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ABSTRACT
The Expected Number of Patterns in a Random Generated Permutation on
[n] ={1,2,...,n}

by

Evelyn Fokuoh

Previous work by Flaxman (2004) and Biers-Ariel et al. (2018) focused on the number
of distinct words embedded in a string of words of length n. In this thesis, we
will extend this work to permutations, focusing on the maximum number of distinct
permutations contained in a permutation on [n] = {1,2,...,n} and on the expected
number of distinct permutations contained in a random permutation on [n]. We
further considered the problem where repetition of subsequences are as a result of the
occurrence of (Type A and/or Type B) replications. Our method of enumerating the
Type A replications causes double counting and as a result causes the count of the

number of distinct sequences to go down.
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1 INTRODUCTION

A major problem of interest in combinatorics is the number of distinct subse-
quences that exist as subsequences of a given string. The number of distinct sub-
sequence equals 2"— the number of repetitions. For example, in the word 10110,
the embedded subsequences are {}, 1, 0, 10, 01, 00, 11, 101, 100, 110, 111, 1011,
1010, 1110, 0110, and 10110, where throughout this thesis we use the notation {}
for empty set. There are thus 16 distinct subsequences among the 2° = 32 subse-
quences of 10110. Similarly the permutation 1324 contains (using order-isomorphic
representations we can, e.g., rename both 13 and 12 as 12) the sub-permutations {},
1, 12, 21, 132, 123, 213, and 1324. The rest of the subpermutations are repetitions.
Flaxman et al. (2004) focused on determining the maximizing string in the case
of binary words. This turned out to be the alternating string. In other words, for
the alphabet ¥ = {1,2}, the sequence (1,2,1,2,...), gives the maximum number of

distinct subsequences, which turn out to be
Fib(n+3) — 1~ ((1+5)/2)"//5,

which is asymptotic to (1.62)". This result was generalized for a finite alphabet %
of size d. Biers-Ariel et al. (2018) defined T,, as a fixed binary string of length n,
t; as the " letter of T, S, as a random binary string of length n and ¢(7,,) as
the number of distinct subsequences of T,,. The authors of this paper focused on
E[¢(S,)] when Pr[s; = 1] = a € [0,1]. The minimum value of E(¢(S,) on a fixed
length-n string on the the alphabet {0, 1}, is trivial. It occurs when av =0 or av = 1,
and in this case F(¢(S,)) =n+ 1. If n = 2,a = 1/2, the four possibilities for T,
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are 11, 10, 01, and 00. These contain 3, 4, 4, and 3 subsequences respectively, so
E(S,) = (3+4+4+3)/4 =3.5. A key result in Biers-Ariel et al. (2018), which
enables one to count ¢(T,) recursively, is the following: Given T,,, let [ be the greatest
number less than n such that ¢; = ¢,,, and if no such number exists, let [ = 0. Then,
v(T,), the number of distinct new subsequences created at the nth stage in a string
T,,is

n ifl=0
v(T,) =

n—1

> uT) if1>0

i=l
As an example, we consider the word {10010} of length n = 5. We have ¢(75) =
L4+ v(T) +v(Tz) +v(Ts) +v(Ty) +v(T5) = 14+14+24+2+5+7 = 18. Biers-
Ariel et al.(2018) then used the above expression and linearity of expectation to find
E(¢(Sy)) for each a € (0,1). Later in the article, the authors focused on random
strings from an alphabet of size d, where the letter j € [d] is independently selected
with probability a;. In other words, Pr[s; = j] = a; for all i € [n],j € [d]. (Note
that Z?Zl a; = 1). They gave a recursion to count v(7},) as in the case of d = 2.
They also considered the case where the letters were generated according to a Markov
chain.

To give a specific example of a result in Biers-Ariel et al. (2018), suppose we are

considering the case of binary words with unequal probabilities, i.e., Pr[s; = 1] = a €

[0,1); Pr[s; =0] =1 —a for all 1 <i <n. Then we have

10



ifa=0,1

a(l ) 1—(1—«/a(l—a))n)—ﬁ—(l—O—Q\/a(l—a)) ((1+\/a(1—a))n—1) o 0.1
2\/01(1 ) tha # ’
Thus, E[¢(S,)] = 2(2)" — 1 when o = 0.5, as proved by Flaxman et al (2004).

The main open problem stated in Biers Ariel et al. (2018) is extending the above
work to permutations. Both the referees of their paper were enthusiastic about this
direction.

In this thesis, ¢(m,) is the number of distinct permutations contained in a permu-
tation m, on [n]. m, may be fixed or random. In the random case, we can consider
E(¢(my)). v(j) is the number of new permutations created by the jth entry of the se-
quence (7(1),...,m(n)) for j = (1,2,...,n). Finally, ¢(k, 7) is the number of repeats
of permutations of length k. Some of the basic definitions of interest are the Type
A repeats which are repeats in which two subpermutations have the same pattern
and the values are identical except for two values which have the same rank in the
pattern, e.g., subpermutations 2146 and 2145 of length £ = 4. Both generate 2134
patterns. If n is odd, then the singleton {n} is a type C' duplicate. Any duplicate
which is neither a Type A nor a Type C'is a type B duplicate.

Our two main directions will be the following:

(A) To determine the maximum number of embedded permutations as done by
Flaxman et al. (2004) for words, since the minimum number of embedded permu-
tations is trivial. (The permutation m, = 123...n contains the permutations {},
1,12,...,123...n, or n + 1 permutations).

(B) In the random case to make progress in determining F(¢(m,)).

These two topics will be presented in Sections 3 and 4 respectively, after some

11



preliminary results are presented in Section 2. Other issues such as the variance of
¢(m,) or the distribution of ¢(m,) are very difficult and we will not consider these.
Trying to find a recursion that counts the number of new permutations created at
the jth position (this was the approach taken by Biers-Ariel et al. 2018) will be an
option; this will hopefully give an exact expression for E(¢(m,)). Another option
might be to show that F(¢(m,))/a™ — 1 for some a (using subadditivity and Fekete’s

Lemma). We will explore all these options in the coming pages.
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2 PRELIMINARY RESULTS

In this part of the thesis we determine (E[¢(n)])Y/™ for n = {1,2,3,4,5,6,7,8}.
v(j) is defined to be the number of new permutations created by the jth entry of the
sequence (m(1),...,m(n)) for j = (1,2,...,n) and ¢(n) is the number of distinct per-
mutations contained in the sequence (7 (1), 7(2), .., 7(n)). Hence ¢(n) = 37, v(j)+1.
This was the approach taken by Biers-Ariel et al. (2018) for words, but after several
attempts at finding analogs in the case of permutations, we abandoned this line of
investigation. For small values of n, we were able to use R (a free software for statis-
tical computing) to write an Rcode. This is available in the Appendix. We derived
histograms for n = {1,2,3,4,5,6,7,8}. The R on the x-axis defines the number of
embedded sequences for each value of n while the y-axis defines the rate at which
each embedded sequence occur (count). For instance in Figure 1, the possible permu-
tation for n = 1 is 1. The number of embedded subsequence when n =1 is {{}, 1}.
These two appear just once. For Figure 1, the mean of the embedded sequences when
n = 1 is 2. From our calculation, we had the variance of these sequences to be 0,

/1 was 2 and the value of the

the expected number of distinct permutations (E[¢(1)])
constant C was 1 (Mean/2"). For Figure 2, with n = 2, we can generate two pos-
sible permutations namely 12 and 21. The number of embedded sequences for 12 is
{{}, 1,12} and for 21 is {{}, 2, 21}. However, by order isormorphism the 2 in 21 turns
to be 1. Since we have three embedded sequences in both 12 and 21, it means the
rate(frequency) at which we see the count of 3 is 2 times. These embedded sequences
give us a mean value of 3, and a variance of 0.222. The (E[¢(2)])!/? is 1.732 and the

constant C is 0.75.
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Now for Figure 3 , where n = 3, the possible permutations are 123, 132, 213, 213, 231, 321.
There are 4 embedded sequences including the empty set in 123 and 321 but the rest
contains 5 embedded sequences. Thus the rate at which we see the count of 4 is 2
and the rate ate which we see the count of 5 is 4. The mean value of these embedded
sequences when n = 3 is 4.667 , the variance is 0.222, (E[¢(3)])"/? is 1.671 and the
value of the constant C is 0.5833. This idea is used to explain the nature of the
histograms, mean etc for Figures 4 through Figure 8. Detailed information on the

embedded sequences for n = {1,2,...,8} can be found in the Rcode under Appendix.

