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ABSTRACT

A Normal Form for Words in the Temperley-Lieb Algebra and the Artin Braid

Group on Three Strands

by

Jack Hartsell

The motivation for this thesis is the computer-assisted calculation of the Jones poly-

nomial from braid words in the Artin braid group on three strands, denoted B3. The

method used for calculation of the Jones polynomial is the original method that was

created when the Jones polynomial was first discovered by Vaughan Jones [1] in 1984.

This method utilizes the Temperley-Lieb algebra, and in our case the Temperley-Lieb

Algebra on three strands, denoted A3, thus generalizations about A3 that assist with

the process of calculation are pursued.
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1 AN INTRODUCTION TO KNOT THEORY AND THE JONES

POLYNOMIAL

We are specifically concerned with studying the topological and algebraic proper-

ties inherent in knots. The earliest attempts at practical applications of knot theory

can be found in the fields of electrodynamics and atomic physics, although neither

proved to be fruitful [2]. In spite of this, productive applications of knot theory would

eventually be found elsewhere, for which the best known example is Edward Witten’s

work with the Jones polynomial and its applications to quantum field theory [1].

Towards the purpose of dealing with knots in a more mathematically precise sense,

copious definitions and background information are both in order, and will be pre-

sented chapters one and two. New results will be proven in chapter three. Possibilities

for further research are discussed in chapter four. A Python code implementation us-

ing the results for the purpose of calculating the Jones polynomial from a braid word

is given as an appendix. Unless otherwise stated, all definitions can be found in [1],

[3], and [4].

1.1 Knots and Links

A knot can be intuitively understood by doing the following: with a single piece

of string, tie whatever knot may come to mind. Once this knot is created, fuse the

two loose ends together, and you now have a knot in a form that we are specifically

concerned with. Interlace two or more of these together, and you have a link. With

this intuitive understanding in hand, we can now proceed with definitions for the sake

of mathematical rigor.
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Definition 1.1. [3] A link L of m components is a subset of S3 (the 3-sphere, which

is homeomorphic to R3∪{∞}) consisting of m disjoint, piecewise linear, simple closed

curves. A knot K is a link with one component.

Definition 1.2. The unknot, also referred to as the trivial knot, is a closed ring

with no crossings.

To visually communicate the details of knots or links in a way that is mathemat-

ically sound, a precise definition for our pictorial representations is also in order.

Definition 1.3. [1] A diagram of a knot or link is a projection of the knot or link

onto the plane such that the curves of the knot or link cross transversely, where small

segments of the loop are depicted as deleted so as to indicate the locations of crossings.

Definition 1.4. [4]A homeomorphism of a space X into another space Y is a

bijective continuous function with a continuous inverse. If there exists such a function

for two spaces X and Y, we say that these spaces are homeomorphic.

The Jordan Curve Theorem states that a simple closed curve in the plane

separates the plane into two disjoint regions such that each region is homeomorphic

to a disc. This theorem makes it possible for our diagrams to represent knots and

links with mathematical rigor [1].

Definition 1.5. Two links that are equivalent can be continuously deformed from

one to the other by some sequence of the three Reidemeister moves, which are

illustrated in Figure 1. Notice that the first Reidemeister move adds or deletes a

single crossing. The second move adds or removes two crossings of the same type

9



(over or under), and the third move makes no change to the number of crossings.

Two diagrams that are equivalent based on all three of the Reidemeister moves are

said to be ambient isotopic, while two diagrams that are equivalent using only the

second and third Reidemeister moves are said to be regular isotopic.

III

II

I

Figure 1: The Reidemeister Moves

Definition 1.6. [1] A chiral knot is a knot that is not equivalent to its mirror image.

An example of a chiral knot is the trefoil knot, shown in Figure 2 with its mirror image.

A knot that isn’t chiral is said to be achiral, for which the figure eight knot serves as

an example shown in Figure 3.
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Figure 2: A Trefoil Knot and its Mirror Image

Figure 3: Figure Eight Knot

Since a knot is a simple closed curve, it can be assigned an orientation, which

in diagrams will be denoted with arrows along the curve. Clearly there are only

two possible ways to orient a knot, and 2m possible ways of orienting a link of m

components [3].

Definition 1.7. [5]An invariant of a knot or link is a quantitative expression (al-

most always a polynomial) that remains unchanged when derived from two equivalent

knots or links.

The first such invariant in the history of knot theory was the Alexander polyno-

mial [2]. The motivation for our work is the calculation of the Jones Polynomial

invented by Vaughn Jones. The Jones Polynomial is noteworthy for being the first
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knot invariant capable of distinguishing between the mirror images of chiral knots [1].

1.2 Computing the Jones Polynomial from the Bracket Polynomial

Consider any crossing of a given knot. When following along the under passing

strand towards the crossing, label the space left of the strand and in front of the

crossing A and the other space B. If one were to cut the knot at this crossing and

glue the new pairs of ends back together without recreating the crossing, one would

have two choices; you may merge the spaces labelled A together by performing an

A-split, or you may merge the spaces labelled B together via a B-split [1]. This

labelling scheme and the two possible operations are illustrated in Figure 4.

A

B

B

A A

B

Figure 4: Crossing Labels, A-split, and B-split

This allows for two possible states of the knot after a splitting operation. If this

operation is performed on every crossing of a knot with k crossings, we then have 2k

possible states, where each state is a collection of Jordan curves in the plane. We

will denote a state by σ. Some of these states may be equivalent under isotopy, and

some states may be unique [1]. An example of deriving a state of the trefoil knot

using three A-splits is shown in Figure 5. The rightmost diagram is the state.

The ability to describe all of these states in a quantitatively meaningful way is

sufficient for the calculation of the Jones invariant. For a knot K and a state σ, let

12



A A
A

A

A
A

Figure 5: Trefoil State from Three A-splits

〈K | σ〉 denote the product of the labels of the splitting operations used to derive σ.

