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ABSTRACT

Comparison of Imputation Methods for Mixed Data Missing at Random

by

Kaitlyn Heidt

A statistician’s job is to produce statistical models. When these models are precise

and unbiased, we can relate them to new data appropriately. However, when data

sets have missing values, assumptions to statistical methods are violated and produce

biased results. The statistician’s objective is to implement methods that produce un-

biased and accurate results. Research in missing data is becoming popular as modern

methods that produce unbiased and accurate results are emerging, such as MICE

in R, a statistical software. Using real data, we compare four common imputation

methods, in the MICE package in R, at different levels of missingness. The results

were compared in terms of the regression coefficients and adjusted R2 values using

the complete data set. The CART and PMM methods consistently performed better

than the OTF and RF methods. The procedures were repeated on a second sample

of real data and the same conclusions were drawn.
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1 INTRODUCTION

Data makes up the world around us. In our continually growing society, data

analysis is becoming more important every single day. As companies and businesses

continue to flourish, the volume of data they collect expands. However, the expansion

of data comes hand in hand with the abundance of missing data. Missing data is the

data value that is not stored for a variable in the observation of interest [1]. The

research behind missing data is exceptionally important as missing data can lead

to many problems. Missing data is an issue across all fields including marketing,

health sciences, and political science. When missing data arises, incorrect conclusions

are often drawn. A glaring issue in data analysis occurs when researchers have an

incomplete data set, but draw conclusions based on the assumption that the data

set was complete [1]. While this simplifies the conclusions that researchers make, the

conclusions are not valid and are usually incorrect. Missing data causes both bias in

the estimation of parameters and a reduction in statistical power.

Chapter 2 addresses the types of missing data and the issues that consequently

arise. How these issues are handled, including both traditional and modern methods,

are also discussed. We discuss multiple imputation by chained equation approaches

in Chapter 3. In Chapter 4, the data set used is introduced along with the analysis

of the regression model. Chapter 5 reviews the model selection. Chapters 6 and

7 discuss the evaluations of the data sets chosen. The conclusion and future work

sections follow in Chapters 8 and 9.
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2 MISSING DATA

There are three types of missing data: missing at random (MAR), missing com-

pletely at random (MCAR), and missing not at random (MNAR). When data are

MAR, the missing responses depend on the set of observed responses, but are not re-

lated to the specific values expected to be obtained. This is usually the most realistic

assumption, and will be the assumption made with the data used in this research.

When data are MCAR, the missing responses are not related to either the specific

value which is supposed to be obtained or the set of observed responses. The analysis

remains unbiased if data are MCAR, but it is often difficult to assume MCAR. When

data are MNAR, a problem is presented. When this happens, one must model the

missing data to obtain unbiased estimates.

Suppose a survey asks students their gender, height, and weight. Since many

females may choose not to answer the question regarding their weight, the values

of weight that are missing are related to gender, and not necessarily the value of

weight itself. This is an example of data MAR. Now consider an additional question

regarding the family income of the students. The missing values are likely directly

related to the value of income itself, so these missing values are MNAR. Consider one

last question that asks the students to report their favorite color. Since this is not a

personal question and there would be no reason for someone to not report his or her

answer, missing responses to this question would be MCAR.
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2.1 Traditional Methods

There are many methods that have been traditionally used to deal with missing

data. However, each of them come with limitations. A major downfall is that the

following methods assume that the data is MCAR.

A common method used when data are missing is complete case analysis (CCA).

When implementing CCA, entire observations that are missing at least one value are

dropped from the analysis [11]. A major disadvantage of using this method is that

entire observations are dropped, even if all but one of the values are present and

valid. In this method, the researcher assumes that the collection of complete cases is

a random sample of the originally targeted sample [11]. However, in real data, this is

not always the case since there are often reasons as to why data values are missing.

Mean replacement is another commonly used method to impose when missing data

is present. Mean replacement involves replacing all the missing values of a variable by

the mean of the values present for that variable [1]. A positive aspect to this method

is that all cases can be used in the analysis, even if one or more of its associated

values is missing. In this method, the researcher must assume that the mean of the

observed observations is a reasonable estimate for the missing cases [1]. While this

may sometimes be the case, generally values that are missing are not strictly random,

thus leading to inconsistent bias with this method [1].

Pairwise deletion is often used to try to minimize the loss that occurs from CCA

[12]. In pairwise deletion, correlation matrices are computed for the pairs of variables

that are present. Thus, the corresponding correlation coefficients are not based on

the same subjects or number of subjects. However, in this method, software uses the

17



average sample size across all analyses, therefore standard errors are typically either

underestimated or overestimated [12].

2.2 Modern Methods

With many limitations of the traditional methods, modern methods have been

developed to handle missing data while trying to alleviate the issues with the tra-

ditional methods. The modern methods used when missing data can be split into

two categories: joint modeling (JM) and multiple imputation of chained equation

(MICE).

2.2.1 Joint Modeling

JM is used when one is studying longitudinal and time-to-event data. JM is an

attractive approach to handling the missing data in these studies because JM provides

efficient estimates of treatment effects and reduces bias in these treatment effects

[13]. The JM consists of a linear model with random effects and has two components:

the longitudinal component and the time-to-event component [13]. JM assumes a

multivariate normal distribution, as JM draws missing values simultaneously for all

incomplete variables using a multivariate normal distribution [24]. It is often difficult

to assume a multivariate distribution, thus our focus in this paper will be on MICE.

2.2.2 Multiple Imputation of Chained Equation

MICE is also known as fully conditional specification (FCS). Unlike JM, MICE

methods impute variables one at a time from a series of univariate conditional distri-
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butions [24]. A main emphasis in MICE is that multiple imputations are computed,

rather than a single imputation. Multiple imputations help account for uncertainty

in the imputations, since single imputations are often not precise. An advantage of

MICE is that the approach is flexible to the type of data.

Incomplete Data Imputed Data Analysis Results Pooled Data

mice() with() pool()

Figure 1: Diagram for MICE method [16].

In Figure 1, we observe the sequence in which incomplete data is imputed, an-

alyzed, and then pooled. The results are given to us in R, and we can specify the

number of times we want to impute our data before pooling the results.

There are many modern methods used in handling missing data that are quan-

titative. First, there is predictive mean matching (PMM). PMM is an attractive

approach to use when quantitative variables are not normally distributed. When us-

ing PMM, the imputed values are real values that are “borrowed” from individuals

with real data. The PMM method finds the complete observation with values closest

to the observation with missing values, and then the missing values are replaced with

the observed values from the complete case [2]. Then, we have linear regression. Lin-
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ear regression involves a predictive analysis in which regression estimates are used to

explain the linear relationship between one dependent variable and one or more in-

dependent variables. Next, we consider Bayesian linear regression (BLR). BLR is an

alternative approach to linear regression. However, in BLR, the distribution of possi-

ble models parameters is based on the data and the prior. In BLR, linear regression

is formulated using probability distributions rather than point estimates [14]. Then,

there is unconditional mean imputation (UMI). When implementing UMI, missing

values are replaced with the mean of the observed values for that variable.

Similarly, there are many modern methods used in handling missing data for cat-

egorical data. The first of these methods involves implementing a two-level linear

model (TLLM). When producing a TLLM, one assumes hierarchical data, usually

nested within groups. The response variable is only measured at the lowest level,

where as the explanatory variable(s) are measured at all levels. In the TLLM, in-

dicator variables are created for the categorical variables. In the first stage of the

procedure, the predicted probabilities of belonging to each category must be com-

puted, corresponding to each indicator variable used in the second stage [15]. The

data set is completed by substituting these values in for the missing values. Next,

we consider logistic regression. Logistic regression is typically applied to a binary

dependent variable and explains the relationship between one dependent binary vari-

able and one or more independent variables. In this method, complete cases are used

to estimate the logistic regression model, and then this model is used to predict the

missing values [16]. Similarly, one can implement a multinomial logit model (MLM).

Implementing an MLM only differs from implementing logistic regression in that the
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dependent variable has more than two discrete outcomes. Next, one can implement

an ordered logit model (OLM). An OLM is used when the dependent variable has

more than two outcomes and the values have a meaningful sequential order where the

next values are higher than the previous values. This method uses frequencies to fill

in missing values for ordinal variables, such as low, medium, high or a 5-star rating

system [17]. Lastly, we consider linear discriminant analysis (LDA). LDA involves

preprocessing the data to reduce dimensions. Then one separately analyzes multiple

classes of objects by splitting the data into a training set and a testing set. The

training set is composed of complete cases, and then the resulting model is used to

impute the values in the testing set [18].

Now, the focus of this paper considers modern methods that can be used when

working with mixed data, data that consists of both quantitative and categorical

variables.
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3 MICE METHODS FOR MIXED DATA

There are several methods used to impute mixed data. Mixed data is common,

as it allows for both categorical and continuous variables in the data set.

3.1 Classification and Regression Trees

One can use classification and regression trees (CART), also known as decision

trees, to impute missing values. In a classification tree, the predicted outcome will

be a class to which the data belongs. In regression trees, the predicted outcome is a

real number.

In Figure 2, we observe a classification and regression tree that predicts systolic

blood pressure of the subject. At the first level, this tree involves regression, in which

the subject will be moved to the following level dependent on whether the subject

has diastolic blood pressure less than 93 or not. At the third level, the tree involves

classification, in which the subjects will move to the fourth level if cuff size is not 1

(c1=0) and will be predicted to have systolic blood pressure of 100.6 if cuff size is 1.

