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ABSTRACT

Distribution of a Sum of Random Variables when the Sample Size is a Poisson

Distribution

by

Mark Pfister

A probability distribution is a statistical function that describes the probability of

possible outcomes in an experiment or occurrence. There are many different probabil-

ity distributions that give the probability of an event happening, given some sample

size n. An important question in statistics is to determine the distribution of the

sum of independent random variables when the sample size n is fixed. For example,

it is known that the sum of n independent Bernoulli random variables with success

probability p is a Binomial distribution with parameters n and p. However, this is

not true when the sample size is not fixed but a random variable. The goal of this

thesis is to determine the distribution of the sum of independent random variables

when the sample size is randomly distributed as a Poisson distribution. We will also

discuss the mean and the variance of this unconditional distribution.
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1 INTRODUCTION

To explain how values of a random variable is distributed, a probability distri-

bution is used. A probability distribution is a mathematical function that gives the

probability that an event occurs. Probability distributions can be simple to complex,

from determining the probability of rolling a 2 with a dice, to determining the success

of a particular stock in the stock market. There are two different kinds of probability

distributions, discrete probability distributions and continuous probability distribu-

tions. This thesis will cover the sum of independent discrete random variables when

the sample size is random.

Definition 1.1 A discrete probability distribution is a distribution where the set of

possible outcomes is discrete and is defined by a probability mass function. Two things

must be true for discrete probability distributions:

1. The probability of any individual event must be between 0 and 1.

2. The sum of the probabilities for the events must equal 1.

Depending on the situation, different probability distributions may be used. Look-

ing at discrete probability distributions, some examples include Bernoulli, binomial,

geometric, negative binomial, or Poisson. Problems in probability and statistics, we

are often interested in the sum of n independent random variables.

Definition 1.2 Let Y1, ..., Yn be independently distributed discrete random variables.

Let Y = Y1+ ...+Yn where n is fixed. Here are some examples of sums of independent

and identically distributed discrete random variables:
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1. If Yi follows a Bernoulli (p), then Y will be distributed as a binomial (n, p)

2. If Yi follows a geometric (p), then Y will be distributed as a negative binomial

(n, p)

3. If Yi follows a Poisson (µ), then Y will be distributed as a Poisson (nµ)

The previous examples assumed that the sample size n was fixed. Consider the

following hierarchical model:

Y |N = Y1 + Y2 + ...+ YN

where

N ∼ Poisson(λ).

Hierarchical models are useful in developing probability distributions to better

match the data. A hierarchical model is formed by taking different random variables

in a single probability distribution and giving them their own probability distribution

in a hierarchy.

A discrete probability distribution that expresses the probability of a number of

events occurring within a given time period is a Poisson distribution. The Poisson

distribution assumes that there is a constant rate of occurrence and that the events

occur independently of each other. Applications of the Poisson distribution would be

the number of car wrecks in a city from 8 AM to 9 AM, or the number of customers

walking into a store from 12 PM to 1 PM. There would be prior information giving

the average number of wrecks happening or the number of customers walking into a

store, which is required for the Poisson distribution. The average number of events

8



that occurs per time interval is λ. Below are the probability mass function, mean,

and variance of the Poisson distribution

P (N = n) =
e−λλn

n!
, n = 0, 1, 2, ..., λ > 0

E(N) = λ,

and

V ar(N) = λ,

respectively.

If one assumes that P (N = 0) = 0, then the Poisson distribution needs to be ad-

justed. A zero-truncated Poisson distribution is very similar to a Poisson distribution

but assumes P (N = 0) = 0. An example of a zero-truncated Poisson distribution

would be the number of items in a person’s cart at a grocery store. If a person is wait-

ing in line to checkout with a cart, it would be safe to assume there is at least one item

in the cart. The probability mass function, mean, and variance of the zero-truncated

Poisson distribution are

P (NT = n) =
e−λλn

n!(1− e−λ)
, n = 1, 2, ..., λ > 0

E(NT ) =
λ

1− e−λ
,

and

V ar(NT ) =
λ+ λ2

1− e−λ
− λ2

(1− e−λ)2
,

respectively.