Histogram forn =1

0.8

Frequency
04

0.0

00 05 10 15 20

Figure 1: A Histogram showing the value of (E[¢(n)] at different values of R when

n = 1.
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Histogram forn = 2

Frequency

00 05 10 15 20

20 25 3.0 35 40

Figure 2: A Histogram showing the value of (E[¢p(n)] at different values of R when
n=2.
The mean for the embedded sequences for Figure 2 where n = 2 is 3 and the

variance is 0. The (E[#(n)])Y/™ and the value of the constant C are 1.732, 0.75

respectively.

Histogram forn=3

Frequency
2

40 42 44 46 48 50

Figure 3: A Histogram showing the value of (E[¢(n)] at different values of R when

n=3.
For the Figure 3 , the mean of the 6 embedded sequences is 4.667 and the variance

= 0.222. The (E[¢(n)])*/™ = 1.671 and C = 4.667/2% = 0.5833.
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Histogram forn =4

Frequency
0 2 4 6 8 10

Figure 4: A Histogram showing the value of (E[¢(n)] at different values of R when

n =4.
When n =4 | the mean of the 24 embedded sequences is 7.417 and the variance =

0.9097. The (E[¢(n)])¥/" = 1.6502 and C = 7.417/2* = 0.4636.

Histogram forn=5

20

Frequency

0 5 10

Figure 5: A Histogram showing the value of (E[¢(n)] at different values of R when

n =>o.
For Figure 5, the mean of the 120 embedded sequences is 12.2833 and the variance

= 4.1969. The (E[¢(n)])"/" = 1.6514 and C = 12.283/2° = 0.3838.
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Histogram forn =6

150

Frequency
100

50

Figure 6: A Histogram showing the value of (E[¢(n)] at different values of R when

n = 0.
The mean of the 720 embedded sequences in Fig. 6 is 21.1444 with a variance of

25.6347. (E[p(n)])"/" = 1.6629 and C = 21.144/2° = 0.3304.

Histogram forn=7

Frequency
800

400

10 20 30 40 50 80

Figure 7: A Histogram showing the value of (E[¢(n)] at different values of R when

n=".
We generate 5040 embedded sequences when n = 7 with a mean of 37.60397 and

variance of 76.0793. The (E[¢(n)])Y/" = 1.6789 and C' = 37.604/27 = 0.2938.
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Histogramforn=8

Frequency
4000

2000

0

20 40 60 80 100

Figure 8: A Histogram showing the value of (E[¢(n)] at different values of R when
n = 8.
The mean for the embedded sequences is 68.63661 with a variance of 201.3242. The

(E[¢(n)])}/™ = 1.6966 and the constant C' = 68.637/2% = 0.2681

We observe that the (E[¢(n)]) was 2 for n = 1, then it decreased to 1.732 for
n = 2. Then it reduced to 1.671 for n = 3. However after n = 4, it started to increase
and finally to 1.6966 for n = 8. The value of the constant C' on the other hand was
reducing for values of n from 1 through 8. Our interest in deriving the values of the
constant C was because we believe (E[¢p(n)]) = C,, * 2". Hence, for reasons that we

will give later, we believe that the following holds:

Conjecture 2.1. Since (E[¢(n)]) is increasing after n = 4 and approaching a con-

stant number for values of n = {1,2,..,8}, then

lim (E[p(n))"/" = 2.

n—oo

18



2.1 Possible use of Fekete’s Lemma(Subadditivity)

Suppose we can show that that for each 7 € S,,.,,, where S,, is the set of all

have made great progress. This was what occurred in Biers-Ariel et al (2018); they

exploited subadditivity to prove the existence of a limit for (E(¢,))"/".

Theorem 2.2. Fekete’s Lemma: If a, is a real sequence for which
npm < A + @y, (Num=1,2,...)

then

. Qp . .Qpn
lim — = inf —,
n—oo M n n

where the existence of the limit is the key conclusion.

As an example, we can consider 7 = 24315 n = 3 and m = 2. Then, ¢(m4m) = 14

due to the embedded subpermutations
{},1,12,21,123,132,231, 213, 321, 3214, 2314, 1324, 2431, 24315;

¢(m,) = 5 due to

{},1,12,21,132;

-----

(1.1,12.

The inequality holds. If this was to be true for any II, then we could say that in

general

19



Since this is on disjoint intervals, these values will be independent of each other. If

we assume that n < m then we would have

E(¢n+m> E((bn(b{n—i—l ..... n+m})

IN

= E(¢n)E(¢m) (1)

Then, log E(¢pim) < logE(¢,) + logE(¢y,) (2)
Letting a,, = log E(¢,), this would lead to the conclusion that
Uptm < Ay + G,
and thus, via Fekete’s Lemma, that
lim(E(¢,))Y™ = D.

This is because we would have had

o1
D~ ZlogE(gy) = C,
n n

and thus

log E(¢,)" — C,

which would imply that

E(d)n)% —eY :=D.

This was however a failed attempt. We actually found examples where the in-
equality didn’t hold. In an attempt to fix this, we examined the Erdds-deBruijn

generalization of Fekete’s lemma.

20



2.2 Erdés-Debruijn Generalisation of Fekete’s Lemma

Theorem 2.3. Fekete’s Lemma: If we have ¢p(n +m) < ¢(m) + ¢(n) + a(m + n),

where Y~ | % < 0o, then lim, o 22 exists.

We consider as examples the cases where ¢, 1, < &y + O + 1+ m, and @,y <
On + Om + /1 + m. Theorem 3 could not be used in the first case but could be used
in the second case, since the series > % diverges but the series > | # converges. Our
efforts to find a “buffer” function that led to Theorem 3 being valid were unsuccessful

as well.

2.3 Trying to use a Recursion Similar to that in Biers-Ariel et al (2018)

We have that

n

d() = Zv(j)

Jj=1

where v(j) is the number of new permutations counted by the jth entry. We can
calculate v(j) as follows: If v(j) is the smallest term, increase all the previous en-
tries by 1 and label the jth entry as 1. Retain all those sequences that have not

occurred before. If we consider as an example the permutation 42681, the possible
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subpermutations are:
j=1v() =11
j=2v(j) =121
Jj=3;v(j) =2;12,213
J=4v(j) =2;23,2134
Jj=5;v(j) = 5;321,231,3241, 32451, 2341.
(3)
We can observe that the last entry j = 5 was obtained by increasing all previous
entries we have obtained by 1 and finally ending with a term 1.
If v(j) is the largest term encountered, we augment each previous term by the

next largest value and retain all those sequences that have not occurred before. We

take a look at the permutation 42689:
=L =11
j=20(j) =121
Jj=3;v(j) =2;12,213
Jj=4v(j) =2;123,2134
J=5;v(j) =2;1234,21345.
(4)

However, this process is very difficult to track when terms other than the largest

or smallest appear at the jth position. We thus abandoned our efforts to adopt a

22



method similar to that in Biers-Ariel et al. (2018), which was used so successfuly for

words.

2.4 Heuristic Reason why we think E(¢,)"/" — 2

We see from the histograms that E(¢,)'/" is decreasing up till n = 5 and increasing
after that, up till n = 8. Will it approach 2 as n — oo? Here we argue that it might
be possible, and the rest of the thesis is devoted to gathering evidence that the limit
might equal 2.