Variable importance decreases at each lower level of the tree, meaning diastolic blood

pressure is the most important variable in this tree, followed by cuff size and blood

pressure time.
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Figure 2: Diagram of Classification and Regression Tree

Imputation in CART is first implemented by fitting the classification and regres-

sion tree with the observed data. Next, the method determines which terminal node

of the fitted tree each missing observation is predicted to end up in. Lastly, a random

draw is made for the member in the node, and we take the observed value from that

draw as the imputation [19].
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3.2 Predictive Mean Matching

PMM is often used because it produces realistic values. This is because PMM

takes values from individuals that were studied [2]. This method searches for the

complete case most similar to the case with missing values, and replaces those missing

values with the corresponding values from the complete case. The PMM approach is

becoming more popular since it has become embedded in MICE software [2]. While

PMM is similar to the regression approach, PMM can often be more appropriate

than regression, especially when the assumption of normality is violated [4]. PMM

works by replacing missing values with an observed value from the observation whose

regression-predicted values are closest to the regression-predicted value for the missing

value from the simulated regression model [4]. Thus, the imputed values are always

realistic and representative of a value that the missing value could be. Constraints

and bounds are always met, as well as discrete or continuous conditions.

3.3 Random Forest Approaches

A random forest (RF) is a collection of multiple decision trees fit with training

data. For continuous variables, RF imputes the missing values by randomly draw-

ing from independent normal distributions, centered on means predicted from RF.

However, for categorical variables, RF predicts missing values trained on observed

values.
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3.3.1 Proximity Imputation

When using the proximity imputation method, one must pre-impute the data.

This means one must use some method of imputing the missing values before a ran-

dom forest model can be fit. Quantitative missing values can be imputed by taking

the median of the non-missing values, while categorical missing values can be im-

puted by taking the most occurring non-missing value [6]. This is called strawman

imputation. Once the data is pre-imputed, a random forest model is fit. A symmetric

n x n proximity matrix is produced. Each (i,j) entry represents the fraction of trees

in which elements i and j share the same terminal node [5]. One wishes to see sim-

ilar observations on the same terminal nodes and dissimilar observations in separate

terminal nodes. The proximity matrix is then used to impute the original missing

values in the data [6].

When working with mixed data, quantitative and categorical values are imputed

using different methods. The proximity weighted average over non-missing data is

used to impute quantitative variables and the largest average proximity over non-

missing data is used to impute categorical variables [6]. Once the missing values are

imputed, a new random forest is produced and the procedure can be iterated as many

times as the researcher deems sufficient.

When using RF in R, one chooses how tree nodes are to be split. The default in

RF tests all possible split points for each of the potential splitting variables. However,

this method can be computationally extensive when working with a large number of

observations or variables. When this is the case, one can use a method of RF in

which random splits are chosen. This method of random splitting is considerably
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faster than deterministic splitting [6]. One can speed up the splitting process even

further by using pure random splitting. In this method, no splitting rule is applied.

Each tree node is split by randomly selecting both a variable and split point [6].

3.3.2 On-the-fly Imputation

Unlike proximity imputation, on-the-fly imputation (OTF) simultaneously im-

putes data while growing the forest [6]. This method is designed to address the weak-

nesses of proximity imputation, which include having biased estimates and variable

importance. In OTF, split statistics are calculated using only observed data. When

data is missing, a value is imputed using a random value from the in-bag observed

data [6]. After each split, imputed values are reset to missing. Once the terminal

nodes are reached, the missing values are imputed using out-of-bag (OOB) observed

terminal node data from all the trees. The average observed value for quantitative

values is used and the maximum observed value for categorical values is used.

The variables used to split each node are selected randomly. The nsplit func-

tion in R can be implemented to increase computational speed. This function uses

random splitting. One can also implement pure random splitting to further increase

computational speed. The process can then be iterated. It is important to note that

during the first iteration, OOB estimates are used. For each additional iteration,

in-bag estimates must be used because no OOB estimates exist [6].
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3.3.3 missForest and mForest Imputation

In contrast to other imputation methods, the missForest algorithm involves a pre-

diction problem. Missing data for the response variable is predicted by first imputing

data. The data is imputed by regressing each variable against the other variables

[6]. Depending on how many variables one is working with, this process can be com-

putationally slow. If one is working with n variables, n forests will be fit for each

iteration. When n is large, one may wish to implement mForest instead, which is a

computationally faster version of missForest. This method involves assigning the n

variables to groups, which in turn leads to less forests being fit.

Each forest is grown using multivariate splitting. Missing values in the response

are excluded and the split-rule is averaged over observed responses [6]. Prediction

methods are used to impute the final missing response values. In some studies, mFor-

est has been shown to perform as well as missForest, even with less computations.
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4 MODEL SELECTION

It is important that health care professionals are able to get accurate blood pres-

sure readings from patients. Unusual blood pressure readings can often be signs of

hypertension or other diseases that can adversely affect lives. The data set chosen to

analyze was collected by the Centers of Disease Control and Prevention (CDC) from

2007-2008 and was first published in 2009 [7]. The CDC asked questions to and took

measurements on the examinees in order to collect various statistics. The examinees

were of all ages and backgrounds. We chose to predict the systolic blood pressure

reading given a combination of both categorical and continuous predictors.

The response variable, systolic blood pressure, was collected on both children and

adults. The first readings ranged in values from 74 mmHg to 230 mmHg. For very

young children, it is healthy for this reading to be as low as 80 mmHg and as great as

120 mmHg. For most adults, a healthy reading ranges between 110 mmHg and 130

mmHg.

There are a total of 7146 observations that have complete responses on all the

variables measured, including the response variable and all predictor variables. The

continuous predictor variables include blood pressure time, pulse rate, maximum in-

flation level, and diastolic blood pressure. The categorical predictor variables include

cuff size, pulse type, and responses given to questions regarding if the examinee has

had food, alcohol, coffee, or a cigarette in the past thirty minutes. Of these categorical

predictors, only cuff size has more than 2 levels.
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4.1 Fitted Model

After analyzing the data, the final regression model found is:

Ŷi = − 13.8648 − 0.0071Xi1 + 1.4319Xi2 − 3.1359Xi3 − 2.3824Xi4 − 1.5503Xi5

+ 0.0309Xi6 + 0.9287Xi7 + 0.0437Xi8 + εi for i=1,...,n,

(1)

where the predictor variables include PEASCTM1, cig, cuff1, cuff2, cuff3, BPXPLS,

BPXML1, and BPXDI1, respectively. The variable “PEASCTM1” measures blood

pressure time recorded in seconds, where the values range from 45 to 1521. The

indicator variable “cig” is equal to 1 if the examinee has smoked a cigarette in the

last 30 minutes, and is equal to 0, otherwise. Indicator variables were created for

cuff size, where “cuff1” equal to 1 refers to an examinee measured in a child sized

cuff (9 cm by 17 cm), “cuff2” equal to 1 refers to an examinee measured in an adult

sized cuff (12 cm by 22 cm), and “cuff3” equal to 1 refers to an examinee measured

in a large sized cuff (15 cm by 32 cm). If “cuff1”, “cuff2”, and “cuff3” are all equal

to zero, the examinee was measured in a thigh sized cuff (18 cm by 35 cm). The

variable “BPXPLS” measures pulse rate over 60 seconds. The 30 second pulse rate

was recorded and then multiplied by 2. The values range from 40 to 224. The

variable “BPXML1” measures maximum inflation level in mm Hg, where the values

range from 110 to 240. The variable BPXDI1 measures diastolic blood pressure in

mm Hg, where the values range from 0 to 116.
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4.2 Results

One of the tests performed during model selection was the global F -test. The

hypotheses were:

H0 :β1 = β2 = ... = β14 = 0

H1 :At least one βj does not equal 0 for j=1,...,14.

This test was performed on the set of 4 continuous predictor variables, as well as

8 categorical predictor variables containing 10 indicator variables. The resulting p-

value was less than 0.0001, so we reject the null hypothesis and conclude that at least

one predictor is significant in the model.

The global F -test was performed again after reducing the model to 4 continu-

ous predictor variables and 2 categorical predictor variables containing 4 indicator

variables, and the hypotheses were:

H0 :β1 = β2 = ... = β8 = 0

H1 :At least one βj does not equal 0 for j=1,2,...,8.

The resulting p-value once again was less than 0.0001, so we conclude that at least

one predictor is significant in the model.

4.3 Variable Selection and Model Building

When fitting the model, the variable selection was fairly simple due to cooperative

data. In the initial multiple linear regression model with 4 continuous predictor

variables and 10 indicator variables, there were no issues. A model was fit, and the
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conclusion was that at least one predictor was needed in the model. In the process of

trying the reduce the model, most tests and processes yielded similar results.

Looking at the initial summary output, using α = 0.05, the model suggests that

the predictors needed include “PEASCTM1”, “cig”, “cuff1”, “cuff2”, “cuff3”, “BPX-

PLS”, “BPXML1”, and “BPXDI1.” One method I chose to implement was back-

wards stepwise regression with alpha set to 0.05. This method suggested that the

best model include 7 of the possible 14 continuous and indicator variables, including

“PEASCTM1”, “cuff1”, “cuff2”, “cuff3”, “BPXPLS”, “BPXML1”, and “BPXDI1”.

When alpha was set to 0.10, the same method suggested that the best model include

the previous 7 continuous and indicator variables, with the addition of “cig”. This

variable selection is the same as the model chosen by including the variables in the

multiple regression model with p-values less than 0.05. The models were evaluated

using the adjusted R2 and Mallow’s Cp criteria. The Cp method showed that the

best model had the same 8 predictors as the previous models, the adjusted R2 method

suggested that a model with only “BPXML1” as a predictor would have only slightly

weaker predictive ability than many of the more complex models. The adjusted R2

for the original model with all 14 predictors was 0.8512, while the adjusted R2 for the

model reduced to only 1 predictor1 was 0.8464. Thus, nearly 85% of the variability

in systolic blood pressure can be explained by its linear relationship with only maxi-

mum inflation level. However, for the purpose of this research, I chose to work with

the more complex model including 4 continuous predictors and 4 indicator variables.

Figures 3-6 show the added variable plots for the 4 continuous predictors to ensure

these variables did not need to enter in the model in a curvilinear fashion. Since
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these plots did not seem to have any severe curved pattern, entering the variables in

a linear fashion seems appropriate.

4.4 Predictive Ability

The PRESS statistic was calculated as 406742.43, and it was compared to SSE =

405658. The ratio of the PRESS statistic and SSE yielded a 1.002673 value, which

suggests that the model has good predictive ability, as ratios between PRESS and

SSE close to 1 suggest good predictive ability and ratios between PRESS and SSE

that are much larger than 1 suggest poor predictive ability.