9



In the different distributions covered, its probability mass function will be dis-

cussed, then it will be assumed that N is random, and a hierarchical model will be

made with that new probability distribution. In general, the distribution equation

used is the definition of conditional probability, this equation will be used to find the

unconditional distribution of Y :

P (Y = y|λ) =
∞∑
n=y

P (Y = y|N = n, λ) · P (N = n|λ)

The mean and variance of Y can be found using the following equations:

E(Y ) = E(E(Y |N))

and

V ar(Y ) = V ar(E(Y |N)) + E(V ar(Y |N)),

respectively.
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2 MOTIVATIONAL WORK

Solomon (1983) details the following biological model. Suppose that each of a

random number, N, or insects lays yi eggs, where yi’s are independent, identically

distributed random variables. the total number of eggs laid is Y = Y1 + ... + YN .

What is the distribution of Y ? It is common to assume that N ∼ Poisson(λ).

Furthermore, if we assume that each Yi has the logarithmic series distribution with

success probability p, we have the hierarchical model:

Y |N = Y1 + ...+ YN

P (Yi = y) =
−1

ln(p)

(1− p)y

y
, y = 0, 1, ...

N ∼ Poisson(λ).

It will be shown in the next section that the marginal distribution of Y is negative

binomial(r, p), where r = −λ
ln(p)

.

11



2.1 Proof of Motivational Work

We can show this by computing the moment generating function (mgf) of Y. It is

denoted by the following:

M(t) = E(eY t)

= E[E(eY t|N)]

= E[E(e(Y1+Y2+...+YN )t|N)]

= E[E(eY1t|N)]N .

This fact is due to the mgf of the sum of the independent variables is equal to the

product of the individual moment generating functions. Hence, we can find the mgf

of Y1 in particular:

E(eY1t) =
∞∑
y1=1

ey1t
−1

ln(p)

(1− p)y1
y1

=
−1

ln(p)

∞∑
y1=1

((1− p)et)y1
y1

=
−1

ln(p)
(−ln(1− et(1− p))).

The conclusion above is a result of using the Taylor Series of ln(x). Rearranging

the equation above gives us the mgf of Y1:

M(t) =
ln(1− et(1− p))

ln(p)
.

Since we have the mgf of Y1, we can obtain the mgf of Y, since all Yi’s are inde-
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pendent identically distributed. Hence, the mgf of Y is:

E(eY t) = E[E(eY1t|N)]N

= E
[( ln(1− et(1− p))

ln(p)

)N]
=
∞∑
n=0

( ln(1− et(1− p))
ln(p)

)n(e−λλn
n!

)
.

The above equation resembles a Poisson distribution. We can pull out some terms

from inside the sum to get a probability mass function (pmf) that is equivalent to a

pmf of a Poisson distribution. Hence, we have:

e−λe
λln(1−et(1−p))

ln(p)

∞∑
n=0

e
−λln(1−et(1−p))

ln(p)

(
λln(1−et(1−p))

ln(p)

)n
n!

.

Inside the sum we have a pmf of the form λke−λ

k!
, which is the pmf of a Poisson

distribution. The sum is equal to 1, since it’s the sum of a Poisson probability random

variable. Hence, the mgf of Y is:

E(eY t) = e−λ+
λln(1−et(1−p))

ln(p)

= e
−λ
ln(p)

(
ln

(
p

1−et(1−p)

))
=
( p

1− et(1− p)

) −λ
ln(p)

, t < −ln(1− p).

This is the mgf of a negative binomial (r, p) distribution with r = −λ
ln(p)

.
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3 BINOMIAL

A discrete probability distribution where a single trial is conducted and has two

possible outcomes, such as success or failure, is known as a Bernoulli distribution. An

example of a Bernoulli trial is flipping a coin once, there are two possible outcomes.