Now for large k, we observed that k! > (Z) To obtain the repeats of length &
for large k, we are essentially asking how many repeats are possible in a small set of
(Z) positions, where there exist k! possible permutations. Intuition suggests that this
would be a small number. This thesis will be devoted to classifying and understanding
these repeats.

Let the number of repeats of permutations of length k& be denoted by ¥ (k,).
Suppose that for a large k, say k > n/2, we have at most (Z) /2 repeats, so that
max ¢ (k,m) < (})/2. Then the total number of repeats is

n/2

Zmaxw(k,ﬂ) + Z max ¢ (k, )
k=1 n/2+1
which is bounded above by
Y2 " /n
> (1) 2 ()
k=1 n/2+1
which simplifies to



Therefore, the number of distinct permutations would be at least 2" — % x 2" = }l* 2",

and hence we would have that

1
s 1o
E(¢n)/" 2 7 #2 = 2

2.5 Tpes of Repeats

In the permutation n = 2146537, let kK = 4. Then we have k! = 24 and (Z) = 35.
The successive terms are (1,2) and (5,6). The possible subpermutations of length 4
from the above permutation n = 2146537 are obtained in the Table 1 below. From
Table 1, the colored pattern under the reduced column indicate some of the Type
A repeat. In this table, if we consider case 1 and case 2, thus the subpermutations
2146 and 2145. These two subpermutations generate the same reduce pattern 2134.
This is because 6 in the subpermutation 2146 and 5 in subpermutation 2145 turn to
have the same rank (which is 4) in the reduced pattern. Again from case 4 and case
7, the subpermutations 2147 and 2167 both generate a reduce pattern of 2134. This
is because 4 in the subpermutation 2147 and 6 in the subpermutation 2167 have the
same rank of 3 in the reduced pattern. The rest of the Type A repeats are found in

the Table 1 below and those that can be paired are colored with the same color.
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Table 1: Types of repeats.

| CASE | SUBPERMUTATION | REDUCTION |

1 2146
2 2145
3 2143 2143
4 2147
5 2165
6 2163
7 2167
8 2153 2143
9 2157
10 2137
11 2465 1243
12 2463 1342
13 2467
14 2453 1342
15 2457
16 2437 1324
17 2653 1432
18 2657
19 2637
20 2537 1324
21 1465 1243
22 1463 1342
23 1465 1234
24 1453 1342
25 1457 1234
26 1437 1324
27 1653 1432
28 1657
29 1637
30 1537 1324
31 4653 2431
32 4657 1324
33 4637
34 4537
35 6537 3214
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The only type C' present in this permutation is 7. We start by analyzing type A
repeats with successions. A succession is defined as an occurrence where 7(i + 1) =
(i) £ 1.

There are however other types of events that cause duplication other than succes-
sions. In this thesis, we focus on what we call Type A duplicates, which are defined

more precisely (than done before) later.

2.6 Calculation of the Expected Number of Patterns in a Random Permutation

We start by calculating some values of [E(¢(n)]'/" by hand and by using the R
code found in the Appendix. The expected number of patterns for n = 2, 3,4 are in
the tables below:

From the Table 2, we derive two possible permutations of length 2. This is found
in the first column. The number of patterns is 3 as explained for Figure 2 for each
of these permutations. The probability that each of these permutations occur is 0.5.
The [E(¢(2)]'/? = (6/2)°° = 1.7321. Hence, the expected number of patterns for

n=21s 1.7321.

Table 2: Expected number of patterns for n=2.

‘ T ‘ number of patterns (¢,,) ‘ Probability ‘
12 012 =3 1/2=0.5
21 (.1.21 =3 0.5
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For n = 3, the column 1 of Table 3 gives us information on all the 6 possible
permutations for n = 3. This is similar to the number of permutations we derived for
Figure 3. The [E(¢(3)]'/® = (28/6)'/3 = 1.671. Since we have 6 permutations in all,

the probability that each of these permutations occur is 0.167.

Table 3: Expected number of patterns for n=3.

] T \ number of patterns (¢,,) \ Probability ‘

123 (31,12 123=14 1/6=0.167
132 {},1,1221,132=5 0.167
213 | {},121,12213 =5 0.167
231 {}.1,12,21,231=5 0.167
312 {}.1,21,12,312 =5 0.167
321 {}.1,21,321=4 0.167

For n = 4, we have a total of 24 possible permutations of length 4 each in the

Table 4. [E(¢(4)]V/* = (178/24)Y/* = 1.6502.

Table 4: Expected number of patterns for n=4.

’ Th ‘ number of patterns (¢,,) ‘ Contribution to Expected Value ‘
1234 {},1,12 ,123,1234=5 5*1/24=5/24
1243 {},1,12,21,123,132,1243 = 7 7/24
1324 | {},1,12,21,123,132,213,1324 = 8 8/24
1342 | {},1,12,21,123,132,231,1342 =8 8/24
1423 | {},1,12,21,312,132,123,1423 =8 8/24
1432 {},1,12,21,132,321,1432="7 7/24
4312 {},1,12,21,312,321,4312 =7 7/24
4321 {},1,21,321,4321=5 5/24
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The probability that each of these permutations in Table 4 will occur is 1/24. How-
ever, the contribution of 5 to the expected value is 5/24.

The corresponding values for [E(¢(n)]'/™ for n = 5,6 and 7 are :

[E(o(5)]Y° = (1,474/120)"/° = 1.6514.
[E(¢(6)]Y/6 = (15,224/720)"/¢ = 1.66289.
[E(o(7)]Y7 = (189, 524/5040)"/7 = 1.6789.

We see that the minimum of [E(¢(n)]*/™ is at n = 4, and we observe an increasing

trend from there on.
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3 UPPER AND LOWER BOUNDS ON ¢(n)

It is clear that there are at most k! distinct permutations of length k. But
only (Z’) of these may actually be present. For small values of k, k! < (Z), and
this inequality flips for large values of k. As an example we consider n = 7. The

values of k! are (1,2,6,24,120,720,5040), and the corresponding values for (Z) are

(7,21,35,35,21,7,1). In any case, we have the bound

é(n) < é min ((Z) , k;!> .

We believe (and will argue below) that Y-}, min((}), k!) is not a bad bound. To ex-
plain this we take a look at Y _,_, min((Z), k!). We start by analyzing the relationship
between (Z) and k!:

By Stirling’s approximation

so on taking the limit we obtain

k!
lim — =1.
koo v/2rh(E )b

For any k, however, we have the bounds

(&

k" K"
21k (—) < k! < V27k (—) €12k .
e

The other term is (7). If k is not of magnitude O(n), (and thus k # 2, for example),

then we can approximate



and thus
Since

on equating the two we obtain

or
K \"
ne

In order to get a close estimate for the solution, we ignore the linear factor 27k, and

obtain
k2

ne?
or

k = ey/n.

Albert et al (3) noted the bound > min ((}),&!), but dismissed it without further
analysis. Let us summarize the history of the lower bound on the maximum number
of permutations max ¢(n) contained in an n permutation:

Coleman (6) proved that
max ¢(n) > 22Vl

establishing that

(max ¢(n))/" — 2
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as n — 00, but leaving open the question of whether

max ¢(n)
on

— 1.

Albert’s et al’s lower bound on the maximum number of embedded distinct permu-

tations was larger than what Coleman had. Specifically, they proved that

maxg(n) > 2°(1 — V) Zon(1 — ), )
272
thus showing that
max ¢(n) 1
2n '

Miller (2008) proved a better lower bound than in (5). Specifically, she proved
that

maxg(n) = 2" — O(n?2" V"), (6)

which she matched with the upper bound of
max ¢(n) < 2" — ©(n2" V). (7)

We delved through the paper to uncover the value of the constant in (7) and found

that it was enormous. With [ = v/2n, (7) can be fleshed out as

nl — 271 — 2n _ 97

80(1 4 3)2!

max p(n) < 2" — (2"( ) — (2'6.n* 20071)y). (8)

In the Table 5 below, we compare our upper bound Zmin((Z), k!) to Miller’s
upper bound. We observed clearly the magnitude of the constant in (8) leads to the

“trivial” bound, doing much better for values of n at least till 50.
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Table 5: Comparison of our upper bound with Miller’s upper bound.