4.5 Assumptions

Since the data set is large (over 7000 observations), the assumption of normality is

met due to the Central Limit Theorem. Next, we checked for constant error variance

in both the full and the reduced models. In Figure 7 and Figure 8, we see almost

identical plots that show mostly random scatter, which suggest constant error variance

is satisfied in both the full and reduced models.

Next, we checked for issues we may have with multicollinearity. In both the full

and reduced model, multicollinearity did not seem to be an issue. The largest VIF

value detected was less than 2.5, while many were near 1, which is what one wants

to see. Only VIF value larger than 10 are severe and need to be checked out. I

additionally graphed and calculated the pairwise correlations between the 4 continu-

ous predictors. In Figure 9, it seems that none of the pairwise relations between the

continuous predictor variables have strong linear relationships. When calculated, the
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pairwise correlations were low (between -0.175 and 0.377), which results in the same

conclusion about there not being an issue with multicollinearity.

4.6 Outlier Detection

Multiple methods to detect for both outliers and influential observations were

employed. Out of the 7146 observations, only a few were flagged as outliers in the Y

direction. However, there were quite a few observations that were flagged as outliers

in the X direction using the hii rule. In Figure 10, we observe that many observations

fell above the 0.0025 threshold ((2*p)/n), where p = 9 and n = 7146.

Next, both DFFITS and Cook’s distance were found to check for influential obser-

vations. In Figure 11, we observe many observations falling above or below the +/-

(0.071) threshold (+/- (2*sqrt(p/n))), where p = 9 and n = 7146. In Figure 12, the

influential observation threshold is 0.927 (qf(0.5,p,n−p), where p = 9 and n = 7146) ,

so no observations are detected as influential. Since the reduced model yielded strong

results, nothing was done to remove potentially outlying or influential observations.
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Figure 3: Partial regression plot created using the variable PEASCTM1.

Figure 4: Partial regression plot created using the variable BPXPLS.
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Figure 5: Partial regression plot created using the variable BPXDI1.

Figure 6: Partial regression plot created using the variable BPXML1.
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Figure 7: Residual plot created using the full model to check for constant error

variance.

Figure 8: Residual plot created using the reduced model to check for constant error

variance.
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Figure 9: Pairwise correlations between the four continuous predictor variables.
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Figure 10: Outlier detection in X using hii rule.
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Figure 11: Checking for influential observations using dffits rule.
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Figure 12: Checking for influential observations using Cook’s rule.
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5 IMPUTATION MODEL SELECTION

Now that a regression model has been fit to the complete data set, we constructed

a function to randomly remove values from the complete data set at levels of 10%,

20%, 30%, 40%, 50%, and 60%. The function removed values from both the response

variable and the categorical and continuous predictor variables. There are four levels

for the cuff size variable, so if one of the values was missing, we made all of the values

missing.

Since the data set contains both continuous and categorical variables, we are lim-

ited to which methods in the MICE package can be implemented. The four methods

that will be implemented include “cart” (classification and regression trees), “sample”

(on-the-fly imputation), “rf” (random forest), and “pmm” (predictive mean match-

ing). Each of these methods will fit a model at each level of missingness to produce

a total of twenty-four multiple regression models.

Once the models were fit, we compared each estimated regression coefficient to the

parameters from the multiple regression model produced by the complete data set. We

calculated the associated percent deviation indices (PDI) for each of the 216 estimated

regression coefficients and constructed one-sample t-tests in order to determine if these

values were significantly different from the multiple regression model parameters.

In addition to calculating PDI values for each estimated regression coefficient,

we computed the R2 and adjusted R2 values for each of the twenty-four imputation

models. These values were used to determine the prediction accuracy of the imputa-

tion models. We compared the prediction accuracy of each imputation model to the

prediction accuracy of the multiple regression model fit with the complete data set.
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This helped us determine which methods of imputation perform well at given levels

of data missingness.

We computed the proportion of missing values for the response variable and each

of the predictor variables at each of the six levels of data missingness. The proportions

will be compared within their respective data set, as well as among each of the six

data sets.
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6 EVALUATION OF IMPUTATION MODELS

The relative efficiency (RE) for a model is used to determine how efficient param-

eter estimates will be given the number of imputations and the fraction of missing

observations [3].

The equation for RE is given by

RE =
1

1 + λ
m

where λ is the proportion of missing values and m is the number of imputations [20].

In Table 1, we observe that for each value of the number of imputations, RE

decreases as the proportion of missing values increases. We also notice that within

each level of data missingness, RE increases as the number of imputations increases.

While the calculated RE values do not vary much between the number of imputations

for the smaller proportions of level missingness, we chose to use 50 imputations for

each of our twenty-four models. The larger values for the number of imputations will

not only make RE increase, but the standard error values will be more accurate and

therefore yield for accurate p-values [3].

6.1 Estimated Regression Coefficients

In Table 2, we observe the parameter values for the multiple regression model

produced by the complete data set. These values will be used as a comparison to

each of the estimated regression coefficients from each of the four imputation models

at levels of 10%, 20%, 30%, 40%, 50%, and 60% of data missingness. The estimated

means of the regression coefficients from the CART, OTF, RF, and PMM imputation
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models at each level of data missingness are given in Tables 3, 4, 5, and 6. We

observe that the estimated means of the regression coefficients from the CART and

PMM imputation models seem to be more similar to the parameter values than for

the OTF and RF imputation methods.

6.2 Percent Deviation Index

In Table 7, we observe the ranges of each of the estimated regression coefficients

for the CART, OTF, RF, and PMM imputation methods. For some of the estimated

regression coefficients, we observe that the OTF and RF imputation methods have

noticeably larger ranges than the CART and PMM methods. For the rest of the

estimated regression coefficients, all four models seem to have relatively similar range

values.

In Tables 8, 9, 10, and 11, we observe the PDI values for each of the estimated

regression coefficients from the CART, OTF, RF, and PMM imputation models at

each level of data missingness. The equation for PDI is given by

PDI =

(
Original reg coef − Mean of estimated reg coef

Original reg coef

)
∗ 100.

In their respective tables, we observe that many of the PDI values are large and

in some cases extremely large, especially for the estimated regression coefficents in

the OTF and RF imputation models. In general, we see that the PDI values increase

as the proportions of data missingness increase. This does not seem unusual, as we

expect that the imputation models may not perform as well as the proportions of

missing values increase. However, with the CART and PMM imputation models, we
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notice that some of the PDI values decrease at the 40% level of data missingness,

which is interesting.

6.3 Model Accuracy

Since the PDI values were so unexpectedly large, we were concerned that each of

the imputation methods may not be performing well. To test this theory, the R2 and

adjusted R2 values were calculated for each of the four imputation models at each

level of data missingness. We used the R2 and adjusted R2 values from the multiple

regression model produced by the complete data set as a comparison. These values

are 0.8513 and 0.8512, respectively. The R2 value is the statistical measure that

represents the proportion of the variance for a dependent variable that is explained

by an independent variable or variables in a regression model [21]. The adjusted R2

value is the R2 value, adjusted for the number of independent variables in the model.

We wish to see these values close to 1, with the adjusted R2 value close to the R2

value. When the adjusted R2 is smaller than the R2 value, this means that we have

independent variables in the model that do not need to be there. This could result

from multicollinearity among independent variables. In Tables 13, 14, 15, and 16,

we observe the R2 and adjusted R2 values calculated for each of the four imputation

models at each level of missingness. We notice that the R2 and adjusted R2 values

are large and similar to the values calculated from the regression model produced

by the complete data set for both the CART and PMM imputation methods. This

holds true at each of the six levels of data missingness. The values do not decrease

much as the proportion of data missingness increases, which means that these two

45



methods are performing well across all levels. Interestingly, the R2 and adjusted R2

values increase slightly at the 40% level of data missingness, which is similar to what

we noticed about the PDI values at the same level.

However, the same can not be said for the OTF and RF imputation methods. In

particular, the R2 and adjusted R2 values for the OTF are very poor. Even at only the

10% level of data missingness, the independent variables are barely explaining half of

the variation in the dependent variable. The RF imputation performed slightly better

than the OTF imputation method, but the R2 and adjusted R2 values decrease steeply

as the proportion of data missingness increases.

6.4 Standard Deviations for Regression Coefficients

The standard deviations for each of the parameters from the multiple regression

model produced by the complete data set, as well as the standard deviations from

each of the regression coefficients from each imputation model at each level of data

missingness are given in Tables 17, 18, 19, 20, and 21. These values are measures

of how the data values for each parameter and estimated coefficient vary around the

mean of that parameter or estimated coefficient. The OTF and RF imputation meth-

ods seem to yield larger standard deviations than the CART and PMM imputation

methods for each of the estimated regression coefficients.

6.5 Significance of Regression Coefficients of Imputation Models

We constructed one-sample t-tests for each of the estimated regression coefficients

for each of the four imputation models at each level of data missingness. The following
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hypotheses are given:

H0 :β̂i = βi,where i=0,1,...,8

H1 :β̂i does not equal βi for i=0,1,...,8.

We set α = 0.05. When p-value < 0.05, we reject the null hypothesis and conclude

that our estimated regression coefficient is significantly different from the parameter

from the multiple regression model produced by the complete data set. The significant

p-values are in bold in Tables 22, 23, 24, and 25. We see that the majority of the

p-values for the estimated regression coefficients are significant for the OTF and

RF imputation methods, while the CART and PMM imputation methods have much

fewer p-values that are significant. We notice that in general, especially for the CART

and PMM imputation models, there are more significant values as the level of data

missingness increases.

6.6 Significance of Regression Coefficients of Imputation Models, Adjusted for

Multiple Testing

Since there are multiple t-tests being done simultaneously, we must adjust our

p-values for multiple testing because the probability of committing a false statistical

inferences considerably increases when more than one hypothesis is simultaneously

tested [22]. We used the Benjamini-Hochberg (BH) procedure in R to adjust for

multiple testing in order to help avoid Type I errors, where a Type I error is the

probability of rejecting the null hypothesis, when in fact the null hypothesis is true

[23]. In Tables 26, 27, 28, and 29, we observe the adjusted p-values, where the
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significant p-values at the α = 0.05 level are in bold. While the significance of most

of the p-values did not change with the BH adjustment, there were some p-values

that are no longer significant.