Using the state σ at the end of Figure 5 as an example, with K the trefoil, we have

〈K | σ〉 = A3. Next, we have that ‖σ‖ = n−1 where n is the number of closed curves

in σ. Using the same example, ‖σ‖ = 2 − 1 = 1. We can now define the bracket

polynomial as follows [1]:

〈K〉 =
∑
σ

〈K | σ〉δ‖σ‖. (1)

The bracket polynomial can be computed recursively given the equation illustrated

in Figure 6, which should be interpreted as follows: Given three links L, L′, and L′′,

where L′ and L′′ each differ from L at a single crossing by an A-split and a B-split

(respectively), the bracket of L is equal to the sum of the bracket of L′ multiplied by

A and the bracket of L′′ multiplied by B [1].

L = = A + B = A L' + B L"

Figure 6: Bracket Recursion Formula

When we set B = A−1 and δ = −A2−A−2, the bracket is an invariant under type

II and III Reidemeister moves, and thus an invariant of regular isotopy. If we want

13



invariance of ambient isotopy, we will need to normalize the bracket polynomial.

Definition 1.8. [1] For an oriented link K, the writhe of K, w(K), is the sum of

the labels of the link’s crossings given the following labelling scheme: given a vertical

alignment of the crossing using the orientation, we label the crossing +1 if the over-

crossing has a positive slope, and −1 if the overcrossing slope is negative, as shown

in Figure 7.

+1 -1

Figure 7: Labelling Scheme for Crossings of Oriented Links

We can now define the normalized bracket LK of a link K, which is an invariant

of ambient isotopy [1]:

LK = (−A3)−w(K)〈K〉. (2)

Definition 1.9. [1] The Jones polynomial VK(t) of an oriented link K is a poly-

nomial of finite length in the single variable
√
t with integer coefficients, where

√
t

can have either positive or negative exponents, satisfying the following properties:

1) K ambient isotopic to K ′ implies VK(t) = VK′(t).

2) If K is the unknot, then VK(t) = 1.

3) If K and K ′ differ only at a single crossing, such that the crossing would be

labelled positive in K and negative in K ′ using the scheme described earlier,

14



then t−1VK − tVK′ = (
√
t− 1√

t
)K ′′, where K ′′ is a knot obtained from K via an

A-split at the aforementioned crossing.

[3] The Jones polynomial can be derived from the normalized bracket via the

substitution of an indeterminate t described in the following equation:

VK(t) =
(

(−A)−3w(K)〈K〉
)
t1/2=A−2

∈ Z[t−1/2, t1/2]. (3)
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2 THE JONES POLYNOMIAL FROM BRAIDS

2.1 Braids

The concept of a braid is necessary for the method of calculating the Jones

Polynomial that will be utilized later in this thesis. Braids can readily be considered in

the most intuitive means available to anyone who has braided hair, which is especially

convenient since the work herein is specifically considered with braids on three strands.

Definition 2.1. A braid b on n strands is a set of n pairwise disjoint curves such

that each strand has exactly one endpoint in each of two parallel planes A and B, and

any plane parallel to A and B will intersect each strand either once or not at all.

As with pictorial representations of knots, a mathematically meaningful definition

for visualizations of braids follows similarly.

Definition 2.2. A diagram of a braid b is a projection of a braid onto two-dimensional

space, such that the same properties as in the definition of a diagram of a knot or link

are satisfied.

With this pictorial representation of braids, we can begin to consider a more

simplified means of contemplating them. The parallel planes mentioned earlier in the

definition of a braid can be simplified to parallel lines, with n points evenly spaced

across each of them directly above or below their corresponding point at the opposite

line. With this in mind, it may be simpler to intuitively visualize the closure of a

braid.

Definition 2.3. [1]A closed braid b is formed from a braid b by connecting the

16



n points of origin at plane A to their corresponding endpoints at plane B without

creating any crossings.

Figure 8: A braid on 3 strands and its closure

Braids are useful for two reasons: their closure is a link, and they have a useful

algebraic structure, which will be discussed later. As for knot equivalence, we can

make use of Alexander’s Theorem, which states that each link in three-dimensional

space is ambient isotopic to a link in the form of a closed braid. That is, each link

is equivalent under the Reidemeister moves to a closed braid [1]. If two braids b and

b′ are both equivalent to the same link by Alexander’s Theorem, then clearly the

closures b and b′ will be ambient isotopic to one another. Note that two braids need

not be equivalent to one another for their closures to both be ambient isotopic to the

same link, and thus ambient isotopic to each other. There is much to gain from being

able to rigorously describe the relationship between two such braids. That is, given

bn ∈ Bn and b′m ∈ Bm such that bn and b′m are ambient isotopic, where m and n may

or may not be equal, it will be useful to have a method for obtaining bn from bm.

17



2.2 The Artin Braid Group

Consider the set of all equivalence classes of braids, where two braids are equivalent

if they can be continuously deformed into one another via the Reidemeister moves

without moving the start or end points of the strands, and without moving the strands

outside of the space between the two parallel planes containing the end points, as

illustrated in Figure 9. Note that the Type I Reidemeister move is not useful to us

for this definition of braid equivalence, since the definition of a braid forbids strands

from doubling back toward their plane of origin.

Figure 9: Reidemeister Moves on a 3-braid

This set of equivalence classes of braids is the set on which the Artin braid group

Bn is defined. The group is generated by elements σi, which are braids where the i-th

strand crosses under the i+ 1-st strand, and the inverse of this generator is σ−1i , the

braid where the i-th strand crosses over the i + 1-st strand. We refer to a sequence

of such generators as a braid word.

The binary operation of the group is concatenation of braids, a stacked arrange-

ment of braids so that the end points of the first braid coincide with the starting

18



Figure 10: σ1, σ2, and σn−1

Figure 11: σ−11 , σ−12 , and σ−1n−1

points of the second braid, and so on. This is illustrated in Figure 12.