’ n ‘ Our upper bound ‘ Miller’s upper bound ‘
1 2 49,182.218
2 3 1,048,580.26
3 5 2,654,216.42
4 9 37,791,894.67
5 16 146,409,613.6
10 540 3.02059167*101°
100 | 1267650591324628... 4.594862602*10*°
200 | 160693804425899027... 1.60693806*10%°

Next, we study the asymptotics of the Y min((}),k!) bound, and will uncover
that while not as good as (8), does satisfy several desirable criteria. We have already

seen that k! = () around k = e\/n(1 + o(1)) = A. We thus truncate as follows:

o (1)) - e (7)

CEeE()-E0

S50
|

32



We need to find a good upper bounds on the two sums in (9). First we have

> () - 22 (D)

= 2" Pr(Bi(n, %) < A)

> 2" Pr(Bi(n, %) _ A)(1+e) (10)

- (4)aro (1)

where we used, in (11), Proposition A.2.5 in Barbour et al (1992). Since A ~ e /n,

we see that

Plugging this into (11), we see that
n A
: n__ 2\v/ne

me((k),k!) > 2" — (V/ne?) +;k!
~ 2" — (Vne)Vre 1+ A Al
— on _ 20\/ﬁlnn+AA'
~ 9T 20\/ﬁlnn + C\/ﬁ . (\/ﬁ)e\/ﬁ
= on —2evrlnn(] 4 o(1)). (12)

Thus it turns out that asymptotically, Miller gets a better upper bound which is

9" — (n2"~V2"). This is because

on _ (nzn—\/in) <on 20\/ﬁlnn

since 26V < pon=v2n - Ag geen however, our bound does far better for small values

of n.
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4 ANALYSIS

For any n, k, most of the duplicates are created by choosing one entry in a pair
that has the same rank (all other terms are the same). We call such duplicates as

Type A duplicates.

4.1 Interesting Examples

If we consider as an example the permutation 132, the possible patterns are in the

Table 6 below,

Table 6: Patterns in the permutation 132.

|

1] 12 | 21 [132 |
1] 12 32 | 132
21 13 | null | null
3 | null | null | null

Here the pair 1, 2 creates a duplicate since both have a rank of 1. In the second
column, a duplicate is also generated from the pair 12 and 13. This is because the
2 and 3 in these terms have the same rank. When we pair these up the duplicate
created is due to (2, 3). This is true for all permutations on n = 2 from which we
derive 2 possible permutation 12 and 21 in Tables 7 and 8 respectively. The Tables
9 through 14 gives us all possible patterns of the permutations on n = 3. Since n is
odd, all the 3rd rows of the 1st column gives us type C repeats since they cannot be

paired.
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Table 7: Patterns in the permutation 12.

12
null

[\DHH

Table 8: Patterns in the permutation 21.

1
2

21
null

Table 9: Patterns in the permutation 123.

|

1]12[123 |
1]12]123
2|13 | null
3|23 | null

Table 10: Patterns in the permutation 132.

|

1] 12 | 21 [132 |
1] 13 32 | 132
21 12 | null | null
3 | null | null | null

Table 11: Patterns in the permutation 213.

|

1] 12 | 21 | 213 |
1] 13 21 | 213
21 23 | null | null
3 | null | null | null
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Table 12: Patterns in the permutation 231.

|

1] 12 | 21 | 231 |
1] 23 21 | 231
2 | null | 31 | null
3 | null | null | null

Table 13: Patterns in the permutation 312.

|

1] 12 | 21 | 312
1] 12 31 | 312
2 | null | 32 | null
3 | null | null | null

Table 14: Patterns in the permutation 321.

|

[ 21 ] 321 |
21 | 132

1
1
21 31 | null
3132 | null

We now extend this to a larger n, using say 4132.

1. The old subsequence of size 3, before the 4 was added, was 132. In this term,

the only length 3 permutation is 132.

2. The subsequences of size 2 from 132 are 13,12,32. After adding 4, we get

413,412,432 as additional pattern of length 3.
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Table 15: Patterns in the permutation 4132.

|

1] 12 [21]312 [ 321 ] 132 [ 4132
1] 13 [41]413 [ 432 | 132 [ 4132
2 12 | 43| 412 | null | null | null
3
4

null | 42 | null | null | null | null
null | 32 | null | null | null | null

From the Table 15 above, it can be observed that subsequences of size 1 become
subsequences of size 2 when 4 is added; and subsequences of size 2 become subse-
quences of size 3. Hence the original pair of length 2 in the 2nd column turns to be
a pair of length 3 in the 4th column. We can observe that subsequences of size 3 are
derived from old subsequences of size 3 and old subsequences of size 2 plus the element
n. Hence in general, the subsequences of size k is obtained from old subsequences of

size k plus old subsequences of size k — 1 + a new term, namely n. Thus by Pascal’s

()= () (G0

If we consider the permutation n = 41325, the subsequences of size 3 we generate

identity, we have

are 413,412,432,132, 135, 125,415,435, 425, 325. The old subsequences of size 3 gen-
erated from 4132 are 413,412,432,132. Again, the old subsequences of size 2 that we
generate from 4132 are 13,12,41,43,42,32. When we add the new term 5, each of
these length of 2 permutations changes to 135, 125,415,435,425 and 325. Hence the
subsequences of length 3 from 41325 is the sum of the old subsequences of length 3
generated from 4132 and the old subsequences of length 2 from 4132 with 5 added to

each pattern. This holds for larger values of n.
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We have defined type A duplicates as those that occur when two terms of a
permutation can be paired because they have the same rank in a permutation of
length k£ and thus yield the same pattern. Type B duplicates are those that remain
after all the type A and type C duplicates have been enumerated. (Type C duplicates
may occur as a result of the singletons for odd values of n.) We take a look at an

example:

Table 16: Patterns in the permutation 41352.

|

[ 12]21 ] 123 [ 132 | 213 [ 231 | 312 | 321 | 3124 [ 4132 | 3142 | 3241 | 1342 | 41352 |

1

1|13 |41 | 135 | 132 | 415 | 452 | 413 | 432 | 4135 | 4132 | 4152 | 4352 | 1352 | 41352
2115143 | null | 152 | 435 | 352 | 412 | null | null | null | null | null | null null
3112 (42 | null | null | null | null | null | null | null | null | null | null | null | null
4
5

45132 | null | null | null | null | null | null | null | null | null | null | null null
35|52 | null | null | null | null | null | null | null | null | null | null | null null

In the first column of the above table (Table 16), we have duplicates generated by
(1,2) and (3,4). All these form a rank of 1 and hence they can be paired. In the second
column, we generate a duplicate of generated by the pair (3, 5) from (13, 15). This is
a duplicate of type A since 3 and 5 have a same rank in these two permutations. The
total number of permutations generated including {} is 2" = 32. After removing the
pairings we have 32 — 2(10) = 12. Here we have 10 paired patterns that form a Type
A and 12 remaining distinct permutations. The 5 in the first column is neither a Type
A nor a Type B so it forms a Type C duplicate. We have 15 distinct permutations,
but on removing the duplicates we see that we destroy some permutations, leading

to only 12 remaining distinct permutations. From the above permutation, 5 is larger
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than all the other terms so the same pairing remains. Old subsets of size 2 are created
by 12 and 13. New subsets of size 2 are created by adding 5 to all the old subsets
of size 1. OIld subsets of size 3 are 132,432,412,413. The new subsets generated
are 415,425,435,135,125,325. By pairing, we realize that 425 and 435 can be paired
because 2 and 3 are of the same rank. 413 and 412 are also pairs with 2 and 3 having
the same rank. 135 and 125 can also be paired. We realize the permutation 432
cannot be paired.