6.7 Proportion of Missing Values for Each Variable

In Tables 30, 31, 32, 33, 34, and 35, we observe the proportion of missing values

for the dependent variable and each of the independent variables in the data sets

where 10%, 20%, 30%, 40%, 50%, and 60% of the values are missing. We observe

that at each of the levels of data missingness, all of the variables seem to have fairly

equal proportions of missing values.

Table 1: Relative efficiency of the imputation models for various numbers of impu-

tations at several levels of data missingness.

m 10% 20% 30% 40% 50% 60%
5 0.9804 0.9615 0.9434 0.9259 0.9091 0.8929
10 0.9901 0.9804 0.9709 0.9615 0.9524 0.9434
20 0.9950 0.9901 0.9852 0.9804 0.9756 0.9709
30 0.9967 0.9934 0.9901 0.9868 0.9836 0.9804
40 0.9975 0.9950 0.9926 0.9901 0.9877 0.9852
50 0.9980 0.9960 0.9940 0.9921 0.9901 0.9881

Table 2: Parameter values for the multiple regression model produced by the complete

data set.

Parameters β0 β1 β2 β3 β4 β5 β6 β7 β8
Actual Values -13.8648 -0.0071 1.4319 -3.1359 -2.3824 -1.5503 0.0309 0.9287 0.0437
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Table 3: Estimated means of the regression coefficients from the CART imputation

model at each level of missingness.

% Imputed β̂0 β̂1 β̂2 β̂3 β̂4 β̂5 β̂6 β̂7 β̂8
10 % -14.1396 -0.0077 1.2658 -3.1096 -2.0973 -1.2443 0.0333 0.9300 0.0433
20 % -14.0843 -0.0076 1.6402 -2.6815 -2.0289 -1.0674 0.0312 0.9301 0.0410
30 % -14.7466 -0.0069 1.9031 -2.0715 -1.7355 -0.7974 0.0299 0.9266 0.0512
40 % -14.4310 -0.0062 1.7709 -1.7167 -1.0583 -0.5793 0.0262 0.9192 0.0568
50 % -14.9377 -0.0039 1.7376 -2.1927 -0.7489 -0.4043 0.0360 0.9099 0.0506
60 % -12.0866 -0.0032 1.7698 -1.7872 -0.8833 -0.2636 0.0102 0.9040 0.0443

Actual Parameter -13.8648 -0.0071 1.4319 -3.1359 -2.3824 -1.5503 0.0309 0.9287 0.0437

Table 4: Estimated means of the regression coefficients from the OTF imputation

model at each level of missingness.

% Imputed β̂0 β̂1 β̂2 β̂3 β̂4 β̂5 β̂6 β̂7 β̂8
10 % 8.5592 0.0013 1.7807 -3.6454 -1.7835 -0.5619 -0.0022 0.7251 0.1055
20 % 29.6312 0.0074 2.4930 -4.0480 -1.5930 -0.0623 -0.0256 0.5614 0.1195
30 % 47.0967 0.0085 1.9840 -3.8607 -1.4232 0.1364 -0.0282 0.4342 0.1314
40 % 65.1435 0.0089 2.2400 -3.4213 -0.8951 0.1402 -0.0323 0.3118 0.1268
50 % 80.8215 0.0084 2.1703 -3.3226 -0.7272 0.4466 -0.0282 0.2121 0.1069
60 % 96.4430 0.0049 1.0745 -2.1635 -0.6003 0.4249 -0.0302 0.1381 0.0684

Actual Parameter -13.8648 -0.0071 1.4319 -3.1359 -2.3824 -1.5503 0.0309 0.9287 0.0437
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Table 5: Estimated means of the regression coefficients from the RF imputation

model at each level of missingness.

% Imputed β̂0 β̂1 β̂2 β̂3 β̂4 β̂5 β̂6 β̂7 β̂8
10 % -6.2500 -0.0034 1.5440 -3.5233 -2.2584 -1.1658 0.0177 0.8567 0.0652
20 % 2.2769 0.0009 2.4794 -4.2886 -2.5076 -1.0509 0.0007 0.7812 0.0851
30 % 10.0653 0.0043 2.5632 -5.0882 -2.5664 -0.9990 -0.0080 0.7079 0.1127
40 % 22.8139 0.0074 2.8822 -5.7815 -2.5759 -0.9129 -0.0180 0.6036 0.1318
50 % 33.4396 0.0114 2.6120 -7.2516 -2.3876 -0.5767 -0.0209 0.5098 0.1446
60 % 51.5729 0.0122 2.3013 -8.3311 -2.9727 -0.6102 -0.0450 0.3995 0.1375

Actual Parameter -13.8648 -0.0071 1.4319 -3.1359 -2.3824 -1.5503 0.0309 0.9287 0.0437

Table 6: Estimated means of the regression coefficients from the PMM imputation

model at each level of missingness.

% Imputed β̂0 β̂1 β̂2 β̂3 β̂4 β̂5 β̂6 β̂7 β̂8
10 % -13.7384 -0.0085 1.1616 -3.3937 -2.3707 -1.5193 0.0366 0.9326 0.0392
20 % -13.3713 -0.0085 1.8639 -3.4760 -2.6183 -1.6533 0.0382 0.9336 0.0311
30 % -14.8370 -0.0082 2.4208 -3.3503 -2.6047 -1.7370 0.0459 0.9315 0.0468
40 % -13.9330 -0.0070 2.9853 -3.4241 -2.3471 -1.7884 0.0406 0.9238 0.0454
50 % -14.0729 -0.0032 3.9299 -4.4731 -2.6540 -1.9352 0.0419 0.9103 0.0461
60 % -11.8260 -0.0036 4.5916 -3.1585 -2.1605 -1.4474 0.0117 0.9032 0.0578

Actual Parameter -13.8648 -0.0071 1.4319 -3.1359 -2.3824 -1.5503 0.0309 0.9287 0.0437

Table 7: Range of the estimated regression coefficients for each of the four imputation

methods.

Method β̂0 β̂1 β̂2 β̂3 β̂4 β̂5 β̂6 β̂7 β̂8
CART 2.8511 0.0045 0.6373 1.3929 1.3484 0.9807 0.0258 0.0261 0.0158
OTF 87.8838 0.0076 1.4185 1.8845 1.1832 1.0085 0.0301 0.5870 0.0630
RF 57.8229 0.0156 1.3382 4.8078 0.7143 0.5891 0.0627 0.4572 0.0794

PMM 3.0110 0.0053 3.4300 1.3146 0.4935 0.4878 0.0342 0.0304 0.0267
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Table 8: Percent deviation indices of CART imputation model estimated regression

coefficients at each level of data missingness.

% Imputed β̂0 β̂1 β̂2 β̂3 β̂4 β̂5 β̂6 β̂7 β̂8 MEAN
10 % -1.9816 -8.0647 11.6039 0.8413 11.9672 19.7354 -7.7738 -0.1397 0.9823 3.0189
20 % -1.5830 -7.0079 -14.5446 14.4927 14.8391 31.1452 -0.8785 -0.1558 6.1233 4.7145
30 % -6.3601 2.2757 -32.9055 33.9443 27.1529 48.5655 3.0790 0.2270 -17.1597 6.5355
40 % -4.0839 12.6202 -23.6731 45.2588 55.5782 62.6306 15.1512 1.0238 -29.8695 14.9596
50 % -7.7379 45.1178 -21.3504 30.0775 68.5653 73.9180 -16.4142 2.0198 -15.7904 17.6006
60 % 12.8254 55.1605 -23.5924 43.0102 62.9244 82.9961 67.0489 2.6582 -1.4133 33.5131

MEAN -1.4869 16.6836 -17.4104 27.9375 40.1712 53.1651 10.0354 0.9389 -9.5212 13.3904

Table 9: Percent deviation indices of OTF imputation model estimated regression

coefficients at each level of data missingness.

% Imputed β̂0 β̂1 β̂2 β̂3 β̂4 β̂5 β̂6 β̂7 β̂8 MEAN
10 % 161.7332 118.9848 -24.3553 -16.2465 25.1378 63.7522 106.9972 21.9223 -141.4009 35.1694
20 % 313.7152 204.1996 -74.0999 -29.0828 33.1359 95.9784 182.8523 39.5500 -173.3590 65.8766
30 % 439.6851 219.5780 -38.5575 -23.1115 40.2638 108.8000 191.4292 53.2420 -200.7080 87.8468
40 % 569.8478 225.6640 -56.4314 -9.0993 62.4297 109.0434 204.4628 66.4209 -190.0547 109.1426
50 % 682.9252 217.6941 -51.5641 -5.9506 69.4771 128.8094 191.2213 77.1657 -144.5558 129.4691
60 % 795.5953 168.6546 24.9623 31.0097 74.8044 127.4075 197.8441 85.1300 -56.4000 161.0009

MEAN 493.9170 192.4625 -36.6743 -8.7468 50.8748 105.6318 179.1345 57.2385 -151.0797 98.0842

Table 10: Percent deviation indices of RF imputation model estimated regression

coefficients at each level of data missingness.

% Imputed β̂0 β̂1 β̂2 β̂3 β̂4 β̂5 β̂6 β̂7 β̂8 MEAN
10 % 54.9217 51.8240 -7.8266 -12.3507 5.2079 24.8011 42.7245 7.7464 -49.1992 13.0943
20 % 116.4223 113.3714 -73.1543 -36.7561 -5.2528 32.2142 97.8279 15.8765 -94.6817 18.4297
30 % 172.5957 160.3084 -79.0006 -62.2563 -7.7213 35.5569 125.8128 23.7730 -157.7475 23.4801
40 % 264.5449 204.4831 -101.2809 -84.3609 -8.1186 41.1159 158.1677 35.0048 -201.6675 34.2098
50 % 341.1833 260.2701 -82.4103 -131.2424 -0.2158 62.8018 167.7079 45.1044 -230.7970 48.0447
60 % 471.9697 271.4514 -60.7162 -165.6647 -24.7749 60.6382 245.7914 56.9783 -214.4954 71.2420

MEAN 236.9394 176.9514 -67.3982 -65.4385 -6.8126 42.8547 139.6720 30.7472 -158.0981 34.7501
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Table 11: Percent deviation indices of PMM imputation model estimated regression

coefficients at each level of data missingness.

