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ABSTRACT 

 

Quantitative Studies of Amyloidogenic Protein Residue Interaction Networks and 

Abnormal Ammonia Metabolism in Neurotoxicity and Disease 

 

by 

Jeddidiah Wayne Duke Griffin 

 

Investigating similarities among neurological diseases can provide insight into disease 

processes. Two prominent commonalities of neurological diseases are the formation of 

amyloid deposits and altered ammonia and glutamate metabolism. Computational 

techniques were used to explore these processes in several neurological diseases. Residue 

interaction networks (RINs) abstract protein structure into a series of nodes (representing 

residues) and edges (representing connections between residues likely to interact). 

Analyzing the RINs of non-amyloid forms of amyloidogenic proteins for common network 

features revealed similarities not previously known. First, amyloidogenic variants of 

lysozyme were used to demonstrate the usefulness of RINs to the study of amyloidogenic 

proteins. Next, I compared RINs of amyloidogenic proteins with randomized control 

networks and a group of real protein controls and found similarities in network structures 

unique to amyloidogenic proteins. The use of 3D structure data and network structure data 

of amyloid-beta (1-42) (Abeta42) in a hydrophobic, membrane-mimicking solvent led to 

the identification of an interaction between Val24 and Ile31 as potentially involved in 

preventing Abeta aggregation. Since Abeta causes oxidative damage, since the ammonia 
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metabolism enzyme glutamine synthetase is particularly susceptible to oxidative damage, 

and since glutamate plays a central role in neuronal function, I expanded my research to 

include the study of ammonia and glutamate metabolism in neurological diseases. A 

computational model of the effects of the interactions between the amount of dietary 

protein and the activities of ammonia metabolism enzymes on blood and brain ammonia 

levels supports potentially important roles for these enzymes in the protection of neural 

function. Next, I reviewed the role of amino acid catabolism in Alzheimer’s disease (AD). 

Common tissue pathology and the ability of memantine, an NMDA receptor antagonist, to 

relieve symptoms in patients and animal models of AD, major depressive disorder (MDD), 

and type 2 diabetes (T2D) further support a role for ammonia and glutamate metabolism 

in disease. Lastly, I found that single nucleotide polymorphisms (SNPs) in select ammonia 

metabolism genes are associated with these three diseases. The results presented in this 

dissertation demonstrate that investigating neurological diseases using computational 

approaches can provide great insight into the common underlying pathologies. 
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CHAPTER 1 

INTRODUCTION 

 

Many Neurological Diseases Have Common Etiologies and Phenotypes 

Neurological diseases are a diverse group of disorders, so researchers often study 

them using a reductionist approach. This view has successfully led to a large body of 

knowledge and successful treatments for some diseases. However, a broader approach that 

attempts to find similarities among some of the proposed causes of neurological disease 

could lead to novel and more broad-spectrum treatments. Improper protein folding and 

metabolic abnormalities are two of the proposed shared causes of neurological diseases 

and their symptoms. Improper protein folding results in the formation of insoluble protein 

deposits called amyloid plaques (Rambaran and Serpell 2008). Metabolic abnormalities are 

understandably diverse in neurological diseases due to the central role of metabolism in 

cellular function, but amino acid and ammonia metabolism stand out as having influential 

roles in many diseases. The overall goal of this dissertation is to use computational 

analyses to provide insight into potential molecular contributors to select neurological 

diseases by investigating abnormal ammonia metabolism and the residue interaction 

network structures of amyloidogenic proteins, two likely contributors to neurological 

diseases. I propose two guiding hypotheses for this series of studies. 

(A) Amyloidogenic proteins have similarities in their residue interaction network  

structures that will provide insight into the formation of amyloid plaques. 

(B) Altered ammonia metabolism and changes in the amount of dietary protein 
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under certain conditions affect neurological function and play causative roles 

in several neurological diseases.  

These studies investigated possible contributing factors to neurological diseases 

and report commonalities in improper protein folding and abnormal metabolism. Studies 

of broad scope that attempt to find commonalities in the causes of neurological diseases 

could provide novel insight into possible treatments or preventions. This series of studies 

is organized into specific aims which address hypotheses (A) and (B). 

 

Specific Aim 1 

To determine if amyloidogenic proteins have commonalities in their residue 

interaction networks and to determine how these network structures may affect amyloid-

beta plaque formation when combined with 3D structural data. This aim addresses 

hypothesis (A). 

 

Amyloidogenic Proteins Are Involved in Many Neurological Diseases 

Amyloidogenic proteins are polypeptides that can form amyloid plaques (Knowles 

et al. 2014). Amyloid plaques are associated with a variety of diseases ranging from 

neurological disorders (Glenner and Wong 1984; Hardy and Higgins 1992) to 

gastrointestinal disease (Granel et al. 2002). The symptoms of the diseases depend on the 

tissue in which the amyloids are deposited. There are dozens of different amyloid diseases 

caused by dozens of different proteins (Knowles et al. 2014). The structure of amyloid 

plaques of a variety of proteins consists of insoluble stacks of cross-beta sheets (Sunde et 

al. 1997). There is little known similarity in native structure, sequence, or function of 



26 
 

amyloidogenic proteins in monomeric form (Knowles et al. 2014). Several amyloid diseases 

(amyloidoses) are characterized by deposition of plaques in the central nervous system 

(CNS), leading to a variety of different but related symptoms. Amyloidoses of the CNS 

include amyloid-beta (Abeta) in Alzheimer’s disease (Glenner and Wong 1984), alpha-

synuclein (α-syn) in Parkinson’s disease (Spillantini et al. 1997), and human prion protein 

(hPrP) in transmissible spongiform encephalopathies (TSEs) (Kretzschmar et al. 1986; 

Nizhnikov et al. 2016).  

 

Amyloid-Beta and Alzheimer’s Disease. The amyloid hypothesis for Alzheimer’s 

disease was first proposed in 1992 by Hardy and Higgins (Hardy and Higgins 1992), but it 

has its roots in the first studies of purified Abeta (Glenner and Wong 1984). The hypothesis 

states that aggregates of the Abeta peptide are responsible for the cognitive decline and 

cellular damage observed in Alzheimer’s disease. Since then, the amyloid hypothesis has 

been thoroughly investigated with data both supporting and refuting it (Herrup 2015). 

Abeta comes in two main forms that differ in length by only two amino acids: amyloid-beta 

(1-40) (Abeta40) and amyloid-beta (1-42) (Abeta42).  However, a recent study suggests 

many other Abeta fragments are also prevalent in AD brain (Wildburger et al. 2017). 

Studies suggest Abeta42 is more toxic than Abeta40 (Kuperstein et al. 2010). This may be 

because it more readily forms amyloid fibrils (Ogawa et al. 2011). Fibrils are the most 

prevalent form of Abeta found in those with AD, but oligomers appear to be the most toxic 

form (Sakono and Zako 2010). Abeta42 has been shown to stimulate inflammation (White 

et al. 2005) as well as form channels in cellular membranes that disrupt ion homeostasis in 
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neurons (Furukawa et al. 1994; Weiss et al. 1994). The amyloid plaques are typically 

extracellular and are thought to disrupt synaptic signaling (Ferreira et al. 2015).  

Abeta appears to have intrinsically unstructured N- and C-termini with some 

secondary structure in the middle regions of the protein. Studies have found that the 

central hydrophobic cluster (CHC, residues 17-21) plays an important role in forming 

amyloid plaques (Wurth et al. 2002). Residues 24-26 and 31-34 appear to be important for 

fibrillization of Abeta40 (Williams et al. 2004). While it has been suggested that Abeta 

monomers in solution do not have secondary structure, there are studies that suggest 

Abeta does have secondary structure that is critical for amyloid formation (Chen and Glabe 

2006). Although Abeta has been extensively studied, there is a lot of variability in 

experimental results possibly due to differences in experimental conditions. Therefore, 

examining amyloidogenic proteins for similarities using a novel computational approach 

could provide insights into structural features that other methods could not address. 

 

Other Amyloidoses of the CNS. The brains of Parkinson’s disease patients have 

cytoplasmic inclusions known as Lewy bodies (LBs) (Braak et al. 2003). LBs are mainly 

composed of α-syn (Tu et al. 1998), a 140 amino acid protein that forms alpha-helices 

when in a hydrophobic, membrane-like environment (Ulmer et al. 2005). While α-syn can 

form fibrils, it is thought that oligomers are the most toxic form of the protein (Conway et 

al. 2000). The α-syn protein has been shown to inhibit synaptic transmission through a 

variety of mechanisms (Stefanis 2012), including altering the distribution of SNARE 

proteins (Garcia-Reitböck et al. 2010) and decreasing the release of neurotransmitters 

(Nemani et al. 2010).  
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Human prion protein is an infectious protein that is the cause of TSEs. There are 

several types of TSEs that involve the conversion of the cellular form of the prion protein 

(PrPC) to the infectious form (PrPSC) (Colby and Prusiner 2011). The concept of infectious 

proteins was proposed by Prusiner in 1982 (Prusiner 1982). While hPrP often forms 

amyloids in vivo (Colby et al. 2007), amyloid formation is not required to cause disease 

(Wille et al. 2000). Like α-syn and Abeta, there is evidence that oligomeric PrP species are 

more toxic than fibrils for pathogenesis (Sokolowski et al. 2003). Because both α-syn and 

hPrP can form amyloids, they are included in the group of amyloidogenic proteins studied 

in Chapter 3. 

 

Lysozyme Amyloidosis as a Model for General Amyloidosis. Lysozyme is a 14.7 kDa 

antimicrobial protein discovered by Alexander Fleming (Fleming 1922) and found in 

secretions such as tears (McDermott 2013) and saliva (van’t Hof et al. 2014). While wild 

type (WT) lysozyme does not form amyloids in vivo, rare amyloidogenic mutants of 

lysozyme exist and are known to cause human disease (Granel et al. 2006). Because 

lysozyme is a well-studied protein and single amino acid substitutions can cause lysozyme 

to form amyloids, it is a useful model for studying the general process of amyloidogenesis 

(Merlini and Bellotti 2005). Several lysozyme point mutations are catalogued in the 

database Online Mendelian Inheritance in Man (OMIM 153450). These include I56T (Pepys 

et al. 1993), D67H (Pepys et al. 1993), W64R (Valleix et al. 2002), and F57I (Yazaki et al. 

2003). It is generally thought that these mutations cause regions of instability between the 

alpha and beta domains, leading to unfolding (Booth et al. 1997). As the lysozyme 

molecules unfold, new intermolecular interactions can form between them, allowing 
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lysozyme to form amyloid plaques. While regions of instability have been clearly 

demonstrated to be involved (Booth et al. 1997), there may be other factors involved in 

amyloidogenesis. Applying residue interaction network analysis to lysozyme structures 

available in the Protein Data Bank (PDB) may yield new insights into the primary 

nucleation of lysozyme amyloids. Since lysozyme is a model for general amyloidogenesis, 

understanding the residue interaction network changes that occur in amyloidogenic 

variants of lysozyme could provide insight into the primary nucleation of other proteins as 

well. A better understanding of the amyloidogenic process could lead to more effective 

pharmacological interventions. 

 

Residue Interaction Networks Provide a Novel Perspective into Protein Structure and 

Function 

Complex networks analysis is a growing field that applies network science to a 

variety of systems (Estrada 2012). Proteins can be abstracted into a network of interacting 

amino acid residues where a node is represented by an amino acid and an edge represents 

a likely connection between amino acid residues (Di Paola et al. 2013; Yan et al. 2014). 

Conceptualizing a protein’s structure as a network has proven to be a powerful technique 

that has provided several insights into protein structure (Dokholyan et al. 2002; Amitai et 

al. 2004; Brinda and Vishveshwara 2005; Liu and Hu 2011; Hu et al. 2014; Emerson and 

Louis 2015; Di Paola and Giuliani 2015). There are a variety of metrics available to describe 

a network (Junker and Schreiber 2008). These include global network measures such as 

average clustering coefficient, average shortest pathlength, average degree, and number of 

nodes and edges. There also exist local measures of a network such as clustering 



30 
 

coefficient, degree of a node, betweenness, and stress. Both global and local metrics have 

proven useful for protein network analysis. Network metrics applied to residue interaction 

networks (RINs) have been associated with features of proteins such as folding dynamics 

(Dokholyan et al. 2002) and active sites (Amitai et al. 2004). RINs are most useful for 

analyzing protein structure when combined with traditional 3D structural data and 

sequence data. 

As described above, the 3D structures and sequences of monomeric and soluble 

amyloidogenic proteins are generally very well studied, but there have been no strong 

sequence or structural similarities found among them that suggest common features 

involved in amyloidogenesis (Knowles et al. 2014). Adding RIN data could better identify 

common features in amyloidogenic proteins. RINs provide a novel perspective of 

amyloidogenic proteins that could lead to the generation of information useful in further 

refining the current model of primary nucleation of amyloid fibrils.  

As mentioned previously, Abeta plaques are a hallmark of AD. One of the hypotheses 

for the toxic effects of Abeta focuses on the potential of Abeta to cause oxidative damage 

(Smith et al. 1994; Smith et al. 1998; Rottkamp et al. 2001; Boyd-Kimball et al. 2005; Boyd-

Kimball et al. 2006). Oxidative damage is increased in those with AD (Castegna et al. 2003; 

Perluigi et al. 2009) and in animal models of AD (Praticò et al. 2001). One of the enzymes 

especially sensitive to oxidative inactivation is glutamine synthetase (GLUL) (Butterfield et 

al. 1997), an enzyme that ligates ammonia and glutamate to produce glutamine. GLUL is 

oxidized in vitro after Abeta42 treatment (Boyd-Kimball et al. 2005) and has been shown 

to be oxidized in patients with mild cognitive impairment (MCI) (Butterfield et al. 2006) 

and in a mouse model of AD (Shen et al. 2015). Because of the sensitivity of GLUL to 
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oxidative inactivation and the potential effects on ammonia metabolism due to oxidative 

damage, I expanded my research to examine the role of ammonia metabolism enzymes on 

blood ammonia levels and the potential neurotoxicity when enzyme activity is altered in 

disease conditions. 

 

Specific Aim 2 

To create a mathematical model to determine if the amount of dietary protein and 

degree of liver function interact to affect blood ammonia levels and to determine if the 

predicted changes could affect neuron health. This aim addresses hypothesis (B) and 

investigates the potential role of ammonia metabolism in neural function using an 

organismal and tissue level approach. 

 

Urea Cycle, CPS1, GLS, and GLUL in Ammonia Metabolism 

 Ammonia is a toxic byproduct of amino acid catabolism (Auron and Brophy 2012) 

that is processed in mammals into the relatively nontoxic molecule urea by enzymes of the 

urea cycle. The urea cycle is composed of a series of enzymes located mainly in the liver, 

but also in the kidneys and small intestine. The first committed step of the urea cycle is 

catalyzed by the enzyme carbamoyl phosphate synthetase 1 (CPS1), a mitochondrial 

protein that synthesizes carbamoyl phosphate from ammonia, carbonic acid, and ATP. CPS1 

deficiency, a disease caused by mutations in the CPS1 gene that reduce the enzyme’s 

activity, results in increased systemic ammonia levels (Klaus et al. 2009). Severe CPS1 

deficiency typically leads to death at an early age due to the sensitivity of the brain to high 

ammonia levels. 
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Many other enzymes exist that are involved in ammonia metabolism but are not 

part of the urea cycle. These include glutamine synthetase (GLUL), as mentioned earlier, 

and glutaminase (GLS). Glutamine is relatively inert as a signaling molecule (Albrecht et al. 

2010). However, glutamine can be broken down into ammonia and glutamate by the 

enzyme glutaminase (Albrecht and Norenberg 2006). Glutamate is an important 

neurotransmitter involved in synaptic function (Zhou and Danbolt 2014) and is discussed 

in more detail below. GLUL has a very low Km (high affinity for substrate) (Listrom et al. 

1997), so it efficiently processes free ammonia into glutamine when glutamate is present. 

The interplay among these ammonia metabolism enzymes has important implications for a 

variety of diseases. 

 

Liver Physiology and Hepatic Encephalopathy 

The liver carries out a variety of critical physiological functions. One of the most 

important functions is the removal of ammonia from the blood to create urea for excretion. 

This is carried out through a series of enzymes that are spatially separated in the acinus, 

the functional unit of the liver. Briefly, the hepatic portal vein carries blood from the small 

intestine to the liver. The blood then diffuses across about 22 hepatocyte cell layers in the 

acinus and then collects in a branch of the central vein. The hepatocytes of the acinus are 

divided into three zones which each express a set of enzymes to metabolically process the 

compounds in the blood coming from the small intestine (Häussinger et al. 1992; Brosnan 

and Brosnan 2009; Lautt 2009). Zone 1 is closest to the hepatic portal vein. These 

hepatocytes express the enzymes CPS1 (Moorman et al. 1989) and GLS (Moorman et al. 

1994). Zone 2 largely contains the same ammonia metabolism enzymes as zone 1 but with 
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lower levels of GLS (Moorman et al. 1989; Moorman et al. 1994). Zone 3, however, is 

closest to the central vein and contains GLUL instead of CPS1 and GLS (Gebhardt and 

Mecke 1983). The separation of these enzymes makes ammonia metabolism more efficient. 

Liver damage causes changes in the metabolic functions of the liver (Gebhardt and 

Reichen 1994; Fleming and Wanless 2013). Hepatic encephalopathy is a condition where 

liver damage leads to an accumulation of potentially neurotoxic factors in the blood, 

impairing cognitive function (Butterworth 2015). Liver cirrhosis has been shown to cause 

changes in the activities of CPS1 and GLUL (Gebhardt and Reichen 1994; Fleming and 

Wanless 2013). When these enzyme activities are altered, the rate at which ammonia 

metabolism occurs is altered as well, leading to higher levels of ammonia in the blood of 

patients with liver damage (Butterworth 2003). The higher levels of blood ammonia in 

those with hepatic encephalopathy cause neural dysfunction, leading to the clinical 

symptoms of disease. 

 

Effects of Blood Ammonia on Neural Cells 

 Most ammonia (NH3) becomes protonated at physiological pH and is present in the 

body as the ammonium ion (NH4+). For simplicity, “ammonia” is used in this dissertation to 

include both chemical species unless otherwise noted. Uncharged ammonia can passively 

cross the blood-brain barrier (BBB), while the charged ammonium ion cannot (Auron and 

Brophy 2012). Because the brain has a lower pH than blood, once ammonia passes through 

the BBB and becomes protonated, it does not pass back through so easily, leading to a 

higher concentration of ammonium ions in the brain compared to the blood (Auron and 

Brophy 2012). Once in the brain, ammonia can cause damage to neural cells and interrupt 
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cognitive function in a variety of ways. First, ammonia can directly exert toxicity on 

neurons and glia. Studies have demonstrated that increased ammonia levels cause 

increased reactive oxygen and nitrogen species production (Bobermin et al. 2015), leading 

to oxidative damage. Furthermore, ammonium ions compete with potassium for transport 

into astrocytes and neurons, leading to problems with inhibitory neurotransmission in the 

cortex (Rangroo Thrane et al. 2013). Next, high ammonia levels disrupt the glutamate-

glutamine balance in the brain (Braissant et al. 2013). Glutamate is an excitatory 

neurotransmitter involved in learning and memory (Esposito et al. 2013). Disruption of 

glutamate metabolism and signaling by high ammonia levels could lead to some of the 

symptoms of neurological diseases. Either too much or too little glutamate signaling has 

been shown to have negative effects on the brain (Myhrer 1998). The results of Specific 

Aim 2 add further evidence that increased ammonia levels resulting from 

pathophysiologically relevant enzyme activity changes are directly toxic to neurons. 

Because of these results and the established role of glutamate signaling in neuronal 

function and AD, I investigated a potential connection between ammonia metabolism genes 

and three neurological and metabolic diseases: AD, major depressive disorder (MDD), and 

type-2 diabetes (T2D). 

 

Specific Aim 3 

To determine if there is an association between single nucleotide polymorphisms 

(SNPs) in the GLS, CPS1, and GLUL genes and AD, MDD, and T2D, and to predict the effects 

of any associated SNPs in the disease processes. This aim addresses hypothesis (B) where I 
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suggest that altered ammonia metabolism stimulates neuropathology on a molecular and 

cellular level. 

 

Ammonia Metabolism Could Play a Common Role in AD, T2D, and MDD 

Proper organismal ammonia metabolism is critical for normal physiology, but it is 

especially important for brain function. Because of its very high toxicity and its production 

by a central metabolic pathway, ammonia metabolism may be altered in a variety of 

diseases where central metabolism is altered. Therefore, we hypothesized that ammonia 

and glutamate metabolism may play a role in the pathogenesis of AD, MDD, and T2D. While 

these diseases have many differences, cortical thinning has been associated with all three 

diseases (Du et al. 2007; Tu et al. 2012; Yoon et al. 2017). Memantine is one of the handful 

of drugs available for the treatment of AD. It is an NMDA receptor antagonist, so it reduces 

glutamate excitotoxicity in neurons. Overactivation of NMDA receptors results in the 

excessive opening of plasma membrane calcium channels, resulting in calcium-induced cell 

death. Memantine has been shown to slightly slow the progression of AD, reinforcing that 

glutamate signaling is important in AD pathogenesis. However, memantine administration 

has also been shown to have positive effects in patients with MDD (Amidfar et al. 2017) 

and in a mouse model of T2D (Iwanami et al. 2014; Huang et al. 2017). Since memantine 

may be effective against all three of these diseases, there are likely common features of 

pathogenesis among them. Exploring common disease features may lead to better 

treatments for patients with a variety of diseases. This suggests that drugs targeting 

ammonia and glutamate metabolism and signaling may be worthwhile pharmacological 

interventions.  
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In addition to the link between AD, MDD, and T2D and glutamate and ammonia 

metabolism and signaling, the comorbidity of the three diseases suggests a possible link 

among them. For example, T2D nearly doubles the risk of developing MDD (Anderson et al. 

2001; Ali et al. 2006), and those with a history of depression have an increased risk of 

developing AD (Geerlings et al. 2008). Furthermore, a strong link between T2D and AD 

appears to be established (Ott et al. 1999; Luchsinger et al. 2005; Gudala et al. 2013; Li et 

al. 2015). Ammonia metabolism and its role in glutamate signaling may partially explain 

the comorbidity, the benefit of NMDA receptor antagonists, and the similar tissue 

pathology of these diseases with neurological components. Furthermore, since each of 

these diseases has a heritable component (Gatz et al. 1997; Sullivan et al. 2000; Willemsen 

et al. 2015), investigating genetic abnormalities in ammonia metabolism genes in 

individuals with these diseases may further support a causative role for dysfunctional 

ammonia and glutamate metabolism in the onset and progression of the disorders. 

 

Amino Acid and Ammonia Metabolism in AD. Since 1992, Abeta has been a major 

focus of AD research (Hardy and Higgins 1992). However, Abeta is likely not the only factor 

involved in AD pathogenesis. The year after the amyloid hypothesis was proposed, Seiler 

proposed the ammonia hypothesis of AD (Seiler 1993). However, due to the popularity of 

the amyloid hypothesis, it has received little attention although the data that support it are 

strong. In light of the numerous failed AD drug trials that sought to prevent Abeta 

fibrilization or remove fibrils that were already present, many researchers have suggested 

that the investigation of other hypotheses of AD pathogenesis is warranted (Herrup 2015).  

Of the drugs currently approved to treat AD, none of them targets Abeta, but memantine 
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alters glutamate signaling. Therefore, strategies targeting ammonia and glutamate 

metabolism may lead to more effective treatments. Seiler has reviewed the body of 

evidence that supports the role of ammonia in AD (Seiler 2002). Briefly, subjects with AD 

tend to have high levels of ammonia in their plasma (Fisman et al. 1985), cerebrospinal 

fluid (CSF), and autopsied brains than age-matched controls (Hoyer et al. 1990). The 

cognitive symptoms of those with CPS1 deficiency or hepatic encephalopathy (although not 

identical with AD) demonstrate the effects of hyperammonemia on the CNS (Raabe 1987). 

Together, this evidence warrants further research. 

 In addition to increased ammonia levels in AD patients, amino acid level changes in 

those with AD have also been thoroughly investigated. Several amino acids have altered 

concentrations in blood, CSF, or autopsied brain tissue of AD patients (Chapter 5). Because 

amino acids release ammonia when catabolized and are precursors for the synthesis of a 

variety of metabolites, their altered levels in AD patients could lead to a variety of disease 

symptoms. The changes in amino acid levels in AD patients and animal models are 

thoroughly reviewed in Chapter 5. 

 

Ammonia Metabolism in MDD and T2D. Ammonia and glutamate metabolism have 

also been linked to MDD and T2D. In addition to the positive effects of memantine on the 

symptoms of MDD patients and in a mouse model of T2D, some studies have reported 

associations between ammonia metabolism genes and MDD and T2D. Changes in the 

activity of GLS in a diabetes rat model were found (Ardawi 1987), and it is also known that 

glutamate signaling pathways are altered in those with MDD (Bernard et al. 2011).  
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Overview of the Dissertation 

 In the first part of this dissertation, I discuss the results of studies seeking to find 

similarities among amyloidogenic proteins by combining 3D structural analysis with RIN 

analysis. Amyloidogenic lysozyme was used as a model of an amyloidogenic protein to 

demonstrate the usefulness of combining 3D structural data and RIN data in the study of 

primary nucleation (Chapter 2). Next, a group of amyloidogenic proteins was compared to 

random network controls and a group of real proteins to detect similarities among the 

amyloidogenic proteins (Chapter 3). Then, Abeta, as an example from a prevalent disease, 

was explored in more detail to find novel residue interactions that may be involved in 

primary nucleation of amyloid fibrils (Chapter 3).  

In the second part of this dissertation, the results of the studies aimed at 

investigating the potential role of ammonia in a variety of neurological diseases are 

discussed. First, a computational model was built to investigate the interactions among the 

activities of enzymes involved in ammonia metabolism, dietary protein intake, and blood 

ammonia levels and their potential role in hepatic encephalopathy (Chapter 4). Next, the 

literature on amino acid and ammonia metabolism changes that occur in AD was 

thoroughly reviewed (Chapter 5). Finally, single nucleotide polymorphisms (SNPs) in 

ammonia metabolism genes were found to be linked to AD, MDD, and T2D, suggesting the 

potential for altered ammonia metabolism to play an important role in a variety of diseases 

with neurological symptoms (Chapter 6). By combining the study of amyloid forming 

proteins such as Abeta in Alzheimer’s disease and ammonia metabolism in hepatic 

encephalopathy, AD, MDD, and T2D, a more complete understanding of diseases with 

neurological and metabolic components has been obtained. 
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Abstract 

  Amyloidogenic proteins are most often associated with neurodegenerative diseases 

such as Alzheimer’s disease, Parkinson’s disease, and Huntington’s disease, but there are 

more than two dozen human proteins known to form amyloid fibrils associated with 

disease. Lysozyme is an antimicrobial protein that is used as a general model to study 

amyloid fibril formation. Studies aimed at elucidating the process of amyloid formation of 

lysozyme tend to focus on partial unfolding of the native state due to the relative instability 

of mutant amyloidogenic variants. While this is well supported, the data presented here 

suggest the native structure of the variants may also play a role in primary nucleation. 

Three-dimensional structural analysis identified lysozyme residues 21, 62, 104, and 122 as 

displaced in both amyloidogenic variants compared to wild type lysozyme. Residue 

interaction network (RIN) analysis found greater clustering of residues 112-117 in 

amyloidogenic variants of lysozyme compared to wild type. An analysis of the most 

energetically favored predicted dimers and trimers provided further evidence for a role for 

residues 21, 62, 104, 122, and 112-117 in amyloid formation. This study used lysozyme as a 

model to demonstrate the utility of combining 3D structural analysis with RIN analysis for 

studying the general process of amyloidogenesis. Results indicated that binding of two or 

more amyloidogenic lysozyme mutants may be involved in amyloid nucleation by placing 

key residues (21, 62, 104, 122, and 112-117) in proximity before partial unfolding occurs. 