When the sample size is greater than 1, n > 1, the distribution of the sum of Bernoulli

trials is known as the binomial distribution. The binomial distribution models the

total number of successes of a fixed number of n independent random trials with

the same probability of success p. The probability distribution of getting exactly y

successes in n trials is given by:

P (Y = y) =

(
n

y

)
py(1− p)n−y, y = 0, 1, ..., n

The mean and the variance of a binomial distribution with parameters n and p

are:

E(Y ) = np

and

V ar(Y ) = np(1− p),

respectively.

In the next section, we assume that the number of trials, N , is randomly dis-

tributed as a Poisson. Given an unknown random sample N and unknown number

of successes, we will calculate the unconditional probability distribution of Y.
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3.1 Binomial-Poisson Mixture

Let Yi have a Bernoulli distribution with success probability p. Hence, the hierar-

chical model is the following:

If

Yi ∼ Bernoulli(1, p), Yi = 0, 1

then

Y |N ∼ Binomial(N, p)

N ∼ Poisson(λ).

The following derives the unconditional probability distribution of Y :

P (Y = y|λ) =
∞∑
n=y

P (Y = y|N = n, λ) · P (N = n|λ)

=
∞∑
n=y

(
n

y

)
py(1− p)n−y e

−λλn

n!

=
∞∑
n=y

( n!

y!(n− y)!

)
py(1− p)n−y e

−λλn

n!

=
∞∑
n=y

( n!

y!(n− y)!

)
py(1− p)n−y e

−λλyλn−y

n!
.

Rearranging terms, we get:

P (Y = y|λ) =
∞∑
n=y

( n!

y!(n− y)!

)
py(λ(1− p))n−y e

−λλy

n!
.

The series begins with n = y, not n = 0. For example, P (Y = 3|N = 2) = 0. For

example, this would be the probability that the coin lands on heads 3 times, yet the

coin is only tossed 2 times. Thus, it starts at n = y. The series can have terms not

15



involving the n sum. Doing this, the series is put into a form that represents a power

series for ex =
∑∞

y=0
xy

y!
. Hence,

P (Y = y|λ) =
e−λ(λp)y

y!

∞∑
n=y

(λ(1− p))n−y

(n− y)!

=
e−λ(λp)y

y!
eλ(1−p)

=
e−λp(λp)y

y!
, y = 0, 1, ...

This is the binomial-Poisson mixture distribution of Y . This is in the form of the

Poisson distribution probability mass function, e
−λλn

n!
. Below is the function computed

in R, as well as figures, showing the difference in the probability distribution as λ or

p changes.

# P(Y = y) where Y | N ~ Binomial(N,p) and N ~ Poisson(lambda)

prob = dpois(y,lambda * p)

Figure 1: Binomial-Poisson Mixture
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The mean and variance of Y are:

E(Y ) = E(E(Y |N))

= E(Np)

= λp

and

V ar(Y ) = V ar(E(Y |N)) + E(V ar(Y |N))

= V ar(Np) + E(Np(1− p))

= λp2 + λp(1− p)

= λp,

respectively.

3.2 Binomial-Zero Truncated Poisson Mixture

In this section, we will derive the distribution, the mean, and the variance of Y

when N is distributed as a zero-truncated Poisson distribution. In the zero-truncated

Poisson distribution, there is a different probability mass function, since there must

be at least one success in this conditional distribution. Using the probability mass

function of the binomial distribution and the zero-truncated Poisson distribution, the

binomial-zero truncated Poisson mixture distribution of Y can be solved.

Recall the probability distribution of a zero-truncated Poisson (λ) is

P (NT = n) =
e−λλn

n!(1− e−λ)
, n = 1, 2, ...

17



with mean

E(NT ) =
λ

1− e−λ

and variance

V ar(NT ) =
λ+ λ2

1− e−λ
− λ2

(1− e−λ)2
.

The following derives unconditional probability distribution of Y :

P (Y = y|λ) =
∞∑
n=y

P (Y = y|NT = n, λ) · P (NT = n|λ)

=
∞∑
n=y

(
n

y

)
py(1− p)n−y e−λλn

n!(1− e−λ)

=
∞∑
n=y

( n!

y!(n− y)!