Figure 12: σ1, σ2, and their concatenation σ1σ2

Towards showing that Bn satisfied the axioms of a group, we observe that a two-

sided identity element exists in the form of an unbraid. The unbraid is a braid

analogue to the unknot, their common property being the lack of crossings. This

identity element is illustrated in Figures 13 and 14.

19



Figure 13: The identity element in Bn

Figure 14: equivalence of 13σ1, σ113, and σ1

We also have that each σi has a two-sided inverse σ−1i . The equivalence of σiσ
−1
i

and σ−1i σi with the identity in Bn is illustrated in Figure 15.

Figure 15: σ−1i σi = σiσ
−1
i = 1n for all i = 1, 2, ..., n− 1

20



Concatenation is also associative, so the axioms of a group are satisfied by the

Artin braid group. This braid group is defined with the aforementioned generators

and the following relations:

σiσ
−1
i = σ−1i σi = 1 i = 1, 2, ..., n− 1,

σiσi+1σi = σi+1σiσi+1 i = 1, 2, ..., n− 1,

σiσj = σjσi |i− j| > 1.

(4)

The first and second relations describe equivalence under type II and type III

Reidemeister moves, respectively. An example of using these relations to establish

equivalence with the identity in B3 is shown in Figure 16.

Figure 16: Braid Equivalence Example in B3
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The third relation gives us that two consecutive crossings on disjoint pairs of

strands in a braid can commute with one another by merely sliding the crossings

vertically, as illustrated in Figure 17.

Figure 17: σ1σ3 = σ3σ1 in B4

2.3 Markov’s Theorem

We can now describe two other means of manipulating braids to produce other

braids with ambient isotopic closures. One is a Markov Move: for a given braid b in

Bn, if a strand is added to b which has one crossing of the last strand in b, so that it

is then a braid in Bn+1, then bσn, bσ−1n , and b are ambient isotopic to one another [1].

An example using σ−11 σ2σ
−1
1 σ2 ∈ B3 and σ3, σ

−1
3 ∈ B4 is shown in Figure 18, where

their closures can be seen as equivalent in Figure 19 by type I Reidemeister moves.

, ,

Figure 18: σ−11 σ2σ
−1
1 σ2 ∈ B3, σ

−1
1 σ2σ

−1
1 σ2σ3 ∈ B4, and σ−11 σ2σ

−1
1 σ2σ

−1
3 ∈ B4
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, ,

Figure 19: σ−11 σ2σ
−1
1 σ2, σ

−1
1 σ2σ

−1
1 σ2σ3, and σ−11 σ2σ

−1
1 σ2σ

−1
3 equivalent by Reidemeis-

ter I moves

A second move for obtaining braids with ambient isotopic closures is braid con-

jugation. Given two braids b and b′ in Bn, if we concatenate b, b′, and b−1 to get

bb′b−1, b will cancel with its inverse in the closure of bb′b−1 (though not in the braid

group), thus making bb′b−1 ambient isotopic to b′ [1]. An example using two braids

in B3 is shown in Figure 20.

Figure 20: σ2σ1σ
−1
2 regular isotopic to σ1 by conjugation
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These two moves for manipulating braids are critical to the statement of the

following theorem:

Theorem 2.4. Markov Theorem [1] Let bn ∈ Bn and b′m ∈ Bm be two braids in

the braid groups Bn and Bm, and let bn and b′m be their respective closures. Then,

two links L = bn and L′ = b′m are ambient isotopic if and only if b′m can be obtained

from bn by a series of:

1) equivalences in a given braid group.

2) conjugation in a given braid group.

3) Markov moves or inverse Markov moves.

The Markov Theorem allows us to use presentations of braid groups to calculate

link invariants. A Markov trace on {Bn} is a family of functions {Jn} where

Jn : Bn → R, n ∈ N\{1}, and R is a commutative ring, such that all Jn ∈ {Jn}

satisfy the following conditions [1]:

1) Jn is well defined for all b ∈ Bn.

2) If a, b ∈ Bn, then Jn(b) = Jn(aba−1) (satisfying equivalence under braid conju-

gation).

3) For all b ∈ Bn, there exists α ∈ R that does not depend on n for which

Jn+1(bσn) = αJn(b) and Jn+1(bσ
−1
n ) = α−1Jn(b) both hold (satisfying equiva-

lence under a Markov move).
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Before we can use the Markov trace to construct invariants, we need to define the

writhe of a braid, w(b), which is equal to the exponent sum of the braid’s factors.

More explicity, for a braid word b = σa1i1 σ
a2
i2
...σakik :

w(b) =
k∑
l=1

al. (5)

For a braid b in Bn, a link L ambient isotopic to a closed braid b by Alexander’s

Theorem, and R a commutative ring, we define the link invariant for the Markov

trace by:

J(L) = α−w(b)Jn(b) ∈ R. (6)

The link invariant for the Markov trace is in fact an invariant of ambient isotopy

for oriented links, such that if L and L′ are links equivalent under ambient isotopy,

then J(L) = J(L′) [1].

2.4 The Bracket Polynomial for Braids

The bracket for closed braids can be considered in terms of the link invariant of

the Markov trace. Let R = Z[A,A−1], so that we have Jn : Bn → Z[A,A−1] such

that Jn(b) = 〈b〉. Consider the bracket recursion formula with B = A−1, as shown in

Figure 21.

= A + A
-1

Figure 21: Bracket Recursion Formula with B = A−1
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= A + A
-1

Figure 22: Bracket Recursion Formula for Braids

This recursion formula can then by applied to braids by considering each ‘step’ in

the braid word in the same way that we consider each crossing in a link, such that

the recursion formula should be considered as illustrated in Figure 22. If we let Ui

denote the ‘cup-cap’ formation caused by a B-split in a braid’s crossing at strands i

and i+ 1, we can define the bracket recursion formula as follows:

〈σi〉 = A〈1n〉+ A−1〈Ui〉. (7)

Since states are defined in a way that requires all crossings to be resolved by splits,

a state of a closed braid will thus be defined solely in terms of these new elements Ui.