Identifying residues in the native state that may be involved in amyloid formation could 

provide novel drug targets to prevent a range of amyloidoses. 
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Background 

Amyloidoses are a group of diseases defined by the formation of protein aggregates 

characterized by stacks of cross-beta sheets (Greenwald and Riek 2010).  There are dozens 

of different amyloid diseases caused by a variety of both wild type (WT) and mutant forms 

of proteins (Knowles et al. 2014). Some of the most well-known amyloidoses are 

neurodegenerative diseases such as Alzheimer’s disease (involving amyloid-beta peptide) 

and Parkinson’s disease (involving alpha-synuclein protein). However, not all amyloid 

diseases affect the brain. Lysozyme amyloidosis is a rare disease characterized by the 

deposition of amyloid fibrils of the enzyme lysozyme. Lysozyme was discovered by 

Alexander Fleming in 1922 (Fleming 1922) and is an antimicrobial enzyme synthesized by 

hepatocytes, cells of the gastrointestinal system, and macrophages (Granel et al. 2006). 

Lysozyme amyloidosis has no known effective treatment and leads to lysozyme amyloid 

deposits typically concentrated in the liver (Harrison et al. 1996), spleen, gastrointestinal 

tract (Granel et al. 2002), and kidneys (Gillmore et al. 1999). Lysozyme amyloidosis is 

thought to be largely caused by subtle structural changes of the protein caused by genetic 

mutations that lead to pockets of local instability and a greater likelihood of partial 

unfolding (Canet et al. 1999). The Online Mendelian Inheritance in Man (OMIM) database 

(Amberger et al. 2015) entry for lysozyme (OMIM ID 153450) reports four lysozyme 

variants that are associated with the disease: I56T (Pepys et al. 1993), D67H (Pepys et al. 

1993), W64R (Valleix et al. 2002), and F57I (Yazaki et al. 2003).  
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Lysozyme has long been used as a model for studying protein structure and folding. 

Since lysozyme is structurally and functionally well-characterized, the protein provides a 

useful model for understanding the complex process of amyloid fibril formation (Merlini 

and Bellotti 2005). Several studies have investigated the role of amyloidogenic mutations 

on lysozyme amyloid formation with a focus on the first identified mutations, I56T and 

D67H. Studies that examined the crystal structure of the WT and I56T variant suggest very 

little difference in the native structure of these enzymes (Funahashi et al. 1996). The D67H 

variant, however, destroys the hydrogen bonds that stabilize the beta domain, leading to 

the displacement of a long loop of residues (Booth et al. 1997). Because the obvious loop 

displacement between the WT and D67H mutant is not present in the I56T mutant, it is 

thought that this change is not responsible for amyloidogenesis. Instability of the I56T 

variant may be caused by subtle changes in bonding between alpha and beta domains of 

lysozyme; similar bonding changes are also evident in the D67H variant (Booth et al. 1997).  

Since the structure of proteins in amyloid plaques are different from the native 

structure, amyloidogenic proteins must at least partially unfold during amyloidogenesis. 

Most studies focus on the unfolding process of lysozyme instead of differences in the native 

structure. The amyloidogenic proteins likely spend more time partially unfolded, providing 

more opportunities for unfolded segments to interact and aggregate in the form of amyloid 

plaques (Canet et al. 1999). The importance of the partially unfolded state for lysozyme 

amyloidosis has been demonstrated in vitro with the use of antibodies that stabilize the 

protein (Dumoulin et al. 2003; Chan et al. 2008). Studies have also shown that both the 

I56T and D67H mutants are less stable than WT lysozyme when heated (Booth et al. 1997), 

and the I56T mutant is also less stable than WT at low pH (Funahashi et al. 1996; Booth et 
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al. 1997; Morozova-Roche et al. 2000; Buell et al. 2011), further supporting a role for 

instability. However, other factors besides regions of protein instability may be involved in 

amyloidogenesis. Further studies that examine primary nucleation from different 

perspectives could provide more insight into this important process that is associated with 

a variety of diseases. 

Residue interaction networks (RIN) abstract protein structure into a network of 

likely side-chain interactions with residues represented as nodes and interactions 

represented as edges, the connections between the nodes (Di Paola et al. 2013). Several 

metrics are available for studying networks and identifying subnetworks of interest 

(Junker and Schreiber 2008; Estrada 2012; Scardoni and Laudanna 2012). Many network 

features have been associated with and applied to protein structural and functional 

characteristics (Liu and Hu 2011; Scardoni and Laudanna 2012; Hu et al. 2014; Emerson 

and Louis 2015), demonstrating the relevance of RINs to structural biology. Clusters are 

particularly interesting in RIN analysis because they identify areas with many chemical 

interactions, suggesting structural rigidity or functional importance (Vishveshwara et al. 

2002). RIN analysis is most useful when combined with 3D structural analysis (Amitai et al. 

2004). This study uses the two-pronged approach of combining 3D structural analysis with 

RIN analysis to identify residues in the native structure that are likely involved in amyloid 

formation. 
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Methods 

Three-Dimensional Structure Visualization and Structure Comparison 

The Online Mendelian Inheritance in Man (OMIM) database (Amberger et al. 2015) 

was searched for mutations in lysozyme that have been associated with amyloidosis. The 

Protein Data Bank (PDB) (Berman et al. 2000) was then searched for human lysozyme 

structures with these mutations, resulting in a dataset of WT human lysozyme (PDB ID: 

1REX, (Muraki et al. 1996)) and two amyloidogenic variants, I56T (PDB ID: 1LOZ, (Booth et 

al. 1997)) and D67H (PDB ID: 1LYY, (Booth et al. 1997)). The 3D protein structure 

coordinates were downloaded from the PDB and visualized using UCSF Chimera v1.11.2 

software (Pettersen et al. 2004). The 3D structures were overlapped using the MatchMaker 

application (Meng et al. 2006) in UCSF Chimera with default settings, and the root mean 

square deviations (RMSDs) for the full residues from the wild type (1REX) structure of 

lysozyme were calculated in the Multialign Viewer (Meng et al. 2006). Side chains that had 

a different location when compared to WT lysozyme in both amyloidogenic variants were 

selected for further study. Because the resolution of the PDB files used for the comparison 

was less than or equal to 1.8 angstroms, only residues with a RMSD from WT greater than 

or equal to 1.9 angstroms were considered. 

 

Generating Residue Interaction Networks and Calculating Clusters and Metrics 

 To detect network clusters in the proteins, the PDB files were converted to GML 

format using the Protein Graph Converter software from the Protein Graph Repository 

(PGR) (Dhifli and Diallo 2016). Each alpha carbon was considered a node, and an edge was 

drawn between every alpha carbon within seven angstroms of another. The GML files were 
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then analyzed for clusters using the MCODE application in the network analysis software 

Cytoscape v3.4.0 (Shannon et al. 2003). Only clusters with MCODE scores greater than or 

equal to 5.00 were selected for further analysis. The residues involved in the clusters in the 

amyloidogenic mutants were compared to those identified in WT lysozyme. As with the 3D 

structure comparison, cluster changes that are in common between the amyloidogenic 

mutants and different from WT lysozyme were selected for further analysis. UCSF Chimera 

was used to calculate the average residue B-factor for each of the clusters. The Pearson 

correlation of MCODE scores for the selected clusters of each of the lysozyme PDB files with 

the average B-factor for the clusters was calculated using GraphPad Prism 7, and a p-value 

of < 0.05 was considered significant. 

 

Generating Predicted Dimer and Trimer Structures and Calculating Interprotein Bond 

Number and Energies 

 ClusPro v2.0 software (Kozakov et al. 2017) was used to generate predicted 

structures of homodimers, homotrimers, and heterodimers for WT lysozyme and the 

amyloidogenic variants. After multimer generation, the resulting PDB files for the top 

predicted dimer and trimer structures were edited so that each lysozyme protein was 

given a unique name. Next, the edited PDB files were uploaded to the Residue Interaction 

Network Generator (RING) v2.0 software (Piovesan et al. 2016), and residue interaction 

networks were created using a strict distance threshold between the closest atoms of 

residues separated by at least two other residues. Multiple edges per residue pair were 

allowed but only one edge per interaction type. The resulting graph files were analyzed for 

the number of interactions and overall bonding energy occurring between lysozyme 
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proteins in dimers or trimers. The number and bond energies of the interprotein 

interactions were analyzed for the whole complexes and the residues of interest to provide 

information about the relative importance of the residues of interest to the formation of 

dimers and trimers. 

 

Results 

Three-Dimensional Structural Comparison of Lysozyme 

Three-dimensional structure overlaps from the MatchMaker software revealed 

residues of the amyloidogenic variants that differed from WT lysozyme. The D67H variant 

diverges more from WT lysozyme than the I56T variant. However, there are only four 

residues with a RMSD greater than or equal to 1.9 angstroms that were shared by both the 

I56T and the D67H amyloidogenic lysozyme variants: residues 21, 62, 104 and 122. In all 

four cases, the structural changes are in proximity to each other in the 3D structure (Figure 

2.1).  

 

Figure 2.1: Three-dimensional overlap of lysozyme structures 1REX (WT, tan), 1LOZ (I56T, 
orange), and 1LYY (D67H, blue). The side chains of residues 21, 62, 104, 112-117, and 122 

are shown and outlined in green. 
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Residue Interaction Network Clustering Analysis of Lysozyme Structures 

 The 3D structure of lysozyme and its resulting PGR residue interaction network 

(RIN) representation are shown in Figure 2.2. The MCODE application in Cytoscape 

revealed four clusters in each of the lysozyme structures that had an MCODE score of 

greater than 5.00. Some of the clusters in each of the lysozyme variants involved similar or 

identical sets of residues. As before, we focused on the differences from the WT clusters 

that were present in both amyloidogenic proteins. The most robust and consistent 

difference was the cluster around residues 112-117. The MCODE score for the cluster 

containing these residues in WT lysozyme was 5.11, but it increased in both amyloidogenic 

variants to 6.00. Residues 104 and 106-108 are clustered with 112-117 in WT lysozyme 

but not in I56T and D67H. The average B-factors of the clusters containing residues 112-

117 also decreased in both amyloidogenic variants compared to WT lysozyme. These 

results are shown in Table 2.1. Residues 112-117 are shown in Figure 2.1. There was a 

statistically significant negative correlation (r2 = 0.44, p = 0.0184) between MCODE scores 

for the top four clusters in each of the three lysozyme network structures and the average 

B-factor for each cluster. The residues are in proximity to the other residues of interest as 

shown in Figure 2.1. 
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Figure 2.2: Three-dimensional and network structures of lysozyme. A) The three-
dimensional structure of WT lysozyme, PDB 1REX. B) Network representation of WT 

lysozyme with amino acids represented as nodes and edges drawn between alpha carbons 
within seven angstroms of each other. Residue numbering starts at zero only for this image. 
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Table 2.1: RIN clusters in WT and amyloidogenic variants of lysozyme 

Lysozyme 

Structure 

Cluster 

Rank 

MCODE Score Residues Involved Average Residue 

B-Factor 

WT    14.88 

 1 6.36 92-103 12.35 

2 6.00 32-37 11.71 

3 5.60 7-13, 19, 23-29, 31 9.72 

4 5.11 104, 106-108, 112-117 19.09 

I56T    16.06 

 1 6.00 112-117 17.53 

2 6.00 92-98 10.54 

3 5.60 7-13, 19, 23-29, 31 10.39 

4 5.00 122-126 29.15 

D67H    13.24 

 1 6.50 92-100 7.83 

2 6.00 112-117 14.99 

3 6.00 32-37 8.21 

4 5.75 7-13, 17-19, 23, 25-29, 31 8.12 

 

 

 

Interprotein Bonds Involving Residues 21, 62, 104, 112-117, and 122 in Predicted 

Lysozyme Dimers and Trimers 

 The top-rated ClusPro models of dimer and trimer structures for each of the 

variants of lysozyme are shown in Figure 2.3 (homodimers), Figure 2.4 (homotrimers), and 

Figure 2.5 (heterodimers). The number of interprotein residue interactions and the 

strength of the bonding energy for these interactions for all residues and for the residues of 

interest were quantified using RING 2.0 software, and the results are shown in Table 2.2 

(homodimers), Table 2.3 (homotrimers), and Table 2.4 (heterodimers).  
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Figure 2.3: Predicted 3D structures of WT or mutant lysozyme homodimers. A) WT: WT, B) 
I56T: I56T, and C) D67H: D67H. The side chains of residues 21, 62, 104, 112-117, and 122 

are shown and outlined in green. 
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Figure 2.4: Predicted 3D structures of WT or mutant lysozyme homotrimers. A) WT: WT: 
WT, B) I56T: I56T: I56T, and C) D67H: D67H: D67H. The side chains of residues 21, 62, 

104, 112-117, and 122 are shown and outlined in green. 
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Figure 2.5: Predicted 3D structures of heterodimers of each of the amyloidogenic lysozyme 
variants with WT lysozyme. A) WT: I56T, B) WT: D67H. The side chains of residues 21, 62, 

104, 112-117, and 122 are shown and outlined in green. 
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Table 2.2 ClusPro predicted interprotein binding energies for WT and mutant lysozyme homodimers 

Lysozyme 

Structure 

Number of Interprotein Residue Interactions Interprotein Bond Energy (kJ/mol) 

Total Residues of Interest  

(% of Total) 

Total Residues of Interest 

(% of Total) 

WT 100 36 (36 %) 1019 398 (39.1 %) 

I56T 71 35 (49.3 %) 768 442 (57.6 %) 

D67H 61 18 (29.5 %) 594.6 246 (41.4 %) 

 

 

Table 2.3 ClusPro predicted interprotein binding energies for WT and mutant lysozyme homotrimers 

Lysozyme 

Structure 

Number of Interprotein Residue Interactions Interprotein Bond Energy (kJ/mol) 

Total Residues of Interest     

(% of Total) 

Total Residues of Interest 

(% of Total) 

WT 89 2 (2.2 %) 824.8 12 (1.5 %) 

I56T 133 74 (55.6 %) 1392.8 817 (58.7 %) 

D67H 108 24 (22.2 %) 1060.8 320 (30.2 %) 

 

 

Table 2.4 ClusPro predicted interprotein binding energies for WT and mutant lysozyme heterodimers 

Lysozyme 

Structures 

Number of Interprotein Residue Interactions Interprotein Bond Energy (kJ/mol) 

Total Residues of Interest     

(% of Total) 

Total Residues of Interest 

(% of Total) 

WT: I56T 48 25 (52.1 %) 481 238 (49.5 %) 

WT: D67H 49 27 (55.1 %) 482.6 289.6 (60.0 %) 

  

 



54 
 

For homodimers, residues of interest made up 36% of the number of interprotein 

residue interactions in WT lysozyme, contributing to 39.1% of the predicted interprotein 

bonding energy. The overall number of interprotein residue interactions increased to 

49.3% of the total in the I56T variant, but it decreased to 29.5% of the total number in the 

D67H variant. However, the total percentage of interprotein bonding energy contributed by 

the residues of interest increased for both amyloidogenic variants even though the total 

interprotein bonding energy for dimers was less than WT dimers. 

Trimers showed different trends from the homodimers (Table 2.3). The total 

number of interprotein residue interactions increased for I56T (133 interactions) and 

D67H (108 interactions) compared to WT (89 interactions). The contribution of the 

residues of interest to the total number of interprotein residue interactions increased from 

2.2% for the WT to 55.6% for the I56T variant and 22.2% for the D67H variant. 

Interprotein bonding energy showed similar trends. The total interprotein bonding energy 

increased from 824.8 kJ/mol in the WT to 1392.8 kJ/mol in the I56T variant and 1060.8 

kJ/mol in the D67H variant. Residues of interest contributed 1.5% of the total interprotein 

bonding energy in the WT but 58.7% in the I56T variant and 30.2% in the D67H variant. 

 Heterodimers (WT: I56T and WT: D67H) showed fewer and less energetic 

interprotein interactions than homodimers (Table 2.4). The WT: I56T variant heterodimer 

had 48 interprotein interactions and 481 kJ/mol interprotein bonding energy, and the WT: 

D67H variant heterodimer had 49 interprotein interactions and 482.6 kJ/mol bonding 

energy. In both cases, there was a high reliance on the residues of interest for the bonding. 

The residues of interest made up more than 50% of the number of interprotein bonding 

interactions and nearly 50% of the interprotein bonding energies of both heterodimers. 
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Discussion 

Three-Dimensional Structural Comparison Suggests Residues 21, 62, 104, and 122 May Be 

Involved in Lysozyme Amyloidogenesis 

 Comparing 3D protein structures revealed that both amyloidogenic variants of 

lysozyme analyzed differ from WT lysozyme in the location of residues 21, 62, 104, and 

122. Following the reasoning of Booth and colleagues (Booth et al. 1997), because these 

differences are common to both amyloidogenic variants, they suggest these residues may 

play a role in the formation of amyloid fibrils. The four residues (21, 62, 104, and 122) are 

in proximity to each other in all three variants (Figure 2.1). As discussed above, the 

prevailing hypothesis for lysozyme amyloidosis is that the mutations disrupt the hydrogen 

bonds near the residues between alpha and beta domains, leading to partial unfolding 

followed by fibril formation (Canet et al. 1999; Johnson et al. 2005; Buell et al. 2011); 

interprotein interactions between the native structures are not thought to play a large role 

in unfolding. However, the consistency of the structural changes observed in both 

amyloidogenic variants compared to WT hints at a role for these residues in amyloidosis. 

We hypothesized that these residues may facilitate an interprotein interaction between 

native state amyloidogenic lysozyme proteins, contributing to the first steps of amyloidosis. 

To gather further support for this hypothesis, we examined the structures for network 

cluster changes. 

 

Residues 112-117 May Also Be Involved in Lysozyme Amyloidogenesis 

 In addition to the 3D structural changes described above, amyloidogenic variants of 

lysozyme were associated with changes in network clusters. The network cluster 
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consisting of residues 112-117 in the I56T and the D67H variants had the greatest and 

most consistent cluster changes, showing an increased MCODE score in both variants 

compared to WT (Table 2.1). Residues 104 and 106-108 were included in the cluster 

containing residues 112-117 in WT lysozyme only, so the loss of this part of the cluster may 

also be important for the structural changes observed. More clustering has been shown to 

be associated with greater structural stability (Kannan and Vishveshwara 2000; 

Vishveshwara et al. 2002), so we hypothesized that residues 112-117 have greater 

structural stability in the amyloidogenic variants compared to WT lysozyme. To test this 

hypothesis, we used UCSF Chimera to calculate the average B-factor for each of the residues 

in each of the PDB files. The B-factor is a measure of flexibility where a lower B-factor 

indicates greater stability (Yuan et al. 2005). Even in our relatively small data set of three 

lysozyme structures, we found a statistically significant negative correlation (r2 = 0.44, p = 

0.0184) between MCODE scores and average B-factors for the top four clusters of each of 

the PDB files shown in Table 2.1. Consistent with the hypothesis of greater cluster stability, 

residues 112-117 had smaller average B-factors in amyloidogenic variants compared to the 

cluster containing these residues in WT lysozyme. Because most studies focus on the 

instability caused by amyloidogenic mutations, disrupting this cluster while stabilizing 

other regions may provide a novel therapeutic approach. The side chains of residues 112-

117 are shown in Figure 2.1 along with the other residues of interest (21, 62, 104, and 122) 

from the 3D structural comparison. Residues 112-117 are in proximity to the residues 

identified through the 3D structural comparison. Therefore, residues 112-117 may also be 

involved in facilitating interactions between different lysozyme molecules and possibly 
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contribute to the primary nucleation of amyloid fibrils. To test this hypothesis, we 

simulated intermolecular interactions between native state structures. 

 

Predicted Dimer and Trimer Structures Provide Further Evidence for the Involvement of 

Residues 21, 62, 104, 112-117, and 122 in Lysozyme Amyloidogenesis 

 To test the hypothesis that residues 21, 62, 104, 112-117, and 122 in the structure 

of amyloidogenic lysozyme variants are involved in primary nucleation, we used ClusPro 

docking software to predict the 3D structure of dimers and trimers of lysozyme for the PDB 

files. While ClusPro generates the structures of many predicted dimers and trimers, we 

only analyzed the top-ranked structures. Visual inspection of the predicted homodimers 

(Figure 2.3) suggested some of the residues of interest may be involved in dimer 

interactions. To test this hypothesis, we examined the number and strength of interprotein 

residue interactions (Table 2.2). The number of interprotein bonds was less for 

amyloidogenic variant homodimers, and there was no consistent trend with the percent 

contribution of the residues of interest to the number of interprotein bonds in the dimers. 

Both amyloidogenic variant homodimers had overall less bonding energy. However, the 

residues of interest contributed to a greater degree to the interprotein bonding energy 

compared to WT lysozyme. Overall, the contribution of the residues of interest to lysozyme 

homodimer formation in amyloidogenic variants was not as convincing as the evidence for 

their role in simulated trimer formation. 

Visual inspection of the predicted trimer structures of lysozyme suggested a greater 

role for the residues of interest in interprotein interactions of amyloidogenic variants than 

WT lysozyme (Figure 2.4). When examined quantitatively, both amyloidogenic variants 
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had stronger and more numerous bonds between proteins compared to WT (Table 2.3). 

This suggests the residues of interest may be largely facilitating the predicted sharp 

increase in interprotein interactions, supporting the important role predicted for these 

residues by 3D structural analysis and network analysis.  

 

A Role for Mutant Native Structure in Enhancing Lysozyme Amyloid Fibril Formation? 

Taken together, these data support the hypothesis that residues 21, 62, 104, 112-

117, and 122 in the mutant native states are involved in lysozyme amyloid primary 

nucleation. While the instability of amyloidogenic variants of lysozyme is almost certainly 

the most important factor for fibril formation (Dumoulin et al. 2005), it may not be the only 

factor involved. The greater interprotein interactions predicted to occur between trimeric 

amyloidogenic mutants compared to WT lysozyme may lead to amyloidogenic variants 

oligomerizing more readily before unfolding. We hypothesize these aggregates are 

composed of mostly mutant proteins because heterodimers with WT lysozyme have less 

interprotein bonding energies than mutant homodimers. This suggests when one of the 

lysozyme variants partially unfolds, it may already be in proximity to or bound by another 

mutant molecule, leading to a greater probability of amyloid nucleation. The sequence of 

events of the unfolding process for WT lysozyme and the I56T variant are consistent with 

our hypothesis. It has been demonstrated that lysozyme alpha helices A, B, and D 

(Moraitakis and Goodfellow 2003) are some of the last regions to unfold (Dhulesia et al. 

2010). All the residues identified in this report except residue 62 are in or near regions of 

the protein that unfold later in the unfolding process, so these positions have a greater 

chance of maintaining their structure to facilitate intermolecular interactions during this 
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process. Residues 21, 62, 104, and 122 do not appear to be involved in increasing the 

flexibility of lysozyme in the amyloidogenic mutants because the total predicted bond 

energies from RING analysis for monomers do not suggest consistent and structurally 

important differences when compared to WT. Furthermore, the average B-factors for these 

residues in mutant lysozyme do not consistently differ from WT. It has been suggested that 

residues not present in the partially unfolded region can be altered without affecting the 

process of amyloid fibril formation (Ahn et al. 2012), but our data challenge this 

suggestion. It has been noted that lysozyme amyloid plaques are nearly entirely composed 

of the amyloidogenic variant free from WT protein (Morozova-Roche et al. 2000). This may 

be due not only to the greater instability of amyloidogenic proteins, but also due to the 

predicted favored intermolecular interactions of mutant homodimers and homotrimers 

compared to heterodimers with WT molecules (Table 2.4). A better understanding of the 

process of amyloidogenesis for lysozyme could yield insights into treatments for many 

different types of amyloidoses. 

 

Study Limitations and Future Studies 

Data from various computational approaches in this study support a role for 

lysozyme residues 21, 62, 104, 112-117, and 122 in lysozyme amyloidosis. However, this 

study has several limitations. The most obvious limitation is the small sample size of 3D 

structures used. Unfortunately, the study is limited by the availability of PDB files of human 

amyloidogenic lysozyme variants. We draw our conclusions from three PDB files, making 

this a preliminary study. The findings reported here may not be shared by all 

amyloidogenic variants of lysozyme. To increase confidence in our conclusions, further 
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studies should explore the structures of WT and amyloidogenic lysozyme under various 

experimental conditions. Furthermore, these hypotheses need to be experimentally tested 

to verify the importance of these residues for amyloidogenesis. Lysozyme mutants with 

smaller side chains or nonpolar side chains at the residues of interest could be created and 

the fibril formation kinetics studied. Data from studies of double mutants may also be 

useful. Future studies could be performed where residues 21, 62, 104, 112-117, or 122 are 

mutated in combination with I56T or D67H and tested for altered fibril formation kinetics. 

However, it may be most useful to mutate residue 21 and a residue in 112-117 or 122 

because residues 32 through 108 have been shown to form the core of the lysozyme fibril 

(Frare et al. 2006). Therefore, mutating these residues may interfere with amyloid 

formation after unfolding. 

 

Conclusions and Testable Hypotheses Generated 

This preliminary study used a combination of 3D structural and residue interaction 

network analyses to support roles for residues 21, 62, 104, 112-117, and 122 in lysozyme 

amyloidosis. By comparing two amyloidogenic variants to WT lysozyme, we were able to 

identify network and 3D structural changes that were shared between the amyloidogenic 

variants. Modeling dimer and trimer interactions further supported a role for these 

residues. These residues appear to be especially important for trimer formation. This study 

generates several hypotheses that can be experimentally tested. 1) Residues 112-117 are 

less flexible in amyloidogenic variants of lysozyme than in the WT. 2) Residues 21, 62, 104, 

112-117, and 122 are involved in the primary nucleation of lysozyme by facilitating 

intermolecular interactions between mutant lysozyme molecules. 3) Trimers of lysozyme 
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are more stable than dimers. 4) Lysozyme mutant molecules favor self-interactions over 

interactions with WT molecules. 5) Interprotein interactions in or close to the native state 

likely play a larger role in amyloid formation in general than previously hypothesized. This 

study demonstrates the utility of combining 3D structural and network analysis for 

understanding amyloid formation. Furthermore, it provides insight into lysozyme amyloid 

formation that may be applicable to the study of many other amyloidoses. 
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Abstract 

 Amyloid plaques are known to contribute to the pathogenesis of a variety of 

diseases, but few 3D structural or sequence similarities among these proteins have been 

found.  Here we report similarities in the residue interaction networks (RINs) of unrelated 

non-amyloid forms of amyloidogenic proteins.  RINs for amyloidogenic proteins, non-

amyloidogenic proteins, and random network controls were created, and various network 

metrics were calculated to test for differences in network structures.  After finding 

differences in the RINs between a set of control proteins and a set of amyloidogenic 

proteins, we found differences in network structures when comparing amyloidogenic 

variants to non-amyloidogenic variants of the same proteins.  Next, we focused on amyloid-

beta (1-42) (Abeta42) because of its likely involvement in the pathogenesis of Alzheimer’s 

disease (AD).  Abeta42 is more amyloidogenic and therefore more likely to form amyloid 

plaques in aqueous environments than nonpolar environments that resemble cell 

membranes.  We examined the network and structural differences in Abeta42 in a more 

polar versus a relatively nonpolar solvent and found some of the network features of 

amyloids were only present when Abeta was in the more polar environment.  Insights from 

the combined use of network analysis and structural data suggest that the interaction 

between Val24 and Ile31 in Abeta42 in more nonpolar environments may be involved in 

preventing amyloidogenesis.  This in silico study generates hypotheses that could provide 

insight into amyloid primary nucleation. 
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Background 

 In many neurodegenerative diseases such as Alzheimer’s disease (AD) and 

Parkinson’s disease, specific proteins are known to aggregate into cross-β sheet structures 

called amyloid fibrils (Makin and Serpell 2005).  There are dozens of these diseases, 

collectively called amyloidoses, that affect several physiological systems (Greenwald and 

Riek 2010).  Amyloid fibrils are thought to contribute to disease processes (Knowles et al. 

2014).  The protein monomers that form fibrils associated with diseases are diverse, and 

there are few structural and sequence similarities among them (Tzotzos and Doig 2010).  