% Imputed β̂0 β̂1 β̂2 β̂3 β̂4 β̂5 β̂6 β̂7 β̂8 MEAN
10 % 0.9117 -20.4439 18.8793 -8.2206 0.4942 1.9992 -18.5011 -0.4231 10.2515 -1.6725
20 % 3.5598 -20.2226 -30.1680 -10.8449 -9.9012 -6.6466 -23.6428 -0.5328 28.9234 -7.7195
30 % -7.0122 -14.8617 -69.0563 -6.8366 -9.3300 -12.0484 -48.7046 -0.3020 -7.0653 -19.4686
40 % -0.4919 1.7358 -108.4799 -9.1901 1.4854 -15.3584 -31.5066 0.5223 -3.8693 -18.3503
50 % -1.5011 54.8295 -174.4508 -42.6411 -11.3995 -24.8312 -35.5139 1.9721 -5.4737 -26.5566
60 % 14.7053 48.6967 -220.6555 -0.7190 9.3138 6.6361 62.2551 2.7381 -32.3176 -12.1500

MEAN 1.6953 8.2890 -97.3219 -13.0754 -3.2129 -8.3749 -15.9357 0.0051 -1.5918 -14.3196

Table 12: R2 and Adjusted R2 values for multiple regression model produced by the

complete data set.

R2 Adjusted R2

0.8513 0.8512

Table 13: R2 and Adjusted R2 values for CART imputation models at each level of

data missingness.

% Imputed 10% 20% 30% 40% 50% 60%
R2 0.8514 0.8526 0.8520 0.8526 0.8451 0.8252

Adjusted R2 0.8512 0.8524 0.8519 0.8525 0.8450 0.8249
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Table 14: R2 and Adjusted R2 values for OTF imputation models at each level of

data missingness.

% Imputed 10% 20% 30% 40% 50% 60%
R2 0.5646 0.3609 0.2244 0.1307 0.0659 0.0290

Adjusted R2 0.5641 0.3602 0.2235 0.1297 0.0649 0.0279

Table 15: R2 and Adjusted R2 values for RF imputation models at each level of data

missingness.

% Imputed 10% 20% 30% 40% 50% 60%
R2 0.7398 0.6423 0.5436 0.4368 0.3376 0.2303

Adjusted R2 0.7395 0.6419 0.5431 0.4362 0.3368 0.2294

Table 16: R2 and Adjusted R2 values for PMM imputation models at each level of

data missingness.

% Imputed 10% 20% 30% 40% 50% 60%
R2 0.8525 0.8537 0.8541 0.8558 0.8521 0.8382

Adjusted R2 0.8528 0.8535 0.8539 0.8556 0.8520 0.8380
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Table 17: Standard deviations for each of the parameters from the multiple regression

model produced by the complete data set.

Parameters β0 β1 β2 β3 β4 β5 β6 β7 β8
SD 7.5573 0.0056 4.7164 3.2816 2.1042 1.9734 0.0504 0.0380 0.0484

Table 18: Standard deviations of each of the regression coefficients in CART impu-

tation model for each level of data missingness.

% Imputed β̂0 β̂1 β̂2 β̂3 β̂4 β̂5 β̂6 β̂7 β̂8
10 % 8.7614 0.0067 5.0410 3.7318 2.3835 2.3451 0.0581 0.0428 0.0571
20 % 9.8419 0.0075 5.9941 4.0468 2.7319 2.5356 0.0667 0.0448 0.0686
30 % 11.6598 0.0097 6.4213 4.5089 3.0754 2.7050 0.0831 0.0535 0.0772
40 % 12.5472 0.0099 7.1611 5.1555 3.2640 2.8417 0.0877 0.0627 0.0867
50 % 15.0012 0.0108 7.4797 6.4303 4.0407 3.4955 0.1063 0.0828 0.1269
60 % 19.7725 0.0183 8.2586 8.2734 4.5819 3.7400 0.1438 0.1106 0.1461

Table 19: Standard deviations of each of the regression coefficients in OTF imputa-

tion model for each level of data missingness.

% Imputed β̂0 β̂1 β̂2 β̂3 β̂4 β̂5 β̂6 β̂7 β̂8
10 % 15.3178 0.0116 9.7187 5.9322 3.7102 3.4102 0.1021 0.0896 0.0972
20 % 18.8632 0.0139 12.6812 7.7163 4.5408 4.3467 0.1248 0.1061 0.1267
30 % 22.9013 0.0159 14.1290 8.6609 5.0141 4.5638 0.1512 0.1181 0.1373
40 % 24.1497 0.0160 14.3644 8.8214 4.9340 4.8302 0.1583 0.1171 0.1328
50 % 26.7741 0.0179 16.9659 9.1476 4.9822 4.5843 0.1644 0.1212 0.1626
60 % 26.8073 0.0173 18.1518 9.0625 5.4622 5.0773 0.1645 0.1230 0.1631
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Table 20: Standard deviations of each of the regression coefficients in RF imputation

model for each level of data missingness.

% Imputed β̂0 β̂1 β̂2 β̂3 β̂4 β̂5 β̂6 β̂7 β̂8
10 % 17.8671 0.0118 7.2655 5.5834 3.4847 3.0829 0.0803 0.1454 0.1084
20 % 33.1883 0.0194 9.2462 8.0467 4.7383 4.0242 0.1113 0.2875 0.1461
30 % 35.0566 0.0187 10.7215 9.3582 5.0808 4.5206 0.1278 0.2579 0.1708
40 % 48.1074 0.0218 13.4155 10.8423 6.9788 5.9353 0.1419 0.3151 0.1891
50 % 54.6657 0.0253 15.8391 13.0502 7.3136 6.3725 0.1480 0.4065 0.2274
60 % 64.1971 0.0272 16.6795 17.5084 9.1621 7.1307 0.1636 0.4097 0.2755

Table 21: Standard deviations of each of the regression coefficients in PMM impu-

tation model for each level of data missingness.

% Imputed β̂0 β̂1 β̂2 β̂3 β̂4 β̂5 β̂6 β̂7 β̂8
10 % 8.7071 0.0066 5.4790 3.7292 2.4265 2.2380 0.0581 0.0436 0.0565
20 % 10.9920 0.0085 7.2964 4.7928 3.1147 2.6445 0.0690 0.0474 0.0726
30 % 11.5203 0.0092 7.8844 5.7398 3.8392 3.5224 0.0855 0.0547 0.0817
40 % 14.0913 0.0124 9.5704 6.9552 4.6837 4.3136 0.1128 0.0620 0.1103
50 % 22.2983 0.0158 11.6566 8.6021 5.8480 5.8895 0.1341 0.0895 0.1661
60 % 26.1469 0.0213 12.8420 12.6639 8.7749 7.8529 0.1923 0.0887 0.1588
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Table 22: P-values for two-sided one-sample t-tests for each estimated regression

coefficient in the CART imputation model at each level of data missingness. The

p-values that are in bold are for one-sample t-tests that are significant at α = 0.05

family level of significance.

% Imputed β̂0 β̂1 β̂2 β̂3 β̂4 β̂5 β̂6 β̂7 β̂8
10 % 0.7971 0.4743 0.8033 0.9547 0.3380 0.2730 0.7363 0.8094 0.9500
20 % 0.8373 0.5341 0.7549 0.3274 0.2348 0.0836 0.9696 0.7880 0.6960
30 % 0.4093 0.8400 0.8319 0.0218 0.0297 0.0070 0.8939 0.6953 0.2735
40 % 0.5963 0.2628 0.6113 0.0022 <0.0001 0.0005 0.5117 0.0772 0.0567
50 % 0.3155 <0.0001 0.6467 0.0421 <0.0001 <0.0001 0.4771 0.0005 0.3136
60 % 0.0961 <0.0001 0.6125 0.0037 <0.0001 <0.0001 0.0037 <0.0001 0.9281

Table 23: P-values for two-sided one-sample t-tests for each estimated regression

coefficient in the OTF imputation model at each level of data missingness. The p-

values that are in bold are for one-sample t-tests that are significant at α = 0.05

family level of significance.

% Imputed β̂0 β̂1 β̂2 β̂3 β̂4 β̂5 β̂6 β̂7 β̂8
10 % <0.0001 <0.0001 0.6011 0.2723 0.0442 0.0004 <0.0001 <0.0001 <0.0001
20 % <0.0001 <0.0001 0.1117 0.0494 0.0080 <0.0001 <0.0001 <0.0001 <0.0001
30 % <0.0001 <0.0001 0.4078 0.1184 0.0013 <0.0001 <0.0001 <0.0001 <0.0001
40 % <0.0001 <0.0001 0.2257 0.5387 <0.0001 <0.0001 <0.0001 <0.0001 <0.0001
50 % <0.0001 <0.0001 0.2683 0.6876 <0.0001 <0.0001 <0.0001 <0.0001 <0.0001
60 % <0.0001 <0.0001 0.5920 0.0361 <0.0001 <0.0001 <0.0001 <0.0001 0.0003
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Table 24: P-values for two-sided one-sample t-tests for each estimated regression

coefficient in the RF imputation model at each level of data missingness. The p-

values that are in bold are for one-sample t-tests that are significant at α = 0.05

family level of significance.