Now the role played by Type B repeats is best seen in the permutation 456123.
There are exactly two 123 patterns and they have no elements in common. Here is
another example:

The permutation 312645 contain the subsets 315,325,164,165,364,365. By pairing
315 and 325 we generate a 213 pattern because 1 and 2 turn to have the same rank.
The permutation 164 and 165 also generate 132 pattern.164 and 165 are pairs because
4 and 5 have the same rank.Here again, there are two 312 patterns namely 312 and
645 which do not have any elements in common.

We clearly need to better understand Type B duplicates. All repeats are either
a type A or type B, except for the trivial case of up to one Type C duplicate. We
therefore have E(¢(n)) = 2" —E(¢(n)), where E(¢(n)) and E(¢(n)) are the expected
number of distinct patterns and duplicates respectively.

Since all repeats are of type A or type B, and the singletons can be considered as

a type C, our goal is to get an upper bound on E(¢(n)).Where
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E(¥m)) < E(¢a(n))+ E(fs(n)) +1
— S E(apem) + S E(pm) + 1
b,c

= Y Y E@apcnk)+ Y E@Wsm) +1
= > 4> 4L (13)
Here we let,

1. E(¢¥a(n)) is the number of repeats caused by Type A and E(¢g(n)) is the

number of repeats caused by Type B.

2. > 4. E(¥apc(n) is the number of repeats of type A caused by b and ¢ where
b and c are the two different fixed points and > E(¢g(n)) is the number of

repeats caused by Type B situations.
3. 2k 2 b E(¥abe(n, k)) is the number of repeats caused by b and c of length k.

4. %", denotes the duplicates of type A and ), denotes the duplicates of type B.
An upper bound on ), is given in the following main theorem.

Theorem 4.1.

n n—1 n—2 min(t—1,r)
2(n —t)(n—r—1)
5(3) - sl

1

(n—r—2)(n—r—2—-1)...(n—r—2—(t—2—y3))] x

n—r—t—1+s
—2—t+1)!
(n + )( b1 )
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where

1.

10.

11.

k 1s the number of repeats of type A of size k with the least being 1 and the

marimum as n.

t is the numerical difference between b and c and the least difference we can

have s 1.
r 1s the position difference between b and c and the least is 0.

s the number of terms that are in value between b and ¢ and are physically

between b and c.

2 is the way we can permute the two numbers(b and ¢ or ¢ and b).

(n —t) is the number of ways we can have the numerical difference being t.
(n —r — 1) is the number of ways we can place the two numbers.

n! defines the total number of permutation and it is needed since we are dealing

with expected value.

(;) defines the positions of the s numbers, out of the r numbers, that are in

value between b and c.
[(t—1)...(t—=1—(s—1))] is the number of ways we can choose the s numbers.

(n—r—=2)n—r—2—-1)...(n—r —2—(t — 2 —3s))] is the number of ways

we can permute the remaining numbers that lie outside b and c.
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12. (n —2 —1t+1)! is the number of ways we can permute the remaining numbers

after taking out b and ¢ and the numbers that lies within this interval.

13. ("_T,;:Hs) is the number of ways to choose either b or ¢, and k-1 other legal

numbers, so as to generate a type A duplicate.

We will see that

1. >, yields good values (i.e. smaller than (})) for small examples, but there are

exceptions.
2. >, is almost exact for k =n — 1.

3. >, may cause double counting thus causing the number distinct subsequences

to be underestimated.

Considering small values of n, (say n = 4 and k = 1,2, 3) we see on the next page
the comparison of the formula in Theorem 4.1 with the value of (Z) in the Table 17.

We can observe from the first row of the Table 17 that our formula gave us a value

n

k) when k was 1. However, when k was 2, our formula gave us a smaller

greater than (
value than (Z) We see that we do not always produce a number that is smaller than
(Z) We therefore believe that further research work needs to be carried out so that

we can determine the true nature of the above Theorem.
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Table 17: Comparison of the Main theorem with (Z) .

’ k \ Formula \ (Z) ‘
1 5.224 4
2| 4.833 6
3 1.5 4

Derivation of the number of distinct subsequences: For example, taken

T =41325,k = 3,

we obtain from Table 18:

Table 18: Distinct subsequences in a permutation.

| 312 [ 213 ] 123 | 132 | 321 |

413 | 415 | 135 | 132 | 432
412 | 435 | 125 | null | null
null | 425 | null | null | null
null | 325 | null | null | null

From table 18, given 2" — >, ( where ), is repeats of Type A ), we have the
total left to be 2. In reality, there are 5 distinct subsequences of length 3 which are
under the permutation 312, 213, 123, 132 and 321. However, after removing pairs
and taking the type A duplicates out we are left with only 2 distinct categories (132
and 321). Because of double counting the total number of duplicates is 8 (these are
under categories 312, 213 and 123). The established upper bound might not be a
good upper bound because we might have a duplication caused by a and ¢ and the

same duplication caused by b and c.
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4.2 Special Cases of Theorem 4

4.2.1 Case 1, Successions with £k =n — 1

When k£ = n—1 we can only have successions. No other values of r, ¢t are possible,

e.g. t > 2. We can only have ¢t = 1,7 = 0. The formula reduces to

2(n — 1)(n — 1)(n — 2)! (n - 2)

n! n—2
2(n—1)(n—1)(n —2)!
n(n —1)(n —2)!
_ 2(n—1)
~ 2

(15)

This gives the expected number of successions to be 2, as per the result in Allison et

al (2013). The formula is thus exact as stated earlier.

4.2.2 Case 1 - Successions with r =0

By way of a motivating example, assuming 5 and 8 are in the positions 15 and 16,
if we pick 5, then we will not consider the numbers 6,7,8. In this case, we will be left
with 16 choose 11 possibilities for the other numbers.

We define ¢t = |¢c—0b] = 1, (n — 1) = number of starting positions and 2(n —
1)(n — 2)!/n! = number of ways of arranging the remaining numbers. The formula

thus yields
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n!

(k—D!'[(n—2)— (k—=1)]!
2n(n —1)(n — 2)lk(n — k)

n?k(k—1)!(n—k—1)(n—k)

n

(16)
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4.2.3 Case 2 - Near Successions with r =0

First consider t = 2,7 = 0, where the two numbers are next to each other but

differ by 2. The formula gives

2(n — 1)(n — 2)(n — 2)! (n - 3)

n! kE—1
_ 2(n—2)(n—3)
n E—1
_ 2(n—2)(n—3)
n E—1
_ 2(n—=2)k (n—=3)nn—-1)Mn-k)nh-FkF-1)
n k(k—Dnnh-1)n—-k-=2)n—Fkn-—kF-—1)

2knl(n —k)(n —k —1)
nkln(n —1)(n — k)!

2kn—k(m—-k-1) nl

n? n n—1 (n—k)k!

_ 2kn—k(n—k-1) (n)

n? n n—1 k

T 0 )

IN

Now for ¢t = 3 and r = 0, (for example 5,8). These numbers are next to each other

but they differ by 3.

IA

2(n —1)(n — 3)(n — 2)! <n - 4)

n! k—1

2(n—3) (n—4
n <k— 1)
2(n—=3)(n—4D)!n—-2)n—1)nn—k—-2)(n—k—1)(n—k)k

nk(k—Dn—k=3)!n—k—=2)n—k—-1(n—k—-1)(n—-Fk)(n—2)(n—1)n
2knln—k—=2)(n—k—1)(n—k)
kl(n — k)!{(n —2)(n — 1)n?