An example of one possible state of σ2
1σ2σ1 is shown in Figure 23 as U2

1U2U1.

In much the same way as was done with the number of closed curves in a state of

a link, we define ‖s‖ = n− 1, where s is a braid state given by an arbitrary product

of Ui’s and n is the number of closed curves in the closure of the product. We can

then go on to define the bracket for braids. Let δ = −A2 −A−2. For a braid b and a

state s, let 〈b | s〉 denote the product of the A’s and A−1’s associated with the state

s. Using the state shown in Figure 23 as an example state for b = σ2
1σ2σ1, we have

〈b | s〉 = A−4. Using this same example, we will have that |s| = 3− 1 = 2. Then with
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Figure 23: Closed Braid State Example

s used as the index for our states, the bracket for a braid b is defined as:

〈b〉 =
∑
s

〈b | s〉δ‖s‖. (8)

The normalized bracket for a braid Lb is similarly defined as that for a knot or

link. Using the writhe of the braid w(b) we define Lb as follows:

Lb = (−A3)−w(b)〈b〉. (9)

We can now proceed to further define an algebraic structure which will be used

as a representation of a braid group.

2.5 The Temperley-Lieb Algebra

Definition 2.5. [1]A Laurent polynomial is a polynomial with finitely many pos-

itive and negative powers of an indeterminate x with coefficients in a field F.

27



Definition 2.6. [1]The Temperley-Lieb Algebra An is a module over the ring of

Laurent polynomials Z[A,A−1] with a designated loop value defined by δ = −A2 −

A−2 ∈ Z[A,A−1]. It is generated by elements U1, U2, ..., Un−1, and a sequence of these

elements is referred to as a word in An. Diagrammatically, Ui plays a similar role

to that of σi in the Artin braid group, with the notable difference being a ‘cup-cap’

formation at strands i and i+ 1 instead of a crossing of the two strands.

Definition 2.7. [1] A Temperley-Lieb diagram is a projection onto two-dimensional

space of the set of pairwise disjoint curves formed by the generators of the Temperley-

Lieb algebra, such that 2n pairs of points split evenly along two parallel lines will be

connected in pairs. All curves are drawn in the space between the two parallel lines,

and no two curves intersect or cross one another. The closure of a Temperley-Lieb

diagram is essentially the same as that for braid diagrams.

We have the following relations in An [1], diagrams for which are illustrated in

Figures 24, 25, and 26 respectively:

UiUi±1Ui = Ui,

U2
i = δUi, where δ = −A2 − A−2,

UiUj = UjUi if |i− j| > 1.

(10)

=

Figure 24: U1U2U1 = U1
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=

Figure 25: U2
1 = δU1

=

Figure 26: U1U3 = U3U1

Given these relations in a module, it is important to note that we do not have

commutativity of elements Ui, Uj when |i− j| = 1. This effectively means that we do

not have commutativity of any sort when we restrict our observations to A3.

With the Temperley-Lieb algebra, we can now define a mapping ρ : Bn → An by

the following:

ρ(σi) = A+ A−1Ui,

ρ(σ−1i ) = AUi + A−1.

(11)

It follows that for a braid b, and Us the product of Ui’s for a given state s of a

braid:

ρ(b) =
∑
s

〈b | s〉Us. (12)

We use this mapping in terms of the link invariant of the Markov trace in much

the same way we did earlier, by defining Jn : An → Z[A,A−1] by Jn(ρ(b)) = 〈b〉.

More specifically,

Jn(ρ(b)) =
∑
s

〈b | s〉〈Us〉 =
∑
s

〈b | s〉δ‖s‖. (13)
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The Jones polynomial can then be derived from this version of the normalized

bracket as was already shown.

2.6 Definitions and Observations

Much of the work herein is only valid when restricted to braids on three strands.

Given the closure of a diagram generated by elements Ui in A3, which we will denote

Ui, there exist two types of closed curves, which are labelled in Figure 27 as follows:

i. closed curves formed by the ‘cup-cap’ relationship of repeated elements Ui with

the same i,

ii. closed curves formed by the closure of the sequence of Ui’s.

i

ii

ii

Figure 27: Curve Types of U2
1U2U1

The number of curves of the second type is dependent upon:

a. the number of strands n in the braid from which we have derived the resultant

element of the Temperley-Lieb Algebra An.

b. the “collapsed length” of the word in A3. That is, the length γ of a word

U j1
k1
U j2
k2
...U

jγ
kγ

such that ki 6= ki+1 for all i = 1, ..., γ − 1.
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Clearly, the number of closed curves of type ii can not exceed the number n from An.

, , , ,

Figure 28: Closures of 13, U1, U1U2, U1U2U1, and U2 in A3

We will eventually prove that for a diagram of the closure of a word in A3 of the

form U j1
k1
U j2
k2
...U

jγ
kγ

, ki 6= ki+1 for all i = 1, ..., γ − 1, the total number of curves is a

function of both the “collapsed length” γ and the sum of the exponents α =
∑n

i=1 ji.

Furthermore, when dealing with the Artin-Braid group, we will denote equivalence

of the closures of two braid words by ≡c, and the set of all braid closures on three

strands as B3.
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3 RESULTS

3.1 Relations in the Temperley-Lieb Algebra

Our first theorem is noteworthy in that it provides a generalization that holds

for An, thus holding for any arbitrary number of strands n in the Temperley-Lieb

Algebra, whereas the rest of the work in this thesis is only proven to hold for 3

strands.