)
py(1− p)n−y e−λλn

n!(1− e−λ)

=
∞∑
n=y

( n!

y!(n− y)!

)
py(1− p)n−y e

−λλyλn−y

n!(1− e−λ)
.

Similar to the binomial-Poisson distribution example, this is n = y in the series,

not n = 0. For example, P (Y = 3|N = 2) = 0. Thus, it must start at n = y. The

series can have terms taken outside the sum. Doing this, the series is put into a form

that represents a power series for ex. Rearranging terms gives us

P (Y = y|λ) =
e−λ(λp)y

y!(1− e−λ)

∞∑
n=y

(λ(1− p))n−y

(n− y)!
.

This series represents a power series for ex. Representing this series as eλ(1−p), the

mixture distribution can be solved. We get the following:

P (Y = 0|λ) =
e−λp − e−λ

(1− e−λ)

18



and

P (Y = y|λ) =
e−λp(λp)y

y!(1− e−λ)
, y = 1, 2, ...

This is the binomial-zero truncated Poisson unconditional distribution of Y . Be-

low is the function computed in R, as well as figures, showing the difference in the

probability distribution as λ or p changes.

# P(Y = y) where Y | N ~ Binomial(N,p) and N ~ Trunc-Poisson(lambda)

TOL = 1.0e-300

prob = function(y,lambda,mu){

tot = 0

n = y

repeat {

next_term <- exp(-lambda + n*log(lambda) - lfactorial(n)) *

exp(lfactorial(n) - lfactorial(y) - lfactorial(n-y)) *

exp(y*log(p) + (n-y)*log(1-p)) / (1 - exp(-lambda))

if (next_term < TOL) break

tot <- tot + next_term

n <- n + 1}

return(tot)}

19



Figure 2: Binomial-Truncated Poisson Mixture

The mean and variance of Y are:

E(Y ) = E(E(Y |N))

= E(Np)

=
λp

1− e−λ

and

V ar(Y ) = V ar(E(Y |N)) + E(V ar(Y |N))

= V ar(Np) + E(Np(1− p))

=
( λ+ λ2

1− e−λ
− λ2

(1− e−λ)2
)
p2 +

( λ

1− e−λ
)
p(1− p)

=
λp+ λ2p2

1− e−λ
− λ2p

(1− e−λ)2
,

respectively.

20



4 NEGATIVE BINOMIAL

In a negative binomial distribution, the random variable is the number of trials

performed X until the ith success. Thus, the negative binomial counts the number

of failures until a fixed number of successes. An example of a negative binomial

distribution would be to continue to draw a card out of a deck with replacement until

an ace is drawn, counting the number of attempts. Another example would be a

traffic stop, where the police may be checking for drivers under the influence. The

police may know, based on prior traffic stops, the probability that a driver is under

the influence. The failure would be that the driver is not under the influence. The

police will keep testing the drivers until there is a success, or the police find someone

under the influence. Below are the probability mass function, mean, and variance of

the negative binomial distribution:

P (Y = y) =

(
y + n+ 1

y

)
pn(1− p)y, y = 0, 1, ...

E(Y ) =
pn

1− p
,

and

V ar(Y ) =
pn

(1− p)2
,

respectively.

Now assume that the number of trials, N is unknown or random. In the example

above, it is unknown how many cards are drawn out of the deck. Given an un-

known sampling N and unknown number of failures, we can calculate the probability

distribution.

21



4.1 Negative Binomial-Poisson Mixture

Let Yi have a geometric distribution with success probability p. Hence, the hier-

archical model is the following:

If

Yi ∼ Geometric(1, p), Yi = 0, 1,

then

Y |N ∼ Negative Binomial(N, p)

N ∼ Poisson(λ).

The following derives the unconditional probability distribution of Y :

P (Y = y|λ) =
∞∑
n=y

P (Y = y|N = n, λ) · P (N = n|λ)

=
∞∑
n=y

(
y + n− 1

y

)
pn(1− p)y e

−λλn

n!

=
∞∑
n=y

(y + n− 1)!

y!(n− 1)!
pn(1− p)y e

−λλn

n!
.