% Imputed β̂0 β̂1 β̂2 β̂3 β̂4 β̂5 β̂6 β̂7 β̂8
10 % <0.0001 <0.0001 0.8666 0.4040 0.6767 0.1683 0.0642 <0.0001 0.0017
20 % <0.0001 <0.0001 0.1163 0.0130 0.6741 0.0735 <0.0001 <0.0001 <0.0001
30 % <0.0001 <0.0001 0.0899 <0.0001 0.5365 0.0482 <0.0001 <0.0001 <0.0001
40 % <0.0001 <0.0001 0.0297 <0.0001 0.5157 0.0224 <0.0001 <0.0001 <0.0001
50 % <0.0001 <0.0001 0.0769 <0.0001 0.9862 0.0005 <0.0001 <0.0001 <0.0001
60 % <0.0001 <0.0001 0.1924 <0.0001 0.0473 0.0008 <0.0001 <0.0001 <0.0001

Table 25: P-values for two-sided one-sample t-tests for each estimated regression

coefficient in the PMM imputation model at each level of data missingness. The

p-values that are in bold are for one-sample t-tests that are significant at α = 0.05

family level of significance.

% Imputed β̂0 β̂1 β̂2 β̂3 β̂4 β̂5 β̂6 β̂7 β̂8
10 % 0.9059 0.0697 0.6853 0.5786 0.9684 0.9116 0.4229 0.4653 0.5130
20 % 0.6442 0.0728 0.5172 0.4637 0.4280 0.7120 0.3058 0.3578 0.0649
30 % 0.3630 0.1873 0.1382 0.6441 0.4551 0.5033 0.0348 0.6022 0.6521
40 % 0.9491 0.8776 0.0199 0.5346 0.9053 0.3936 0.3385 0.3673 0.8050
50 % 0.8456 <0.0001 0.0002 0.0040 0.3614 0.1678 0.1240 0.0007 0.7269
60 % 0.0564 <0.0001 <0.0001 0.9613 0.4559 0.7124 0.0070 <0.0001 0.0392
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Table 26: P-values for two-sided one-sample t-tests for each regression coefficient in

the CART imputation model at each level of data missingness, adjusted for multiple

testing. The adjusted p-values that are in bold are for one-sample t-tests that are

significant at α = 0.05 family level of significance.

% Imputed β̂0 β̂1 β̂2 β̂3 β̂4 β̂5 β̂6 β̂7 β̂8
10 % 0.8826 0.6361 0.8826 0.9727 0.5008 0.4220 0.8284 0.8830 0.9725
20 % 0.9027 0.6804 0.8448 0.4912 0.3757 0.1480 0.9742 0.8773 0.7997
30 % 0.5741 0.9027 0.9027 0.0466 0.0062 0.0016 0.9420 0.7997 0.4220
40 % 0.7391 0.4174 0.7433 0.0005 <0.0001 0.0001 0.6690 0.1379 0.1073
50 % 0.4765 0.0002 0.7718 0.0084 <0.0001 0.0001 0.6361 0.0012 0.4765
60 % 0.1675 <0.0001 0.7433 0.0085 <0.0001 <0.0001 0.0085 <0.0001 0.9592

Table 27: P-values for two-sided one-sample t-tests for each regression coefficient in

the OTF imputation model at each level of data missingness, adjusted for multiple

testing. The adjusted p-values that are in bold are for one-sample t-tests that are

significant at α = 0.05 family level of significance.

% Imputed β̂0 β̂1 β̂2 β̂3 β̂4 β̂5 β̂6 β̂7 β̂8
10 % <0.0001 <0.0001 0.7391 0.4220 0.0875 0.0010 <0.0001 <0.0001 <0.0001
20 % <0.0001 <0.0001 0.1929 0.0953 0.0176 <0.0001 <0.0001 <0.0001 <0.0001
30 % <0.0001 <0.0001 0.5741 0.2013 0.0030 <0.0001 <0.0001 <0.0001 <0.0001
40 % <0.0001 <0.0001 0.3638 0.6804 <0.0001 <0.0001 <0.0001 <0.0001 <0.0001
50 % <0.0001 <0.0001 0.4220 0.7985 <0.0001 <0.0001 <0.0001 <0.0001 <0.0001
60 % <0.0001 <0.0001 0.7391 0.0736 <0.0001 <0.0001 <0.0001 <0.0001 0.0008
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Table 28: P-values for two-sided one-sample t-tests for each regression coefficient

in the RF imputation model at each level of data missingness, adjusted for multiple

testing. The adjusted p-values that are in bold are for one-sample t-tests that are

significant at α = 0.05 family level of significance.

% Imputed β̂0 β̂1 β̂2 β̂3 β̂4 β̂5 β̂6 β̂7 β̂8
10 % <0.0001 <0.0001 0.9221 0.5741 0.7944 0.2775 0.1206 <0.0001 0.0040
20 % <0.0001 <0.0001 0.1994 0.0284 0.7944 0.1335 <0.0001 <0.0001 <0.0001
30 % <0.0001 <0.0001 0.1578 <0.0001 0.6804 0.0939 <0.0001 <0.0001 <0.0001
40 % <0.0001 <0.0001 0.0617 <0.0001 0.6690 0.0474 <0.0001 <0.0001 <0.0001
50 % <0.0001 <0.0001 0.1379 <0.0001 0.9862 0.0012 <0.0001 <0.0001 <0.0001
60 % <0.0001 <0.0001 0.3125 <0.0001 0.0929 0.0018 <0.0001 <0.0001 <0.0001

Table 29: P-values for two-sided one-sample t-tests for each regression coefficient in

the PMM imputation model at each level of data missingness, adjusted for multiple

testing. The adjusted p-values that are in bold are for one-sample t-tests that are

significant at α = 0.05 family level of significance.

% Imputed β̂0 β̂1 β̂2 β̂3 β̂4 β̂5 β̂6 β̂7 β̂8
10 % 0.9452 0.1286 0.7985 0.7266 0.9742 0.9466 0.5894 0.6281 0.6690
20 % 0.7718 0.1332 0.6690 0.6281 0.5926 0.8099 0.4685 0.5257 0.1209
30 % 0.5262 0.3065 0.2314 0.7718 0.6232 0.6670 0.0072 0.7391 0.7739
40 % 0.9725 0.9292 0.0043 0.6804 0.9452 0.5630 0.5008 0.5290 0.8826
50 % 0.9042 <0.0001 0.0005 0.0090 0.5262 0.2775 0.2092 0.0016 0.8220
60 % 0.1073 <0.0001 <0.0001 0.9742 0.6232 0.8099 0.0156 <0.0001 0.0791
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Table 30: Proportion of missing values for the dependent variable and each of the

independent variables where 10% of the total values in the data set are missing.

Variable BPXSY1 PEASCTM1 cig cuff1 cuff2 cuff3 BPXPLS BPXML1 BPXDI1
Proportion Missing 0.0985 0.0985 0.0999 0.1031 0.1031 0.1031 0.1038 0.1002 0.0959

Proportion not Missing 0.9015 0.9015 0.9001 0.8969 0.8969 0.8969 0.8962 0.8998 0.9041

Table 31: Proportion of missing values for the dependent variable and each of the

independent variables where 20% of the total values in the data set are missing.

Variable BPXSY1 PEASCTM1 cig cuff1 cuff2 cuff3 BPXPLS BPXML1 BPXDI1
Proportion Missing 0.2004 0.1962 0.2015 0.2015 0.2015 0.2015 0.2047 0.2028 0.1933

Proportion not Missing 0.7996 0.8038 0.7985 0.7985 0.7985 0.7985 0.7953 0.7972 0.8067

Table 32: Proportion of missing values for the dependent variable and each of the

independent variables where 30% of the total values in the data set are missing.

Variable BPXSY1 PEASCTM1 cig cuff1 cuff2 cuff3 BPXPLS BPXML1 BPXDI1
Proportion Missing 0.2990 0.3009 0.2996 0.2950 0.2950 0.2950 0.3059 0.3042 0.2962

Proportion not Missing 0.7010 0.6991 0.7004 0.7050 0.7050 0.7050 0.6941 0.6958 0.7038

Table 33: Proportion of missing values for the dependent variable and each of the

independent variables where 40% of the total values in the data set are missing.

Variable BPXSY1 PEASCTM1 cig cuff1 cuff2 cuff3 BPXPLS BPXML1 BPXDI1
Proportion Missing 0.4002 0.4013 0.3988 0.3999 0.3999 0.3999 0.4071 0.4034 0.3959

Proportion not Missing 0.5998 0.5987 0.6012 0.6001 0.6001 0.6001 0.5929 0.5966 0.6041
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Table 34: Proportion of missing values for the dependent variable and each of the

independent variables where 50% of the total values in the data set are missing.

Variable BPXSY1 PEASCTM1 cig cuff1 cuff2 cuff3 BPXPLS BPXML1 BPXDI1
Proportion Missing 0.4990 0.5048 0.5028 0.5000 0.5000 0.5000 0.5049 0.4979 0.4973

Proportion not Missing 0.5010 0.4952 0.4972 0.5000 0.5000 0.5000 0.4951 0.5021 0.5027

Table 35: Proportion of missing values for the dependent variable and each of the

independent variables where 60% of the total values in the data set are missing.

Variable BPXSY1 PEASCTM1 cig cuff1 cuff2 cuff3 BPXPLS BPXML1 BPXDI1
Proportion Missing 0.5996 0.6061 0.6006 0.5953 0.5953 0.5953 0.6041 0.6052 0.5973

Proportion not Missing 0.4004 0.3939 0.3994 0.4047 0.4047 0.4047 0.3959 0.3948 0.4027
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7 EVALUATION OF SECOND DATA SET

A second data set was investigated to determine whether or not we come to the

same conclusion about which imputation methods perform the best. The data set

chosen contains data collected on the same variables as the original data set collected

by the CDC from 2011-2012 [8]. A multiple linear regression model with the same

predictor and response variables was fit from 500 randomly selected observations and

the procedures were repeated.

7.1 Fitted Model

The reduced multiple linear regression model for the sample data we chose to

analyze is:

Ŷi = − 20.8300 − 0.0001Xi1 − 4.0160Xi2 − 2.1030Xi3 − 0.9129Xi4 − 0.9303Xi5

+ 0.0307Xi6 + 0.9397Xi7 + 0.0533Xi8 + εi for i=1,...,n,

(2)

where the predictor variables include PEASCTM1, cig, cuff1, cuff2, cuff3, BPXPLS,

BPXML1, and BPXDI1, respectively. These are the values to which the estimated

regression coefficients from the imputation models will be compared.