Theorem 3.1. In An, given a word of the form U j1
k1
U j2
k2
...U

jγ
kγ

, and the exponent sum

defined by α =
∑γ

i=1 ji, U
j1
k1
U j2
k2
...U

jγ
kγ

= δα−γUk1Uk2 ...Ukγ .

Proof. Recall the following relation

U2
i = δUi. (14)

The proof then follows from the computation given below.

U j1
k1
U j2
k2
...U

jγ
kγ

= δj1−1Uk1δ
j2−1Uk2 ...δ

jγ−1Ukγ

= (δj1−1δj2−1...δjγ−1)Uk1Uk2 ...Ukγ

= δ(j1−1)+(j2−1)+...+(jγ−1)Uk1Uk2 ...Ukγ

= δα−γUk1Uk2 ...Ukγ .

(15)

The next theorem allows us to restrict our attention to words of the form Ui or

UiUj, i 6= j, whenever we are given a word of the form Uk1Uk2 ...Ukγ , k 6= k + 1 for all

k = 1, 2, ..., γ− 1. In fact, we will frequently be combining the next theorem with the
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previous one to generalize words of “reduced” form U j1
k1
U j2
k2
...U

jγ
kγ

given an equivalence

to either δmUiUj or δmUi, for i 6= j and m in the natural numbers union zero.

Theorem 3.2. For a word of the form Uk1Uk2 ...Ukγ , ki 6= ki+1 for all i = 1, ..., γ − 1,

γ > 0, in A3, if γ is even, then Uk1Uk2 ...Ukγ = Uk1Uk2, and if γ is odd, Uk1Uk2 ...Ukγ =

Uk1.

Proof. Without loss of generality let Uk1 = U1 in all cases. Consider the case where

γ is even. Then Ukγ = U2. Proceeding by induction, in the case where γ = 2, our

theorem immediately holds. Suppose the theorem holds for some even γ = n > 2,

such that Uk1Uk2 ...Ukn = U1U2...U2 = U1U2.

Uk1Uk2 ...Ukn+2 = U1U2...U2U1U2

= (U1U2...U2)U1U2

= U1U2U1U2

= U1(U2U1U2)

= U1U2.

(16)

Next, consider the case where γ is odd. Then Ukγ = U1. Proceeding by induction,

in the case where γ = 1, our theorem immediately holds. Suppose our theorem holds

for some odd γ = n > 1, such that Uk1Uk2 ...Ukn = U1U2...U1 = U1.

Uk1Uk2 ...Ukn+2 = U1U2...U1U2U1

= (U1U2...U1)U2U1

= U1U2U1 = U1.

(17)
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3.2 Type i and Type ii Curves in the Temperley-Lieb Algebra

The bracket polynomial is dependent on the number of closed curves in a diagram

of a resolved state of a knot or link. We observed in chapter two that all curves in

A3 can be classified as one of two types. In Theorems 3.3, 3.4, 3.5, and 3.6 we will

arrive at generalizations regarding the total number of curves of the first type, which

are curves described as being formed by the ‘cup-cap’ relationship of sequential terms

Ui. Theorem 3.3 establishes the relationship between consecutive terms Ui and the

formation of type i curves by considering only words of a single factor raised to the

power of an arbitrary natural number n.

Theorem 3.3. The number of type i curves in the closure of diagrams of the form

Un
i , n > 0 in A3 is equal to n− 1.

Proof. Without loss of generality, consider Un
1 . Suppose n = 1. Then for U1, we have

zero curves of type i as shown in Figure 29.

Figure 29: The closure of U1 in A3

Suppose our theorem holds for n = k so that the diagram shown in Figure 30 has

k − 1 curves of type i.
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Figure 30: The closure of Uk
1 in A3

Then, for k + 1, note that Uk+1
1 = Uk

1U1.

Figure 31: The closure of Uk+1
1 in A3

We can observe Figure 31 shows that there is one additional type i curve. Thus

the number of type i curves for n = k + 1 is therefore (k − 1) + 1 = k = n− 1.

Now that we have established that the relationship between the formation of type

i curves and the sequential multiplication of the same generator Ui in A3, we can take

advantage of the relation U2
i = δUi to give us a result that yields the number of type

i curves given the exponent of δ.

Corollary 3.4. The number of type i curves in the closure of diagrams of δmUi in

A3 is equal to m.
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Proof. Recall the following relation

U2
i = δUi. (18)

It then immediately follows from this relation that δmUi = Um+1
i . Then, for m = n−1,

the proof follows from Theorem 3.3.

The next theorem begins by confirming that when we right multiply δmUi by

Uj in A3, for i 6= j, the number of type i curves is not affected. It is then shown

by induction that right multiplying in this alternating fashion can be performed an

arbitrary number of times without having any effect on the number of type i curves.

Thus it is shown that the number of type i curves in a diagram of the closure of a

word of this form is only dependent on the value of the exponent on δ.

Theorem 3.5. In A3, given a diagram of the form δnUk1Uk2 ...Ukγ , ki 6= ki+1 for all

i = 1, ..., γ − 1, the number of type i curves will be equal to n.

Proof. Recall from Corollary 3.4 that, given δnUi, there will exist n curves of type i.

In the case where γ is odd, given Theorem 3.2 we have that δnUk1Uk2 ...Ukγ = δnUk1 .

Thus our theorem immediately holds for the case where γ is odd.

In the case where γ is even, recall from Theorem 3.2 that δnUk1Uk2 ...Ukγ =

δnUk1Uk2 .
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,

Figure 32: Closures of δnU1 and δnU1U2 in A3

Without loss of generality, let Uk1 = U1 and Uk2 = U2. The diagram in Figure 32

shows that, when δnU1 is right multiplied by U2, no new type i curves are created or

destroyed, and thus our theorem holds.

The last result regarding type i curves in this chapter generalizes our calculation

of type i curves for all words of a reduced form in A3 by equivalence with a word

satisfying the conditions of Theorem 3.5.

