persistent volcano crises challenge disaster resilience socially and economically.  

Study one focused on risk perceptions and preparedness in the Long Valley region and 

identified a negative relationship between the variables. Furthermore, the differences between 

levels of earthquake and volcano risk perceptions were of similar disparity between study one, 

and findings in Bernknoph et al. (1990). This, paired with some 42% of respondents having over 

30 years of tenure in the region, could suggest a cognitive bias influenced by the history with 

volcanic unrest in the region. Positive relationships between level of exposure and hazard 

adjustments for wildfire hazards, and also between level of exposure and risk perception of 

earthquake hazards are not unexpected, due to the relative imperceptible physical effects of 

prolonged volcanic unrest at LVC. These results could provide insight to further investigate 

issues in risk communication and perception of information channels, specifically during caldera 

unrest. 

Study two provides evidence that indirect impacts of volcanic alerts and volcanic activity 

should be examined independently. The econometric analyses suggest that extensive direct losses 

from volcanic activity are not necessary for indirect losses that can result in short term economic 

crises evident in county level business patterns and housing prices. These findings identified an 
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important issue to be addressed in disaster resilience. Federal government assistance is provided 

during the disaster response and recovery phase for direct impacts of presidentially designated 

major disasters, however, there is limited or no assistance for indirect impacts as they are much 

more immeasurable or observable.  

The framework of study two could be applied on a national scale by following the outlined 

methodology. As databases on economic indicators become more robust, trends could be 

explored in smaller communities, perhaps reducing uncertainty in the analysis. Furthermore, the 

framework can be applied to hazards and hazard alerts of all types. Recognizing that crises are 

social phenomena, and disasters are physical events, the methods used to estimate the impacts of 

disasters should continue to be multidisciplinary in nature.   
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