7.2 Estimated Regression Coefficients

In Tables 36-40, we observe that the CART and PMM methods seem to produce

estimated regression coefficients most similar to the regression model fit with the com-

plete sample of 500 observations. This holds true across all levels of data missingness.

In Tables 41-44, we observe the PDI values calculated for each of the estimated re-
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gression coefficients. As in the evaluation of the original model, we observe many

PDI values that are very large and warrant further investigation into the prediction

accuracies of the imputation models.

7.3 Model Accuracy

In Tables 45-49, we observe the R2 and adjusted R2 values for the multiple regres-

sion model produced by the complete sample data set, as well as the four imputation

models. The adjusted R2 value in Table 45 will serve as the baseline comparison.

Across all levels of data missingness, we conclude that the CART and PMM imputa-

tions perform better than both the OTF and RF imputation methods. The adjusted

R2 values for the OTF and RF imputation methods drastically decrease at each in-

creased level of data missingness. While these values still decrease at each increased

level of data missingness for the CART and PMM imputation methods, they decrease

less steeply and are much closer to the baseline adjusted R2 value, especially at low

levels of data missingness.

7.4 Significance of Regression Coefficients of Imputation Models, Adjusted for

Multiple Testing

In Tables 50-53, we observe the p-values associated with each estimated regres-

sion coefficient for each imputation method at every level of data missingness. The

estimated regression coefficients are compared to the parameter values for the mul-

tiple regression model produced by the complete sample data set. The p-values are

adjusted for multiple testing using the BH procedure discussed in Chapter 6. We con-
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clude that the OTF and RF imputation methods produce more estimated regression

coefficients that are significantly different from the parameter values.

Table 36: Parameter values for the multiple regression model produced by the com-

plete sample data set.

Parameters β0 β1 β2 β3 β4 β5 β6 β7 β8
Actual Values -20.8300 -0.0001 -4.0160 -2.1030 -0.9129 -0.9303 0.0307 0.9397 0.0533

Table 37: Estimated means of the regression coefficients from the CART imputation

model at each level of missingness.

% Imputed β̂0 β̂1 β̂2 β̂3 β̂4 β̂5 β̂6 β̂7 β̂8
10 % -21.2605 -0.0027 -4.6277 -1.7124 -0.7439 -1.0069 0.0335 0.9544 0.0523
20 % -15.6301 0.0007 -4.0122 -2.6625 -0.2332 -1.3764 -0.0118 0.9382 0.0159
30 % -14.3024 0.0006 -2.8831 0.7332 1.5796 0.2031 -0.0495 0.9175 0.0569
40 % -14.9107 -0.0021 -0.0553 1.4948 0.3010 0.3224 -0.0301 0.9208 0.0712
50 % -16.4168 -0.0035 -1.0626 0.1845 1.5938 0.2832 -0.0338 0.9369 0.0874
60 % -8.6102 0.0005 -0.4473 0.2893 0.2770 0.1947 -0.0411 0.8193 0.1882

Actual Parameter -20.8300 -0.0001 -4.0160 -2.1030 -0.9129 -0.9303 0.0307 0.9397 0.0533

Table 38: Estimated means of the regression coefficients from the OTF imputation

model at each level of missingness.

% Imputed β̂0 β̂1 β̂2 β̂3 β̂4 β̂5 β̂6 β̂7 β̂8
10 % 7.8708 0.0070 -1.3036 -3.0349 -2.7811 -1.9303 -0.0404 0.6990 0.1675
20 % 21.9121 0.0095 -0.8006 -3.7804 -0.3938 0.2656 -0.0271 0.5815 0.1464
30 % 35.9125 0.0099 0.0006 -2.1485 0.7587 1.5384 -0.0660 0.4686 0.1997
40 % 56.5333 0.0038 1.3003 -3.4527 0.5749 1.0020 -0.0809 0.3607 0.1940
50 % 73.8394 0.0018 1.0494 -3.9028 1.0360 0.7028 -0.0543 0.2508 0.1684
60 % 81.0483 0.0021 0.4980 -2.4112 0.6743 0.0511 -0.0282 0.1833 0.1700

Actual Parameter -20.8300 -0.0001 -4.0160 -2.1030 -0.9129 -0.9303 0.0307 0.9397 0.0533
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Table 39: Estimated means of the regression coefficients from the RF imputation

model at each level of missingness.

% Imputed β̂0 β̂1 β̂2 β̂3 β̂4 β̂5 β̂6 β̂7 β̂8
10 % -6.2951 0.0026 -3.7291 -2.7034 -2.6189 -1.9671 -0.0099 0.8217 0.1250
20 % -1.1701 0.0060 -2.6174 -3.7397 -1.4013 -1.5096 -0.0327 0.7841 0.1121
30 % 9.0895 0.0074 -2.2824 -0.8898 1.3834 1.4233 -0.0549 0.6699 0.1725
40 % 26.2822 0.0035 0.5323 -2.5455 1.0459 1.2953 -0.0762 0.5653 0.1988
50 % 37.1410 0.0041 0.7218 -3.5494 2.0315 0.7251 -0.0621 0.4685 0.2332
60 % 50.0012 0.0039 -0.0420 -3.3224 1.0054 0.6064 -0.0651 0.3599 0.2745

Actual Parameter -20.8300 -0.0001 -4.0160 -2.1030 -0.9129 -0.9303 0.0307 0.9397 0.0533

Table 40: Estimated means of the regression coefficients from the PMM imputation

model at each level of missingness.

% Imputed β̂0 β̂1 β̂2 β̂3 β̂4 β̂5 β̂6 β̂7 β̂8
10 % -21.0005 -0.0027 -5.0906 -1.9556 -1.7401 -1.7896 0.0290 0.9504 0.0720
20 % -20.0858 -0.0002 -4.2426 -3.1011 -1.6131 -2.2965 -0.0056 0.9807 0.0120
30 % -16.6595 -0.0016 -5.0627 2.1404 0.7299 -0.9080 -0.0578 0.9421 0.0842
40 % -16.9009 -0.0061 1.4802 2.4704 0.1653 0.0128 -0.0295 0.9659 0.0429
50 % -13.5214 -0.0072 2.5102 3.0438 1.8492 0.2591 -0.0769 0.9345 0.1265
60 % -7.9787 -0.0012 0.2329 4.1580 1.1737 -0.3556 -0.1095 0.8463 0.2048

Actual Parameter -20.8300 -0.0001 -4.0160 -2.1030 -0.9129 -0.9303 0.0307 0.9397 0.0533
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Table 41: Percent deviation indices of CART imputation model estimated regression

coefficients at each level of data missingness.

% Imputed β̂0 β̂1 β̂2 β̂3 β̂4 β̂5 β̂6 β̂7 β̂8
10 % -2.0669 -1865.0660 -15.2316 18.5735 18.5124 -8.2339 -9.1205 -1.5643 1.8025
20 % 24.9634 609.4614 0.0946 -26.6049 74.4550 -47.9523 138.4365 0.1596 70.1465
30 % 31.3377 536.6812 28.2097 134.8645 273.0310 121.8317 261.2378 2.3625 -6.8344
40 % 28.4173 -1428.3840 98.6230 171.0794 132.9718 134.6555 198.0456 2.0113 -33.6838
50 % 21.1866 -2447.3070 73.5408 108.7732 274.5865 130.4418 210.0977 0.2980 -64.1006
60 % 58.6643 463.9010 88.8621 113.7565 130.3429 120.9287 233.8762 12.8126 -253.3609

MEAN 27.0837 -688.4522 45.6831 86.7404 150.6499 75.2786 172.0956 2.6800 -47.6718
Previous MEAN -1.4869 16.6836 -17.4104 27.9375 40.1712 53.1651 10.0354 0.9389 -9.5212

Table 42: Percent deviation indices of OTF imputation model estimated regression

coefficients at each level of data missingness.

% Imputed β̂0 β̂1 β̂2 β̂3 β̂4 β̂5 β̂6 β̂7 β̂8
10 % 137.8292 5194.6140 67.5398 -44.3129 -204.6445 -107.4922 231.5961 25.6146 -214.4949
20 % 205.1950 7014.1190 80.0647 -79.7622 56.8627 128.5499 188.2736 38.1186 -174.8780
30 % 272.4077 7305.2400 100.0149 -2.1636 183.1088 265.3660 314.9837 50.1330 -274.9531
40 % 371.4034 2865.6480 132.3780 -64.1797 162.9751 207.7072 363.5179 61.6154 -264.2508
50 % 454.4859 1410.0440 126.1305 -85.5825 213.4845 175.5455 276.8730 73.3106 -216.1848
60 % 489.0940 1628.3840 112.4004 -14.6553 173.8635 105.4929 191.8567 80.4938 -219.1889

MEAN 321.7359 4236.3415 103.0881 -48.4427 97.6084 129.1948 261.1835 54.8810 -227.3251
Previous MEAN 493.9170 192.4625 -36.6743 -8.7468 50.8748 105.6318 179.1345 57.2385 -151.0797
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Table 43: Percent deviation indices of RF imputation model estimated regression

coefficients at each level of data missingness.

% Imputed β̂0 β̂1 β̂2 β̂3 β̂4 β̂5 β̂6 β̂7 β̂8
10 % 69.7785 1992.2850 7.1439 -28.5497 -186.8770 -111.4479 132.2476 12.5572 -134.6977
20 % 94.3826 4466.8120 34.8257 -77.8269 -53.4998 -62.2702 206.5147 16.5585 -110.4769
30 % 143.6367 5485.7350 43.1673 57.6890 251.5391 252.9937 278.8274 28.7113 -223.8828
40 % 226.1749 2647.3070 113.2545 -21.4693 214.5690 239.2347 348.2085 39.8425 -273.2632
50 % 278.3054 3083.9880 117.9731 -68.7779 322.5326 177.9426 302.2801 50.1437 -337.8520
60 % 340.0443 2938.4280 98.9542 -57.9838 210.1325 165.1833 312.0521 61.7005 -415.3962

MEAN 192.0537 3435.7592 69.2198 -32.8198 126.3994 110.2727 263.3551 34.9190 -249.2615
Previous MEAN 236.9394 176.9514 -67.3982 -65.4385 -6.8126 42.8547 139.6720 30.7472 -158.0981

Table 44: Percent deviation indices of PMM imputation model estimated regression

coefficients at each level of data missingness.