Theorem 3.6. In A3, given a diagram of the form U j1
k1
U j2
k2
...U

jγ
kγ

, ki 6= ki+1 for all

i = 1, ..., γ − 1, and α =
∑n

i=1 ji, the number of type i curves will be equal to α− γ.

Proof. From Theorem 3.1, we have that U j1
k1
U j2
k2
...U

jγ
kγ

= δα−γUk1Uk2 ...Ukγ . Therefore

our proof follows from Theorem 3.5 for n = α− γ.

The remaining results of this section establish that the number of type ii curves in

diagrams from words in A3 is dependent only on the length of the word in ’reduced’

form, that is, a word of a form U j1
k1
U j2
k2
...U

jγ
kγ

such that ki 6= ki+1 for all i = 1, 2, ..., γ−1.

We begin to isolate this dependence on the ‘reduced length’, γ, by showing that the

number of type ii curves is independent of the exponential values of the generators in
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a word. The first such proof begins by showing this independence to hold for a word

where γ is equal to one.

Theorem 3.7. The number of type ii curves in the closure of diagrams of Un
i in A3

is equal to 2.

Proof. Without loss of generality, consider Un
1 . Suppose n = 1. Then for U1, we have

two curves of type ii, as shown in Figure 33.

Figure 33: U1 in A3

Suppose our theorem holds for n = k so that the diagram in Figure 34 has two

curves of type ii.

Figure 34: Uk
1 in A3

Then, for k + 1, note that Uk+1
1 = Uk

1U1.
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Figure 35: Uk+1
1 in A3

Since no such additional curves are formed in the closure of the diagram shown

in Figure 35, we can conclude that there are two curves of type ii, and therefore the

theorem holds.

Corollary 3.8. The number of type ii curves in the closure of diagrams of δmUi in

A3 is equal to 2.

Proof. Recall the relation U2
i = δUi. This gives us that δmUi = Um+1

i , where for

n = m + 1 Theorem 3.7 allows us to conclude that there are therefore 2 type ii

curves.

Now that the number of type ii curves has been shown to be independent of

exponents in words where γ is equal to one, Theorems 3.9, 3.10, 3.11, and 3.12

continue to confirm this independence to hold for all cases of words where γ is equal

to two.

Theorem 3.9. The number of type ii curves in the closure of diagrams of Un
i Uj,

i 6= j, n > 0, in A3 is equal to 1.
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Proof. Without loss of generality, consider Un
1 U2. Suppose n = 1. Then for U1U2, we

can observe there is one curve of type ii, as shown in Figure 36.

Figure 36: U1U2 in A3

Suppose our theorem holds for n = k so that the diagram in Figure 37 has one

curve of type ii.

Figure 37: Uk
1U2 in A3

Then, for k + 1, note that Uk+1
1 U2 = Uk

1U1U2.
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Figure 38: Uk+1
1 U2 in A3

Since no such additional curves are formed in the closure of the diagram as shown

in Figure 38, we can conclude that there is one curve of type ii, and therefore the

theorem holds.

Theorem 3.10. The number of type ii curves in the closure of diagrams of UiU
n
j ,

i 6= j, n > 0, in A3 is equal to 1.

Proof. The proof is essentially identical to the proof of Theorem 3.9.

Corollary 3.11. The number of type ii curves in the closure of diagrams of δmUiUj,

i 6= j, m > 0, in A3 is equal to 1.

Proof. Given the relation that yields δmUiUj = Um+1
i Uj, the proof follows immedi-

ately from Theorem 3.9.

Theorem 3.12. The number of type ii curves in the closure of diagrams of Un
i U

m
j ,

i 6= j, n > 0, in A3 is equal to 1.

Proof. Without loss of generality, consider Un
1 U

m
2 . Suppose m = 1. In Theorem 3.9

we showed that the diagram of Un
1 U2 has only one type ii curve, and thus the theorem
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Figure 39: Un
1 U

k
2 in A3

holds for the base case. Suppose our theorem holds for m = k so that the diagram in

Figure 39 has one curve of type ii.

Then, for k + 1, note that Un
1 U

k+1
2 = Un

1 U
k
2U2.

Figure 40: Un
1 U

k+1
2 in A3

Since no additional type ii curves are formed in the closure of the diagram as

shown in Figure 40, we can conclude that there is one curve of type ii, and therefore

the theorem holds.
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Now that it is established that the number of type ii curves is independent of

exponents in words such that γ is equal to one or two, the next theorem will show us

that the number of type ii curves is dependent on the parity of γ. The case of a word

with generators raised to a power greater than one is ignored for now for the sake of

observing this dependence on parity in isolation.

Theorem 3.13. For a word of the form Uk1Uk2 ...Ukγ , ki 6= ki+1 for all i = 1, ..., γ−1,

in A3, if γ is even, then the number of type ii curves in the diagram is equal to 1,

and if γ is odd, then the number of type ii curves in the diagram is equal to 2.

Proof. Without loss of generality let Uk1 = U1. Consider the case where γ is even.

Then Ukγ = U2. Consider the case where γ = 2. We have already shown the theorem

to hold in this case. Let us further consider γ = 4. Then our diagram is U1U2U1U2,

which is equal to U1U2 given the relation UiUi±1Ui = Ui.

It can easily be shown that Uk1Uk2 ...Ukγ = Uk1Uk2 for even values of γ. Our base

case is already satisfied. Suppose then that U1U2...U2 = U1U2. Then, U1U2...U2U1U2 =

(U1U2...U2)U1U2 = U1U2U1U2 = U1U2. Proof of the theorem immediately follows from

equivalence with U1U2.

The proof for the case where γ is odd is essentially identical to the case where γ

is even.