Further understanding the similarities among amyloidogenic proteins that are present 

could provide insight into the first steps of nucleation, when two or three molecules of the 

same protein interact to form oligomers that may continue aggregating to form fibrils 

(Knowles et al. 2014).  To investigate the molecular properties of amyloidogenic proteins 

that lead to plaque formation, we examined the residue interaction networks (RINs).  RINs 

represent the residue interactions that are likely to occur as determined by the protein 

structure and are reviewed by Di Paola et al. (Di Paola et al. 2013).  Each amino acid is 

represented as a node, and edges are drawn between residues that are likely to interact 

(Figure 3.1).  Various metrics have been devised to mathematically describe the network 

size and the connections within a network (Estrada 2012), and many of these metrics have 

biological interpretations useful for analyzing protein structure (Amitai et al. 2004; 

Scardoni and Laudanna 2012) (Table 3.1).  It has even been found that 3D structural 
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analysis techniques such as normal mode analysis reveal features that are largely 

determined by RINs (Bahar et al. 2010). RINs are powerful tools because they examine 

proteins from the perspective of a whole system rather than using a reductionist approach.  

This information complements more traditional structural and sequence studies, adding 

another layer to the understanding of protein function. RIN observations indicate residues 

that are important to the network (Estrada 2012); if a residue is important to the network, 

it is likely important to the 3D structure of the protein. This study investigates associations 

between RINs and amyloidogenicity to provide novel insights into common 3D structural 

features of non-amyloid forms of amyloidogenic proteins. If the non-amyloid forms of 

amyloidogenic proteins have similar features distinct from nonamyloidogenic proteins, 

these features may predispose the proteins to nucleate and fibrillize into amyloids. 

 

Figure 3.1: Three-dimensional and network structures of β-2-microglobulin. Residue 
interaction networks (RINs) abstract a 3D protein structure (left) into a network (right) of 

nodes (representing residues) and edges (representing potential residue bonds).  This 
structure and network is for β-2-microglobulin (PDB ID: 5CSB). The numbering of residues 

in the network begins at zero in this figure only. 
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Table 3.1: Network metrics and their interpretations 

Metric Interpretation of Metric 

Average Clustering Coefficient Average connectedness of a node’s neighbors 

 

Centralization 

 

Describes how much the network relies on hubs 

 

Average Shortest Path Length Mean minimum number of edges between one node 

and any other node 

 

Density 

 

Describes how connected the network is compared to a 

fully connected network 

 

Average Number of Neighbors Mean number of edges connected to a node 

 

Highest MCODE Score Describes the “strength” of the top cluster 

 

Average of Top 3 MCODE 

Scores 

Describes the average “strength” of the top three 

clusters 

 

Clusters per Node How many clusters are in a network (corrected for 

network size) 

 

Number of Nodes Total number of nodes in a network 

 

Betweenness Describes the extent to which a node is in the shortest 

path between other node pairs 

 

Residue Centrality Change in mean shortest path length after removing a 

node and its edges 

 

 

 Amyloid-beta (1-42) (Abeta42) is a 42 amino acid peptide that is hypothesized to be 

a causative factor in Alzheimer’s disease (Hardy and Higgins 1992).  As discussed above, 

Abeta42 forms amyloid fibrils and plaques in the brains of AD patients.  Many drug 

candidates have been designed to reduce the amount of amyloid plaques in the AD brain, 

but these efforts have been largely ineffective in treating AD in human trials (Herrup 

2015).  If blocking oligomerization and amyloidogenesis of Abeta42 can lead to treatments 
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for AD, a better understanding of the primary nucleation of this peptide could lead to more 

effective drugs.   

 Abeta is a well-studied peptide, and there are many reports describing the 

relationship between fibrillization and the Abeta sequence.  However, Abeta contains 

amino and carboxyl terminal regions of intrinsic disorder, and therefore detailed structural 

studies of the full-length peptide have proven challenging.  The central hydrophobic cluster 

(CHC), consisting of residues 17-21, has been shown to be important for fibrillization 

(Wurth et al. 2002).  Studies with fragments containing the CHC reveal that replacing any of 

the five residues prevents fibrillization (Wood et al. 1995).  Several other studies have also 

found the CHC to be important for fibrillization (Hilbich et al. 1991; Hilbich et al. 1992; 

Esler et al. 1996; Wurth et al. 2002).  However, the CHC is not the only region suspected to 

be involved in fibril formation.  Scanning proline mutagenesis of Abeta40 identified 

residues 24-26 and 31-34 as important for fibrillization (Williams et al. 2004).  The N-

terminal 10 to 15 residues have not been found to have much effect on amyloid formation 

(Sánchez De Groot et al. 2005).   

While some amyloidogenic proteins have regions that lack clearly defined structure, 

there is much evidence using different experimental conditions that Abeta is not 

completely disordered, and that the structured regions that are present play a role in 

nucleation and fibril formation. Studies have detected secondary structure in Abeta40 or 

Abeta42 dissolved in hexafluoroisopropanol (HFIP) (Crescenzi et al. 2002; Tomaselli et al. 

2006), aqueous solvent with and without trifluoroethanol (TFE) (Soto et al. 1995), 

aqueous sodium dodecyl sulfate (SDS) micelles (Coles et al. 1998; Shao et al. 1999), 

aqueous urea solutions (Chen and Glabe 2006), and aqueous glycine solutions (Kirkitadze 
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et al. 2001). HFIP and aqueous SDS micelles are used to model a phospholipid membrane 

environment (Shao et al. 1999; Crescenzi et al. 2002), so protein structures in these 

solutions are likely similar to the in vivo membrane structures. Studies have shown that 

some secondary structure is necessary for Abeta amyloid formation because Abeta 

fibrillization was decreased following the near complete denaturation of Abeta by urea 

(Chen and Glabe 2006).  

While the presence of secondary structure in Abeta dissolved in several different 

solvents has been described, there is not much consensus on the structural details. For 

example, while several studies have provided support for the existence of a turn region in 

Abeta, there are conflicting reports about where the turn occurs and even how many turns 

there are.  These inconsistencies are likely due to different solvent conditions and peptide 

fragments used for these experiments.  Williams et al. report two turn regions around 

residues 22-23 and 29-30 (Williams et al. 2004), whereas Morimoto et al. report only one 

turn around residues 22-23 (Morimoto et al. 2004), and Lazo et al. found evidence of one 

turn near residues 24-28 (Lazo et al. 2009).  More data will likely help clarify these 

inconsistencies reported for Abeta structure, allowing for more precise drug targeting. 

In this study we used both RINs and structural data to provide novel insights into 

the primary nucleation of Abeta42 and the role of solvent polarity in nucleation. We found 

that amyloidogenic proteins tend to be smaller, denser, and more centralized when 

compared to non-amyloidogenic controls.  These features indicate networks that are more 

reliant on hubs.  Potential binding pockets including these hub amino acids could prove 

useful as drug targets.  Furthermore, our data suggest that when Abeta42 is present in a 
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more nonpolar solvent or membrane environment the interactions between Val24 and 

Ile31 in Abeta42 may play a role in preventing primary nucleation. 

 

Methods 

Creating Residue Interaction Networks from PDB Files 

 3D structure files for amyloidogenic proteins available in the Protein Data Bank 

(PDB) (Berman et al. 2000) (Table 3.2) and proteins not known to form amyloid fibrils in 

disease (Real Protein Controls, Table 3.3) were downloaded.  The PDB files were uploaded 

to the Protein Graph Repository Converter (PGR Converter) (Dhifli and Diallo 2016 Jan 24) 

and used to create RINs.  A node was considered to be the alpha carbon and an edge was 

drawn between every alpha carbon within 7 Å.  The networks were exported from PGR 

Converter as GML files and then imported into Cytoscape v3.4.0 (Shannon et al. 2003) for 

visualization and network analysis. 
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Table 3.2: Network metrics of amyloidogenic proteins 

PDB 

ID 

Name SCOP Class Closest 

Match 

Nodes Density Clusters 

per Node 

Centralization 

1ZEH Insulin Small Protein α 102 0.074 0.069 0.056 

1IYT Amyloid-β (1-42) Peptide α 42 0.168 0.119 0.054 

1QLX Human Prion Protein α+β α+β 104 0.070 0.115 0.047 

1XQ8 α-Synuclein Coiled Coil α 140 0.046 0.100 0.019 

2KB8 Amylin NA α 37 0.188 0.108 0.095 

1LOZ Lysozyme (I56T) α+β α+β 130 0.060 0.092 0.049 

4IP8 Serum Amyloid-α α α 420 0.021 0.074 0.015 

5CSB β-2-Microglobulin 

(D76N) 

NA β 100 0.073 0.090 0.049 
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Table 3.3: Network metrics of real protein controls  

SCOP Protein 

Class 

Control 

Number 

PDB IDa Nodes Density Clusters 

per Node 

Centralization 

α 1 1A6M 151 0.052 0.073 0.028 

 2 1ALL 321 0.026 0.059 0.015 

 3 1B33 2060 0.004 0.064 0.002 

 4 1C75 71 0.114 0.099 0.103 

 5 1DLW 116 0.067 0.086 0.038 

 6 1DO1 153 0.052 0.092 0.034 

 7 1DWT 152 0.052 0.079 0.035 

 8 1FPO 499 0.015 0.060 0.009 

 9 1FXK 349 0.023 0.049 0.012 

 10 1G08 572 0.014 0.068 0.009 

 11 1H97 294 0.028 0.071 0.017 

 12 1HBR 572 0.014 0.072 0.009 

 13 1IDR 253 0.030 0.087 0.022 

 14 1IRD 287 0.028 0.077 0.017 

 15 1KR7 110 0.070 0.091 0.041 

 16 1KPT 334 0.025 0.078 0.014 

 17 1LIA 664 0.012 0.062 0.009 

 18 1MWC 306 0.026 0.059 0.017 

 19 1NEK 1068 0.008 0.073 0.005 

 20 1PHN 334 0.024 0.072 0.015 

α+β 21 1ALC, 1AVP 168.5 0.051 0.105 0.036 

 22 1BRN, 1CNS 351 0.026 0.081 0.016 

 23 1CQD, 1EUV 582 0.018 0.079 0.013 

 24 1F13, 1GCB 946.5 0.012 0.082 0.008 

 25 1GOU, 1IWD 216.5 0.036 0.081 0.027 

 26 1K3B, 1LNI 272 0.031 0.098 0.025 

 27 1LSD, 1ME4, 

1MZ8, 1PPN 245 0.039 0.101 0.031 

 28 1QMY, 1QSA, 

1UCH, 2ACT 377.5 0.026 0.084 0.019 

β 29 1AUN, 1BEH, 

1BHU, 1DMH, 

1DO6 308.6 0.039 0.090 0.030 

 30 1F35, 1F86, 

1G13, 1HOE, 

1I9R 569 0.038 0.091 0.023 

 31 1IAZ, 1IFR, 

1JK6, 1KCL, 

1KNB 299 0.041 0.097 0.030 

 32 1SFP, 1SHS, 

1SLU, 2MCM, 

2HFT 338.4 0.042 0.082 0.033 
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Creating Real Protein Controls 

The proteins selected for the real protein controls were based on the protein control 

groups created by Bagler (Bagler and Sinha 2005; Bagler 2006) and Sinha (Bagler and 

Sinha 2005).  The Bagler and Sinha protein library consists of 20 proteins each of the α, β, 

α+β, and α/β structural classes as defined by the Structural Classification of Proteins 

(SCOP) (Murzin et al. 1995) for a total of 80 protein control entries.  We searched the 

amyloidogenic proteins in SCOP, and, if they were assigned to a protein structure class that 

was not α, β, α+β, or α/β, we classified them as α, β, α+β, or α/β based on the closest best 

fit determined by visual inspection (Table 3.2).  If a protein was not included in SCOP, we 

searched for structural matches in SCOP and used the class of the closest match.  The 

resulting amyloidogenic group was 62.5 % α-class, 12.5 % β-class, 25 % α+β-class, and 0 % 

α/β class.  The real protein control group was adjusted to reflect the structural class 

composition of the amyloidogenic group by averaging metrics from random subgroups of 

real protein control entries in the same class to condense the 20 protein entries in each 

group so we could create a control group with 20 entries from the α-class, 4 entries from 

the β-class, and 8 entries from the α+β-class.  This method yielded a control group with the 

same percent composition of protein classes as the amyloidogenic protein group.  The 

averaged random subgroups and the resulting control group are included in Table 3.3. 

 

Creating Random RIN Controls 

The RIN metrics from the amyloidogenic proteins were compared to the real protein 

controls.  However, the real protein controls generally consisted of larger networks (Table 

3.3).  To determine if differences between groups are due to network size or network 



77 
 

connections, we created a random network control group of the amyloidogenic proteins 

(Table 3.4).  To create the random protein controls, we retained the number of nodes and 

edges from each RIN for the amyloidogenic proteins, but the connections between them 

were randomized using the Network Randomizer application (Tosadori et al. 2016) in 

Cytoscape.  For each amyloidogenic protein RIN, fifty random networks were created.  The 

RIN metrics were calculated for each of the networks, and then the mean of the fifty 

resulting metric values for each type of metric was used as the randomized metric value for 

the random control of a single amyloidogenic protein.  This process was repeated for each 

amyloidogenic protein. 

 

Table 3.4: Average metrics of randomized networks of amyloidogenic proteins 

PDB 

ID 

Name Nodes Density Clusters 

per Node 

Centralization 

1ZEH Insulin 102 0.074 0.033 0.074 

1IYT Amyloid-β (1-42) 42 0.168 0.056 0.142 

1QLX Human Prion Protein 104 0.070 0.031 0.070 

1XQ8 α-Synuclein 140 0.046 0.019 0.051 

2KB8 Amylin 37 0.188 0.056 0.154 

1LOZ Lysozyme (I56T) 130 0.060 0.028 0.062 

4IP8 Serum Amyloid-α 420 0.021 0.011 0.024 

5CSB β-2-Microglobulin (D76N) 100 0.073 0.033 0.071 

 

 

Calculating RIN Metrics 

Local RIN metrics were calculated in Cytoscape using the Network Analyzer 

application (Assenov et al. 2008).  The MCODE application (Bader and Hogue 2003) in 

Cytoscape was used to calculate the number of clusters in a network.  Centrality measures 

of Abeta42 included betweenness and residue centrality.  Residue centrality was calculated 
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as by Hu et al. (Hu et al. 2014) by taking the average path length for the whole Abeta42 

network, deleting a single node, recalculating the average path length for the resulting 

network, and then finding the absolute value of the change in average path length from the 

whole network.  This was repeated for every node in the Abeta42 network.  These values 

were used to determine which nodes have the highest betweenness values and which 

nodes are the most critical for maintaining the average path length.  We then calculated 

betweenness values for residues in Abeta42 and Abeta40 in more polar and more nonpolar 

solvents (PDB structure files 1IYT (Crescenzi et al. 2002); 1Z0Q (Tomaselli et al. 2006); 

1BA4 (Coles et al. 1998); 2LFM (Vivekanandan et al. 2011)).  Next, we averaged the 

betweenness values for residue regions of interest in Abeta and compared them across all 

four structures. 

 

Overlapping Abeta42 Structured Regions and Analyzing Residue Interactions 

 The PDB files for Abeta42 were visualized using UCSF Chimera v1.11.2 (Pettersen et 

al. 2004).  The unstructured regions of each of the PDB files as determined by visual 

inspection (residues 1-9 and 33-42) were trimmed off, and then the two structures were 

overlapped using the MatchMaker application (Meng et al. 2006) in UCSF Chimera.  The 

structural data for the PDB files for Abeta42 are from NMR experiments, so there is 

information for multiple models in each file.  To determine the residue interactions 

occurring in each model, each chain was individually input into the Residue Interaction 

Network Generator (RING) (Piovesan et al. 2016), and networks were created using the 

alpha carbons as nodes and by drawing a single undirected edge for each type of 

interaction between two residues.  The resulting networks were each analyzed for the 
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presence of edges between the residues of interest identified from the betweenness and 

residue centrality measures. 

 

Analyzing Predicted Abeta42 Trimer Interactions 

To determine the potential differences of contributions of the residues of interest to 

the energy of interpeptide bonding in a solvent, we used ClusPro (Kozakov et al. 2017) to 

predict the trimer structure of Abeta42 in a nonpolar or a polar solvent. The resulting PDB 

file for the ClusPro top-rated predicted structure was input into RING, and networks were 

created as described above. Bonding information was exported to Microsoft Excel and the 

predicted bond energies for interpeptide interactions were summed for each condition. 

 

Statistical Analysis of Data 

All statistical analyses were completed with GraphPad Prism v7.0, and p-values < 

0.05 were considered significant. 

 

Comparing Amyloidogenic Proteins, Real Protein Controls, and Random Network 

Controls. The data was tested for normality using the D’Agostino-Pearson normality test.  

When the data distribution was normal, and the groups had equal variance as determined 

by Bartlett’s test, a one-way ANOVA with Tukey’s post hoc test was performed.  This was 

the case for comparing the RIN metric clusters per node.  If data was not normally 

distributed but had equal variance, the Kruskal-Wallis test with Dunn’s multiple 

comparisons was performed.  This was the case for number of nodes and centralization.  If 

data was not normal and did not have equal variance, it was transformed by taking the 
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square root of each value and then rechecked for normality.  We then performed a one-way 

ANOVA with Tukey’s post hoc test.  This was the case for network density. 

 

Analyzing Abeta42 Centrality Metrics. To determine which residues had high 

centrality values, we checked the data for normality using the D’Agostino-Pearson 

normality test before calculating the z-score for each of the residues.  Betweenness values 

were normalized by taking the square root of each value, and residue centrality values 

were normalized by taking the cube root.  Z-score absolute values ≥ 2 were considered 

statistically significant.  For both betweenness and residue centrality, Val24 and Ile31 had 

z-score absolute values ≥ 2. 

 

Comparing Average Betweenness Values of Regions in Abeta. The arithmetic mean 

for betweenness was calculated for regions of interest of different lengths across several 

PDB structures of Abeta.  These average betweenness values of regions were compared to 

the average betweenness of the entire structure using a paired one-way ANOVA with 

Tukey’s post hoc test. 

 

Results 

RINs of Amyloidogenic Proteins Have Unique Features Compared to Controls 

Of the RIN metrics analyzed (average clustering coefficient, centralization, average 

shortest path length, density, average number of neighbors, highest MCODE cluster score, 

average of top 3 MCODE cluster scores, clusters per node, and number of nodes), four 

metrics showed significant differences when comparing amyloidogenic proteins to the 
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controls (Figure 3.2).  The eight amyloidogenic proteins in our data set are shown in Table 

3.2.  If the amyloidogenic protein group differs from the real protein controls in the same 

direction and magnitude as the random controls, then the differences are due to network 

size and not wiring (the specific connections between nodes).  If both the amyloidogenic 

protein group and the random control group differ from the real protein controls and differ 

from each other, then at least some of the differences are due to network wiring.  First, 

compared to real protein controls, amyloidogenic proteins tend to have fewer nodes 

(Figure 3.2A) and a higher density (Figure 3.2B).  These metrics are a measure of network 

size rather than connections.  However, some measures related to network wiring also 

showed significant differences.  Amyloidogenic proteins had 1) slightly greater numbers of 

clusters per node (Figure 3.2C) compared to real protein controls or random networks.  

Furthermore, 2) the centralization of amyloidogenic RINs was greater than real protein 

controls but less than random network controls (Figure 3.2D). 
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Figure 3.2: Comparing network metrics for amyloidogenic proteins (APs), real protein 
controls (Real Protein Ctrl), and random network controls (Random Ctrl).  # indicates p ≤ 
0.05, ## indicates p ≤ 0.01, ### indicates p ≤ 0.001, and #### indicates p ≤0.0001 when 

compared to Real Protein Ctrl. 
 

 

RINs of Amyloidogenic Variants of Proteins Show Similar Patterns as When Comparing 

Amyloidogenic RINs to Real Protein Controls 

We compared the RINs of wild type (WT) variants to amyloidogenic variants of the 

same proteins. The findings are reported in Table 3.5 for lysozyme (an α+β class protein) 

and Table 3.6 for β-2-microglobulin (a β-class protein).  Lysozyme and β-2-microglobulin 
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were chosen because they both had WT and amyloidogenic variant structures available in 

the Protein Data Bank (Muraki et al. 1996; Booth et al. 1997).  For centralization but not for 

density or clusters per node the amyloidogenic lysozyme variants I56T and D67H showed 

similar differences from the WT protein as the group of amyloidogenic proteins showed 

when compared to real protein controls.  For centralization and density only D76N β-2-

microglobulin showed similar differences from the WT protein as the group of 

amyloidogenic proteins showed when compared to real protein controls. 

 

 

Table 3.5: Effects of amyloidogenic mutations of lysozyme (α+β class) on RIN   

                  metrics 

Network Metric WTa I56Tb D67Hc Consistent with Group Trends? 

Centralization 0.049 0.049 0.050 Yes 

Density 0.0604 0.0602 0.0598 No 

Clusters per Node 0.108 0.092 0.115 No 
aPDB ID 1REX 
bPDB ID 1LOZ 
cPDB ID 1LYY 

 

 

Table 3.6: Effects of amyloidogenic mutations of β-2-microglobulin (β-class) on RIN   

                  metrics 

Network Metric WTa D76Nb Consistent with Group Trends? 

Centralization 0.040 0.049 Yes 

Density 0.072 0.073 Yes 

Clusters per Node 0.10 0.09 No 
aPDB ID 5CS7 
bPDB ID 5CSB 
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RINs of Abeta40 and Abeta42 Show Similar Patterns as When Comparing Amyloidogenic 

RINs to Real Protein Controls 

We compared the RINs from Abeta42 in 20% H2O, 80% hexafluoroisopropanol 

(v/v) (Crescenzi et al. 2002), a more nonpolar solvent (predicted to make Abeta less 

amyloidogenic), to those in 70% H2O, 30% hexafluoroisopropanol (v/v) (Tomaselli et al. 

2006), a more polar solvent (predicted to make Abeta more amyloidogenic), and found that 

the centralization was different and changed in a direction consistent with the trends 

described above for real protein controls versus amyloidogenic proteins.  However, 

clusters per node or density did not follow these trends (Table 3.7).  We found similar 

results when comparing the RINs of Abeta40 in nonpolar and polar solvents (Table 3.8).  

 

Table 3.7: Effects of solvent conditions on amyloid-beta (1-42) RIN metricsa 

Network Metric Nonpolarb Polarc Consistent with Group Trends? 

Centralization 0.054 0.063 Yes 

Density 0.168 0.159 No 

Clusters per Node 0.119 0.095 No 
a Amyloid-beta (1-42) tends to form amyloid plaques in polar solvents 

(Crescenzi et al. 2002). 
b PDB ID 1IYT 
c PDB ID 1Z0Q 

 

Table 3.8: Effects of solvent conditions on amyloid-beta (1-40) RIN metricsa 

Network Metric Nonpolarb Polarc Consistent with Group Trends? 

Centralization 0.069 0.086 Yes 

Density 0.165 0.123 No 

Clusters per Node 0.125 0.125 No 
a Amyloid-beta (1-42) tends to form amyloid plaques in polar solvents 

(Crescenzi et al. 2002). 

b PDB ID 1BA4 
c PDB ID 2LFM 
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RINs of Abeta40 and Abeta42 Reveal Higher Mean Betweenness Values for the CHC 

The central hydrophobic cluster (CHC) in the Abeta40 and Abeta42 peptides spans 

residues 17-21.  Compared to the average betweenness of each of the entire structures, the 

CHC had a significantly higher average betweenness (Figure 3.3).  Because betweenness 

can indicate structurally important residues, this agreed with the visual examination of the 

3D structure of Abeta40 and Abeta42 in each solvent where it is visually evident that the 

CHC largely retains its structure. 

 

 

 

Figure 3.3:  Average betweenness of regions of Abeta40 and Abeta42 compared to the 
average betweenness of the entire node set.  # indicates p ≤ 0.05 and ## indicates p ≤ 0.01. 

 

 

Val24 and Ile31 Have Significantly Higher Centrality Values 

The betweenness (Figure 3.4A) and residue centrality (Figure 3.4B) measures for 

each residue in Abeta42 in the more nonpolar solvent are shown.  In each case, the values 

for Val24 and Ile31 were higher than the value for the average node in the network, and 
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each has a z-score absolute value of ≥ 2.0, so they were significantly different from the 

values of the other residues.  Structural data indicated that Val24 and Ile31 were likely to 

form hydrophobic interactions in 3 of 10 NMR models in the PDB 1IYT structure file (more 

nonpolar solvent), but no hydrophobic interactions between these residues were predicted 

in any of the 30 models in the PBD 1Z0Q structure file (more polar solvent).  The structures 

in the more nonpolar and more polar environments for representative NMR models are 

shown in Figure 3.5. 

 

 

 

 

Figure 3.4:  Betweenness and residue centrality values for each residue in Abeta42 in a 
more nonpolar solvent (1IYT). * indicates a z-score ≥ 2.0. 
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Figure 3.5: Structured regions of Abeta42 in a more nonpolar solvent (tan, 1IYT) and a 
more polar solvent (blue, 1Z0Q). The side chains of Val24 and Ile31 are shown highlighted 

in green in each case. 
 
 
 
 
 

Predicted Trimers of Abeta42 Suggest Greater Interpeptide Bonding Energy in More Polar 

Solvents 

The PDB files of the predicted trimers with the top ClusPro ranking for 1IYT 

(showing the possible Val24-Ile31 hydrophobic interaction) and 1Z0Q (showing no Val24-

Ile31 hydrophobic interaction) were used to generate RINs, and the predicted bonding 

energies were analyzed (Figure 3.6).  The total bonding energy between chains was larger 

for the predicted trimer with no hydrophobic Val24-Ile31 interaction (1Z0Q PDB file). 
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Figure 3.6:  Predicted trimer structures of Abeta42. UCSF Chimera predictions of trimer 
formation for Abeta42 in a more nonpolar solvent (left, 1IYT) and a more polar solvent 
(right, 1Z0Q). The side chains of Val24 and Ile31 are shown highlighted in green in each 

case. 
 

 

Discussion 

RINs From Amyloidogenic Proteins Suggest Similarities in Structure 

By comparing non-amyloidogenic protein RINs to those of amyloidogenic proteins, 

differences unique to amyloidogenic proteins were detected. When interpreted in the light 

of structural data, the results could be important for understanding the amyloidogenic 

process and developing strategies to prevent it. RIN metrics have important biological 

interpretations, allowing for structural and functional predictions (Amitai et al. 2004; 

Scardoni and Laudanna 2012).  Compared to real protein controls, amyloidogenic proteins 

tended to be more centralized, smaller, denser, and had more clusters per node (Figure 

3.2).  The network metric differences due to differences in network wiring provide novel 
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insight into the structure of amyloids.  Amyloidogenic proteins had more clusters per node.  

A cluster is a group of nodes that is highly connected (Bader and Hogue 2003), indicating 

the potential for many residue interactions.  This suggests a greater number of local areas 

of higher stability in amyloidogenic proteins compared to non-amyloidogenic proteins. 

This does not contradict the well-established finding that destabilizing mutations increase 

amyloidogenesis because the amyloidogenic proteins could be globally less stable while 

having a few local areas of higher stability. Amyloidogenic proteins were also more 

centralized. Centralization describes the “star-like” character of a network (Pavlopoulos et 

al. 2011), which can also be described as reliance on hubs.  A reliance on hubs makes 

proteins more robust against random “attacks” such as random amino acid substitutions 

caused by DNA mutations, but it leaves them more susceptible to targeted attacks (Albert 

et al. 2000; Oltvai et al. 2000), such as those that can occur when groups of amino acids 

including hubs are targeted by rational drug design.  Drugs targeting these hub regions are 

more likely to greatly disrupt or stabilize peptide structure than drugs targeting other 

regions of the protein.  Network metrics revealed common features in amyloidogenic 

proteins that have not previously been described.  These common features may enhance 

our understanding of the pathogenesis of amyloidoses. 