() ("?;f;l) ==
() (576
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In general, the total contribution of the » = 0 case can be bounded by
k n—k\ (n k n—k\?(n k n—k\*/n
RO =) 00 ()
2 3
zz(ﬁ) (1—5) (") [1+(1—5) +<1—§> +..
n n k n n
k k 1 n
<92z A I
() (-3 )

yielding

Proposition 4.2. The total contribution of duplicates by adjacent terms is <
k n
2(1-5) ()

We combine these contributions for k£ > n/2 to yield

2 (=00 - 22 ()22 50)

k=n/2 k=n/2+1
"Nk n!
— 2.7 9
2 Z n (n — k)k!
k=n/2+1
n n—1
n n—1 n n—1
e ()i E ()
k=n/2+1 j=n/2
— 2n—1

(20)

4.2.4 Other Cases: Non-successions with r = 1

In this next step, we consider the case » = 1 and ¢ = 1. Thus the position

difference for the two numbers b, ¢ is 1 and the numerical difference is 1. An example
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of such numbers are 5x6. The formula yields

2(n — 1)(n — 2)(n — 2)! <n - 3>

n! k—1

2 ()

2(n—2)(n=3)!(n—1)n(n—k—1)(n — k)k
nk(k—1Dln—-2-k)nn-1)Mn-kF—1)(n—k)
B n\k(n—k—1)(n—k)
(1)

k)n  n(n—1)
< o)

(21)

Now we consider » = 1,¢t = 2. As an example, we consider the numbers 527, and

note we can either have the number 6 between them or outside. When 6 lies outside

of these two numbers, we will have another number to lie between this interval. This

gives us two conditions( the case number in-value (eg 6) lies between them and the

case when another number lies between them but we have to rule both the 6 and that

number out since they can cause a repetition. This gives, via Theorem 4:

n!

2(n = 2)(n —2) _(n—S)!(n_ ) (- 2) - <"‘3>”(Z:m

2(n —2)(n—2) [ (n—3
(n—3)!

n!

)
i) o
2<n_zr3!<n—2> (n2)!(n‘1‘§ +(n—3)! ((Z:f) - (Z:T))}

k
2 =202 [, (1 =4) 1 (2]
2(n — 2)(nn—! 2)(n — 2)! (Z - 111) 2(n — 2)(nn—' 2)(n — 3)! (Z - ;1)
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For the first part, we have

2(n—2)(n—2)(n—2)!<n—4>
n(n—1)(n —2)! kE—1
2(n —=2)(n —2)(n —4)!
n(n—1)(n —k—3)!(k—1)!
2(n—2)n—=2)(n—Dkn(n—1)n—=3)(n—k—=2)(n —k —1)(n — k)
nn—1)(n—k—=3)!(k—1)k
2nl(n —2)(n —k —=2)(n —k — 1)k(n — k)
kEln(n —1)(n — k)!(n — 3)
B n\n—k n—k—1 (n—k—-2)(n—-2)k
- (i)

k) n a1 ¢ (n—1)(n—-3) n

(23)

Since (n —k —2)(n—2) < (n—k —1)(n — 3), (23) reduces to

k(n—k\*(n
n n k)
For the 2nd part, note that

2(n—2)(
_ 2(n—2)( E %

2(n—2)(n 2)(n—3)'nn—1 —3)n—k—1)(n—k)k(k—1)
n(n—1)(n —k —1)l(n —k)!
k k=1 n—k n—-k—1 1 (n)

- 2=
* * L

*
n n-—1 n n—1 n-—3

() ()5 0)
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5 CONCLUSION

In conclusion, we see that many of the earlier terms in the formula of Theorem 4
can be analyzed so as to be smaller that (Z) In future work, we need to complete

this analysis and make further progress towards proving our conjecture.
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APPENDIX

n=3

> resulticount <- number
> result

perm elements count
1 123 1, 12, 122 3
2 132 1, 12, 21, 132 4
3 2131, 21, 12, 213 4
4 3121, 21, 12, 231 4
5 2311, 12, 21, 312 4
6 321 1, 21, 321 3
=
>
>
> R=((result$count)+1);R# Number of Embedded Sequences for each possible sequence of n
[1] 455554
> table (R )# yields the frequency table of the number of Embedded Sequences for each possible sequence of n
R
45
2 4
>
> S=sum{R);S # Total number of Embedded Sequences
[1] 28
> a=length(r); A
[1] 6
>

> prob.dist<-prop.table(table(r))
» prob.dist
R

4 5
0.3333333 0. bcboboe7
=
> E<-(S/A)E
[1] 4.666667
>

> v<-sum{unique((result$count)+1)A2*prob.dist)-Er2;v
[1] 0.2222222

=
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n=4

> result
perm elements count
1 1234 1, 12, 123, 1234 4
2 1243 1, 12, 21, 123, 132, 1243 ]
3 1324 1, 12, 21, 132, 123, 213, 1324 7
4 1423 1, 12, 21, 132, 123, 231, 1342 7
5 1342 1, 12, 21, 123, 132, 312, 1423 7
6 1432 1, 12, 21, 132, 321, 1432 6
7 2134 1, 21, 12, 213, 123, 2134 6
8 2143 1, 21, 12, 213, 132, 2143 [
9 3124 1, 21, 12, 231, 213, 123, 2314 7
10 4123 1, 21, 12, 231, 123, 2341 6
11 3142 1, 21, 12, 213, 231, 312, 132, 2413 8
12 4132 1, 21, 12, 231, 321, 132, 2431 7
13 2314 1, 12, 21, 312, 123, 213, 3124 7
14 2413 1, 12, 21, 312, 132, 213, 231, 3142 8
15 3214 1, 21, 12, 321, 213, 3214 6
16 4213 1, 21, 12, 321, 231, 213, 3241 7
7 3412 1, 12, 21, 312, 231, 3412 6
18 4312 1, 21, 12, 321, 231, 3421 ]
19 2341 1, 12, 21, 123, 312, 4123 (5]
20 2431 1, 12, 21, 132, 312, 321, 4132 7
21 3241 1, 21, 12, 213, 321, 312, 4213 7
22 4231 1, 21, 12, 231, 321, 312, 4231 7
23 3421 1, 12, 21, 312, 321, 4312 6
24 4321 1, 21, 321, 4321 4

> R={(resulticount)+1);r# Number of Embedded sequences for each possible sequence of n
] 578887 7787988897877 788875
= table (R )# vields the frequency table of the number of Embedded Sequences for each possible sequence of n
R
g8 9
o 2

o~

5
21
>
> S=sum(R);5 # Total number of Embedded Sequences
[1] 178
= A=length(R); A
[1] 24
>
> prob.dist<-prop.table(table(r))
= prob.dist
R