This series can have terms taken out of the sum. The last equation can be rewritten

as

P (Y = y|λ) =
e−λ(1− p)y

y!

∞∑
n=y

(y + n− 1)!

(n− 1)!

(λp)n

n!

=
e−λ(1− p)y

Γ(y + 1)

∞∑
n=y

Γ(y + n)

Γ(n)

(λp)n

Γ(n+ 1)
.

At this point, there is not a clear way to simplify this equation into a closed form,

like in the binomial-Poisson mixture distribution. However, similar to the binomial-

Poisson mixture distribution, we can compute the probabilities of the equation and

22



draw conclusions about the distribution. Below is the function in R, as well as figures,

showing the difference in the probability distribution as λ or p changes.

# P(Y = y) where Y | N ~ NegBin(N,p) and N ~ Poisson(lambda)

TOL = 1.0e-300

prob = function(y,lambda,p){

tot = 0

n = 1

repeat {

next_term <- exp(-lambda + n*log(lambda) - lfactorial(n)) *

exp(lfactorial(y+n-1) - lfactorial(y) - lfactorial(n-1)) *

exp(n*log(p) + y*log(1-p))

if (next_term < TOL) break

tot <- tot + next_term

n <- n + 1}

return(tot)}
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Figure 3: Negative Binomial-Poisson Mixture

The mean and variance of Y are:

E(Y ) = E(E(Y |N))

= E
( Np

1− p

)
=

λp

1− p

and

V ar(Y ) = V ar(E(Y |N)) + E(V ar(Y |N))

= V ar
( Np

1− p

)
+ E

( Np

(1− p)2
)

=
λp2

(1− p)2
+

λp

(1− p)2

=
λp2 + λp

(1− p)2
,

respectively.
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4.2 Negative Binomial-Zero Truncated Poisson Mixture

In this section, we will derive the distribution, the mean, and the variance of Y

when N is distributed as a zero-truncated Poisson distribution. In the zero-truncated

Poisson distribution, there is a different probability mass function, since there must

be at least one success in this conditional distribution. Using the probability mass

function of the negative binomial distribution and the zero-truncated Poisson dis-

tribution, the negative binomial-zero truncated Poisson mixture distribution can be

solved.

Recall the probability distribution of a zero-truncated Poisson(λ) is

P (NT = n) =
e−λλn

n!(1− e−λ)
, n = 1, 2, ...

with mean

E(NT ) =
λ

1− e−λ

and variance

V ar(NT ) =
λ+ λ2

1− e−λ
− λ2

(1− e−λ)2
.

The following derives unconditional probability distribution of Y :

P (Y = y|λ) =
∞∑
n=y

P (Y = y|NT = n, λ) · P (NT = n|λ)

=
∞∑
n=y

(
y + n− 1

y

)
pn(1− p)y e−λλn

n!(1− e−λ)

=
∞∑
n=y

(y + n− 1)!

y!(n− 1)!
pn(1− p)y e−λλn

n!(1− e−λ)
.
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This series can have terms taken out of the sum. The last equation can be rewritten

as

P (Y = y|λ) =
e−λ(1− p)y

y!(1− e−λ)

∞∑
n=y

(y + n− 1)!

(n− 1)!

(λp)n

n!

=
e−λ(1− p)y

Γ(y + 1)(1− e−λ)

∞∑
n=y

Γ(y + n)

Γ(n)

(λp)n

Γ(n+ 1)
, y ≥ 1.

If y = 0, then the probability will be:

P (Y = y|λ) =
e−λ

(1− e−λ)

(
eλp − 1

)
.

Similarly to the negative binomial-Poisson mixture distribution, there is not a

clear way to simplify this equation into a closed form, like in the binomial-Poisson

mixture distribution. However, similar to the binomial-Poisson mixture distribution,

we can compute the probabilities of the equation and draw conclusions about the

distribution. Below is the function in R, as well as figures, showing the difference in

the probability distribution as λ or p changes.