 

Some of the Network Differences Observed for Amyloidogenic Proteins as a Group Are 

Robust Enough to Be Observed in Mutant Variants of the Same Protein 

This study reports significant network differences between an amyloidogenic 

protein group and a group of non-amyloidogenic proteins. We also investigated whether 

the differences between amyloidogenic proteins and real protein controls held when 
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examining different mutant variants of the same protein.  Lysozyme (an α+β class protein) 

has been extensively studied as a model of amyloidogenesis because it has mutant variants 

that differ by a single residue that are much more likely to form amyloid plaques 

(Swaminathan et al. 2011).  We compared WT lysozyme network metrics to those of two 

different amyloidogenic variants and observed similar changes in centralization as when 

comparing amyloidogenic proteins to real protein controls (Table 3.5).  The protein β-2-

microglobulin (a β-class protein) also had a WT structure and an amyloidogenic variant for 

comparison. The expected trends held for centralization and density for β-2-microglobulin 

(Table 3.6). The network metric differences were understandably small because we 

analyzed networks that only had a single amino acid change. Because increased 

centralization was present in the amyloidogenic variants of proteins from these two 

classes, increased centralization may be a more robust difference between amyloidogenic 

proteins and non-amyloidogenic proteins than other network metrics tested. Therefore, 

drugs could be designed to target the regions of the peptide that include the hubs that 

amyloidogenic proteins appear to rely on most heavily for network structure. 

 

Network Variations Can Be Observed for the Same Protein in Different Solvents 

Some of the differences observed when comparing amyloidogenic proteins to real 

protein controls were observed even when comparing the networks of the same protein in 

different solvents. Abeta42 structures in HFIP were used because HFIP is a model for 

hydrophobic membrane environments (Crescenzi et al. 2002). While HFIP likely 

exaggerates the alpha helicity of Abeta (Pachahara et al. 2015), it is still a relevant model 

for Abeta structure in vivo because alpha helical Abeta likely plays a role in 
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amyloidogenesis (see Background). The two concentrations of HFIP used for structural 

studies also allow for a direct comparison to determine the effects of solvent polarity on 

Abeta structure. We examined network properties of Abeta42 dissolved in a more nonpolar 

solvent where it is less amyloidogenic and those present when it is dissolved in a more 

polar solvent where it is more amyloidogenic (Crescenzi et al. 2002).  Interestingly, we 

found the Abeta42 network when the more polar solvent was used to be more centralized 

than that for Abeta42 when the more nonpolar solvent was used (Table 3.7). We observed 

the same trend when comparing Abeta40 dissolved in the more nonpolar and more polar 

solvents (Table 3.8). Because this trend was also found when comparing the amyloidogenic 

variants of lysozyme and β-2-microglobulin with their WT variants, increased 

centralization appears to be a consistent feature of amyloidogenic proteins. As discussed 

above, increased centralization could indicate the presence of effective drug targets in 

amyloidogenic proteins because of the increased reliance on hubs.   

 

Results from RIN Metrics Support a Role for the CHC in Abeta Fibrillization 

Amyloid-beta is a well-studied protein with much known about its structure.  The 

CHC has been identified as an important region of Abeta for fibrillogenesis (Wurth et al. 

2002).  Consistent with these studies, we found that the CHC has significantly higher 

average betweenness values compared to the average betweenness values of the entire 

networks (Figure 3.3).  Betweenness describes the frequency with which a node occurs in 

the shortest path length between any two other nodes (Chakrabarty and Parekh 2016).  

Betweenness is used as a metric to identify residues that are important for the overall 

network (Steuer and Lopez 2008) and therefore for the 3D structure.  The significantly 
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higher average betweenness values for the CHC indicate that it is an important region for 

the structure of Abeta monomers.  This agrees well with several other studies (Hilbich et al. 

1991; Hilbich et al. 1992; Esler et al. 1996; Wurth et al. 2002), providing support for the 

usefulness of RINs in the study of protein structure and function. 

 

Disrupting the Predicted Interaction Between Val24 and Ile31 in Abeta42 in a More 

Nonpolar Solvent May Facilitate Primary Nucleation 

Because increased centralization suggests reliance on hubs, we analyzed network 

and structural data to identify the key residues for network structure of Abeta42 when 

dissolved in a more nonpolar solvent where it is less amyloidogenic. We calculated the 

betweenness and residue centrality values for each residue in the structure (Figure 3.4), 

and residues Val24 and Ile31 were shown to have significantly higher values than the other 

residues. Therefore, two separate methods for identifying key residues support the 

conclusion that the interaction between Val24 and Ile31 is important for overall network 

structure in Abeta42 when it is dissolved in a more nonpolar solvent. 

Residue interaction network data is most useful when combined with sequence and 

structural data (Amitai et al. 2004), so we examined the 3D structure of Abeta42 when it is 

dissolved in a more nonpolar solvent to determine the effects that these residues may exert 

on the overall structure (Figure 3.5).  When dissolved in the more nonpolar solvent, 

Abeta42had a noticeable turn near Val24 and Ile31, so we hypothesized the presence of a 

hydrophobic interaction between them.  To test this hypothesis, we uploaded the PDB file 

to RING which predicted the interactions that occur within the structures.  The predicted 

interaction between Val24 and Ile31 in a nonpolar environment may be important for 
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maintaining the less-amyloidogenic structure of Abeta42.  The involvement of Val24 and 

Ile31 in Abeta fibrillization has previously been identified by scanning proline mutagenesis 

(Williams et al. 2004). To our knowledge, we are the first to predict an interaction between 

Val24 and Ile31 in Abeta42 to be important for preventing fibrillization. 

To further determine why Abeta42 is more likely to engage in primary nucleation in 

more polar solvents compared to more nonpolar solvents, software was used to predict 

Abeta42 trimer formation under both solvent conditions, and interpeptide bonding energy 

was calculated (Figure 3.6).  Evidence has shown that oligomers are the form of Abeta that 

is most toxic to neurons (Sakono and Zako 2010), so even if trimers only exist transiently 

on the path to fibril formation, structural studies of trimers are important. However, there 

is experimental evidence that relatively stable trimers and tetramers of Abeta exist (Chen 

and Glabe 2006). The interpeptide bonding energy was much higher for Abeta42 when 

dissolved in the more polar solvent.  Increased bonding energy suggests tighter binding 

between the individual components of an Abeta42 trimer when dissolved in the polar 

solvent compared to the nonpolar solvent.  We hypothesize that the lack of an interaction 

between Val24 and Ile31 allows for a more linear conformation, facilitating tighter bonding 

and primary nucleation.  Therefore, drugs designed to stabilize the interaction between 

Val24 and Ile31 may prevent primary nucleation and reduce the number of toxic Abeta42 

oligomers. 

 

Study Limitations 

 While there are several dozen amyloidogenic proteins in the human proteome, our 

experimental group only contained eight due to the limited availability of PDB data files.  
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The relatively small size of the amyloidogenic protein group is a limitation of this study.  

Second, our conclusions regarding Abeta42 structural differences are based on only two 

structures.  More structural data for Abeta42 in monomeric form in different solvent 

conditions would increase our confidence in the conclusions.  Third, some of the effect sizes 

are relatively small.  It is not entirely clear if these small effects could lead to functional 

differences between the groups.  Finally, the hypotheses generated from the data presented 

here need to be experimentally tested to verify the validity of our conclusions.  Sciarretta 

and colleagues created a lactam link between two different residues of Abeta40 to test the 

effects of conformational changes on the nucleation of beta-amyloid (Sciarretta et al. 2005).  

A similar method covalently linking Val24 to Ile31 in an aqueous solvent and comparing 

nucleation to an unlinked peptide could be used to test our hypothesis.  However, the 

predicted Val24-Ile31 interaction is likely only one of several interactions necessary to 

prevent oligomerization. 

 

Conclusions 

 Metrics from residue interaction network structures of amyloidogenic proteins 

were statistically different from those of a group of non-amyloidogenic control proteins.  

These differences included increased centralization and clusters per node.  Increased 

centralization implies the presence of residues that act as hubs in the network, making the 

protein more susceptible to targeted attacks such as those occurring from rationally 

designed drugs.  Some of these differences were observed even when comparing 

amyloidogenic variants to the WT non-amyloidogenic variant of the same protein.  

Furthermore, increased centralization was observed when comparing the structure of 
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Abeta42 in a more nonpolar solvent to that in the more amyloid-friendly polar solvent.  The 

local RIN metrics of betweenness and residue centrality identified residues 24 and 31 as 

hubs.  Combining this data with structural analysis suggests stabilizing the interaction 

between Val24 and Ile31 may help prevent oligomerization of Abeta42.  Combining the use 

of network analysis and structural data produces novel insight that can be used for the 

design of drugs for the treatment of amyloidoses. 
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Abstract 

After proteolysis, the majority of released free amino acids from dietary protein are 

transported to the liver for gluconeogenesis or to peripheral tissues where they are used 

for protein synthesis and eventually catabolized, producing ammonia as a byproduct.  High 

ammonia levels in the brain are a major contributor to the decreased neural function that 

occurs in several pathological conditions such as hepatic encephalopathy. Therefore, it is 

important to gain a deeper understanding of human ammonia metabolism.  The objective 

of this study was to predict changes in blood ammonia levels resulting from alterations in 

dietary protein intake or from liver disease and to determine the toxicity of ammonia on 

differentiated SH-SY5Y neuroblastoma cells.  A simple mathematical model was created 

using MATLAB SimBiology and data from published studies. Simulations were performed 

and results analyzed to determine steady state changes in ammonia levels resulting from 

varying dietary protein intake and varying liver enzyme activity levels to simulate liver 

disease.  As a toxicity reference, viability was measured in SH-SY5Y neuroblastoma cells 

following differentiation and ammonium chloride treatment.  Results from simulations 

yielded physiological steady state blood ammonia levels and reasonably approximated 

pathophysiological steady state levels resulting from liver cirrhosis or a genetic carbamoyl 

phosphate synthetase I (CPS1) deficiency.  A pathophysiological level of ammonium 

chloride (90 µM) decreased the viability of differentiated SH-SY5Y cells by 14%.  Data from 

the model suggest decreasing protein consumption may be one simple strategy to decrease 

blood ammonia levels and minimize the risk of developing encephalopathy for some liver 

disease patients. 

  



102 
 

Keywords 

Ammonia, Hepatic Encephalopathy, Liver Cirrhosis, Carbamoyl Phosphate Synthetase 1, 

Nitrogen, Urea Cycle 

 

Background 

Protein is an abundant part of the human diet.  It is recommended that humans 

consume 0.8 g of protein per kg body mass per day.  For a male of average weight (88.7 kg) 

(Fryar et al. 2012), this is equivalent to 71 g of protein per day.  When amino acids are 

consumed at a faster rate than they are used for protein synthesis, they are metabolized as 

an energy source, typically accounting for roughly 15%-20% of the energy supply.  The 

liver breaks down nearly half of the amino acids in the human diet as substrates for 

gluconeogenesis (Jungas et al. 1992).  Amino acid catabolism first relies upon the transfer 

of the amino group by aminotransferases to a ketoacid, often to alpha-ketoglutarate to form 

glutamate, and then by the deamination of glutamate by glutamate dehydrogenase which 

produces ammonia (NH3).  Roughly 12.5% of nitrogen intake is excreted from the digestive 

tract (Tome and Bos 2000).  Because ammonia is relatively toxic (Auron and Brophy 2012),  

systems such as the urea cycle are in place primarily in the liver to convert it into a less 

toxic form that can be readily removed from the circulation and excreted.   

The liver is the main organ responsible for filtering ammonia and other nitrogen 

sources such as glutamine from the blood to synthesize urea, the major form of excreted 

nitrogen in mammals.  Urea is a relatively nontoxic waste product that safely stores 

nitrogen until it can be removed from the body.  However, when ammonia is not 

successfully removed from the blood due to impaired or overwhelmed removal 
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mechanisms, the plasma ammonia concentration increases, which may cause deleterious 

effects such as neural impairment (Ott and Vilstrup 2014).  As part of the process of 

nitrogenous waste removal, nitrogen-rich blood enters through the hepatic portal vein and 

is eventually filtered through the acinus, the functional unit of the liver, before draining out 

of the central vein.  The acinus is divided into three zones (Brosnan and Brosnan 2009).  

Zone 1 is the closest to the hepatic portal vein, and zone 3 is the closest to the central vein.  

The hepatocytes spanning these three zones do not all perform the same metabolic 

functions (Häussinger et al. 1992); rather, different branches of nitrogen metabolism are 

localized to specific zones.  Zones 1 and 2 contain the enzymes of the urea cycle (Moorman 

et al. 1989) as well as glutaminase (Moorman et al. 1994), an enzyme that removes 

nitrogen from glutamine to yield ammonia and glutamate.  However, zone 2 has less 

glutaminase activity than zone 1. Zone 3 contains glutamine synthetase (Gebhardt and 

Mecke 1983), an enzyme that combines ammonia and glutamate to produce glutamine and 

is also called glutamate-ammonia ligase (GLUL). 

Liver disease can change the activities of several key enzymes involved in nitrogen 

metabolism.  For example, liver cirrhosis results in decreased expression of GLUL and the 

urea cycle enzyme CPS1 (Gebhardt and Reichen 1994; Fleming and Wanless 2013).  

Mutations in the CPS1 gene can lead to individuals born with a deficiency in mitochondrial 

carbamoyl phosphate synthetase activity (Klaus et al. 2009).  Because CPS1 catalyzes the 

first committed step of the urea cycle, this can have serious consequences on nitrogen 

metabolism.  The increase in the number of individuals with liver disease in recent years 

(Mokdad et al. 2014) combined with an average protein intake in the U.S. that is about 40% 
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above the recommended value (NHAHES 2006) creates the need for understanding the 

effects of increased protein intake on blood ammonia levels.  

Increased blood ammonia levels are a causative agent in hepatic encephalopathy 

(HE) (Butterworth 2003), but increased ammonia levels have also been implicated in other 

neural disorders such as Alzheimer’s disease (Seiler 2002), amyotrophic lateral sclerosis 

(Parekh 2015), and Huntington’s disease (Chen et al. 2015).  HE results from liver damage 

leading to cognitive impairment. Liver disease also increases the blood levels of other 

potentially neurotoxic factors such as manganese and pro-inflammatory cytokines 

(Butterworth 2015) that may contribute to the encephalopathy as well.  Between 30% and 

45% (Poordad 2007) of the more than 600,000 patients (Scaglione et al. 2015) with liver 

cirrhosis each year will develop hepatic encephalopathy, resulting in a cost of nearly $1 

billion per year (Poordad 2007).  Most treatments aim to reduce the level of circulating 

ammonia (Butterworth 2003).  Due to challenges in reliably assaying ammonia due to its 

reactivity (Goggs et al. 2008; Blanco Vela and Bosques Padilla 2011), there are not many 

studies that measured the effects of dietary alterations on blood or tissue ammonia levels.  

Our model provides further insight into how changes in dietary protein intake may affect 

blood ammonia levels to better direct these treatment strategies. 

We used data from the literature to create a computational model that simulates 

ammonia metabolism and predicts blood ammonia levels based upon the amount of 

protein consumed and upon the degree of liver dysfunction.  Results from the model agree 

relatively well with measured physiological and pathophysiological steady state metabolite 

levels, and several insights were made from varying our initial conditions to investigate the 

role of key enzymes in human organismal nitrogen metabolism.  Cell culture studies were 
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used to extend the model and establish the toxicity of pathophysiological concentrations of 

ammonia on differentiated SH-SY5Y neuroblastoma cells in culture. 

 

Methods 

Description of the Model 

This model describes the changes in ammonia, urea, and glutamine in the blood with 

the following ordinary differential equations: 

 

            
𝑑[𝑁𝐻3]

𝑑𝑡
= 𝑉𝑁𝐻3 𝑎𝑏𝑠 + 𝑉𝐺𝐿𝑆 − 𝑉𝑈𝑟𝑒𝑎 𝑓𝑜𝑟 𝐵𝑎𝑙𝑎𝑛𝑐𝑒 − 𝑉𝐶𝑃𝑆1 − 𝑉𝑁𝐻3 𝑒𝑥 − 𝑉𝐺𝐿𝑈𝐿             (1)  

            
𝑑[𝑈𝑟𝑒𝑎]

𝑑𝑡
= 𝑉𝐶𝑃𝑆1 − 𝑉𝑈𝑟𝑒𝑎 𝑒𝑥                                                                                       (2) 

            
𝑑[𝐺𝑙𝑛]

𝑑𝑡
= 𝑉𝐺𝐿𝑈𝐿 − 𝑉𝐺𝐿𝑆                                                                                               (3) 

 

The overall reaction scheme is shown in Figure 4.1.  Equations for reaction velocities 

in Equations 1, 2, and 3 are shown in Table 4.1.  Carbamoyl phosphate synthetase 1 (CPS1) 

catalyzes the first committed step in the urea cycle, so this is the only enzyme of the cycle 

incorporated into the model for simplicity.  Other model parameters are shown in Table 

4.2.  Mammalian enzymes from liver tissue were used when the data was available (see 

Table 4.1).  No distinction is made between NH3 and NH4+ in this study unless otherwise 

noted.  N-acetyl-glutamate (NAG) is a CPS1 activator that increases in concentration when 

more protein is consumed (Morimoto et al. 1990).  To model the effects of NAG on CPS1 

activity, we interpolated data on CPS1 activity changes from a study that included the 

effects of changes in hepatic mitochondrial NAG levels due to diet (Morimoto et al. 1990) 
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(about 11% in this study).  The maximally activated activity of CPS1 (Pierson and Brien 

1980) was adjusted to reflect the reduced activity at physiological NAG concentrations 

(McGivan et al. 1976; Caldovic and Tuchman 2003) for all the protein diets and liver 

conditions used in the study.  The adjusted CPS1 values for individuals on the three diets of 

differing protein content are as follows: 71 g protein per day, 8.05 mmoles/min; 100 g 

protein per day, 8.47 mmoles/min; 122 g protein per day, 8.78 mmoles/min.  Adjustments 

for liver conditions are described below. 

 

 

 

 

Figure 4.1:  Model of nitrogen metabolism and excretion.  NH3 in the figure includes both 
ammonia and ammonium ions.  Circles represent reactions (see Table 4.1 for reaction 

equations) and ovals represent reactants and products. A) Conceptual framework of the in 
vivo physiology simulated including the many tissues and subcellular compartments 
involved.  B) The system is modeled in silico considering only the concentrations of 

metabolites in the blood.  Abbreviations are as follows: GLUL, glutamine synthetase; Gln, 
glutamine; GLS, glutaminase; CPS1, carbamoyl phosphate synthetase 1; Urea ex, urea 

excreted; NH3 abs, ammonia absorbed; NH3 ex, ammonia excreted. 
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Table 4.1 Values for reaction velocities scaled to average healthy male liver mass with healthy 

protein diet 

Reaction Velocities Parameters from the 

Literature 

Organism and 

Tissue 

Parameters Scaled 

to Liver 

  

VNH3 abs = 0.492 mmol/mina 

 

 

 

 

VGLS = (Vmax GLS[Gln])/ 

              (Km Gln + [Gln]) 

Vmax GLS = 91.4 

nmole/min per mg 

(McGivan et al. 1991)  

 

Km Gln = 4.0 mM 

(DeLaBarre et al. 2011)  

Rat Liver 

 

 

 

Human 

Recombinant 

Vmax GLS = 28.54 

mmol/min 

 

 

 

Km Gln = 4.0 mM 

 

VCPS1 = (Vmax CPS1[NH3])/ 

             (Km NH3 + [NH3]) 

 

Vmax CPS1 = 45 

nmole/min per mg 

(Pierson and Brien 

1980)  

 

Km NH3 = 0.35 mM 

(Ahuja and Powers-Lee 

2008)  

 

Human Liver 

 

 

 

 

Human 

Recombinant 

 

Vmax CPS1 = 8.05 

mmol/minab 

 

 

 

 

Km NH3 = 0.35 

mM 

VNH3 ex = 0.004 mmol/mina    

 

VGLUL = (Vmax GLUL[NH3])/ 

           (Km NH3{1 + ([Gln]/Ki Gln)} 

           + [NH3]) 

 

Vmax GLUL = 0.47 

µmole/15 min per mg 

(Tate et al. 1972)  

 

Km NH3 = 0.15 mM 

(Listrom et al. 1997)  

 

Ki Gln = 0.6 mM (Wray 

and Fisher 2005)  

 

Rat Liver 

 

 

 

Human 

Recombinant 

 

Bacillis 

subtilis 

 

Vmax GLUL = 12.3 

mmol/minb 

 

 

 

Km NH3 = 0.15 

mM 

 

 

Ki Gln = 0.6 mM 
 

VUrea ex = 0.244 mmol/mina 

   

aThese values change with protein diet.  See methods and discussion for details. 
bThese values change with liver condition.  See methods and discussion for details. 
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Table 4.2 Parameter values used in nitrogen metabolism model 

Parameter Name Value References 

Blood Volume 6.59 La  

Average Liver Mass 1561 g (Molina and DiMaio 2012)  

Average Human Mass, Male 88.7 kg (Fryar et al. 2012)  

Time Through Sinusoid 4.3 s (Schwen et al. 2015)  

Initial Urea 5.5 mM  

Initial Ammonia 0 µM  

Initial Glutamine 0 mM  

Recommended Daily Protein 71 g (2005)  
aBlood volume is about 5.2 L for a 70 kg individual (Wicker 2015).  The value used above was 

determined by assuming a linear relationship of blood volume with body mass for an individual 

weighing 88.7 kg.  This is the volume of the blood compartment used to calculate metabolite 

concentrations. 

 

 

Because all the chemical species under consideration are present in the blood 

compartment, it is the only compartment where the volume affects simulation results.  The 

other compartments in Figure 4.1 are used to organize the model components for 

conceptualization.  We assume free diffusion across membranes.  The volume was 

determined by assuming a linear relationship between body mass and blood volume and 

taking 5.2 liters to be the blood volume of a 70 kg male (Wicker 2015).  Blood in the model 

is assumed to be well mixed.  Published enzyme activities were scaled up to the average 

liver size (1561 g, see Table 4.2) by adjusting the units to mmol/(min*1561 g).  For 

example, McGivan et al. (McGivan et al. 1991) report glutaminase activity as 91.4 nmoles 

per minute per mg protein, which converts to 0.0914 mmoles per minute per g protein.  If 

we assume 20% protein content in the cultured hepatocytes, it takes 5 g of tissue to yield 1 

g protein.  Adjusting for protein content and multiplying by a liver weight of 1561 g yields 

an enzyme activity of 28.54 mmoles/min/liver.  Because of the slightly higher protein 
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content of liver tissue compared to isolated hepatocytes (Berry et al. 1991), we used a 

tissue protein content value of 25% when scaling up parameters from a study that reports 

enzyme activity from liver tissue.  Similar calculations were performed for each of the liver 

enzymes.  Changes in enzyme activity due to diet and liver conditions are summarized in 

Table 4.3. 

 

Table 4.3 Parameter changes with protein diet and liver condition 

Parameter 

Name 

Protein Diet    

(g per day) 

Healthy 

(mmoles/min) 

Early Cirrhosis 

(mmoles/min) 

Late Cirrhosis 

(mmoles/min) 

Urea ex 71 0.244 

    No change with liver condition 

100 0.343 

122 0.417 

NH3 ex 71 0.004 

100 0.008 

122 0.012 

NH3 abs 71 0.492 

100 0.693 

122 0.845 

Vmax CPS1 71 8.05 5.64 5.64 

100 8.47 5.93 5.93 

122 8.78 6.146 6.146 

Vmax GLUL No change 

with diet 

12.3 2.46 0.246 

 

 

The complete urea cycle uses two nitrogen atoms to synthesize each molecule of 

urea in one turn of the cycle.  However, CPS1 incorporates one nitrogen atom per turn of 

the cycle.  A second nitrogen enters into the cycle from aspartate when argininosuccinate 

synthetase catalyzes the reaction of aspartate with citrulline.  To balance the stoichiometry 

of the reaction series and to simplify the model, a second reaction equal to CPS1 was 

created with the product not considered in the simulation results (“Urea for Balance” in 
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Figure 4.1).  Therefore, two nitrogen atoms per unit time are used to produce one urea 

molecule, satisfying the stoichiometry of the overall reaction series for this simplified 

model.  The rate of nitrogen absorption is based upon the daily amount of nitrogen 

consumed.  The mass of protein ingested is adjusted to the molar amount of nitrogen 

ingested (16% of the mass of protein ingested) and for the 12.7% loss of nitrogen in feces 

(Tome and Bos 2000).  The remaining molar amount of nitrogen is assumed to be absorbed 

linearly over a period of 24 h.  For example, if 71 grams of protein is ingested, 16% of that 

amount (11.36 grams) is nitrogen.  Assuming a 12.7% loss in feces, this leaves 9.92 grams 

of nitrogen available for absorption.  Because there are 14 grams of nitrogen per mole, 

there are 0.708 moles of nitrogen available for absorption per day, or 0.49 millimoles of 

nitrogen per minute.  The absorption rate was recalculated using the same method for each 

of the three protein diets modeled.  The ranges of the amounts of ammonia and urea 

excreted in urine over a 24 h period have been reported (Bingham et al. 1988; Bankir et al. 

1996), and in the model we assumed the average values to be excreted linearly over the 24 

h period.  When modeling altered protein intake, the rates of ammonia and urea excretion 

were adjusted as well.  For the high protein diet, we used the upper values of the reference 

ranges reported for the amounts of ammonia and urea excreted instead of the average 

values.  This was accomplished by assuming daily nitrogen balance and using calculations 

similar to those used above to equate molar amounts of nitrogen to grams of protein.  For 

example, using the lower values for the reference ranges of daily ammonia and urea 

excretion and assuming daily nitrogen balance suggest a dietary intake of about 60 g of 

protein per day.  Ammonia and urea excretion rates were scaled to the dietary protein 

intake by assuming a linear relationship between the two.  Excretion rates that were used 
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in the model are as follows: for the 71 g per day protein diet, 0.004 mmoles ammonia are 

excreted per minute and 0.244 mmoles urea are excreted per minute; for the 100 g per day 

protein diet, 0.008 mmoles ammonia are excreted per minute and 0.343 mmoles urea are 

excreted per minute; and for the 122 g per day protein diet, 0.012 mmoles are ammonia 

excreted per minute and 0.417 mmoles urea are excreted per minute.  Changes with 

protein diet are summarized in Table 4.3. 

We modelled the spatial separation of enzymes by acinus zones by translating 

spatial separation into temporal separation.  The time a red blood cell takes to travel 

through a sinusoid has been calculated to be 4.3 seconds (Schwen et al. 2015).  Assuming a 

constant rate and equal division of zones, this is about 1.43 s per zone.  By using event 

functions in the SimBiology software, the enzyme activities of CPS1 and glutaminase were 

turned on for 2.87 s and then off for 1.43 s while GLUL was turned on.  This change in 

enzyme activities combined with the well-mixed assumption approximates the spatial 

enzyme separation found in the liver because blood is exposed to CPS1 and glutaminase for 

twice as long and just prior to exposure to GLUL activity before repeating the cycle.  This 

cycling was repeated for 774 seconds during simulations (Figure 4.2A), yielding a pattern 

of peaks and valleys in the simulation results that is a mathematical artifact of modeling 

spatial separation as temporal separation. 

Steady state levels for ammonia were calculated following model simulations for 

different levels of protein in the diet (healthy, 71 g per day; average, 100 g per day; high, 

122 g per day) and liver conditions (healthy, “early cirrhosis”, “late cirrhosis”, and 50% 

CPS1 activity) for 12 conditions total.  Simulation results were exported to Microsoft Excel, 

and steady state levels were determined from the data points corresponding to the top of 
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the resulting ammonia concentration curve.  Steady state was defined as the concentration 

when blood ammonia levels were changing less than 0.002% per second.   