The next theorem is our final step in generalizing the number of type ii curves

formed by diagrams of closures of words in A3 of ‘reduced’ form. Specifically, it proves

that the number of type ii curves is entirely dependent on the parity of γ, regardless

of any exponents on any generators in a word given any arbitrary γ.
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Theorem 3.14. For a word of the form U j1
k1
U j2
k2
...U

jγ
kγ

, ki 6= ki+1 for all i = 1, ..., γ−1,

in A3, if γ is even, then the number of type ii curves in the diagram is equal to 1,

and if γ is odd, then the number of type ii curves in the diagram is equal to 2.

Proof. Consider the case where γ is even. Recall that for even values of γ and

α =
∑γ

i=1 ji,

U j1
k1
U j2
k2
...U

jγ
kγ

= δα−γUk1Uk2 ...Ukγ

= δα−γUk1Uk2 .

(19)

The conclusion for the case where γ is even immediately follows from this equivalence.

Consider the case where γ is odd. Recall that for odd values of γ and α =
∑γ

i=1 ji,

U j1
k1
U j2
k2
...U

jγ
kγ

= δα−γUk1Uk2 ...Ukγ

= δα−γUk1 .

(20)

The conclusion for the case where γ is odd immediately follows from this equivalence.

The last theorem of this chapter yields an equation for the total number of curves

in a diagram of the closure of any word in A3. Since all curves in such a diagram

have been classified as one of two types, the total number of curves in a diagram is

the sum of the total number of curves of each type.

Theorem 3.15. For a word of the form U j1
k1
U j2
k2
...U

jγ
kγ

, ki 6= ki+1 for all i = 1, ..., γ−1,

in A3, the total number of curves in the diagram is equal to α − γ + 2 if γ is odd,

α− γ + 1 if γ is even.

Proof. The proof immediately follows from Theorem 3.6 and Theorem 3.14.
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3.3 Generalizations of the Artin Braid Group on Three Strands

The pursuit of a normal form for words in B3 begins with showing that all words

in B3 are equivalent to another word in B3 that beings with σ1. Theorem 3.16 shows

this equivalence to hold given the properties of B3 as a group.

Theorem 3.16. Given any braid in B3 of the form σj1k1σ
j2
k2
...σ

jγ
kγ

, ki 6= ki+1 for all

i = 1, 2, ..., γ − 1, there exists an equivalent braid in B3 that begins with σ1.

Proof. For a braid satisfying the hypotheses of the theorem such that the first term

is σ1, our theorem holds immediately. Recall the relation σiσi+1σi = σi+1σiσi+1 for

i = 1, 2, ..., n− 1.

σ2σ1σ2 = σ1σ2σ1

⇒σ2σ1 = σ1σ2σ1σ
−1
2

⇒σ2 = σ1σ2σ1σ
−1
2 σ−11 .

(21)

When applying the method given in the proof of theorem 3.16 to a braid beginning

with σ2, we can note from σj12 σ
j2
1 ...σ

jγ
kγ

= σ1σ2σ1σ
−1
2 σ−11 σj1−12 σj21 ...σ

jγ
kγ

that the braid

word is significantly lengthened. Since the aim of these proofs is to simplify the

calculation of invariants from braid words, it would be desirable to reduce equivalent

braids to their shortest possible form. This can be achieved by a weaker theorem that

allows for the consideration of equivalence of braid closures, thus giving us access to

Markov’s theorem. It is clear that the first two moves in Markov’s Theorem satisfy

the axioms of an equivalence relation.
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Theorem 3.17. Given any braid in B3 of the form σj1k1σ
j2
k2
...σ

jγ
kγ

, ki 6= ki+1 for all

i = 1, 2, ..., γ−1, there exists a braid in B3 with an equivalent closure that begins with

σ1.

Proof. Consider σj1k1σ
j2
k2
...σ

jγ
kγ

. In the case where k1 = 1, our theorem holds immedi-

ately.

Suppose k1 = 2. Consider the case where γ is even. Then, σ
jγ
kγ

= σ
jγ
1 , and thus

σj1k1σ
j2
k2
...σ

jγ
kγ

= σj12 σ
j2
1 ...σ

jγ
1 .

σj12 σ
j2
1 ...σ

jγ
1 ≡c σ

jγ
1 σ

j1
2 σ

j2
1 ...σ

jγ
1 σ
−jγ
1

= σ
jγ
1 σ

j1
2 σ

j2
1 ...σ

jγ−1

2 .

(22)

Consider the case where γ is odd. Then, σ
jγ
kγ

= σ
jγ
2 , and thus σj1k1σ

j2
k2
...σ

jγ
kγ

= σj12 σ
j2
1 ...σ

jγ
2 .

σj12 σ
j2
1 ...σ

jγ
2 ≡c σ

−j1
2 σj12 σ

j2
1 ...σ

jγ
2 σ

j1
2

= σj21 σ
j3
2 ...σ

jγ+j1
2 .

(23)

The last theorem in this chapter establishes that, for all words in B3 of length

greater than one, the diagram of the closure of such a word is equivalent under ambient

isotopy to some word of even length. The restriction to equivalence of diagrams of the

closures of words allows access to Markov’s Theorem once again, and thus equivalence

under conjugation.

Theorem 3.18. Given any braid in B3 of the form σj1k1σ
j2
k2
...σ

jγ
kγ

, ki 6= ki+1 for all

i = 1, 2, ..., γ − 1, γ > 1, there exists another braid in B3 with an equivalent closure

such that γ is even.
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Proof. From theorem 3.17, we can consider without loss of generality a braid word of

the form σj11 σ
j2
2 ...σ

jγ
kγ

. If γ is even, our theorem immediately holds. Consider the case

where γ is odd. Then σkγ = σ1, and γ − 1 is even.

σj11 σ
j2
2 ...σ

jγ
1 ≡c σ

jγ
1 σ

j1
1 σ

j2
2 ...σ

jγ
1 σ
−jγ
1

= σ
j1+jγ
1 σj22 ...σ

jγ−1

2 .