1

5 7 8 9
.08333233 0.41666667 0.41666667 0.08333333

0

=

=

= E<-(5/A)
> E

[1] 7.416667

=

=

= V<-sum{unique((result$count)+1)+2%prob. dist)-EA2

>V
[1] 0.9097222
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> result
perm elements count
1 12345 1, 12, 123, 1234, 12345 5
2 12354 1, 12, 21, 123, 132, 1234, 1243, 12354 8
3 12435 1, 12, 21, 123, 132, 213, 1243, 1234, 1324, 12435 10
a4 12534 1, 12, 21, 123, 132, 231, 1243, 1234, 1342, 12453 10
5 12453 1, 12, 21, 123, 132, 312, 1234, 1243, 1423, 12534 10
6 12543 1, 12, 21, 123, 132, 321, 1243, 1432, 12543 9
7 13245 1, 12, 21, 132, 123, 213, 1324, 1234, 2134, 13245 10
g 13254 1, 12, 21, 132, 123, 213, 1324, 1243, 2143, 13254 10
9 14235 1, 12, 21, 132, 123, 231, 213, 1342, 1324, 1234, 2314, 13425 12
10 15234 1, 12, 21, 132, 123, 231, 1342, 1234, 2341, 13452 10
11 14253 1, 12, 21, 132, 123, 213, 231, 312, 1324, 1342, 1423, 1243, 2413, 13524 14
12 15243 1, 12, 21, 132, 123, 231, 321, 1342, 1432, 1243, 2431, 13542 12
13 13425 1, 12, 21, 123, 132, 312, 213, 1423, 1234, 1324, 3124, 14235 12
14 13524 1, 12, 21, 123, 132, 312, 213, 231, 1423, 1243, 1324, 1342, 3142, 14253 14
15 14325 1, 12, 21, 132, 123, 321, 213, 1432, 1324, 3214, 14325 11
16 15324 1, 12, 21, 132, 123, 321, 231, 213, 1432, 1342, 1324, 3241, 14352 13
7 14523 1, 12, 21, 123, 132, 312, 231, 1423, 1342, 3412, 14523 11
18 15423 1, 12, 21, 132, 123, 321, 231, 1432, 1342, 3421, 14532 11
19 13452 1, 12, 21, 123, 132, 312, 1234, 1423, 4123, 15234 10
20 13542 1, 12, 21, 123, 132, 312, 321, 1243, 1423, 1432, 4132, 15243 12
21 14352 1, 12, 21, 132, 123, 213, 321, 312, 1324, 1432, 1423, 4213, 15324 13
22 15342 1, 12, 21, 132, 123, 231, 321, 312, 1342, 1432, 1423, 4231, 15342 13
23 14532 1, 12, 21, 123, 132, 312, 321, 1423, 1432, 4312, 15423 11
24 15432 1, 12, 21, 132, 321, 1432, 4321, 15432 -1
25 21345 1, 21, 12, 213, 123, 2134, 1234, 21345 8
26 21354 1, 21, 12, 213, 123, 132, 2134, 2143, 1243, 21354 10
7 21435 1, 21, 12, 213, 132, 123, 2143, 2134, 1324, 21435 10
28 21534 1, 21, 12, 213, 132, 123, 231, 2143, 2134, 1342, 21453 11
29 21453 1, 21, 12, 213, 123, 132, 312, 2134, 2143, 1423, 21534 11
30 21543 1, 21, 12, 213, 132, 321, 2143, 1432, 21543 9
31 31245 1, 21, 12, 231, 213, 123, 2314, 2134, 1234, 23145 10
32 31254 1, 21, 12, 231, 213, 132, 123, 2314, 2143, 1243, 23154 11

33 41235 1, 21, 12, 231, 213, 123, 2341, 2314, 1234, 23415 10

o4



41235
51234
41253
51243
31425
31524
41325
51324
41523
51423
31452
31542
41352
51342
41532
51432
23145
23154
24135
25134
24153
25143
32145
32154
42135
52134
42153
52143
34125
35124
43125
53124
45123
54123
34152
35142

35142
43152
53142
45132
54132
23415
23514
24315
25314
24513
25413
32415
32514
42315
52314
42513
52413
34215
35214
43215
53214
45213
54213
34512
35412
43512
53412
45312
54312
23451
23541
24351
25341
24531
25431
32451

1, 21, 12, 231, 213, 123, 2341, 2314,

1, 21, 12, 231, 123, 2341,

1, 21, 12, 231, 213, 312, 123, 132, 2314, 2341, 2413,

1, 21, 12, 231, 321, 123, 132, 2341, 2431,

1, 21, 12, 213, 231, 312, 123, 132, 2413, 2134, 2314, 3124,
1, 21, 12, 213, 231, 312, 132, 123, 2413, 2143, 2314, 3142,
1, 21, 12, 231, 213, 321, 132, 123, 2431, 2314, 3214,

1, 21, 12, 231, 321, 132, 123, 213, 2431, 2341, 3241,

1, 21, 12, 213, 231, 312, 132, 123, 2413, 2341, 3412,

1, 21, 12, 231, 321, 132, 123, 2431, 2341, 3421,

1, 21, 12, 213, 231, 123, 312, 132, 2134, 2413, 4123,

1, 21, 12, 213, 231, 132, 312, 321, 2143, 2413, 4132,

1, 21, 12, 231, 213, 321, 312, 123, 132, 2314, 2431, 2413, 4213,
1, 21, 12, 231, 321, 123, 132, 312, 2341, 2431, 4231,

1, 21, 12, 213, 231, 312, 321, 132, 2413, 2431, 4312,

1, 21, 12, 231, 321, 132, 2431, 4321,

1, 12, 21, 312, 123, 213, 3124, 1234,

1, 12, 21, 312, 123, 213, 132, 3124, 1243,

1, 12, 21, 312, 132, 123, 213, 231, 3142, 3124, 1324, 2134,
1, 12, 21, 312, 132, 213, 123, 231, 3142, 1342, 2134,

1, 12, 21, 312, 123, 1322, 213, 231, 3124, 3142, 1423, 2143,
1, 12, 21, 312, 132, 213, 231, 321, 3142, 1432, 2143,

1, 21, 12, 321, 213, 123, 3214,

1, 21, 12, 321, 213, 132, 3214,

1, 21, 12, 321, 231, 212, 123, 3241, 3214, 2314,

1, 21, 12, 321, 231, 213, 123, 3241, 2341,

1, 21, 12, 321, 213, 231, 312, 132, 3214, 3241, 2413,

1, 21, 12, 321, 231, 213, 132, 3241, 2431,

1, 12, 21, 312, 123, 231, 213, 3412, 3124,

1, 12, 21, 312, 132, 231, 213, 123, 3412, 3142, 2314,

1, 21, 12, 321, 213, 231, 123, 3421, 3214,

1, 21, 12, 321, 231, 213, 123, 3421, 3241, 2341,

1, 12, 21, 312, 231, 123, 3412,

1, 21, 12, 321, 231, 123, 3421,

1, 12, 21, 312, 123, 213, 231, 132, 3124, 3412, 4123,

1, 12, 21, 312, 132, 213, 231, 321, 3142, 3412, 4132, 2413,
1, 12, 21, 312, 132, 213, 231, 321, 3142, 3412, 4132, 2413,
1, 21, 12, 321, 213, 231, 312, 132, 3214, 3421, 4213,

1, 21, 12, 321, 231, 213, 312, 132, 3241, 3421, 4231, 2431,
1, 12, 21, 312, 231, 321, 132, 3412, 4312,

1, 21, 12, 321, 231, 132, 3421, 4321,

1, 12, 21, 123, 312, 213, 4123, 1234,

1, 12, 21, 123, 312, 132, 213, 231, 4123, 1243, 3124,

1, 12, 21, 132, 312, 123, 213, 321, 4132, 1324, 3124,

1, 12, 21, 132, 312, 123, 213, 321, 231, 4132, 1342, 3142, 3124,
1, 12, 21, 123, 312, 132, 213, 231, 4123, 1423, 3142,

1, 12, 21, 132, 312, 213, 321, 231, 4132, 1432, 3142,

1, 21, 12, 213, 321, 312, 123, 4213, 2134, 3214,

1, 21, 12, 213, 321, 312, 132, 231, 4213, 2143, 3214,

1, 21, 12, 231, 321, 213, 312, 123, 4231, 2314, 3214,

1, 21, 12, 231, 321, 312, 123, 213, 4231, 2341, 3241,

1, 21, 12, 213, 321, 231, 312, 132, 4213, 2413, 3241, 3412,
1, 21, 12, 231, 321, 312, 132, 213, 4231, 2431, 3241, 3421,
1, 12, 21, 312, 123, 321, 213, 4312, 3124,