Several assumptions and simplifications were used in the model.  The urea cycle is 

simplified to the first committed step and an extra CPS1 reaction was added to maintain the 

stoichiometry of the entire urea cycle (“Urea for Balance” in Figure 4.1).  Other molecular 

species involved in the included reactions that are not included in the model are assumed 

to be in abundance, blood is assumed to be well-mixed, and we used temporal separation of 

enzymes to model spatial separation of enzymes in the liver acinus.  Furthermore, GLS 

activity is the same in zones 1 and 2 in the model, but it may be slightly decreased in zone 2 

in vivo. We recognize that blood is heterogeneous and blood ammonia levels may be 

concentrated in some compartments compared to others.  For example, arterial blood has 

been shown to have higher ammonia levels than venous blood in dogs with liver disease 

(Rothuizen and van den Ingh 1982).  This difference of concentrations could limit systemic 

effects of blood ammonia.  However, this was not included in the model.  We also assume a 

continuous nutritional supply for simplicity.  Furthermore, the model does not account for 

the activities of transporters but often assumes free passage of small molecules.  There is 

also evidence for positive cooperativity for the binding of some of the species to enzymes in 

the model.  For example, there is evidence of cooperativity for glutamine binding (Hill 

coefficient of 1.8) in the kinetics of the glutaminase enzyme (Szweda and Atkinson 1989) 

and possible glutaminase upregulation by a high protein diet (Ewart and Brosnan 1993) 

that was not included in the model.  However, sensitivity analysis suggests that increases in 

glutaminase and GLUL activity will not have much effect on ammonia steady state levels.  

Even with these simplifying assumptions, the model results agree relatively well with the 
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available clinical data.  However, the available clinical data is sometimes incomplete, so 

further validation is not currently possible. 

 

Sensitivity Analysis 

To determine the relative effects of altering enzyme kinetic parameters on the 

steady state blood ammonia levels, each of the parameters was individually increased or 

decreased by 50% under the normal simulation conditions for a healthy liver and a protein 

diet of 71 g per day. The simulations were run under these altered conditions and the 

steady state levels of ammonia were compared to those under normal conditions.  Results 

are reported in Table 4.4 as percent change. 

 

 

Table 4.4 Sensitivity analysis for kinetic parameters. 

Enzyme Parameter Percent Parameter 

Change 

Blood Ammonia 

Percent Change 

CPS1 Vmax 150% -35.4 

50% 110.3 

Km 150% 52.6 

50% -50.3 

Glutaminase Vmax 150% 0.6 

50% -2.9 

Km 150% -1.1 

50% 1.1 

Glutamine 

Synthetase 

Vmax 150% 4.6 

50% -4.6 

Km 150% -2.9 

50% 7.4 

Ki 150% 0.6 

50% -0.6 
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SH-SY5Y Culture, Differentiation, and Treatment 

SH-SY5Y cells were cultured in a 1:1 mixture of DMEM (high glucose) and Ham’s F-

12 medium.  The medium contained 2.44 g/L sodium bicarbonate, 30 mg/L penicillin, 50 

mg/L streptomycin, and 10% FBS.  The cells were seeded at a concentration of 1,000 cells 

per well in 96-well plates and treated with retinoic acid (10 µM) for 4 days with the 

medium changed every two days.  Next, ammonium chloride was added to the medium at 

the indicated concentrations and the cells were incubated for 24 additional hours. 

 

Protein Assay 

After 24 h of treatment with ammonium chloride, the cells were washed in PBS and 

then lysed with RIPA buffer (50 µl per well for three wells per condition).  The lysate was 

pooled in a microcentrifuge tube and the Pierce BCA Protein Assay was performed in 

triplicate per manufacturer’s instructions.   

 

Software and Statistical Methods 

The model was built and simulated using the MATLAB R2016a SimBiology software 

package.  Data was analyzed using Microsoft Excel and GraphPad Prism v7.0.  For cell 

culture studies, three independent experiments were performed and data was analyzed 

with a repeated measures one-way ANOVA with Fisher’s post hoc test. 
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Results 

Model Results Approximated Physiological Steady State Ammonia Levels 

A computational model estimating blood ammonia levels in healthy individuals and 

those with liver disease was constructed.  The model was first simulated using the 

parameters for a healthy liver and a healthy, moderate protein diet to determine if the 

resulting steady state levels were consistent with clinical data.  The healthy protein diet 

was taken to be 71 g per day.  The reference range for healthy blood ammonia levels was 

taken to be 11-32 µM (Hawke 2012).  Healthy blood urea levels are considered to be 3.6-

7.1 mM (Pagana and Pagana 2009).  The initial conditions in this study are 0 µM ammonia 

and 5.5 mM urea.  Figure 4.2A shows the results of 774 s of simulation of our model.  The 

steady state ammonia level was 17.5 µM (Figure 4.2A), and the steady state urea level 

remained around 5.5 mM (Figure 4.2A), both values well within the healthy range. 

 

Enzyme Activity Changes Had Different Effects on Ammonia and Urea Levels 

To investigate the relative influences of CPS1 and GLUL on blood ammonia levels, 

enzyme activities were individually varied stepwise in the model for a healthy individual 

on a healthy protein diet, and steady state levels of ammonia were determined.  The results 

show an inverse, non-linear relationship between CPS1 activity and ammonia levels (Figure 

4.2B).  The steady state urea level did not show much change under any conditions tested 

likely because much larger changes are necessary to cause differences in the millimolar 

concentrations of urea compared to the micromolar concentrations of ammonia.  

Decreasing GLUL activity had almost no effect on steady state levels of ammonia (Figure 

4.2B).  However, decreasing GLUL activity does affect the kinetics of ammonia formation.  
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Eliminating GLUL activity caused the simulation to reach steady state ammonia levels much 

more quickly.  In a healthy individual, the rate of ammonia formation for the first 12.9 

seconds of the simulation was 0.55 µmoles per second, but this rate increased to 0.83 

µmoles per second when GLUL activity was inactivated (Figure 4.2C).  A sensitivity analysis 

(Table 4.4) of the kinetic parameters revealed that, as expected, changes in CPS1 activity 

have by far the strongest effect on blood ammonia levels of any enzyme in the model. 

 

Figure 4.2:  Model simulation results for a healthy individual on a healthy protein diet.  A) 
Simulation results for a healthy individual with the recommended daily protein intake.  

Note the break in the scale of the y-axis.  B) Ammonia steady state levels from simulations 
varying enzyme activities of CPS1 and GLUL.  C) Simulation results showing changes in 

ammonia kinetics with changes in GLUL activity. 
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Changes in Enzyme Activities Caused by Liver Cirrhosis Affected Blood Ammonia Levels 

Liver cirrhosis has been shown to decrease the activities of two of the enzymes in 

the model, so decreasing the Vmax values accordingly can create a simple model of liver 

cirrhosis at different stages.  As mentioned above, a healthy, moderate protein diet for a 

typical adult male is 71 g of protein per day.  The average American diet is about 100 g of 

protein per day, and a high protein diet in our model was taken to be 122 g of protein per 

day.  The amount of protein in the high protein diet was calculated by using the highest 

values of ammonia and urea excretion in the published reference ranges (Bingham et al. 

1988; Bankir et al. 1996) and assuming nitrogen balance (see Methods).  To model early 

stage liver cirrhosis, the Vmax of CPS1 was reduced to 70% of the normal value and the Vmax 

of GLUL was reduced to 20% of the normal value (Gebhardt and Reichen 1994).  Late stage 

liver cirrhosis was modeled by changing the Vmax values for CPS1 and GLUL to 70% and 2% 

of the normal values, respectively (Fleming and Wanless 2013).  Following simulation, the 

steady state ammonia and urea levels were determined as described above.  The steady 

state ammonia levels under the various conditions are shown in Figure 4.3A.  Ammonia 

levels progressively increased with increased dietary protein intake and with decreased 

liver function. 

 

Decreased CPS1 Activity Led to Increased Blood Ammonia Levels 

Based upon the population frequency of the genetic disorder CPS1 deficiency, there 

are likely many heterozygous individuals with decreased CPS1 activity (see Discussion).  

To investigate the consequences of decreased CPS1 activity on blood ammonia and urea 

levels, the Vmax for CPS1 was reduced by 50% and different protein levels in the diet were 
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compared (Figure 4.3B).   Decreased CPS1 activity (50% below normal, as present in a 

heterozygous individual with a complete loss of function from one of the two alleles) led to 

about a 20 µM increase in blood ammonia levels, greater than the levels present in the early 

or late stage liver cirrhosis models for each of the diets examined. 

 

 

 

Figure 4.3:  Ammonia levels changed with dietary protein levels, progression of liver 
cirrhosis, and CPS1 activity.  A) The steady state ammonia concentration in the blood 

increases with increased ammonia absorption due to increases in dietary protein (See 
Table 4.1) and declining liver function.  B) When CPS1 activity is reduced by half, steady 
state ammonia levels are higher than those in a healthy individual.  This effect increases 

with increased ammonia absorption due to increased dietary protein levels (See Table 4.1).  
Cirr-E, early liver cirrhosis; Cirr-L, late liver cirrhosis. 

 
 

Ammonium Chloride Treatment Decreased Viability of Differentiated SH-SY5Y Cells 

To test whether the increased ammonia levels observed in the simulations could be 

neurotoxic in vitro, we administered ammonia to differentiated human neuroblastoma 

cells.  Retinoic acid-treated SH-SY5Y cells treated with 90 µM ammonium chloride showed 

14% decreased viability as measured by protein content from cells attached to the plate 
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after a PBS wash.  Ammonium chloride concentrations of 30 µM or 60 µM showed no 

statistically significant effect on viability (Figure 4.4).   

 

 

 

Figure 4.4:  Ammonium chloride (90 µM) decreased the viability of retinoic acid-
differentiated SH-SY5Y neuroblastoma cells in culture. * indicates that p = 0.01 compared 
to 0 µM NH4Cl added.  Bars represent mean ± SEM, and n = 3 independent experiments. 

 

 

Discussion 

A simple mathematical model of human organismal nitrogen metabolism is 

presented that uses published parameters for physiological inputs to give physiologically 

relevant outputs consistent with the available experimental data.  While other models exist 

for ammonia metabolism in humans (Ohno et al. 2008; Drasdo et al. 2014; Schliess et al. 

2014), this is the first to model the effects of altered levels of dietary protein intake on 

blood ammonia levels.  Increased protein intake led to increased blood ammonia levels 
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across all conditions.  However, blood ammonia levels remained in the healthy range when 

simulating a healthy liver.  The simulation results showed that low GLUL activity can lead 

to more rapid changes in blood ammonia levels.  The model highlights the effects of diet on 

ammonia levels in disease conditions.  Our results indicate that increased protein intake 

likely causes blood ammonia to rise above healthy levels in some patients with cirrhosis.   

 

Altering Dietary Protein Consumption in Cirrhosis Patients 

Because relative energy expenditure per kg body mass is increased in some cirrhotic 

patients (Merli et al. 1985), some sources recommend a high protein diet (1.8 g/kg per 

day) for these patients to maintain muscle mass if they do not already have HE (Nielsen et 

al. 1995). Others suggest a normal, moderate intake of 0.8 g to 1.0 g of protein per kg per 

day (Riordan and Williams 1997).  Data has shown that high protein intake exacerbated 

encephalopathy in 35% of patients with cirrhosis (Seymour and Whelan 1999).  Reduced 

protein intake was first shown to protect from encephalopathy in cirrhotic patients in 1952 

(Phillips et al. 1952).  In 2004, a study was performed with cirrhosis patients where 

protein was completely removed from the diet for three days and then slowly increased 

over 12 days back to the normal level (Córdoba et al. 2004).  At the end of the study, blood 

ammonia levels were non-significantly 17% lower in the patients with the restricted 

protein diet compared to patients on a normal protein diet of 1.2 g/kg per day, roughly 

equivalent to the average American protein diet in this model.  However, the methods used 

in that study have been critiqued and questioned (Nguyen and Morgan 2014).  A larger 

patient group size and earlier measurements of blood ammonia levels would help to clarify 

if blood ammonia levels are indeed decreased by a low protein diet.  If the findings of no 
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significant effects do prove to be robust and highly reproducible, this leaves the possibility 

that a high protein diet may play a role in the development of HE, but a low protein diet is 

not normally helpful in its resolution.  Even though several studies have suggested that 

restricting dietary protein intake below the recommended amount for a healthy individual 

may not be therapeutic for the roughly 60% of cirrhosis patients who suffer from 

malnutrition, other studies over the past 65 years on HE patients who can maintain a 

proper energy balance have consistently shown benefits of protein restriction (Nguyen and 

Morgan 2014).  We acknowledge the large heterogeneity in patient responses to changes in 

the level of dietary protein (Gheorghe et al. 2005) and suggest that monitoring the 

cirrhosis patient’s energy balance will help determine the proper dietary protein level for 

that individual.  

Previous research has shown that there was an 80% reduction in GLUL activity and 

a 30% reduction in CPS1 activity in a rat model of liver cirrhosis (Gebhardt and Reichen 

1994).  As the disease progressed, GLUL activity dropped even further (Fleming and 

Wanless 2013).  Results from adjusting the model to these parameters suggest that 

ammonia levels will increase as liver cirrhosis develops.  Furthermore, a high protein diet 

may exacerbate these effects.  We recognize that liver cirrhosis is a complex disease with 

many changes besides altered CPS1 and GLUL activity, so this model is a simplified 

representation of liver cirrhosis.  Using an upper limit of 32 µM for the reference range of 

healthy blood ammonia levels, the model indicates that a high protein diet with early or 

late cirrhosis will result in blood ammonia levels that are at least 20% higher (40.3 µM and 

41.3 µM, respectively) than the upper limit for the healthy range (32 µM).  These elevations 

may contribute to HE.  The model suggests that controlling protein intake could be one 
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method to slightly reduce the likelihood of developing HE in some patients with liver 

cirrhosis. 

 

Plasma Ammonia Levels Likely Rise in Healthy Individuals After a Meal 

Our model predicts that blood ammonia levels will rise slightly by consumption of a 

high protein diet.  Surprisingly, we could not find many studies in the literature examining 

dietary-induced changes in blood ammonia levels in healthy humans.  One study found 

increased blood ammonia levels in women following consumption of a test drink 

containing whey protein.  The ammonia level peaked at a value 20% higher than the initial 

level at 90 minutes after consumption (Chungchunlam et al. 2015).  Another study found 

increasing breath ammonia levels after a high protein challenge; ammonia levels plateaued 

roughly 5 hours after the dietary challenge (Spacek, M.L. Mudalel, et al. 2015).  However, 

breath ammonia levels do not always correlate well with blood ammonia levels (Spacek, M. 

Mudalel, et al. 2015).  A further study using Huntington’s disease patients who were put on 

a high (26.3%) protein diet did not find any association between the high protein diet and 

blood ammonia levels (Chen et al. 2015). 

In studies with mice placed on a high protein diet ammonia levels increased from 

210 µM to 245 µM at night when the mice were active and feeding.  Likewise, a high fat/low 

protein diet decreased ammonia levels from 170 µM to 130 µM when measured at night 

(Nohara et al. 2015).  When rats were switched from a 20% protein diet to a 58% protein 

diet, colonic venous ammonia maximally increased from 100 µM to 340 µM two days after 

the switch in diet, which dropped to 170 µM after a week on the diet (Mouillé et al. 2004). 

Another study using rats trained on a 6% protein diet showed that blood ammonia levels 



123 
 

increased from 60 µM to 120 µM when they were given a 44% protein meal, and ammonia 

levels were maintained at that elevated level for at least 24 hours (Semon et al. 1988). 

There is also evidence of increases in blood ammonia levels in pigs after a protein meal 

(Welters et al. 1999; Liu et al. 2015).  The limited data above suggest that systemic 

ammonia levels likely increase slightly following a meal, especially if the meal is high in 

protein, but more experiments should be performed to verify these initial findings and to 

determine the extent of brain ammonia level changes under the same conditions.  In 

addition, more detailed studies using human subjects would help to better characterize the 

time dependency of elevated ammonia levels as well as to discern differential effects in 

patients with liver disease. 

 

Variability in the Correlation between Blood Ammonia Levels and the Severity of HE 

While there is a correlation between blood ammonia levels and HE severity (Ong et 

al. 2003), the exact blood concentration that leads to impairment may be different for 

individuals based on their specific nitrogen balance and the release of other neurotoxic 

factors from the liver.  Some patients with hyperammonemia present with 100-200 µM 

blood ammonia levels and remain asymptomatic, while others such as infants with GLUL 

deficiency have severe encephalopathy with blood ammonia levels fluctuating between 100 

and 150 µM (Häberle 2013).  However, decreased blood glutamine levels may also 

contribute to the encephalopathy in GLUL deficiency.  Maintained blood ammonia levels 

over 300 µM are considered severe and invariably lead to encephalopathy.  However, some 

newborns have been shown to have no lasting impairment by temporary blood ammonia 

concentrations up to 2 mM for a day or two (Whitelaw et al. 2001).  In contrast with this 
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data, blood ammonia levels (< 50 µM) that border the healthy range have also been linked 

to HE (Ong et al. 2003).  These variabilities do not affect the validity of the model because 

the model represents the blood ammonia level changes for an average person.  

To investigate the roles of CPS1 and GLUL in ammonia metabolism, enzyme 

activities were varied in the model with otherwise healthy parameters (Figure 4.2B, Table 

4.4).  CPS1 activity levels relevant to the model had a non-linear effect on ammonia 

concentrations.  GLUL activity, however, had very little effect on ammonia steady state 

levels.  Simulating early liver cirrhosis (70% CPS1, 20% GLUL) resulted in an average 

ammonia increase of 43% across all diets.  Simulating late liver cirrhosis (70% CPS1, 2% 

GLUL) resulted in an average ammonia increase of 47%.  GLUL activity appears to slow 

changes in blood ammonia levels.  Since muscles may help metabolize some ammonia 

(Dejong et al. 1992), slowing the rate of change may give the body time to adapt to the 

larger ammonia levels.  These results are consistent with the known role of CPS1 together 

with the rest of the urea cycle to be a low affinity, high capacity system for removing 

ammonia, while GLUL is a high affinity, low capacity enzyme for removing ammonia 

(Häussinger 1986). 

 

Ammonia Levels in Individuals Deficient in GLUL 

Human subjects with decreased GLUL activity have been shown to have blood 

ammonia levels of 100-150 µM (Häberle 2013), while mice with liver-specific GLUL 

knockout showed a blood ammonia level of roughly 150 µM (Qvartskhava et al. 2015).  Our 

model, under otherwise normal healthy conditions, shows no change in ammonia steady 

state levels when GLUL is reduced (Figure 4.2B).  This is a limitation of the study possibly 
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due to the enzyme kinetics data available, but it could also be due to the way we have 

modeled the hepatic acinus, the functional unit of the liver.  The ratio of CPS1 to GLUL 

activity or the amount of time that ammonia is associated with CPS1 activity compared to 

GLUL activity may be too high in our model, resulting in deviations from in vivo results. 

This suggests that some of the changes in ammonia levels observed in our model may be 

too conservative.  

 

Ammonia Levels in Individuals Deficient in CPS1 

CPS1 deficiency is a rare autosomal recessive genetic disorder that results in very 

little CPS1 activity (McReynolds et al. 1981).  Individuals experience extreme 

hyperammonemia and the many detrimental effects that come with it (Klaus et al. 2009).  

The prevalence of CPS1 deficiency is about 1 in 800,000 (Nagata et al. 1991).  Assuming 

strict Mendelian inheritance, if a mother and father each are heterozygous and have 

decreased CPS1 activity, there is a 1 in 4 chance that their children will have CPS1 

deficiency.  Working backwards from this assumption, the odds that both parents are 

heterozygous are 1 in 200,000.  The odds that one parent is heterozygous is roughly 1 in 

447.  Therefore, heterozygosity for disease-causing CPS1 mutations is almost as prevalent 

as liver cirrhosis.   However, regulatory effects may partially compensate for CPS1 

heterogeneity, a scenario not explored is this study.  The model predicts that individuals 

with CPS1 activity 50% of normal levels (currently thought to have no detrimental effect) 

will have high blood ammonia levels.  Many people may be unaware that they carry a 

mutation in one CPS1 allele that likely results in higher than normal levels of blood 
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ammonia.  Lifelong exposure to high levels of blood ammonia may have unknown, 

deleterious effects on neural function. 

 

Relatively Low (90 µM) Brain Ammonia Levels May Affect Neural Cell Viability or Function 

It is hypothesized that the increased levels of ammonia in liver disease interfere 

with the glutamine-glutamate balance involved in neurotransmission (Butterworth 2014), 

which can lead to increased production of reactive oxygen and nitrogen species (Bobermin 

et al. 2015).  Increased brain ammonia levels also block potassium uptake in astrocytes, 

which causes increased potassium uptake in neurons that compromises inhibitory 

neurotransmission in the cortex, leading to seizure (Rangroo Thrane et al. 2013).   

Cell culture experiments using retinoic acid-differentiated SH-SY5Y cells revealed 

that viability was decreased by relatively low concentrations (90 µM) of ammonium 

chloride.  The ability of such a low concentration of brain ammonia to cause toxicity was 

surprising given that most cells (Schneider et al. 1996) including rodent primary cortical 

and cerebellar granule cells and undifferentiated human SH-SY5Y cells require low (1-10) 

millimolar concentrations of ammonium chloride before toxicity is observed (Bobermin et 

al. 2015).  Ammonia has been reported to be slightly more toxic to neuroblastoma cells 

than to primary neurons (Haghighat et al. 2000), partially accounting for the lower toxicity 

threshold.  Furthermore, the retinoic acid-mediated differentiation procedure we used 

likely sensitized the cells to ammonia toxicity as it is known to increase reactive oxygen 

species production (Kunzler et al. 2016).   

The ability of uncharged NH3 to cross the blood brain barrier and the limited ability 

of the charged, protonated form NH4+ to cross the barrier combined with the difference in 
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pH between the brain and the blood allows higher total ammonia levels to accumulate in 

the brain (Auron and Brophy 2012).  The model predicts serum (pH ~ 7.4) levels of 

ammonia/ammonium in healthy individuals will be 17.5 µM; since the brain has a pH of 

about 7.0 (Shi et al. 2014; Ren et al. 2015), applying the Henderson-Hasselbalch equation 

implies a total ammonia/ammonium concentration in the brain of 44 µM for a healthy 

individual on a healthy protein diet, more than twice the blood ammonia/ammonium 

concentration.  The following diet combinations and liver conditions are predicted from the 

model results to have brain ammonia/ammonium concentrations of > 90 µM: high protein 

diet/early cirrhosis (101 µM), high protein diet/late cirrhosis (104 µM), healthy protein 

diet/decreased CPS1 activity (92 µM), average protein diet/decreased CPS1 activity (127 

µM), and high protein diet/decreased CPS1 activity (152 µM).  Combining the experimental 

data with the computational results suggests that many of the diet and liver condition 

combinations could negatively affect neuronal function.  Mouse studies showing that high 

protein diets are associated with decreased lifespan (Solon-Biet et al. 2014) should 

stimulate further research into the mechanisms involved. Adhering to the recommended 

protein diet may help cirrhosis patients and CPS1 heterozygotes avoid high blood and brain 

ammonia levels and any associated cognitive problems. 

 

Conclusions 

The following testable hypotheses have been generated using this model: 1) 

Increasing dietary protein consumption increases blood ammonia levels in healthy 

individuals.  2) A low protein diet is beneficial for liver cirrhosis patients who have a 

normal energy balance.  3) Heterozygosity for CPS1 complete loss of function mutations 
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leads to elevated blood ammonia levels.  4) Chronic but low-level hyperammonemia has 

negative effects on neurons and astrocytes such as sensitizing them to further toxic insults.  

5) Increased blood ammonia levels contribute to the decreased lifespan of mice on a high 

protein diet (Solon-Biet et al. 2014). 

This model describes physiological and pathophysiological human nitrogen 

metabolism in blood and liver using published parameters.  It suggests that the diet and the 

level of progression of liver cirrhosis contribute to blood ammonia levels, and experimental 

results suggest that these blood ammonia levels could affect neural functioning.  Since high 

blood ammonia levels are associated with diseases such as HE, the model can be used to 

predict the conditions in which HE may develop.  Furthermore, the model predicts that a 

50% reduction in CPS1 activity, an activity level likely present in thousands of individuals 

worldwide, can lead to high blood ammonia levels.  Limiting protein intake may be one 

effective way for some of these individuals to decrease blood ammonia levels and possible 

associated pathologies. 
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Abstract 

 There is a dire need to discover new pathways to target for Alzheimer’s disease 

(AD) drug development.  The decreased neuronal glucose metabolism that occurs in AD 

brain could play a central role in disease progression.  Little is known about the 

compensatory neuronal changes that occur to attempt to maintain energy homeostasis.  In 

this review using the PubMed literature database, we summarize evidence that amino acid 

oxidation can temporarily compensate for the decreased glucose metabolism, but 

eventually altered amino acid and amino acid catabolite levels likely lead to toxicities 

contributing to AD progression.  Because amino acids are involved in so many cellular 

metabolic and signaling pathways, the effects of altered amino acid metabolism on AD are 

far-reaching.  Possible effects resulting from changes in the levels of several important 

amino acids are discussed.  Urea cycle function may be induced in endothelial cells of AD 

patient brains, possibly to remove excess ammonia produced from increased amino acid 

catabolism.  Studying AD from a metabolic perspective provides new insights into AD 

pathogenesis and may lead to the discovery of dietary metabolite supplements that can 

partially compensate for alterations of enzymatic function to delay AD or alleviate some of 

the suffering caused by the disease. 

 

 

 

 

 

 

 

 



138 
 

Keywords 

Amino Acids, Alzheimer’s Disease, Urea Cycle, Metabolism, Supplementation 

 

Background 

 There are currently about 24 million cases of Alzheimer’s disease (AD) worldwide, 

and that number is expected to continue to increase for at least the next few decades as 

better treatments for other diseases such as heart disease and cancer extend average 

human longevity (Reitz et al. 2011).  In addition to human suffering, Alzheimer’s disease 

and other dementias cost the United States about $172 billion in 2010 (2010).  To date, 

most research has focused on the amyloid cascade hypothesis that emphasizes the role of 

amyloid-β protein aggregation in the pathogenesis of AD.  However, growing evidence 

suggests that the amyloid cascade hypothesis does not encapsulate the complex 

symptomology of AD (Herrup 2015).  Two decades of researching the amyloid cascade 

hypothesis have not yielded the treatments that were predicted in the early 1990s. The 

other major histological hallmark of AD in addition to amyloid plaques is the 

neurofibrillary tau tangle pathology present in neurons (Herrup 2015).  It is possible that 

tau-based therapies will not fare better in clinical trials than amyloid-based therapies.  

Another promising alternative is to view Alzheimer’s disease as a metabolic disease in 

attempt to shed novel insight into its etiology.  In this regard, it is known that neurons in 

AD brain show large deficits in glucose metabolism, so alternative energy sources may help 

to prevent the neuronal death characteristic of the disease.  Treating AD as a metabolic 

disorder would lead to further research into dietary supplementation of metabolites and 

enzyme cofactors that show depletion in AD brain as possible treatments.  Neurons lack the 
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enzymes for beta-oxidation of fatty acids, but other possible neuronal energy sources 

include amino acids, ketone bodies, citric acid cycle intermediates, pyruvate, and lactate.  

Because many recent metabolomics investigations have shown large changes in the levels 

of several amino acids in AD brain and plasma, it is important to consider whether changes 

in amino acid metabolism are a driving force for AD progression. 

Amino acids in the form of proteins are a large part of the human diet.  The 

recommended daily allowance of protein is 0.8 grams per kilogram body mass (2005); in 

an average adult this amounts to roughly 71 grams of protein per day.  This high protein 

consumption dictates that amino acids will be present at levels that far exceed their 

requirements as the building blocks for protein synthesis, and that much of the protein 

consumed will be broken down for energy generation.  Processing these amino acids for 

energy generation requires the disposal of nitrogenous waste, a process carried out mostly 

in the liver and small intestine by the urea cycle.  Disrupted amino acid and nitrogen 

metabolism is associated with neurological defects and in some cases dementia (Wiesinger 

2001; Gropman et al. 2007; Coloma and Prieto-Gonzalez 2011; Esposito et al. 2013; P. Liu 

et al. 2014).  In addition to these primary routes of amino acid usage, amino acids and their 

metabolic derivatives are also involved to a lesser extent in cell signaling and in many 

diverse metabolic pathways. 