(24)
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4 FURTHER RESEARCH

There are two desirable properties that we would like to have in a normal form for

the Artin braid group and the Temperley-Lieb Algebra. First, we would like for our

normal form to have a one-to-one correspondence between a braid’s normal form and

the Jones polynomial associated with the link formed by the braid’s closed diagram.

Second, we would like our normal form to be applicable for an arbitrary number of

strands n in both the Artin braid group and the Temperley-Lieb algebra. Further

work is needed to extend the theorems in this thesis to generalizations that apply for

an arbitrary number of strands n, and more theorems not yet begun in the case of

3 strands may be necessary in order for our normal form to have these two desirable

properties.
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APPENDIX: PYTHON CODE IMPLEMENTATION

The python code that follows computes the Jones polynomial given a braid word

in the form of a list, where the list is a sequence of generators and their inverses raised

to a single power. Theorem 3.15 is implemented in the ‘state value’ function.

from sympy import ∗

from sympy . abc import sigma , de l t a

u1 = Symbol ( ’ U 1 ’ , commutative = False )

u2 = Symbol ( ’ U 1 ’ , commutative = False )

s igma 1 = Symbol ( ’ s igma 1 ’ , commutative = False )

s igma 2 = Symbol ( ’ s igma 2 ’ , commutative = False )

A = Symbol ( ’A ’ )

t = Symbol ( ’ t ’ )

sigma1 = (A + A∗∗(−1) ∗ u1 )

sigma2 = (A + A∗∗(−1) ∗ u2 )

s i gma1 inve r s e = (A∗∗(−1) + A ∗ u1 )

s i gma2 inve r s e = (A∗∗(−1) + A ∗ u2 )

def c a l c u l a t e w r i t h e ( bra id word array ) :

i f type ( bra id word array ) != l i s t :
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s i g m a l i s t = str ( bra id word array )

else :

s i g m a l i s t = ’ ’ . j o i n ( str ( e ) for e in bra id word array )

t o t a l s i g m a = s i g m a l i s t . count ( ’ sigma ’ )

t o t a l n e g a t i v e = s i g m a l i s t . count ( ’−1 ’ )

t o t a l p o s i t i v e = t o t a l s i g m a − t o t a l n e g a t i v e

return t o t a l p o s i t i v e − t o t a l n e g a t i v e

def rho ( f a c t o r ) :

i f f a c t o r == sigma 1 :

return sigma1

e l i f f a c t o r == sigma 1 ∗∗(−1):

return s i gma1 inve r s e

e l i f f a c t o r == sigma 2 :

return sigma2

e l i f f a c t o r == sigma 2 ∗∗(−1):

return s i gma2 inve r s e

def rho map ( bra id word array ) :

t l sum = 1

# s i n g l e f a c t o r b r a i d s are not read as l i s t s ,
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# thus t h i s s i m p l i f i e d pars ing i s implemented in t h i s case

i f type ( bra id word array ) != l i s t :

t l sum ∗= rho ( bra id word array )

else :

for f a c t o r in bra id word array :

t l sum ∗= rho ( f a c t o r )

return t l sum

def r educed l ength ( f a c t o r ) :

return f a c t o r . count ( u1 ) + f a c t o r . count ( u2 )

def s t a t e v a l u e ( f a c t o r ) :

# S t a t e v a l u e f o r the i d e n t i t y i s d e l t a squared

i f r educed l ength ( f a c t o r ) == 0 :

return f a c t o r ∗ de l t a ∗∗2

# From Theorem 3.15 , produc t s o f even reduced l e n g t h

# e v a l u a t e to d e l t a r a i s e d to a power e q u a l to the

# exponent sum minus the reduced l e n g t h .

# Exponent sum i s c a l c u l a t e d by s u b s t i t u t i n g a l l

# U n∗∗k wi th d e l t a ∗∗k , where k g i v e s the exponent sum .
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# Length i s s u b t r a c t e d by d i v i d i n g by d e l t a ∗∗m,

# where m i s the reduced l e n g t h .

e l i f ( r educed l ength ( f a c t o r ) % 2) == 0 :

newarg = f a c t o r . subs ( u1 , d e l t a ) . subs ( u2 , d e l t a )

return newarg ∗ de l t a ∗∗(− r educed l ength ( f a c t o r ) )

# From Theorem 3.15 , produc t s o f odd reduced l e n g t h

# e v a l u a t e to d e l t a r a i s e d to a power e q u a l to the

# exponent sum minus the reduced l eng th , p l u s one .

else :

newarg = f a c t o r . subs ( u1 , d e l t a ) . subs ( u2 , d e l t a )

return newarg ∗ de l t a ∗∗(− r educed l ength ( f a c t o r ) + 1)

def bracket ( polynomial ) :

output = 0

for arg in polynomial . a rgs :

output += s t a t e v a l u e ( arg )

return output

def norma l i z e by wr i the ( wr i the ) :

return (−A∗∗3)∗∗(−1 ∗ writhe )
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def j one s ( polynomial ) :

t l sum = expand ( rho map ( polynomial ) )

wr i the = c a l c u l a t e w r i t h e ( polynomial )

j one s = s i m p l i f y ( norma l i z e by wr i the ( wr i the ) ∗

bracket ( t l sum ) . subs ( de l ta , (−(A∗∗2) −

A∗∗ ( −2)) ) ) . subs (A, t ∗∗(−1/4))

return s i m p l i f y ( j one s )

# input must be in the form of an array , f a c t o r by f a c t o r

# example : [ sigma 1 , sigma 2 , sigma 1 , sigma 2 ∗∗(−1) , sigma 1 ∗∗(−1) ,

# sigma 1 ∗∗(−1) , sigma 1 ] , which w i l l r e turn the jones po lynomia l

# f o r the Hopf−Link , −t ∗∗(−0.5) − t ∗∗ ( 0 . 5 )
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