# P(Y = y) where Y | N ~ NegBin(N,p) and N ~ Trunc-Poisson(lambda)

TOL = 1.0e-300

prob = function(y,lambda,mu){

tot = 0

n = 1

repeat {

next_term <- exp(-lambda + n*log(lambda) - lfactorial(n)) *

exp(lfactorial(y+n-1) - lfactorial(y) - lfactorial(n-1)) *

exp(n*log(p) + (y)*log(1-p)) / (1 - exp(-lambda))
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if (next_term < TOL) break

tot <- tot + next_term

n <- n + 1}

return(tot)}

Figure 4: Negative Binomial-Truncated Poisson Mixture

The mean and variance of Y are:

E(Y ) = E(E(Y |N))

= E
( Np

1− p

)
=

λp

(1− p)(1− e−λ)
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and

V ar(Y ) = V ar(E(Y |N)) + E(V ar(Y |N))

= V ar
( Np

1− p

)
+ E

( Np

(1− p)2
)

=

(
λ+λ2

1−e−λ −
λ2

(1−e−λ)2

)
p2

(1− p)2
+

λp

(1− p)2(1− e−λ)

=
λ2p2 + λp2 + λp

(1− e−λ)(1− p)2
− λ2p

(1− e−λ)2(1− p)
,

respectively.
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5 POISSON

A discrete probability distribution that expresses the probability of a number of

events occurring within a given time period is a Poisson distribution. As an example,

consider the number of items that a store clerk rings up in each customer’s cart in

an hour. The number of items in each customer’s cart could resemble a Poisson

distribution. However, now assume that the number of events that occur, N , is

random. In the example, it is random how many customers use that particular check

out line in the hour. Given an unknown random sampling N , we will calculate the

unconditional probability distribution of Y.

5.1 Poisson-Poisson Mixture

Let Yi have a Poisson distribution with success probability Nµ. Hence, the hier-

archical model is the following:

Y |N ∼ Poisson(Nµ)

N ∼ Poisson(λ).

The following derives the unconditional probability distribution of Y :

P (Y = y|λ) =
∞∑
n=0

P (Y = y|N = n, λ) · P (N = n|λ)

=
∞∑
n=0

(e−nµ(nµ)y

y!

)(e−λλn
n!

)
=
∞∑
n=0

e−λ−nµ(nµ)yλn

y!n!
.

Unlike the binomial-Poisson mixture distribution, this series does not represent a

power series for ex or anything familiar to get the equation into a simple, closed form.
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However, we can compute the probabilities of the equation and draw conclusions

about the distribution. Below is the function in R, as well as figures, showing the

difference in the probabilities as λ or µ changes.

# P(Y = y) where Y | N ~ Poisson(N*mu) and N ~ Poisson(lambda)

TOL = 1.0e-300

prob = function(y,lambda,mu){

tot = 0

n = 1

repeat {

next_term <- exp(-lambda + n*log(lambda) -lfactorial(n)) *

exp(-n*mu + y*log(n) + y*log(mu) - lfactorial(y))

if (next_term < TOL) break

tot <- tot + next_term

n <- n + 1}

return(tot)}
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Figure 5: Poisson-Poisson Mixture

The mean and variance of Y are:

E(Y ) = E(E(Y |N))

= E(Nµ)

= λµ

and

V ar(Y ) = V ar(E(Y |N)) + E(V ar(Y |N))

= V ar(Nµ) + E(Nµ)

= λµ2 + λµ

= λµ(1 + µ),

respectively.
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5.2 Poisson-Zero Truncated Poisson Mixture

In this section, we will derive the distribution, the mean, and the variance of Y

when N is distributed as a zero-truncated Poisson distribution. In the zero-truncated

Poisson distribution, there is a different probability mass function, since there must

be at least one success in this conditional distribution. Using the probability mass

function of the Poisson distribution an the zero-truncated Poisson distribution, the

Poisson-zero truncated Poisson mixture distribution of Y can be solved.

Recall the probability distribution of a zero-truncated Poisson (λ) is

P (NT = n) =
e−λλn

n!(1− e−λ)
, n = 1, 2, ...

with mean

E(NT ) =
λ

1− e−λ

and variance

V ar(NT ) =
λ+ λ2

1− e−λ
− λ2

(1− e−λ)2
.