 

Amino Acid Metabolism in the AD Brain 

Many studies have shown altered amino acid levels in serum and brain in AD 

patients or in AD model mice, but whether these changes contribute to disease 

pathogenesis is not yet known.  Because glutamate is an excitatory neurotransmitter and 
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two of its metabolites, gamma-aminobutyric acid (GABA) and glycine, are inhibitory 

neurotransmitters (Esposito et al. 2013), changes in glutamate metabolism in AD brain 

could greatly affect neural functioning.  GABA can also be synthesized from arginine in 

astrocytes and increased GABA levels synthesized through this pathway have been shown 

to play a role in cognitive dysfunction in an AD mouse model (Jo et al. 2014).  Changes in 

the levels of enzymes involved in amino acid metabolism have also been observed in AD 

brain (Jęśko et al. 2016), further suggesting a role for metabolic dysregulation in AD 

pathogenesis.  For example, alterations in the levels of glutamine synthetase and urea cycle 

enzymes and intermediates have been observed in AD brain.  This is of concern because 

nitrogenous waste in the form of ammonia from amino acid catabolism has adverse effects 

on neural cells if not properly cleared from the brain.   

 A healthy individual is able to process the excess amino acids consumed into other 

useful metabolites or oxidize them for energy production.  To use them as fuel, the carbon 

skeletons are oxidized in the citric acid cycle to produce carbon dioxide, and the excess 

nitrogen is disposed of as the relatively non-toxic nitrogenous waste product urea.  

However, when neurons cannot catabolize glucose efficiently such as during AD, they likely 

become partly reliant upon amino acid oxidation for energy. If neuronal amino acids 

become depleted or if the machinery used to metabolize amino acids becomes 

dysregulated, the neurons may die, contributing to disease progression.  However, even if 

amino acid oxidation is able to maintain neuronal energy levels, the increased amounts of 

ammonia released during amino acid catabolism could lead to neuronal cell death because 

a complete urea cycle that is needed to detoxify ammonia is not present in neurons.  
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Instead, astrocytes contain the glutamine synthetase enzyme to sequester ammonia into 

glutamine, which can be released from the brain.  

 

Amino Acid Level Changes Examined in Control, MCI, and AD Populations 

 Identifying amino acid changes in patients with mild cognitive impairment (MCI) is 

important as these changes may be upstream changes leading to the onset of AD, and the 

downstream changes that occur during AD may be a result of the body adapting to the 

insults that occurred during MCI.  In one report, a metabolomics analysis was performed on 

the cerebralspinal fluid (CSF) of patients with mild cognitive impairment (MCI), AD, or 

healthy aged-matched controls.  Results showed that the metabolites dimethylarginine, 

arginine, valine, proline, serine, histidine, choline, creatine, carnitine, and suberylglycine 

were possible disease progression biomarkers (Ibáñez et al. 2012).  Another group 

studying potential CSF biomarkers for AD concluded that changes in methionine, 

tryptophan, tyrosine, and purine metabolism pathways occurred in both MCI and AD 

subjects.  Methionine levels increased in MCI while tryptophan levels decreased 

(Kaddurah-Daouk et al. 2013).  Levels of the tripeptide glutathione also decreased in AD.  

Another study found increased cysteine levels in CSF from AD subjects (Czech et al. 2012) 

while another identified altered tryptophan and phenylalanine levels in plasma from both 

MCI and AD subjects compared to controls; tryptophan levels were also distinct when 

comparing MCI to AD subjects (Y. Liu et al. 2014).  A further metabolomics study of plasma 

found altered arginine metabolism and polyamine metabolism in MCI and AD subjects 

(Graham et al. 2015).  Another study found that glycine and valine levels were altered in 

AD plasma (Klavins et al. 2015), but the authors warned that plasma amino acid levels 
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show large variability depending upon the amount of fasting the subjects had undergone 

prior to donating blood (Mathew et al. 2014) and that phospholipids may be more reliable 

plasma biomarkers. 

A comprehensive metabolomics study of both plasma and CSF from control, MCI, 

and AD subjects found that tryptophan and arginine metabolism were altered in both CSF 

and plasma from MCI subjects (Trushina et al. 2013).  Lysine metabolism was decreased in 

the CSF, but not plasma, from the MCI subjects.  This study also found increased methionine 

levels in the CSF of MCI subjects.  Methionine, histidine, and lysine levels were increased in 

AD plasma.  The pathways affected in AD in both CSF and plasma included beta-alanine, 

aspartate and asparagine, alanine, cysteine, methionine, methionine-cysteine-glutamate, 

and arginine and lysine metabolism. Phenylalanine, lysine, and leucine were three of six 

metabolites in plasma that could be used to discriminate between the MCI subjects and 

controls (Trushina et al. 2013).  A salivary metabolomics analysis found that taurine and 

several dipeptides including Ser-Ser, Phe-Pro, and Arg-Leu were decreased in abundance in 

MCI patients (Zheng et al. 2012).  From the summation of these results one can discern that 

there are many alterations in amino acid metabolism in MCI and AD patients, but the 

results are not very consistent from study to study likely due to the different 

methodologies and instrumentation used. 

 

An Overview of Select Amino Acids by Class 

 In AD and MCI patients, some amino acids showed increased levels while most 

showed decreased levels, especially in the brain, consistent with their oxidation as a 

neuronal energy source.  This information is summarized in Table 5.1.  There are several 
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possible connections described in detail below through which disruption of normal amino 

acid metabolism may lead to pathogenicity. 

 

Table 5.1: Amino acids of interest in neurodegeneration 

Amino Acids 

of Interest 

Tissue Increase or 

Decrease in 

AD 

Points of Interest Effects of 

Addition 

DataWarrior 

Drug Score* 

Leucine 
  

Led to persistent 

mTOR activation 

(Lynch and Adams 

2014); Metabolites 

led to metabolic 

dysfunction 

(Amaral et al. 

2010; Lynch and 

Adams 2014; 

Wisniewski et al. 

2016) 

 

Metabolite led to 

mitochondrial 

dysfunction in rat 

neurons (Amaral et 

al. 2010); BCAAs 

increased mean 

lifespan in male 

mice (D’Antona et 

al. 2010) 

 

0.592 

Valine Plasma 

(Gonzalez-

Dominguez 

et al. 2015) 

Decrease 

(Gonzalez-

Dominguez et 

al. 2015) 

Led to persistent 

mTOR activation 

(Lynch and Adams 

2014); Metabolites 

led to metabolic 

dysfunction 

(Lynch and Adams 

2014) 

 

BCAAs increased 

mean lifespan in 

male mice 

(D’Antona et al. 

2010) 

0.559 

Isoleucine 
  

Led to persistent 

mTOR activation 

(Lynch and Adams 

2014); Metabolites 

led to metabolic 

dysfunction 

(Lynch and Adams 

2014) 

 

BCAAs increased 

mean lifespan in 

male mice 

(D’Antona et al. 

2010) 

0.684 

Phenylalanine Serum 

(Gonzalez-

Dominguez 

et al. 2015); 

Brain 

(Nilsen et al. 

2014; Xu et 

al. 2016) 

Decrease 

(Gonzalez-

Dominguez et 

al. 2015); 

Increase 

(Nilsen et al. 

2014; Xu et al. 

2016) 

 

Metabolized in 

absence of tyrosine 

(Fernstrom and 

Fernstrom 2007) 

 
0.579 

Tryptophan Serum 

(Gonzalez-

Dominguez 

et al. 2015); 

Brain (Xu et 

al. 2016) 

Decrease 

(Gonzalez-

Dominguez et 

al. 2015); 

Increase (Xu 

et al. 2016) 

Metabolites led to 

metabolic 

dysfunction 

(Bonda et al. 2011) 

Metabolite 

increases nitric 

oxide synthetase in 

cell culture (Pérez-

Severiano et al. 

1998) 

0.661 
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Tyrosine Serum 

(Gonzalez-

Dominguez 

et al. 2015) 

Decrease 

(Gonzalez-

Dominguez et 

al. 2015) 

 

 

 

Decreases could 

disrupt 

catecholamine 

production 

Improved memory 

and cognitive 

function in humans 

(van de Rest et al. 

2013) 

0.584 

Glutamine Serum 

(González-

Domínguez 

et al. 2015); 

Brain (Gueli 

and Taibi 

2013) 

Decrease 

(González-

Domínguez et 

al. 2015); 

Increase 

(Gueli and 

Taibi 2013) 

 

  0.573 

Aspartic Acid Brain (Gueli 

and Taibi 

2013; Xu et 

al. 2016); 

Serum 

(Gonzalez-

Dominguez 

et al. 2015) 

 

Decrease 

(Gueli and 

Taibi 2013; 

Gonzalez-

Dominguez et 

al. 2015; Xu et 

al. 2016) 

  
0.593 

Glutamic 

Acid 

Serum (G. 

Wang et al. 

2014); Brain 

(Gueli and 

Taibi 2013; 

Xu et al. 

2016) 

 

Increase (Xu 

et al. 2016); 

Decrease 

(Gueli and 

Taibi 2013; G. 

Wang et al. 

2014) 

Excitotoxicity led 

to neuronal death 

(Mattson et al. 

1992; Hynd et al. 

2004) 

 
0.531 

Lysine Brain (Xu et 

al. 2016) 

 

Decrease (Xu 

et al. 2016) 

  
0.499 

Histidine Serum 

(Gonzalez-

Dominguez 

et al. 2015) 

 

Decrease 

(Gonzalez-

Dominguez et 

al. 2015) 

  
0.835 

Cysteine Serum 

(González-

Domínguez 

et al. 2014; 

Hu et al. 

2016); Brain 

(Hu et al. 

2016; Xu et 

al. 2016); 

CSF (Czech 

et al. 2012) 

 

Decrease (Hu 

et al. 2016); 

Increase 

(Czech et al. 

2012; 

González-

Domínguez et 

al. 2014; Xu et 

al. 2016) 

Involved in 

glutathione 

synthesis 

Decrease in mTOR 

activity in rats 

(Gomez et al. 2015) 

0.493 
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Methionine Serum 

(González-

Domínguez 

et al. 2014) 

Decrease 

(González-

Domínguez et 

al. 2014) 

 
Increased amyloid-

beta and p-tau in 

mice (Tapia-Rojas 

et al. 2015) 

0.578 

*Structures were drawn using DataWarrior software using their most prevalent charge states at pH 7.4. A 

higher Drug Score value indicates a better drug candidate. 

 

Branched Chain Amino Acids, mTOR, and AD 

 The branched chain amino acids (BCAAs) include leucine, valine, and isoleucine.  

BCAAs compete with the aromatic amino acids phenylalanine, tyrosine, and tryptophan for 

entry into the brain.  Therefore, altering plasma BCAA levels can affect the levels of the 

neurotransmitters serotonin, dopamine, epinephrine, and norepinephrine in the brain 

(Fernstrom 2005).  Unlike most amino acids which are metabolized to a large extent by 

first pass hepatic metabolism, BCAAs are not metabolized there to a large degree, so their 

concentration in blood often directly reflects the level of dietary consumption.  Protein 

restriction has been shown to decrease tau hyperphosphorylation and increase cognition in 

an AD mouse model (Parrella et al. 2013).  A BCAA-restricted diet has been shown to 

induce similar protective metabolic effects on peripheral glucose and insulin levels as a 

protein restricted diet (Fontana et al. 2016).  However, whether the neuroprotective effects 

of protein restriction are mediated by decreased BCAA levels is not yet known because 

methionine restriction can also induce protective metabolic effects (Sanchez-Roman and 

Barja 2013). 

Some researchers suspect a link between increased BCAA levels and AD 

pathogenesis (Morabito et al. 2014).  Increasing BCAA levels through dietary 

supplementation in rats led to a decrease in neural growth factor (NGF) in the 

hippocampus (Scaini et al. 2013), a part of the brain involved in memory formation and 
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known to shrink due to neuronal loss in AD patients.  Administration of the leucine 

metabolite α-ketoisocaproic acid also decreased NGF as well as brain-derived neurotrophic 

factor (BDNF) (Wisniewski et al. 2016).  However, the role of BCAAs in AD is not clear-cut.  

The level of one of the BCAAs, valine, was found to be decreased in the plasma of AD 

patients (Gonzalez-Dominguez et al. 2015).  Furthermore, there are several studies that 

link increased levels of BCAAs to indicators of increased health such as increased muscle 

protein synthesis (Rennie et al. 2006), mitochondrial biogenesis (D’Antona et al. 2010), 

and mTOR signaling (Tokunaga et al. 2004).  A beneficial role of mTOR signaling in AD has 

been hypothesized due to the fact that insulin is neuroprotective (Felice 2013; Cai et al. 

2015), and insulin can activate mTOR kinase through PI3K (Um et al. 2006; Vergès and 

Cariou 2015).  mTOR activity has also been found to be neuroprotective under other 

experimental conditions.  For example, increased mTOR activation was associated with 

decreased Aβ pathology in brains from the 5XFAD mouse model (Avrahami et al. 2013).  

However, these effects may be related to the particular model or to the length of time of 

mTOR activation.  In the short term, it appears mTOR activation can lead to improved 

insulin secretion (Rachdi et al. 2008), whereas chronic mTORC1 activation may lead to 

exhaustion of β-cells in the pancreas (Shigeyama et al. 2008), decreasing the levels of 

neuroprotective insulin.  Somewhat contrary to the findings of mTOR being 

neuroprotective is the finding that increased mTOR activation is frequently found in the 

brains of AD model mice (Caccamo et al. 2011) and human AD patients (Li et al. 2005). 

Increased amyloid-beta levels lead to increased mTOR activation which increases protein 

translation to increase levels of tau protein, the main component of the neurofibrillary 

tangles pathologically found in AD neurons (Jahrling and Laberge 2015).  The increased 
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rate of translation induced by mTOR activation may be partially responsible for the 

decreased levels of amino acids measured in AD brain.  Increased mTOR activity can also 

stimulate mitochondrial electron transport chain activity (Schieke et al. 2006), perhaps 

leading to increased mitochondrial catabolism of amino acids.  The increased mTOR 

activity also decreases the rate of autophagy, leading to the build-up of toxic amyloid-beta 

peptides.  Consistent with these findings, treatment of PDAPP or 3xTg-AD mice with 

rapamycin, an mTOR inhibitor, reduced amyloid-beta and tau levels and restored cognitive 

function (Caccamo et al. 2010; Spilman et al. 2010).  These data suggest that diets 

containing low protein levels or low levels of the potent mTOR activators leucine and 

arginine may prove beneficial for AD patients (Hara et al. 1998), although decreasing the 

levels of all three BCAAs together was more potent than decreasing only leucine levels on 

enhancing peripheral metabolism in mice (Fontana et al. 2016). 

 Since a portion of the protective effects of mTOR inhibition by rapamycin treatment 

in AD model systems is likely caused through a decreased rate of translation, other 

therapies which decrease the rate of translation in the hippocampus may also be 

therapeutic.  With this in mind, decreased or unbalanced amino acid levels have also been 

shown to decrease the rate of translation through the general control nonderepressible 2 

(GCN2)-eIF2α kinase pathway.   GCN2 kinase senses uncharged tRNAs and then 

phosphorylates the translation initiation factor eIF2α to slow the rate of translation.  Many 

amino acids, for example BCAAs and aromatic amino acids, share the same amino acid 

transporter for transport across the blood brain barrier. Therefore, supplementation with 

high levels of one particular amino acid may competitively decrease the rate of transport of 

others into the brain to decrease the levels of one or more of these other amino acids.  This 
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could create imbalanced amino acid levels in the brain to activate GCN2 and inhibit mTOR, 

decreasing global translation rates and increasing autophagy to protect AD brains.  Not all 

mRNA transcripts show decreased translation under amino acid limitation. Some 

transcripts, such as ATF4, show increased translation to mediate protective compensatory 

responses.  ATF4 is a transcription factor involved in the ER stress response that has been 

shown to be upregulated during five conditions that extended mouse longevity (Li et al. 

2014). 

There are two prevalent hypotheses linking BCAAs to metabolic disease (Lynch and 

Adams 2014).  First, BCAAs, especially leucine, may directly lead to persistent activation of 

mTORC1.  Second, hyper-activation of BCAA catabolism can lead to increased BCAA 

metabolites which lead to metabolic dysfunction.  For example, adding the α-keto acid 

catabolite of leucine, α-ketoisocaproic acid, to rat neurons led to mitochondrial dysfunction 

(Amaral et al. 2010).  The conflicting results of studies attempting to find correlations 

between BCAA levels and disease suggest a complex role for BCAA levels in metabolism 

that may vary depending on the model organism, disease state, and the length of time of 

elevated BCAA and BCAA catabolite levels. 

Few studies have examined the levels of BCAAs specifically in postmortem AD brain, 

but it appears increasing certain BCAAs may be beneficial for the aging brain in specific 

model systems.  A diet high in BCAAs has even been shown to increase the mean lifespan of 

male mice (D’Antona et al. 2010).   Research into the role of BCAAs in AD is far from 

complete.  For example, there has been little study of the effects of isoleucine or valine 

supplementation in AD patients or animal models.  Since isoleucine and valine do not 

stimulate mTOR activity as potently as leucine does (Xu et al. 1998) and are not broken 
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down into neurotoxic α-ketoisocaproic acid, supplementation with these amino acids could 

provide energy for the brain without activating potentially pathogenic signaling pathways.  

Given the links between BCAAs, mTOR signaling, aging, and neurodegeneration, further 

research will likely clarify these complex interactions.  Furthermore, many of the same 

correlations observed for BCAAs in insulin resistant individuals have also been observed 

for aromatic amino acids, highlighting a complementary role for both of these classes of 

amino acids in metabolism and disease (Newgard 2012). 

 

Aromatic Amino Acids 

 Several studies have found that the levels of aromatic amino acids are frequently 

altered in AD serum or brain.  One research group found a decrease in all three aromatic 

amino acids in the serum of AD patients (Gonzalez-Dominguez et al. 2015), while others 

reported an increase in both phenylalanine and tryptophan in the brains of AD patients (Xu 

et al. 2016).  Researchers using AD model rats found an increase in phenylalanine in 

different regions of the brain (Nilsen et al. 2014).  Tryptophan has two different neural 

fates; it can be metabolized into serotonin or it can enter the kynurenine pathway (KP) 

where it is degraded to α-amino-β-carboxymuconate-ε-semialdehyde (ACMS) which can 

either be metabolized into quinolinic acid for NAD synthesis or into 2-aminomuconate for 

entry into the TCA cycle.  Serotonin plays a role in learning and cognition (Geldenhuys and 

Van Der Schyf 2011), but enzymes involved in the KP are upregulated in AD (Bonda et al. 

2011).  There is evidence that quinolinic acid (QUIN) and other metabolic intermediates in 

the KP pathway cause oxidative damage to the brain (Bonda et al. 2011).  Increased QUIN 

led to a concentration-dependent increase in ROS in the synaptosomes of rat brains and 
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lipid peroxidation in the hippocampus (Santamaría et al. 2001).  Researchers have also 

shown that QUIN can increase nitric oxide synthase activity more than three-fold (Pérez-

Severiano et al. 1998).  This enzyme produces nitric oxide, a vaso-relaxing free radical.  

Amyloid-beta production increased the concentration of QUIN (Guillemin et al. 2003), 

linking AD more directly to oxidative damage from amino acid metabolites.  Moreover, a 

shift in tryptophan degradation to the KP pathway diverts tryptophan from the serotonin 

synthesis pathway.  This could deprive the AD brain of serotonin, contributing to the 

pathogenesis of AD.    However, knowledge of aromatic amino acid metabolism and 

signaling in AD brain is far from complete.  Dietary tryptophan restriction has been shown 

to extend the lifespan of rodents (Segall 1977), but the mechanism has not been 

investigated.  Acute tryptophan depletion leads to memory impairment (Riedel et al. 2002). 

The amino acid tyrosine is important for synthesizing catecholamines, but there are 

only a few studies measuring tyrosine levels specifically in AD brain, although several 

studies have found that oral tyrosine administration improves memory and cognitive 

function (van de Rest et al. 2013).  Phenylalanine can be metabolized through the same 

metabolic pathways as tyrosine but only when tyrosine levels are low (Fernstrom and 

Fernstrom 2007), preventing firm conclusions regarding changes in phenylalanine levels in 

AD brain until changes in tyrosine levels are measured as well.  As a class, aromatic amino 

acid metabolism is especially important for neural functioning, and more research is 

needed to elucidate the relevance of the changes that occur in AD. 
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Charged Amino Acids 

The charged amino acids include the acidic (aspartate and glutamate) and basic 

(arginine, lysine, and histidine) amino acids.  Each of these appears to be decreased in AD 

patient brain or plasma, with the possible exception of glutamate where the direction of 

change may depend upon the brain region assayed.  Glutamate (G. Wang et al. 2014), 

histidine, and aspartate levels were decreased in serum from AD patients (Gonzalez-

Dominguez et al. 2015), while aspartate and glutamate levels were decreased in the 

temporal lobe of the cerebral cortex of AD patients (Gueli and Taibi 2013). Xu et al. 

measured a decrease in both lysine and aspartate levels in the brains from autopsied AD 

patients, while glutamate levels increased (Xu et al. 2016).  Glutamate’s interaction with 

the NMDA receptor is critical for learning and memory formation (Esposito et al. 2013), but 

glutamate excitotoxicity also leads to neuronal death in AD (Mattson et al. 1992; Hynd et al. 

2004).  As discussed below, aspartate and glutamate also play a role in transamination 

reactions such as those occurring upstream of the urea cycle.  As a group, the levels of 

charged amino acids are altered in AD, suggesting  specific perturbations in metabolism, 

but more research needs to be done to determine the cause of the changes in amino acid 

levels and the effects these have on the brain.  Examining the activity of more enzymes 

involved in amino acid metabolism and building computational models of amino acid 

metabolism could help explain the alterations in amino acid levels in AD. 

 

Glutamine 

 Glutamine is the most prevalent amino acid in plasma and, together with glutamate, 

the most prevalent amino acids in human brain (Cooper and Jeitner 2016).  Glutamate 
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supplementation decreases tau phosphorylation and has shown other protective effects in 

a mouse model of AD (Chen and Herrup 2012).  It has been found that glutamine, 

glutamate, aspartate, alanine, and purines are likely degraded as the top alternative energy 

sources in neurodegenerative diseases such as AD when glucose metabolism is disturbed 

(Kori et al. 2016).  These amino acids are readily broken down because high levels of 

aminotransferases for the initial step in the catabolism of alanine, aspartate, and glutamate 

are present in brain (Cooper and Jeitner 2016).  In AD patients, glutamine levels have been 

shown to decline in the serum (González-Domínguez et al. 2015) but increase in the 

temporal cortex of the brain (Gueli and Taibi 2013).  Glutamine and alanine levels have 

also been found to be decreased in the blood in transient global amnesia (Sancesario et al. 

2013). 

 There has not been much data generated on how the brain maintains balances in 

amino acid and total nitrogen levels during times of neuronal amino acid catabolism, but it 

is likely that BCAAs can be taken up through the blood-brain barrier (BBB) and glutamate 

can be released to maintain nitrogen balance (Hawkins and Viña 2016).  BCAA-derived 

carbons can then be fed into the citric acid cycle to form alpha-ketoglutarate, and then the 

alpha-ketoglutarate can be transaminated to glutamate to maintain glutamate levels.  

During times when ammonia levels increase in the brain, exporting a glutamine (containing 

two nitrogen atoms) from the brain for every BCAA (or other amino acid containing a 

single nitrogen atom) taken up would allow for a net efflux of nitrogen to lower the brain 

ammonia levels (Cooper and Jeitner 2016). 
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Sulfur-Containing Amino Acids 

 The sulfur containing amino acids are cysteine and methionine.  Much research has 

been performed on supplementation with cysteine and the more membrane permeable 

form N-acetylcysteine (NAC) as cysteine levels limit the synthesis of glutathione, one of the 

most important antioxidants in the body.  NAC appears to cross the blood-brain barrier 

slowly, so other therapies are under development to increase brain glutathione levels 

(Bavarsad-Shahripour et al. 2014).  There have been three small clinical trials of NAC 

supplementation to AD patients with mixed results (Deepmala et al. 2015).  Therefore, 

more research is needed to clarify the effects of NAC on AD.  There seems to be a disruption 

in sulfur-containing amino acid metabolism in AD as serum and brain homocysteine levels 

increase (Hu et al. 2016).  Cysteine levels were also shown to be increased in the 

hippocampus of autopsied AD patients (Xu et al. 2016).  Homocysteine-cysteine disulfide 

levels were also found to increase in AD patient serum while methionine levels decreased 

(González-Domínguez et al. 2014).  Increased homocysteine levels in the plasma is a known 

risk factor for AD and other dementias (Seshadri et al. 2002).  Dietary methionine 

supplementation caused increased amyloid-beta and phosphorylated tau levels in brain 

and cognitive impairment in wild-type mice (Tapia-Rojas et al. 2015).  Dietary methionine 

restriction led to decreased amyloid-beta levels and neuroprotection in APP-PS1 AD mice 

(Sambamurti et al. 2015) and decreased mitochondrial complex I-mediated superoxide 

production and increased lifespan in rats (Orentreich et al. 1993) while cysteine 

supplementation led to a slight decrease in mTOR activity (Gomez et al. 2015).  However, 

cysteine supplementation prevented the decreased ROS production in methionine 

restricted animals.   
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Amino Acids as an Energy Source in AD Neurons 

 One of the hallmarks of AD is dysfunctional energy metabolism.  Mitochondrial-

derived oxygen free radicals produced in AD brain are known to damage glycolytic 

enzymes such as enolase (Butterfield and Lange 2009) and glyceraldehyde-3-phosphate 

dehydrogenase (Butterfield et al. 2010), slowing glycolysis.  This damage, combined with 

decreased insulin signaling in AD brains (Calvo-Ochoa and Arias 2015), results in 

decreased glucose uptake and metabolism which has been confirmed as an early event in 

AD progression through the use of fluorodeoxyglucose (FDG)-PET scans (Mosconi et al. 

2010).  The decreased glucose metabolism results in decreased pyruvate production which, 

combined with amyloid-beta-mediated mitochondrial complex IV inhibition (Wong-Riley et 

al. 1997) and tau-mediated mitochondrial complex I inhibition (Rhein et al. 2009), results 

in decreased mitochondrial energy metabolism and ATP levels.  Most cells in the body 

show metabolic flexibility and can increase mitochondrial fatty acid beta-oxidation when 

glycolytic output decreases to maintain cellular ATP levels.  Neurons contain very low 

levels of fatty acid beta-oxidation enzymes (Panov et al. 2014), so they instead rely upon 

ketone body catabolism, amino acid catabolism, or catabolism of lactate released from 

astrocytes (Mächler et al. 2016) to maintain cellular ATP levels.  Ketone body levels are 

normally very low in the well-fed and unexercised human body (Sleiman et al. 2016). 

Therefore, amino acid catabolism together with lactate metabolism and limited glucose 

metabolism likely play essential roles in maintaining cellular ATP levels in AD neurons. 

Data supporting this hypothesis come from clinical studies that show a 44% decrease in 

glucose utilization in autopsied early-onset familial Alzheimer’s disease brain. The AD 

brains showed no deficits in oxygen utilization as free amino acids (and perhaps lactate) 
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were oxidized for energy generation in replacement of glucose, leading to decreased amino 

acid levels (Hoyer et al. 1988).  Once brain amino acid levels were depleted, brain ammonia 

levels decreased as well.  These data indicate that amino acid supplementation or high 

protein diets may help to energize the AD brain. 

The most abundant amino acids present in the human brain as a potential energy 

source are glutamate and glutamine, present at roughly 7-8 mM, while the next most 

abundant amino acids are aspartate and taurine which are present at roughly 1.2 mM, and 

then serine, GABA, and glycine that are present at roughly 0.5 mM (Cooper and Jeitner 

2016).  The brain contains a glutamate-glutamine cycle where glutamate is released by 

neurons into synaptic clefts; the glutamate is then taken up by astrocytes where some is 

broken down for energy but most is converted to glutamine which is exported from the 

astrocytes and taken up once again by neurons and converted back into glutamate.  To 

facilitate this cycle, the brain has been shown to possess high levels of two neuronal 

glutaminase genes, GLS and GLS2 (phosphate-activated mitochondrial glutaminase), to 

function in the breakdown of glutamine to glutamate that releases ammonia, but small 

amounts of glutaminase (mostly GLS) have also been localized to astrocytes (Cardona et al. 