% Imputed β̂0 β̂1 β̂2 β̂3 β̂4 β̂5 β̂6 β̂7 β̂8
10 % -0.8183 -1865.0660 -26.7580 6.9615 -90.6123 -92.3681 5.5375 -1.1387 -35.1859
20 % 3.9435 -45.5604 -5.6424 -47.4608 -76.7006 -146.8559 118.2410 -4.3631 77.4690
30 % 20.0217 -1064.4830 -26.0633 201.7784 179.9540 2.3971 288.2736 -0.2554 -58.0924
40 % 18.8628 -4339.5920 136.8576 217.4703 118.1071 101.3759 196.0912 -2.7881 19.4518
50 % 35.0867 -5140.1750 162.5050 244.7361 302.5633 127.8512 350.4886 0.5537 -137.5141
60 % 61.6961 -773.3624 105.7993 297.7175 228.5683 61.7758 456.6775 9.9393 -284.5287

MEAN 23.1321 -2204.7065 57.7830 153.5338 120.3133 9.0293 235.8849 0.3218 -69.7334
Previous MEAN 1.6953 8.2890 -97.3219 -13.0754 -3.2129 -8.3749 -15.9357 0.0051 -1.5918

Table 45: R2 and Adjusted R2 values for multiple regression model produced by the

complete sample data set.

R2 Adjusted R2

0.8298 0.8271
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Table 46: R2 and Adjusted R2 values for CART imputation models at each level of

data missingness.

% Imputed 10% 20% 30% 40% 50% 60%
R2 0.8289 0.8179 0.8133 0.7856 0.7587 0.7411

Adjusted R2 0.8261 0.8149 0.8103 0.7821 0.7547 0.7369
Previous Adj. R2 0.8512 0.8524 0.8519 0.8525 0.8450 0.8249

Table 47: R2 and Adjusted R2 values for OTF imputation models at each level of

data missingness.

% Imputed 10% 20% 30% 40% 50% 60%
R2 0.5543 0.3760 0.2797 0.1836 0.0889 0.0621

Adjusted R2 0.5470 0.3658 0.2680 0.1702 0.0737 0.0463
Previous Adj. R2 0.5641 0.3602 0.2235 0.1297 0.0649 0.0279

Table 48: R2 and Adjusted R2 values for RF imputation models at each level of data

missingness.

% Imputed 10% 20% 30% 40% 50% 60%
R2 0.6962 0.6075 0.5156 0.4088 0.2735 0.2162

Adjusted R2 0.6912 0.6011 0.5077 0.3991 0.2616 0.2032
Previous Adj. R2 0.7395 0.6419 0.5431 0.4362 0.3368 0.2294
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Table 49: R2 and Adjusted R2 values for PMM imputation models at each level of

data missingness.

% Imputed 10% 20% 30% 40% 50% 60%
R2 0.8293 0.8258 0.8167 0.8096 0.7899 0.7935

Adjusted R2 0.8265 0.8229 0.8138 0.8065 0.7864 0.7902
Previous Adj. R2 0.8528 0.8535 0.8539 0.8556 0.8520 0.8380

Table 50: P-values for two-sided one-sample t-tests for each regression coefficient in

the CART imputation model at each level of data missingness, adjusted for multiple

testing. The adjusted p-values that are in bold are for one-sample t-tests that are

significant at α = 0.05 family level of significance.

% Imputed β̂0 β̂1 β̂2 β̂3 β̂4 β̂5 β̂6 β̂7 β̂8
10 % 0.9712 0.3366 0.9092 0.9092 0.9516 0.9777 0.9740 0.6585 0.9875
20 % 0.3330 0.7906 0.9989 0.8453 0.6649 0.7895 0.2740 0.9800 0.2913
30 % 0.2189 0.8159 0.7906 0.2249 0.0663 0.4158 0.0234 0.4706 0.9625
40 % 0.2670 0.4677 0.2677 0.1096 0.4102 0.3759 0.1061 0.5508 0.6396
50 % 0.4158 0.2021 0.4158 0.3330 0.0648 0.3922 0.0829 0.9709 0.3366
60 % 0.0096 0.8453 0.3284 0.3082 0.4158 0.4183 0.0488 <0.0001 <0.0001
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Table 51: P-values for two-sided one-sample t-tests for each regression coefficient in

the OTF imputation model at each level of data missingness, adjusted for multiple

testing. The adjusted p-values that are in bold are for one-sample t-tests that are

significant at α = 0.05 family level of significance.

% Imputed β̂0 β̂1 β̂2 β̂3 β̂4 β̂5 β̂6 β̂7 β̂8
10 % <0.0001 0.0018 0.4635 0.7253 0.1883 0.4706 0.0510 <0.0001 0.0001
20 % <0.0001 <0.0001 0.3834 0.4738 0.7603 0.3994 0.1232 <0.0001 0.0023
30 % <0.0001 <0.0001 0.2670 0.9875 0.2451 0.0552 0.0044 <0.0001 <0.0001
40 % <0.0001 0.1232 0.1232 0.5893 0.3069 0.1517 0.0011 <0.0001 <0.0001
50 % <0.0001 0.4706 0.1488 0.4527 0.1671 0.2350 0.0146 <0.0001 0.0001
60 % <0.0001 0.4102 0.2039 0.9398 0.2677 0.4770 0.1166 <0.0001 <0.0001

Table 52: P-values for two-sided one-sample t-tests for each regression coefficient

in the RF imputation model at each level of data missingness, adjusted for multiple

testing. The adjusted p-values that are in bold are for one-sample t-tests that are

significant at α = 0.05 family level of significance.

% Imputed β̂0 β̂1 β̂2 β̂3 β̂4 β̂5 β̂6 β̂7 β̂8
10 % 0.0015 0.3070 0.9712 0.8343 0.2350 0.4638 0.3037 <0.0001 0.0240
20 % <0.0001 0.0094 0.7316 0.4839 0.7759 0.7138 0.0898 <0.0001 0.0791
30 % <0.0001 0.0011 0.6585 0.6327 0.0960 0.0710 0.0138 <0.0001 <0.0001
40 % <0.0001 0.1637 0.2021 0.8933 0.1657 0.0923 0.0015 <0.0001 <0.0001
50 % <0.0001 0.0960 0.1783 0.5508 0.0240 0.2314 0.0071 <0.0001 <0.0001
60 % <0.0001 0.1149 0.2677 0.6327 0.1739 0.2670 0.0052 <0.0001 <0.0001
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Table 53: P-values for two-sided one-sample t-tests for each regression coefficient in

the PMM imputation model at each level of data missingness, adjusted for multiple

testing. The adjusted p-values that are in bold are for one-sample t-tests that are

significant at α = 0.05 family level of significance.

% Imputed β̂0 β̂1 β̂2 β̂3 β̂4 β̂5 β̂6 β̂7 β̂8
10 % 0.9875 0.3366 0.8037 0.9745 0.5894 0.5508 0.9813 0.7675 0.6264
20 % 0.9189 0.9875 0.9745 0.7101 0.6585 0.3287 0.3603 0.1706 0.2402
30 % 0.4431 0.6113 0.8039 0.0510 0.2557 0.9875 0.0106 0.9712 0.3922
40 % 0.4677 0.0116 0.1116 0.0324 0.4638 0.4971 0.1096 0.4015 0.8039
50 % 0.1622 0.0018 0.0510 0.0136 0.0372 0.4006 0.0015 0.9092 0.0212
60 % 0.0059 0.7253 0.2350 0.0018 0.1345 0.7138 <0.0001 0.0003 <0.0001

71



8 CONCLUSION

Modern MICE methods used to impute missing data values were described and

four methods used for mixed data were implemented to compare the different meth-

ods. The PDI values for each of the estimated regression coefficients were compared

to the parameters produced by the multiple regression model using the complete data

set. We determined that the CART and PMM imputation methods yielded estimated

regression coefficients much more similar to the parameters produced by the multiple

regression model than the OTF and RF imputations did. We confirmed this once

again by performing one-sample t-tests for each of the estimated regression coeffi-

cients. While some of the p-values from the t-tests were significant for the CART

and PMM imputation methods, many more of the p-values from the t-tests were sig-

nificant for the OTF and RF imputation methods, with well over half of them being

significant. These observations led us to analyze the R2 and adjusted R2 values for

each of the imputation methods at each level of data missingness. We concluded

that the OTF and RF imputation methods do not perform well, especially as the

proportion of missing values increases. However, the CART and PMM imputation

methods both performed well at all levels of data missingness, all while producing

R2 and adjusted R2 values close to the original values from the multiple regression

model produced from the complete data set. One interesting observation to note is

that at the 40% level of data missingness, the adjusted R2 values for the CART and

PMM imputation methods slightly increased from the 30% level of data missingness.

The procedures were repeated using a second sample of data, and similar con-

clusions were reached. Across all levels of data missingness, the CART and PMM
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imputation methods performed better than the OTF and RF imputation methods.

However, the notable increase in the adjusted R2 values for the CART and PMM

imputation methods from the original data set was not present. We recommend that

either the CART or PMM imputation method be used in any situation where any

level of missing data is present.
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9 FUTURE WORK

In the future, we would like to compare our findings to simulated data. A sim-

ulation can serve as a controlled experiment in which we test how varying certain

parameters affects other parameter estimates [9]. With a simulation, we can test ob-

serve whether or not our conclusions about the CART and PMM imputation methods

hold true. However, in simulation studies, one must be careful to properly design and

analyze the experiment [10]. Since simulated data is produced from random samples,

one must be careful not to regard the regression estimates as true values.
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