1, 12, 21, 312, 132, 321, 213, 231, 4312, 3142, 3214,

1, 21, 12, 321, 213, 4321,

1, 21, 12, 321, 231, 213, 4321, 3241,

1, 12, 21, 312, 321, 231, 213, 4312, 3412,

1, 21, 12, 321, 231, 213, 4321, 3421,

1, 12, 21, 123, 312, 231, 4123,

1, 12, 21, 132, 312, 231, 321, 4132, 3412,

1, 21, 12, 213, 321, 312, 231, 4213, 3421,

1, 21, 12, 231, 321, 312, 4231, 3421,

1, 12, 21, 312, 321, 231, 4312, 3412,

1, 21, 12, 321, 231, 4321,

1, 12, 21, 123, 312, 1234,

1, 12, 21, 123, 312, 132, 321, 1243, 4123,

1, 12, 21, 132, 123, 312, 213, 321, 1324, 4132, 4123,

1, 12, 21, 132, 312, 123, 231, 321, 1342, 4132, 4123,

1, 12, 21, 123, 132, 312, 321, 1423, 4123, 4132,

1, 12, 21, 132, 312, 321, 1432, 4132,

1, 21, 12, 213, 321, 123, 312, 2134, 4213,

95

23415
23451
23514
23541
24135
24153
24315
24351
24513
24531
25134
25143
25314
25341
25413
25431
31245
31254
31425
31452
31524
31542
32145
32154
32415
32451
32514
32541
34125
34152
34215
34251
34512
34521
35124
35142

35142
35214
35241
35412
35421
41235
41253
41325
41352
41523
41532
42135
42153
42315
42351
42513
42531
43125
43152
43215
43251
43512
43521
45123
45132
45213
45231
45312
45321
51234
51243
51324
51342
51423
51432
52134



103 32451 1, 21, 12, 213, 321, 123, 312, 2134, 4213, 4123, 52134 11

104 32541 1, 21, 12, 213, 321, 132, 312, 2143, 4213, 4132, 52143 11
105 42351 1, 21, 12, 231, 213, 321, 312, 123, 2314, 4231, 4213, 4123, 52314 13
106 52341 1, 21, 12, 231, 321, 123, 312, 2341, 4231, 4123, 52341 11
107 42521 1, 21, 12, 213, 231, 321, 312, 132, 2413, 4213, 4231, 4312, 4132, 52413 14
108 524321 1, 21, 12, 231, 321, 132, 312, 2431, 4231, 4321, 4132, 52431 12
109 34251 1, 12, 21, 312, 123, 2132, 321, 3124, 4312, 4123, 4213, 53124 12
110 35241 1, 12, 21, 312, 132, 213, 321, 231, 3142, 4312, 4132, 4213, 4231, 53142 14
111 43251 1, 21, 12, 321, 213, 312, 3214, 4321, 4213, 53214 10
112 53241 1, 21, 12, 321, 231, 2132, 312, 3241, 4321, 4231, 4213, 53241 12
113 45231 1, 12, 21, 312, 231, 321, 3412, 4312, 4231, 53412 10
114 542321 1, 21, 12, 321, 231, 312, 3421, 4321, 4231, 53421 10
115 34521 1, 12, 21, 123, 312, 321, 4123, 4312, 54123 9
116 35421 1, 12, 21, 132, 312, 321, 4132, 4312, 4321, 54132 10
117 43521 1, 21, 12, 213, 321, 312, 4213, 4321, 4312, 54213 10
118 53421 1, 21, 12, 231, 321, 312, 4231, 4321, 4312, 54231 10
119 45321 1, 12, 21, 312, 321, 4312, 4321, 54312 8
120 54321 1, 21, 321, 4321, 54321 5

e
= R=((resulticount)+1);R# Number of Embedded Sequences for each possible sequence of n
[1] & 911 11 11 10 11 11 13 11 15 13 13 15 12 14 12 12 11 13 14 14 12 9 911 11 12 12 10 11 12 11 9 14

12 15 15 14

[40] 14 14 13 14 14 16 14 14 11 11 12 15 14 15 14 10 10 13 12 14 12 12 14 12 13 10 10 14 15 14 15 12 11 11 14
14 16 14 14

[F9] 13 14 14 14 15 1512 14 911 12 11 1012 12 11 11 9 912 14 14 13 11 12 12 14 12 15 13 13 15 11 13 11
11 10 11 11

[118] 11 9 &
> table (R )# yields the frequency table of the number of Embedded sequences for each possible sequence of n
R

6 91011 12 13 14 15 18

2 8 B 26 2212 2812 2
>
> S=sum(R);s # Total number of Embedded sSequences

[1] 1474
= A=length(R); A
[1] 120
>
> prob.dist<-prop.table(table(r))
> prob.dist
R
a 9 10 11 12 13 14 15 16

.0leee667 0.06666667 0.06666667 0.21666667 0.18333333 0.10000000 0.23333333 0.10000000 0.0le66667

0

>

>

= E<-(5/4)
= E

[1] 12.28333
>

>

>

=

[

-

v<-sum{unique ({result$count)+1)A2*prob. dist)-EAZ

1] -4.196944

s
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n==~6

= table (R )}# vields the freguency table of the number of Embedded Sequences for each possible sequence of n

R
711 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29
2 8 14 20 18 18 58 4B 52 72 70 36 B0 76 66 6 44 24 B8
>
= S=sum{R);S # Total number of Embedded Sequences
[1] 15224
> a=Tlength(R);a
[1] 720
>
= prob.dist<-prop.table(table(r))
= prob.dist
R

17

7 11 13 14 15 16
20
0.002777778 0.011111111 0.019444444 0,027777778 0,025000000 0,025000000 0.080555556
100000000
21 22 23 24 25 26

27

18 19

0.066666667 0.072222222 0.

28 29

L097222222 0.050000000 0.111111111 0.105555556 0.091666667 0.008333333 0.061111111 0.033333333 0.011111111

E<-(5/4)

v<-sum{unique((result$count)+1)A2%prob. dist)-EA2
v
1]

0
e

=

=

= E

[1] 21.14444
>

e

=

=

[1] 25.63469
>
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[1] 189524

> A=length(R); A

[1] 5040
=

prob. dist<-prop. table(table(r))

=
> prob.dist
R

&

23
0.0003968254

793651
24

32
0.0142857143

015873
33

41
0.0365079365

333333
42

50
0. 0460317460

365079
51
0.0261904762

>
> E<-(5/A);E
[1] 37.60397
=

13

. 0015873016

25

L 0103174603

34

. 0380952381

43

. 0730158730

52

L 0142857143

16

0.0023800524

26

0.0202380952

35

0.0507936508

14

0.0301587302

53

0.0079365079

n==7

> S=sum(R);s # Total number of Embedded Sequences

17

0.0055555556

27

0.0174603175

36

0.0412698413

45

0.0373015873

54
0.0047619048

19

0.0051587302

28

0.0206349206

37

0.0575396825

46

0.0230158730

55
0.0047619048

= V<-sum{unique((result$count)+1)A2*prob. dist)-EA2;V

[1] 7e.07927

20

. 0019841270

29

.0333333333

18

. 0329365079

47

. 0230158730

56

. 0019841270

21

0.0015873016

30

0.0388888889

39

0.0515873016

48

0.0238095238

n==~8
= table (R )# vields the fkequenhy table of the number of Embedded sequences for each
R
9 15 20 21 23 24 26 27 28 29 30 31 32 33 34 35 36
41 42
2 8 20 14 26 20 8 48 36 72 48 108 96 72 68 146 BB
426 238
43 44 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60
65 141
266 336 424 258 416 504 548 €40 450 386 908 592 756 624 808 736 944 504
892 1056
67 68 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84
89 90
1136 900 960 796 860 880 1014 856 968 B8l6 712 888 916 746 1000 746 716 604
434 348
a1 92 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108
356 248 468 306 326 458 340 170 220 248 144 156 96 108 64 72 16 32
=
> S=sum(R);S # Total number of Embedded Sequences

[1] 2767428

= A=length(R); A

f11 40320

= E<-(5/A);E
[1] ©8.63661

=

> ve-sum{unique({result$count)+1)r2%prob. dist)-EA2; Vv
[1] 201.3242

e

o8

22

0.0130952381

31

0.0285714286 0.

40

0.0428571429

49

0.0230158730 0.

37 38 39
134 228 224
61 62 63
990 896 8536
85 86 87
540 604 608
109 110

8 8

0.0150

0.0333

0079

possible sequence of n

40

188

64

856

88

452
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