2015).  GLS2 activity is strongly upregulated by ADP (Masola and Ngubane 2010) and has 

been shown to decline with aging (Walton and Dodd 2007), particularly in AD brain 

(Akiyama et al. 1989). 

Further release of ammonia in the brain can occur if glutamate is catabolized to 

alpha-ketoglutarate by glutamate dehydrogenase.  In addition to the normal mammalian 

glutamate dehydrogenase gene, GLUD1, primates have a second glutamate dehydrogenase 

gene, GLUD2, that is expressed in astrocytes and may be needed in those cells to preserve 
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alpha-ketoglutarate levels in the presence of high glutamine synthetase activity (Spanaki 

and Plaitakis 2012).  Glutamine synthetase activity has been shown to decline in AD brain 

(Smith et al. 1991).  Mitochondrial GLUD1 is negatively regulated by the GTP formed from 

citric acid cycle function, while GLUD2 is relatively unaffected by guanine nucleotides but is 

positively regulated by ADP and branched chain amino acids (Zaganas et al. 2014).  The 

negative regulation of GLUD1 when energy levels are high allows for preservation of 

glutamate levels needed for neurotransmission as well as prevents the toxic buildup of 

ammonia.   Glutamate can also be metabolized to alpha-ketoglutarate to fuel citric acid 

cycle metabolism without the release of free ammonia through the function of the alanine, 

aspartate, and branched chain aminotransferases (McKenna et al. 2016) if the 

corresponding ketoacids are present in adequate amounts.   

Normally both neurons and astrocytes oxidize glucose by glycolysis and the 

resulting pyruvate by oxidative phosphorylation to maximize ATP yield (Patel et al. 2014).  

However, there is much evidence that indicates astrocytes are more metabolically flexible 

than neurons due to their slightly lower energy demands (Stobart and Anderson 2013).  

Therefore, astrocytes can survive predominately by glycolysis with little oxidative 

metabolism. In metabolically stressful times, such as in AD, astrocytes may convert the 

pyruvate produced from glycolysis into lactate to maintain the cellular redox state and then 

export the lactate which can then be taken up by neurons, converted back to pyruvate, and 

used for oxidative energy metabolism, a process called the astrocyte-neuron lactate shuttle 

(Pellerin and Magistretti 2012).  Astrocytes may also be able to increase the amount of 

glutamine released to neurons to be utilized as an energy source under these conditions 

when neuronal glycolysis is impaired.  Astrocytes possess some fatty-acid beta-oxidation 
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capabilities (Panov et al. 2014) which likely becomes important during these times when 

neuronal energy metabolism is impaired. 

A study using AD mice found that a high protein/low carbohydrate diet resulted in a 

5% reduction in the brain weight in AD mice, including decreased neuronal density and 

volume in the CA3 region of the hippocampus that is important for memory (Pedrini et al. 

2009).  A high protein/low carbohydrate diet has also been associated with increased 

excitotoxicity in the aged brain (Pal and Poddar 2008).  These data suggest that high levels 

of amino acids or products of their catabolism may contribute to neurodegeneration.  

Consistent with this assessment, catabolism of branched chain keto acids by branched 

chain ketoacid dehydrogenase (BCKDH) in mitochondria results in substantial production 

of damaging superoxide radical (Quinlan et al. 2014).  In addition, mice on a low 

protein/high carbohydrate diet lived longer than those on a high protein/low carbohydrate 

diet and had lower insulin levels and lower mTOR activation (Solon-Biet et al. 2014). 

However, the health benefits of a low protein/high carbohydrate diet may only extend 

through middle age as aged mice and humans on a high protein diet showed protection 

from disease (Levine et al. 2014).  Therefore, amino acid supplementation therapies may 

best be explored as therapies for late-onset AD.  Interestingly, plasma levels of all three 

branched chain amino acids showed a positive correlation with dietary protein intake in 

mice, while the plasma levels of most other amino acids showed a negative correlation with 

dietary protein intake. Therefore, some of the beneficial health effects conferred by the low 

protein diet in young and middle aged mice may be mediated by decreased plasma 

branched chain amino acid levels.  
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The Urea Cycle and AD 

Amino Acid Metabolism, Ammonia, and the Urea Cycle 

 Proteins are digested in the stomach and intestine by a variety of peptidases into 

free amino acids and dipeptides; the dipeptides are further catabolized into amino acids by 

first pass hepatic metabolism.  These amino acids are then transported by the blood to 

other tissues where the amino acids are used for protein synthesis or broken down in 

processes that produce ammonia when levels exceed their requirements.  The α-amino 

group of the amino acid is often transferred to α-ketoglutarate to form glutamate and an α-

keto acid.  Glutamate can undergo oxidative deamination to form ammonia and α-

ketoglutarate, or the amino group can be transferred to oxaloacetate to form aspartate and 

α-ketoglutarate. Aspartate is required for urea cycle function.  In the brain and muscle 

(tissues normally lacking appreciable urea cycle function) aspartate can enter the purine 

nucleotide cycle to release fumarate and ammonia.  Other reactions produce ammonia as 

well; histidine, serine, threonine, and tyrosine-derived catecholamine catabolism each 

release ammonia through separate reactions.  Ammonia is toxic and needs to be eliminated 

quickly or converted to a less toxic form. Once ammonia and glutamate combine to form 

glutamine through the action of the glutamine synthetase enzyme, the glutamine is 

exported from the tissue and transported through the blood to the liver where the free 

ammonia is released through the action of the glutaminase enzyme.  The urea cycle can 

then function to convert the ammonia to urea, which is excreted from the body. 

 The first and second steps of the urea cycle occur in the mitochondria, while the 

other three steps occur in the cytoplasm.  First, ammonia combines with CO2, H2O, and 

HCO3- to form carbamoyl phosphate.  N-acetylglutamate is required as a cofactor for this 



159 
 

reaction to proceed.  Carbamoyl phosphate reacts with ornithine to produce citrulline, 

which is transported out of mitochondria and then reacts with aspartate to form 

argininosuccinate.  Arginosuccinate is converted by argininosuccinase into fumarate and 

arginine.  In the final step, arginase converts arginine into ornithine and urea.  Figure 5.1 

summarizes amino acid catabolism leading up to and including the urea cycle. 

 

 

 

 

Figure 5.1: Overview of the urea cycle.  Ammonia produced as a result of metabolic 
processes involving amino acids and other biomolecules is converted into nontoxic urea in 

the urea cycle for excretion.  The intermediates are in boxes and the enzymes and other 
necessary substrates are next to the arrows in lowercase.  These intermediate metabolite 

and enzyme levels are altered in the brain in Alzheimer’s disease. 
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Changes in Components of the Urea Cycle in AD 

 Levels of enzymes and metabolic intermediates of the urea cycle are altered in 

patients with AD.  It is widely accepted that the urea cycle occurs almost exclusively in the 

liver and intestines (Takiguchi and Masataka 1995).  It has been shown that normal human 

brain has low or no ornithine transcarbamoylase (OTC) activity, thus preventing urea cycle 

activity (Bensemain et al. 2009).  Carbamoyl phosphate synthetase activity is also low in 

brain tissue.  However, studies using autopsied brains from AD patients have challenged 

this exclusive localization of the urea cycle.   Hansmannel and colleagues identified mRNA 

expression for all enzymes of the urea cycle in the brains of both normal adults and 

patients with AD (Hansmannel et al. 2010).  However, the mRNA levels of OTC were 

extremely low in the non-AD subjects, and the normal cytoplasmic urea cycle enzyme 

arginase I was extremely low in both populations.   Arginase is one of the more studied 

urea cycle enzymes that appears to be dysregulated in AD.  Arginase converts arginine to 

urea and ornithine (see Figure 5.1).  Two groups, Lui et al. (P. Liu et al. 2014) and 

Hansmannel et al. (Hansmannel et al. 2010), found the same trend of increased 

mitochondrial arginase II (Arg2) levels in autopsied AD patient brain.  Hansmannel et al. 

used RT-PCR to find a 55% increase in Arg2 mRNA levels in AD patients compared to 

controls (Hansmannel et al. 2010), whereas Lui et al. used Western blot to show an 

increase in the total amount of Arg2 protein in two different brain regions with no change 

in a third (P. Liu et al. 2014). 

There are several important consequences of increased Arg2 expression in AD 

brain. First, increased arginase activity increases urea and ornithine levels, the latter being 

a precursor of polyamine synthesis.  Polyamines can play an important neuroprotective 
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role in the brain.  Second, increased arginase activity decreases arginine levels, which can 

lead to decreased mTOR activity.  Arginine is also a substrate for nitric oxide synthase 

which produces the vasorelaxing free radical nitric oxide that can increase 

neuroinflammation.  Therefore, transgenic overexpression of arginase I showed 

neuroprotection in a tau-overexpressing model of AD (Hunt et al. 2015).  However, an 

arginase inhibitor showed neuroprotective effects in an amyloid-beta-producing  mouse 

model of AD (Kan et al. 2015).  Therefore, it is possible that arginase expression has 

different effects on amyloid and tau pathology.  Arg2 is the main isoform in AD brain and is 

highly expressed in endothelial cells.  Therefore, it is also possible that arginase I activity is 

neuroprotective while arginase II activity is neurotoxic due to expression in different cell 

types or different subcellular localizations.  

Bensemain et al. used RT-PCR to detect the transcription of the ornithine 

transcarbamylase (OTC) gene and other enzymes of the urea cycle in AD brains as well 

(Bensemain et al. 2009).  OTC activity was exclusively localized to brain endothelial cells, 

and its activity in cerebrospinal fluid was nearly 9 times higher in AD patients than in the 

control group (Bensemain et al. 2009).  It is interesting that OTC activity was concentrated 

in the endothelia in the vasculature of the brain in AD (Bensemain et al. 2009); these areas 

are severely affected by amyloid plaques (Koizumi et al. 2016).  Taken together, these 

results indicate that the urea cycle may occur in the endothelial cells of AD patients, but 

this may rely upon the transport of arginine from the cytoplasm to the mitochondria to be 

metabolized by arginase II.  The mitochondrial ornithine carriers ORC1, ORC2, and 

SLC25A29 are also able to transport arginine (Monné et al. 2015).  ORC1 and ORC2 are 



162 
 

expressed at very low levels in brain (Begum et al. 2002), but this may be enough to allow 

low level urea cycle activity in the endothelial cells from AD patients. 

Perhaps the most notable urea cycle metabolite change in the AD brain is in the level 

of urea.  The direction of the change in level of urea depends on the clinical or pathological 

sample or the mouse model tested.  Serum from human AD patients showed a 44% 

decrease in urea levels when assayed using GC/MS (Gonzalez-Dominguez et al. 2015). The 

same group found decreased urea in the serum of APP/PS1 AD model mice (González-

Domínguez et al. 2015).  A decrease in urea in the hippocampus of the senescence-

accelerated SAMP8 mice was also measured (H. Wang et al. 2014).  SAMP8 mice show 

neurodegeneration similar to that observed in AD.  The decreased urea levels are 

consistent with decreased arginase levels found in APP/PS1 mouse brain (Tapia-Rojas et 

al. 2015).  Data collected from studies of human brain tell a completely different story. A 

study by Gueli and Taibi using GC/MS on temporal lobe extracts demonstrated that urea 

was increased in brain tissue of AD patients over 2-fold (Gueli and Taibi 2013).  Xu and 

colleagues measured urea in six different regions of the brain to find that urea was 

increased in AD patients’ brains by an average of more than 5-fold (Xu et al. 2016). This 

increase in urea levels is consistent with the increased Arg2 levels in human AD brain.  

Interestingly, in the striatum of post-mortem Huntington’s disease brain, urea was found to 

be the most decreased (3.2-fold) metabolite (Graham et al. 2016), but another study found 

opposite results that urea was increased in all brain regions examined in post-mortem 

Huntington’s patients (Patassini et al. 2015). 

Ornithine levels were decreased in AD brain and serum (P. Liu et al. 2014; Gonzalez-

Dominguez et al. 2015; Xu et al. 2016).  Although ornithine is the product of an enzyme that 
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is upregulated (Arg2), the decrease is consistent with other findings because ornithine is 

the substrate of OTC, another upregulated enzyme in AD brain (Bensemain et al. 2009), 

and ornithine is a precursor for the production of polyamines that increase in abundance in 

AD brain (Guerra et al. 2016).  Citrulline, however, appears to remain unchanged in AD 

brains (P. Liu et al. 2014; Pan et al. 2015).  Citrulline is a strong antioxidant and citrulline 

supplementation prevented age-related changes in lipid metabolism in mouse 

hippocampus (Marquet-de Rougé et al. 2013).  Aspartate reacts with citrulline to form 

argininosuccinate.  Aspartate levels  are decreased in AD patient serum (Gonzalez-

Dominguez et al. 2015), and both aspartate and arginine levels are decreased in the brain 

of AD patients (Gueli and Taibi 2013; Xu et al. 2016).  Decreased levels of urea cycle 

intermediates could indicate their efficient metabolism.  Considering that different groups 

have shown increased urea levels in biopsied AD brains as well as increased expression of 

one or more urea cycle genes, current evidence suggests that urea cycle activity may be 

induced in endothelial cells from AD patient brain.  It is possible that a urea cycle 

metabolite such as arginine that is produced in neurons and glia is imported into AD 

endothelial cells where Arg2 levels are high and OTC is exclusively present to finish the 

urea cycle there.  The citrulline produced from endothelial cell OTC activity could also be 

exported to neurons or glia to finish the urea cycle.  However, it is also possible that the 

higher urea levels found in AD brain are strictly due to increased Arg2 levels independent 

of complete urea cycle function. 

Increased urea levels in AD brain raises questions as to what could be leading to the 

increased expression of OTC and arginase II.  The main function of the urea cycle is to safely 

dispose of nitrogenous waste from amino acid catabolism and other sources.  Therefore, it 



164 
 

has been hypothesized that abnormal nitrogen metabolism may play a role in the 

pathogenesis of AD (Seiler 1993).  One of the early hypotheses for the pathogenesis of AD, 

proposed by Seiler in 1993, was the ammonia hypothesis; this posits that increased levels 

of ammonia accumulate in and are toxic to the AD brain (Seiler 1993).  However, the 

amyloid cascade hypothesis was proposed the year before (Hardy and Higgins 1992), and 

the ammonia hypothesis was not thoroughly investigated (Seiler 2002).  The ammonia 

hypothesis of AD was generated due to the following observations: increased ammonia 

levels measured in the plasma from AD patients (Fisman et al. 1985; Hoyer et al. 1990), 

decreased glutamine synthetase enzyme levels in AD astrocytes to scavenge ammonia 

(Smith et al. 1991; Le Prince et al. 1995), increased adenosine deaminase activity in AD 

brain (Sims et al. 1998), and increased monoamine oxidase activity in AD brain (Nakamura 

et al. 1990; Jossan et al. 1991); the latter two enzymes produce ammonia.  Ammonia has 

also been implicated as a cause of oxidative damage in the brain as it was found to increase 

reactive oxygen species levels in SH-SY5Y cells (Bobermin et al. 2015) and astrocytes 

(Murthy et al. 2001) and lead to RNA oxidation in rats (Görg et al. 2008).  Furthermore, 

mitochondrial activity in rat and mouse models appears to be impaired by ammonia.  

Ammonium acetate injection into rats led to decreased state III respiration (Kosenko et al. 

1997), cytochrome c oxidase activity (Rama-Rao et al. 1997), and decreases in various 

other respiratory complexes in isolated synaptic mitochondria (Qureshi et al. 1998).  

Impaired mitochondrial function is often associated with increased oxidative damage. This 

may in part explain the increase in reactive oxygen species in the presence of ammonia. 

Increased ammonia production would either necessitate urea cycle function to metabolize 

the toxic ammonia to urea or necessitate increased reaction of ammonia with glutamate 
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catalyzed by astrocytic glutamine synthetase followed by export of glutamine from the 

brain.  Evidence from studies of the urea cycle and amino acid metabolism in AD subjects 

and mouse models justifies further investigation into the production and detoxification of 

ammonia in the AD brain.   

 

Considerations for Dietary Metabolite Supplementation as a Treatment for AD 

 Increasing or decreasing the levels of specific amino acids and other metabolites in 

the diet has shown some promise in improving markers of aging and longevity (Fernstrom 

2005), so it is possible that nutrient supplementation or restriction may improve neural 

functioning in AD patients as age is the major risk factor for AD.  However, there are several 

hurdles to overcome before an efficacious treatment can be formulated.  For example, 

studies on intestinal transport, bioavailability, hepatic metabolism and excretion, and 

blood-brain barrier transport are needed in order to choose the optimal formulations.  

Much of this information is present for a few commonly studied amino acids, but much of it 

is absent for the vast majority of amino acids.  From what is known, it appears that hepatic 

metabolism, especially of amino acids, presents the greatest challenge to overcome for the 

supplementation of many of the amino acids for their use in the treatment of 

neurodegeneration, but intestinal transport may also become limiting in the elderly 

(Levine et al. 2014).  Several of the amino acids also have limited blood-brain permeability.  

We will present one promising strategy taking these many challenges into consideration. 

   As mentioned above, intestinal uptake of amino acids declines past age 65.  It has 

been shown that the bioavailability of individual amino acids and dipeptides is slightly 

better than that of amino acids consumed as polypeptides since the individual monomers 
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can be absorbed quickly without the need for further enzymatic hydrolysis in the gut. 

Therefore, dietary supplementation with individual amino acids or combinations of 

individual amino acids would likely benefit the elderly in addition to a high protein diet 

that promotes health in the elderly (Levine et al. 2014).  The use of individual amino acids 

also has the added benefit of being able to stimulate specific signaling pathways.  Due to the 

limited intestinal uptake of amino acids in the elderly, they may particularly benefit from 

supplementation with hydrophobic, more membrane permeable forms of amino acids such 

as amino acid ethyl esters or N-acetyl amino acids. These amino acid derivatives show a 

greater probability of diffusion across membrane bilayers such as intestinal epithelia and 

the capillary endothelia of the blood-brain barrier where the activity of specific membrane 

transporters may be limiting.  These more hydrophobic amino acid derivatives are cleaved 

by esterases and other hydrolytic enzymes intracellularly or extracellularly to release the 

free amino acid.  This hydrolysis may occur to a large extent during first pass hepatic 

metabolism. 

 Dietary aspartate, glutamate, and glutamine are oxidized as primary sources of fuel 

for intestinal cells (Reeds et al. 2000).  In addition, these amino acids, especially glutamate 

and aspartate, are transported very poorly through the blood-brain barrier (Hawkins et al. 

2006) even though they are present at high concentrations in the brain.  Other amino acids 

that are transported poorly through the blood-brain barrier include glycine, alanine, 

proline, and GABA.  Medium and large side chain, non-polar amino acids are transported 

readily by the blood-brain barrier into the brain including aromatic amino acids, BCAAs, 

methionine, histidine, and threonine (Smith 2000). These amino acids all compete for 

transport through the L1 transport pathway.  Glutamine and asparagine are also likely 
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transported by this pathway.  Another amino acid transporter called the y+ system 

transports basic amino acids such as arginine, lysine, and ornithine as well as many neutral 

amino acids such as serine through the blood brain barrier (Hawkins et al. 2006).  One 

potential therapeutic strategy for AD patients is to supplement their diets with high levels 

of BCAAs, aromatic amino acids, and threonine.  Through competition for the L1 amino acid 

transport system, this therapy could limit the transport of methionine into the brain, 

perhaps yielding the known metabolic and neuroprotective benefits of methionine 

restriction (Sanchez-Roman and Barja 2013; Tapia-Rojas et al. 2015).  However, 

methionine is also transported into the brain to a limited extent through the y+ system; this 

may hinder the effectiveness of this strategy.  A second potential therapy is to omit leucine 

and/or isoleucine from the previously mentioned supplementation strategy.  These two 

amino acids are not transported by the y+ system (Hawkins et al. 2006).  Depletion of 

leucine or isoleucine in the brain would lead to amino acid imbalance, activation of GCN2 

kinase, and possibly the inhibition of mTOR kinase to slow protein translation rates that 

may be beneficial for reducing the levels of neurofibrillary tangles formed from 

hyperphosphorylated aggregates of tau protein.  These amino acid supplementation 

therapies could be combined with supplementation with other metabolic fuels such as D-

beta-hydroxybutyrate (a ketone body), citric acid cycle intermediates, pyruvate, and/or 

lactate, which would decrease the reliance of AD neurons on the use of amino acids as a 

fuel.  Consumption of high levels of these alternative metabolic fuels may function to 

restore neuronal amino acid levels.   
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Summary and Conclusions 

 Dietary amino acids provide a large amount of carbon and nitrogen to the body that 

can be metabolized by a myriad of biochemical pathways.  Amino acids have roles in 

neuronal signaling, energy production, and nitrogenous waste production and elimination.  

These processes are important for normal physiology, so it is not surprising that disease 

states result from major metabolic dysfunction, but whether relatively minor perturbations 

of this metabolism contribute to neurodegeneration requires further study.  Brains and 

serum from AD patients have consistently shown alterations in amino acid levels and 

metabolism that could provide a basis for some of the symptoms of the disease.  These 

individual changes may each play a different role in the disease, highlighting the complexity 

that underlies AD pathology.  An increase in urea in the brains of AD patients together with 

the altered expression of urea cycle enzymes suggests that urea cycle activity is induced in 

AD brain endothelial cells.  Viewing AD as a metabolic disease provides valuable insight 

into possible new targets for drug discovery in the AD research field.  A summary of some 

of the altered amino acid metabolism that occurs in AD is shown in Figure 5.2. 
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Figure 5.2: Pathogenic processes and proposed physiological responses in Alzheimer’s 
disease. A) An overview of the pathogenic processes of Alzheimer’s disease.  B)  An 
overview of how the body may respond to AD to minimize damage by changing the 

expression of enzymes involved in amino acid catabolism. 

 

The measurement of metabolite levels provides a snapshot of a very dynamic 

process.  While this information is extremely useful, it is not sufficient by itself to 

understand the pathological changes associated with AD.  Further studies measuring 

enzyme activities could provide complementary information about the dynamics of amino 

acid metabolism in AD.  In addition, studies overexpressing OTC and Arg2 to activate the 

urea cycle in the brain endothelial cells of an AD mouse model would help clarify the effects 

of endothelial urea cycle activity on brain physiology and cognitive function.  Studying AD 

from a metabolic perspective could lead to dietary supplementation therapies that could 

delay disease progression or alleviate some of the suffering caused by the disease. 
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Abstract 

 Ammonia is a toxic byproduct of protein catabolism and is involved in changes in 

glutamate metabolism.  Therefore, ammonia metabolism genes may link a range of diseases 

involving glutamate signaling such as Alzheimer’s disease (AD), major depressive disorder 

(MDD), and type 2 diabetes (T2D).  We analyzed data from a National Institute on Aging 

study with a family-based design to determine if 45 single nucleotide polymorphisms 

(SNPs) in glutaminase (GLS), carbamoyl phosphate synthetase 1 (CPS1), or glutamate-

ammonia ligase (GLUL) genes were associated with AD, MDD, or T2D using PLINK 

software.  HAPLOVIEW software was used to calculate linkage disequilibrium measures for 

the SNPs.  Next, we analyzed the associated variations for potential effects on 

transcriptional control sites to identify possible functional effects of the SNPs.  Of the SNPs 

that passed the quality control tests, four SNPs in the GLS gene were significantly 

associated with AD, two SNPs in the GLS gene were associated with T2D, and one SNP in 

the GLUL gene and three SNPs in the CPS1 gene were associated with MDD before 

Bonferroni correction.  The in silico bioinformatic analysis suggested probable functional 

roles for six associated SNPs.  Glutamate signaling pathways have been implicated in all 

these diseases, and other studies have detected similar brain pathologies such as cortical 

thinning in AD, MDD, and T2D.  Taken together, these data potentially link GLS with AD, 

GLS with T2D, and CPS1 and GLUL with MDD and stimulate the generation of testable 

hypotheses that may help explain the molecular basis of pathologies shared by these 

disorders. 

 

 



184 
 

Keywords 

Ammonia, Glutamate, Alzheimer’s Disease, Major Depressive Disorder, Type 2 Diabetes 

 

Background 

 Excess dietary protein is catabolized to release ammonia.  Because of the relative 

toxicity of ammonia (Auron and Brophy 2012), it is removed from the body by the urea 

cycle and excreted as the relatively non-toxic compound urea.  The urea cycle is thought to 

occur almost exclusively in the liver (Dimski 1994).  However, certain types of ammonia 

metabolism such as glutamate cycling can occur in other tissues.  Among the enzymes 

involved in ammonia metabolism are glutaminase (GLS, EC 3.5.1.2), carbamoyl phosphate 

synthetase 1 (CPS1, EC 6.3.4.16), and glutamate-ammonia ligase (GLUL, EC 6.3.1.2), also 

known as glutamine synthetase.  CPS1 is the first committed step of the urea cycle.  

Individuals who lack a functional CPS1 gene have severe hyperammonemia resulting in 

cognitive impairment (Klaus et al. 2009).  The majority of cells in the body (such as those in 

the brain) that lack a functional urea cycle rely on GLUL to locally remove ammonia by 

ligating it to glutamate to form glutamine (Cooper and Jeitner 2016).  Glutaminase 

catalyzes the reverse process, releasing ammonia from glutamine to form glutamate.  The 

human genome contains two glutaminase genes.  Data from the Human Protein Atlas 

(www.proteinatlas.org) suggest GLS is expressed primarily in the brain and kidney 

(http://www.proteinatlas.org/ENSG00000115419-GLS/tissue) (Uhlén et al. 2015).  

Because glutamate is an important neurotransmitter and signaling molecule, both GLUL 

and GLS are necessary for proper neural functioning (Cooper and Jeitner 2016).   
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 Because (1) glutamine and glutamate are abundant and ubiquitous amino acids 

involved in ammonia metabolism, (2) ammonia is a byproduct of protein catabolism, and 

(3) glutamate is an important signaling molecule, we hypothesized that the CPS1, GLUL, 

and GLS ammonia metabolism genes could influence various disease processes across a 

range of tissues.  Evidence for a link between ammonia metabolism genes and type 2 

diabetes (T2D) includes studies that have found changes in GLS activity in a rat model of 

diabetes (Ardawi 1987).  In addition, a SNP in the GLUL gene has been associated with all-

cause mortality in individuals with T2D (Prudente et al. 2015), and a separate study has 

found a transcriptomic link between T2D and GLUL (Mirza et al. 2014).  Ammonia and 

glutamate metabolism changes have also been linked to mood disorders such as major 

depression.  For example, glutamate signaling pathways have been shown to be altered in 

major depressive disorder (MDD) (Bernard et al. 2011).  Furthermore, GLUL expression 

has been shown to be changed in individuals with MDD (Choudary et al. 2005; Miguel-

Hidalgo et al. 2010; Bernard et al. 2011).  However, one study reports no change in GLUL 

activity in astrocytes from the brains of individuals with MDD (Chandley et al. 2013).  

Further evidence supporting this connection is that researchers were able to induce 

behaviors consistent with depression in mice by inhibiting enzymes involved in ammonia 

and glutamate metabolism (Lee et al. 2013).   

The potential link between ammonia metabolism and Alzheimer’s disease (AD) is 

particularly well-supported.  The amyloid cascade hypothesis is the dominant hypothesis 

for the pathogenesis of AD (Hardy and Higgins 1992).  However, increasing evidence 

suggests increased amyloid-beta levels are only one facet of this complex disease (Herrup 

2015).  The ammonia hypothesis for the etiology of AD was first proposed in 1993 (Seiler 
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1993), but it has not yet been thoroughly investigated.  The ammonia hypothesis suggests 

ammonia toxicity plays a causal role in AD.  This is supported by several observations 

reviewed by Seiler (Seiler 2002). Briefly, individuals with AD have been found to have 

increased blood ammonia (Fisman et al. 1985) and cerebrospinal fluid ammonia levels.  