The following derives unconditional probability distribution of Y :

P (Y = y|λ) =
∞∑
n=1

P (Y = y|NT = n, λ) · P (NT = n|λ)

=
∞∑
n=1

(e−nµ(nµ)y

y!

)( e−λλn

n!(1− e−λ)

)
=
∞∑
n=1

e−λ−nµ(nµ)yλn

y!n!(1− e−λ)
, y ≥ 1

This series does not represent a power series for ex or anything familiar to get the

equation into a simple, closed form. However, we can compute the probabilities of
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the equation and draw conclusions about the distribution. Below is the function in

R, as well as figures, showing the difference in the probabilities as λ or µ changes.

# P(Y = y) where Y | N ~ Poisson(N*mu) and N ~ Trunc-Poisson(lambda)

TOL = 1.0e-300

prob = function(y,lambda,mu){

tot = 0

n = 1

repeat {

next_term <- exp(-lambda + n*log(lambda) -lfactorial(n)) *

exp(-n*mu + y*log(n) + y*log(mu) - lfactorial(y)) / (1 - exp(-lambda))

if (next_term < TOL) break

tot <- tot + next_term

n <- n + 1}

return(tot)}
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Figure 6: Poisson-Truncated Poisson Mixture

The mean and variance of Y are:

E(Y ) = E(E(Y |N))

= E(Nµ))

=
λµ

1− e−λ

and

V ar(Y ) = V ar(E(Y |N)) + E(V ar(Y |N))

= V ar(Nµ) + E(Nµ)

=
( λ+ λ2

1− e−λ
− λ2

(1− e−λ)2
)
µ2 +

λµ

1− e−λ

=
λµ+ λµ2 + λ2µ2

1− e−λ
− λ2µ

(1− e−λ)2
,

respectively.
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6 CONCLUSION

The goal of the thesis was to find the probability distribution of a sum of discrete

random variables when the sample size follows a Poisson distribution. In the case of

the binomial-Poisson and binomial-truncated Poisson distributions, a closed form of

the hierarchical models were found. However, not all distributions are as closely re-

lated and linked to the Poisson distribution as the binomial distribution. In addition,

the mean and variance for the unconditional distributions were given for all the cases

that were considered in this thesis.

For the other cases, there was no closed form in the distribution but we provided

R programs that compute these probabilities. When producing the graphs for the

different probability distributions, the graphs have a similar distribution. When λ is

small, such as λ = 5, the graph has a high probability at the beginning (with the

peak of the curve at n = λ), then decreases rapidly. As λ gets larger, the distribution

has a smaller peak probability values at n = λ, but the probability values are larger

over a larger period of n. Below is an example of the Poisson distribution with the

varied λ values.
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Figure 7: Poisson Distribution

The same pattern is true for the graphs of the varied p values (or µ values for

the Poisson-Poisson distributions). As the p or µ values get larger, the graph has

a smaller peak probability value, but the probability values are larger over a larger

period on n, as shown in the graph above. Thus, for the various distribution mixtures

we have covered, there is a strong resemblance to the original Poisson distribution in

all of the cases.

Knowing that when there is a hierarchical model where N is random, the distri-

bution resembles a Poisson distribution, we could draw further inference about these
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distributions, since these hierarchical models are not uncommon. For example, sup-

pose an insurance agency wanted to find the distribution of the average time it takes

to process an insurance claim. If there was a set sample size and it is not random,

it would be a simple distribution. However, the sample from day to day is random.

For example, factors for how many insurance claims are filed in a day could be the

condition of the roads, day of the week, etc. Thus, this probability distribution could

resemble the same form as a Poisson distribution, based on the conclusions we have

made earlier. This is one example of a distribution where the sample size is not

fixed. Oftentimes, samples are collected without a set sample size, leading to using

these hierarchical models more often. Thus, inference of these distributions we have

covered could be made into many different areas of study, leading to more accurate

probability distributions.
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