The negative effects of ammonia on cognitive functioning are well documented (Raabe 

1987), and studies have suggested that there are high ammonia concentrations in AD brain 

(Hoyer et al. 1990).  AD patients have also been shown to have increased plasma glutamate 

compared to controls (Miulli et al. 1993).  Further studies suggest changes in the activity of 

ammonia metabolism genes may be involved in AD.  Researchers have found changes in 

GLUL expression in AD patients (Robinson 2000) as well as in mouse models of AD 

(Kulijewicz-Nawrot et al. 2013).  Changes in GLS expression in AD brains have been found 

as well (Akiyama et al. 1989; McGeer et al. 1989; Burbaeva et al. 2014).  The 

aforementioned studies suggest an association between GLUL, GLS, and CPS1 genes and 

disorders such as AD, T2D, and MDD.  While all three of the genes of interest have not been 

explicitly implicated in all three diseases, there is sufficient evidence for the involvement of 

ammonia metabolism genes in the pathologies of these diseases to warrant further 

investigation. 

All three of these diseases have genetic heritability; AD is estimated to have a 

heritability of 0.74 (Gatz et al. 1997), MDD of 0.37 (Sullivan et al. 2000), and T2D of 0.47-

0.77 (Willemsen et al. 2015).  There is also ample epidemiological evidence of associations 

among MDD, T2D, and AD.  T2D has been found in several studies to be linked to the 

incidence of AD (Ott et al. 1999; Luchsinger et al. 2005; Gudala et al. 2013; Li et al. 2015).  

Two separate analyses of a GWAS found SNPs that were associated with both T2D and AD 
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(Hao et al. 2015; Gao et al. 2016), suggesting the possibility of a shared genetic etiology.  

However, none of the hits from these studies were the genes we tested.  There is also 

epidemiological evidence of an association between AD and MDD.  Individuals with a 

history of depression were shown to have an increased risk for AD (Geerlings et al. 2008).  

Finally, T2D has been shown by several studies to nearly double the risk of developing 

MDD (Anderson et al. 2001; Ali et al. 2006).  However, not every study supports a genetic 

association amongst these diseases.  A study of 32 genetic variants identified in GWAS 

studies of individuals with T2D found no association with AD (Chung et al. 2015).  Another 

study also found no association between SNPs associated with T2D and risk of AD (Proitsi 

et al. 2014).  A third study found no common genetic variants between individuals with AD 

and MDD (Gibson et al. 2017).  Studies that continue to investigate the genetic component 

of these diseases could help untangle knowledge of genetic associations and elucidate 

targets for novel treatment strategies.   

 To investigate the potential association between these select ammonia metabolism 

genes and AD, MDD, and T2D, we used data from a family-based study of Alzheimer’s 

disease patients.  The variations significantly associated with one or more of these diseases 

were interpreted considering previously published experimental results and 

bioinformatics analysis of possible effects of variants on gene expression.  This study 

generates several hypotheses useful for guiding future work into mechanisms of 

pathogenesis of AD, MDD, and T2D and investigations into how these mechanisms may 

interact and overlap. 
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Methods 

NIA-LOAD Family Study Subjects 

Data for this study came from the National Institute on Aging—Late Onset 

Alzheimer’s Disease Family Study: Genome-Wide Association Study for Susceptibility 

Loci—Study Accession: phs000168.v1.p.  There were 3,007 individuals selected consisting 

of 1266 AD, 247 T2D, and 1688 MDD individuals, and 1279 non-AD individuals from 1386 

pedigrees (589 nuclear families). Details on these subjects have been previously published 

(Lee et al. 2008).  Population stratification does not apply to a family-based study design.  

The number of individuals in this data set with each type of disease and combinations of 

co-occurrences are shown in Table 6.1. 

 

Table 6.1  Number of individuals with co-occurrence of AD, MDD, and T2D in the data seta 

AD Only MDD Only T2D Only 

AD and 

MDD Only 

AD and 

T2D Only 

MDD and 

T2D Only 

AD, MDD, 

and T2D 

166 877 16 372 32 93 46 
aIndividuals with an unknown disease state for either AD, MDD, or T2D were not included in 

this count 

 

 

Analytic Procedures 

 A total of 45 SNPs in GLUL (4 SNPs), GLS (8 SNPs), and CPS1 (33 SNPs) were 

available in the data set for association testing.  A family-based association analysis for risk 

of AD, T2D and MDD was performed using the PLINK DFAM procedure. Empirical p-values 

for single marker analyses were calculated by 100,000 permutation tests using the Max (T) 

permutation procedure implemented in PLINK v1.07 software 

(http://zzz.bwh.harvard.edu/plink/index.shtml) (Purcell et al. 2007).  Haplotype analysis 
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was conducted in 2-SNP sliding windows using PLINK software to obtain p-values, chi-

square values, and haplotype frequencies for affected and unaffected individuals.  

HAPOVIEW v4.2 software (https://www.broadinstitute.org/haploview/haploview) 

(Barrett et al. 2005) was used to determine minor allele frequencies (MAFs) and to test for 

Hardy-Weinberg equilibrium (HWE) using all founders in the family-based dataset.  The 

quality control cutoff values for HWE and MAF are <0.001 and <0.05, respectively.  The 

linkage disequilibrium (LD) structure was constructed and r2 and D' values were 

determined using HAPLOVIEW. To correct for multiple testing, the Bonferroni correction 

(α=0.05/45=0.00111) was used. 

 

Bioinformatics Analysis 

 Because the significantly associated SNPs were all intronic, the 11 SNPs associated 

with AD, MDD, or T2D were input into the Human Splice Finder v3.0 program 

(http://www.umd.be/HSF3/) (Desmet et al. 2009) to determine if any of the SNPs may 

affect silencing and enhancing regions of the genes.  The sequence immediately 

surrounding the SNP was obtained from the NCBI dbSNP database 

(https://www.ncbi.nlm.nih.gov/snp).  PERFECTOS-APE was used to predict transcription 

factor (TF) binding sites affected by the SNPs, and the hits were compared with the results 

of database searches for transcription factors that have been experimentally determined to 

be associated with the genes studied.  We searched the transcription factor databases 

Human Transcriptional Regulation Interaction Database 

(http://www.lbbc.ibb.unesp.br/htri/) (Bovolenta et al. 2012) and RegNetwork 
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(http://www.regnetworkweb.org/)  (Liu et al. 2015) for transcription factors that have 

been experimentally determined to interact with the genes of interest. 

 

Results 

Single Marker Analysis 

 PLINK single marker analysis revealed several SNPs associated with AD, MDD, and 

T2D with an empirical p-value < 0.05. 

 

Alzheimer’s Disease. There were four SNPs significantly associated with AD before 

the Bonferroni correction (rs6758866, p = 0.00350; rs2355570, p = 0.03675; rs1921907; 

p = 0.00334; and rs883844, p = 0.00163).  All four of these SNPs are located in the GLS 

gene on chromosome 2, and all have a HWE p > 0.001 and a MAF of p > 0.05, therefore, 

they passed the quality control test.  These results are shown in Table 6.2. 

 

 

Table 6.2  SNPs associated with risk of AD 

SNP Position Allelea Gene EMP1b MAFc HWEd 

rs6758866 191464646 A GLS 0.00350 0.440 0.1046 

rs2355570 191489414 C GLS 0.03675 0.258 0.3147 

rs1921907 191493020 A GLS 0.00334 0.437 0.1691 

rs883844 191534014 T GLS 0.00163 0.381 0.3054 
aMinor allele 
bEmpirical p-value generated by 100,000 permutation tests using Max (T) permutation  

           procedure in PLINK 
cMinor allele frequency in founders 
dHardy-Weinberg equilibrium p-value 
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Major Depressive Disorder. Five SNPs were significantly associated with MDD 

before the Bonferroni correction.  Four of these SNPs (rs6749597, p = 0.02776; 

rs9789405, p = 0.01283; rs2287602, p = 0.01692; and rs2302909, p = 0.02103) are 

located in the CPS1 gene on chromosome 2, while one SNP (rs12735664, p = 0.03640) is 

located in the GLUL gene.  While each of these has a MAF > 0.05, rs2302909 failed to pass 

the test for Hardy-Weinberg equilibrium (p = 2.0E-4).  These results are shown in Table 

6.3. 

 

Table 6.3  SNPs associated with risk of MDD 

SNP Position Allelea Gene EMP1b MAFc HWEd 

rs12735664 180622702 C GLUL 0.03640 0.103 0.9515 

rs6749597 211128370 T CPS1 0.02776 0.138 0.4310 

rs9789405 211131628 T CPS1 0.01283 0.146 0.7266 

rs2287602 211135486 C CPS1 0.01692 0.150 0.0344 

rs2302909 211211801 A CPS1 0.02103 0.103 2.0E-4 
aMinor allele  
bEmpirical p-value generated by 100,000 permutation tests using Max (T) permutation  

          procedure in PLINK 
cMinor allele frequency in founders 
dHardy-Weinberg equilibrium p-value 

 

 

Type 2 Diabetes. As shown in Table 6.4, three SNPs were significantly associated 

with T2D before the Bonferroni correction, two in the GLS gene (rs1921915, p = 0.01794; 

and rs1517354, p = 0.00072) and one in the CPS1 gene (rs2302909, p = 0.00647).  All of 

these SNPs have a MAF of > 0.05, but rs2302909 failed to pass the test for Hardy-Weinberg 

equilibrium (HWE p = 2.0E-4).   
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Table 6.4  SNPs associated with risk of T2D 

SNP Position Allelea Gene EMP1b MAFc HWEd 

rs1921915 191460572 G GLS 0.01794 0.062 0.1093 

rs1517354 191524111 C GLS 0.00072 0.084 0.0066 

rs2302909 211211801 A CPS1 0.00647 0.103 2.0E-4 
aMinor allele 
bEmpirical p-value generated by 100,000 permutation tests using Max (T) permutation  

          procedure in PLINK 
cMinor allele frequency in founders 
dHardy-Weinberg equilibrium p-value 

 

 

Two-SNP Haplotype Analysis 

PLINK two-SNP haplotype analysis revealed several haplotypes associated with AD (one 

haplotype), MDD (11 haplotypes), and T2D (15 haplotypes).  The haplotypes with p < 0.05 

are listed in Table 6.5 (AD), Table 6.6 (MDD), and Table 6.7 (T2D). 

 

 

Table 6.5  Haplotype analysis of risk of AD based on PLINK in family-based study design 

Haplotype  Gene Affected 

Frequency (%) 

Unaffected 

Frequency (%) 

Chi-

square 

p value 

rs883844 rs10932334 GLS/CPS1     

C T  14.34 30.55 3.894 0.0485 
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Table 6.6  Haplotype analysis of risk of MDD based on PLINK in family-based study design 

Haplotype  Gene Affected 

Frequency (%) 

Unaffected 

Frequency (%) 

Chi-

square 

p value 

rs3856348 rs6725303 CPS1     

T C  27.91 18.57 7.005 0.0081 

rs6725770 rs759688 CPS1     

A T  23.51 30.22 3.881 0.0488 

rs918233 rs1509821 CPS1     

A G  56.22 47.8 4.545 0.0330 

rs17773128 rs6749597 CPS1     

C T  14.64 8.242 5.459 0.0195 

rs6749597 rs2887913 CPS1     

T C  14.64 8.242 5.459 0.0195 

rs2887913 rs9789405 CPS1     

C T  15.52 8.242 6.748 0.0094 

rs9789405 rs2287603 CPS1     

T T  15.42 8.171 6.723 0.0095 

C T  62.9 71.56 5.157 0.0232 

rs2287603 rs2287602 CPS1     

T C  16.01 8.929 5.719 0.0168 

T T  61.72 69.64 3.925 0.0476 

rs2287602 rs10515951 CPS1     

C G  15.95 8.929 5.644 0.0175 
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Table 6.7  Haplotype analysis of risk of T2D based on PLINK in family-based study design 

Haplotype  Gene Affected 

Frequency (%) 

Unaffected 

Frequency (%) 

Chi-

square 

p value 

rs1921915 rs6758866 GLS     

T G  47.95 56.67 4.034 0.0446 

rs2355570 rs1921907 GLS     

T A  26.03 17.15 6.942 0.0084 

rs1921907 rs17748089 GLS     

A G  51.37 42.8 3.894 0.0485 

rs17748089 rs1517354 GLS     

G C  14.38 7.64 7.744 0.0054 

rs1517354 rs883844 GLS     

C C  5.37 1.02 17.06 3.63E-5 

rs1509821 rs981024 CPS1     

G C  41.78 50.64 4.105 0.0428 

rs10515951 rs6714124 CPS1     

T C  2.74 7.06 3.957 0.0467 

rs2371001 rs3821135 CPS1     

A C  2.14 6.87 4.822 0.0281 

G A  52.84 43.3 4.756 0.0292 

rs3821135 rs7607205 CPS1     

C T  6.85 13.0 4.568 0.0326 

rs7607205 rs12468557 CPS1     

G C  9.03 3.97 7.675 0.0056 

rs12468557 rs2302909 CPS1     

C A  19.01 8.87 14.89 1.14E-4 

C C  46.05 55.59 4.751 0.0293 

rs2302909 rs7599931 CPS1     

A G  5.43 2.27 5.155 0.0232 

A T  14.43 6.96 10.21 0.0014 

 

 

 

LD Structure  

The linkage disequilibrium (LD) structures for these genes are shown in Figure 6.1.  

The GLS and CPS1 genes are located on chromosome 2 (2q32.2 and 2q34, respectively), 

while the GLUL gene is located on chromosome 1 (1q25.3).  SNP pairs with an r2 value > 

0.5 and a D' value greater than 0.8 are listed in Table 6.8. 
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Figure 6.1: Linkage disequilibrium structure of founders from the data set using HAPLOVIEW software.
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Table 6.8  Top linkage disequilibrium measures 

SNP 1 SNP 2 D' r2 

rs10932334 rs3856348 1 0.979 

rs6725303 rs6725770 1 0.951 

rs6749597 rs9789405 1 0.941 

rs6749597 rs2287602 1 0.937 

rs6714124 rs7573258 1 0.718 

rs2371000 rs2371001 1 0.71 

rs6725770 rs918233 1 0.622 

rs6758866 rs1921907 0.997 0.984 

rs2012564 rs2887913 0.997 0.932 

rs981024 rs2012564 0.997 0.929 

rs7573258 rs2371001 0.996 0.703 

rs2355570 rs883844 0.995 0.561 

rs9789405 rs2287602 0.994 0.977 

rs13010236 rs12997383 0.991 0.62 

rs1921907 rs883844 0.99 0.777 

rs1921915 rs1517354 0.988 0.707 

rs6758866 rs883844 0.987 0.764 

rs7573258 rs2371000 0.986 0.97 

rs6714124 rs2371000 0.982 0.695 

rs6714124 rs2371001 0.981 0.947 

rs981024 rs2887913 0.98 0.958 

rs6725303 rs918233 0.978 0.626 

rs7607205 rs12468557 0.955 0.788 

rs2371001 rs7607205 0.948 0.567 

rs3856348 rs2887913 0.948 0.554 

rs10932334 rs2887913 0.945 0.563 

rs3856348 rs981024 0.939 0.543 

rs10932334 rs981024 0.936 0.551 

rs6714124 rs7607205 0.935 0.542 

rs3856348 rs2012564 0.931 0.571 

rs759688 rs10515951 0.922 0.631 

rs10932334 rs2012564 0.906 0.551 

rs2887913 rs6714124 0.885 0.501 

SNP pairs with D'>0.8 and r2>0.5 
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Bioinformatics Analysis 

 All the SNPs tested are intronic.  Of the 11 SNPs with a significant association with 

AD, MDD, or T2D, bioinformatics analysis suggests a function for seven.  Of these, only 6 

SNPs are in HWE; the other SNP, rs2302909, will not be considered further.  Three SNPs 

(rs6758866, rs2355570, and rs1517354) were predicted to create enhancer sites, and one 

SNP decreased the likelihood of the sequence binding to transcription factors that have 

been experimentally determined to interact with the gene sequences of interest 

(rs1921907).  Another two SNPs (rs9789405 and rs2287602) both created an enhancer 

site and decreased the likelihood of binding with a transcription factor.  The details of these 

results are presented in Table 6.9. 

 

Table 6.9 Bioinformatics analysis predicted functional effects of SNPs   

                    associated with AD, MDD, or T2D 

SNP Gene Disease 

Association 

Transcription Factor 

Binding Affected 

Enhancer Site 

Formation 

rs6758866 GLS AD 0 + 

rs2355570 GLS AD 0 + 

rs1921907 GLS AD ETS1 0 

rs883844 GLS AD 0 0 

rs1921915 GLS T2D 0 0 

rs1517354 GLS T2D 0 + 

rs12735664 GLUL MDD 0 0 

rs6749597 CPS1 MDD 0 0 

rs9789405 CPS1 MDD E2F4 + 

rs2287602 CPS1 MDD FOXP3 + 

rs2302909 CPS1 MDD/T2D 0 + 
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Discussion 

Alzheimer’s Disease 

Because of the potential effect of ammonia levels on the onset and progression of AD 

described above (Seiler 1993), we hypothesized that SNPs in the ammonia metabolism 

genes GLUL, CPS1, and GLS may be associated with AD.  However, single marker analyses 

only found SNP markers statistically associated with AD in the GLS gene (Table 6.3) in this 

current study.  Bioinformatics analysis using the Human Splice Finder software and the 

PERFECTOS-APE program suggest three of these intronic SNPs may have a direct 

functional role in GLS regulation (Table 6.9).  The minor alleles of SNPs rs6758866 and 

rs2355570 are predicted to create enhancer sites. Each of these variations may increase 

the expression of GLS.  The minor allele of SNP rs1921907 is predicted by the PERFECTOS-

APE software to decrease the likelihood of binding to the transcription factor ETS1.  ETS1 

has been shown to be expressed in brain 

(http://www.proteinatlas.org/ENSG00000134954-ETS1/tissue) (Uhlén et al. 2015) and to 

interact with the GLS gene (Hollenhorst et al. 2009).  Because ETS1 can be either a 

repressor or an activator of transcription (Dittmer 2003), it is not possible to predict the 

direction of regulation.  The statistical association of the SNP rs883844 with AD is likely the 

result of an indirect association.  The SNP may possibly act as a marker for a nearby 

unsequenced variation involved in the disease process, or its association may be due to its 

proximity to the other three SNPs in the GLS gene identified in this study as being 

associated with AD.  Data in Table 6.8 reveal rs883844 is in LD with rs2355570 (D' = 

0.995, r2 = 0.561), rs1921907 (D' = 0.990, r2 = 0.777), and rs6758866 (D' = 0.987, r2 = 
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0.764).  This may explain the significant association with AD in the absence of a predicted 

function.   

As mentioned earlier, GLS is the isoform of glutaminase mostly found in the brain 

and kidneys (Uhlén et al. 2015).  In contrast, GLS2 is mostly localized to the liver 

(http://www.proteinatlas.org/ENSG00000135423-GLS2/tissue) (Uhlén et al. 2015).  GLS 

breaks down glutamine to ammonia and glutamate.  Glutamate, an excitatory 

neurotransmitter, is important for synaptic transmission and memory formation (Esposito 

et al. 2013), but increased levels can lead to excitotoxic neuronal cell death in the brain.  If 

the observed variants in the GLS gene or nearby unsequenced SNPs in LD affect 

glutaminase levels and enzyme activity, they would affect the regeneration of the glutamate 

used to remove neurotoxic ammonia.  Changing these glutamate levels could impact 

cognitive function in AD (Myhrer 1998).  Several studies agree that GLS levels in AD brain 

are decreased (Akiyama et al. 1989; McGeer et al. 1989; Burbaeva et al. 2014).  Two of the 

three SNPs associated with AD and predicted to have a function may create an enhancer 

site, but enhanced expression of GLS in AD is inconsistent with the published literature.  It 

is possible that the predicted enhancer sites created are in linkage disequilibrium with 

nearby unsequenced SNPs that are more important for transcriptional regulation, or ETS1 

usually acts as a relatively strong activator in this system.  Experimental studies of 

autopsied AD patient brains have found an increase in glutamate levels (Xu et al. 2016).  

However, another study found decreased glutamate in the temporal cortex of AD brain 

(Gueli and Taibi 2013).  Both increases and decreases in brain glutamate are associated 

with cognitive decline (Myhrer 1998).  It is possible that changes in glutamate levels in AD 
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brain are region-specific and occur because of disrupted glutamate and ammonia 

homeostasis. 

 

Major Depressive Disorder 

Several SNPs in the CPS1 gene were linked to MDD in this study (Table 6.3).  CPS1 is 

critically important in ammonia metabolism as evidenced by the devastating effects of 

hyperammonemia in CPS1-deficient individuals (Suzuki et al. 1986; Finckh et al. 1998).  

Therefore, the variations identified in this study could potentially have major effects on 

blood ammonia levels if the variations are linked to changes in CPS1 activity.  As previously 

mentioned, CPS1 is mainly found in the liver 

(http://www.proteinatlas.org/ENSG00000021826-CPS1/tissue) (Uhlén et al. 2015), and it 

catalyzes the incorporation of ammonia into carbamoyl phosphate in the urea cycle.  The 

clinical observations described above suggest changes in CPS1 activity may have an impact 

on blood ammonia levels, and changes in blood ammonia levels may also impact glutamate 

levels in the brain, affecting cognition (Suárez et al. 2002).  Several studies suggest changes 

in glutamate levels in several areas of the brain could be linked to mood disorders through 

disruption of the levels of glutamate and glutamine (Sanacora et al. 2012).   

Bioinformatics analyses suggest two SNPs in HWE analyzed in this study may have a 

functional role in MDD (Table 6.9).  The minor allele of the SNP rs9789405 is predicted by 

the Human Splice Finder program to create an enhancer site.  The same SNP variant is 

predicted by PERFECTOS-APE to decrease the likelihood of binding by the transcription 

factor E2F4.  E2F4 is mainly a transcriptional repressor (Crosby and Almasan 2004) and 

has been experimentally demonstrated to interact with the CPS1 gene (Litovchick et al. 



201 
 

2007).  The minor allele of the SNP rs2287602 is predicted by Human Splice Finder to 

create an enhancer site and by PERFECTOS-APE to decrease the likelihood of association 

with the transcription factor FOXP3.  This transcription factor mainly plays a role in 

regulatory T-cell function (Vent-Schmidt et al. 2014), but it has recently been found to play 

a role in promoting mitochondrial oxidative metabolism (Angelin et al. 2017) and can even 

localize to mitochondria in hepatocytes (Rojas et al. 2016).  FOXP3 is known to either 

increase or decrease gene expression depending upon the other transcription factors with 

which it associates (Szylberg et al. 2016).  The Human Protein Atlas reports mRNA for both 

E2F4 (http://www.proteinatlas.org/ENSG00000205250-E2F4/tissue) and FOXP3 

(http://www.proteinatlas.org/ENSG00000049768-FOXP3/tissue) in human liver (Uhlén 

et al. 2015).  Based on the predicted functions of these variants, we predict there may be 

altered expression of CPS1 in the liver of some MDD subjects.  Altered CPS1 expression may 

change the levels of ammonia in the blood, therefore changing the glutamate levels in the 

brains of individuals with MDD.  A SNP in CPS1 significantly associated with MDD that was 

not assigned a function by our bioinformatics analysis, rs6749597, is in linkage 

disequilibrium with the predicted functional SNPs (rs6749597:rs9789405, D' = 1, r2 = 

0.941; rs6749597:rs2287602, D' = 1, r2 = 0.937).  All variations in CPS1 that passed the 

quality control tests are in the same haplotype block (Figure 6.1). 

 

Type 2 Diabetes 

SNPs in the GLS and CPS1 genes were associated with T2D (Table 6.4).  The SNP in 

the CPS1 gene (rs2302909) is not in HWE, so it will not be further considered. The liver is 

the major hub of ammonia metabolism and gluconeogenesis, so it is not surprising that 
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ammonia metabolism genes are linked to type 2 diabetes.  Excess glutamate in the liver can 

be deaminated, fed into the citric acid cycle, and then used for gluconeogenesis, 

contributing to the high blood glucose levels observed in T2D.  Although T2D is 

traditionally associated with insulin resistance in liver and peripheral tissues, one of the 

hallmarks of the later stages of T2D is the inability of β-cells in the pancreas to secrete 

enough insulin to activate insulin signaling pathways in insulin-resistant tissues (Cantley 

and Ashcroft 2015).  The incretin pathway is involved in insulin secretion in the pancreas 

(Yokoi et al. 2016).  Several experimental drugs for the treatment of T2D have been 

designed to increase the effectiveness of the incretin pathway (Drucker et al. 2010).  

Glutamate has been found to increase insulin excretion by amplifying the incretin pathway 

in beta cells (Gheni et al. 2014).  Therefore, changes in glutamate levels in the pancreas 

may affect the response to glucose signaling in T2D.  As discussed above, CPS1, GLUL, and 

GLS may all affect the levels of glutamate available for signaling.  GLS is expressed in 

pancreatic tissue (http://www.proteinatlas.org/ENSG00000115419-GLS/tissue) (Uhlén et 

al. 2015), so changes in expression of these genes could affect pancreatic function.  These 

changes may play a role in the disease processes of T2D. 

One SNP in HWE in the GLS gene is predicted to have a functional role that may be 

associated with T2D (Table 6.9).  The SNP rs1517354 was predicted by Human Splice 

Finder to create an enhancer site (Table 6.9), possibly leading to an increase in GLS gene 

expression in T2D.  This variation may lead to an increase in the rate at which glutamine is 

catabolized to glutamate and ammonia.  When released from neurons, increased glutamate 

levels in the synaptic cleft can lead to excitotoxicity (Zhou and Danbolt 2014).  A recent 

study suggests some of the pathology of T2D may be due to increased activity of pancreatic 
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receptors for glutamate (Huang et al. 2017).  Glutamate excitotoxicity in the brain is mainly 

mediated by the NMDA receptor (NMDAR) (Lau and Tymianski 2010).  A functional role 

for NMDARs has also been found in pancreatic beta cells (Inagaki et al. 1995; Marquard et 

al. 2015).  The NMDAR agonist, glutamate, was found to be increased in the plasma of 

diabetic patients and in a rat model of diabetes (Huang et al. 2017).  In vitro studies have 

shown that blocking NMDAR activation reduces glucose-mediated damage to pancreatic 

beta cells and improves beta cell function (Huang et al. 2017).  These results suggest that 

changes in the expression of genes involved in glutamate metabolism may play a role in 

type 2 diabetes by affecting the function of pancreatic beta cells. 

 

Changes in Expression of Ammonia Metabolism Genes: An Explanation for Some Common 

Pathologies in AD, MDD, and T2D? 

Cortical thinning is a feature of AD (Du et al. 2007), MDD (Tu et al. 2012), and T2D 

(Yoon et al. 2017 Apr 27).  The temporal cortex appears to be specifically affected.  Cortical 

thinning may be caused by cell death due to glutamate excitotoxicity.  As previously 

discussed, the epidemiology of these diseases seems to be linked.  For example, a study 

found that individuals with AD are at increased risk for T2D (Janson et al. 2004).  A more 

recent study concluded that comorbidity of MDD and T2D increased the risk of dementia 

(Katon et al. 2012).   

Memantine, an NMDAR antagonist, is a drug used to reduce glutamate excitotoxicity 

for the treatment of AD.  Memantine was also found to have protective effects on pancreatic 

beta cells and to reduce blood glucose levels in a mouse model of diabetes (Huang et al. 

2017), and it improved some measures of cognitive functioning in a mouse model of type 2 
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diabetes (Iwanami et al. 2014).  Double-blind studies suggest memantine may also be an 

effective treatment for MDD (Amidfar et al. 2017).  The efficacy of this drug for the 

treatment of several different diseases suggests clinically significant commonalities in the 

disease mechanisms.  Because glutamate signaling is so tightly tied to ammonia 

metabolism, changes in the expression of ammonia metabolism genes may be at least 

partially responsible for the observed cortical thinning and disease phenotypes in all three 

of these disorders. 

 

Testable Hypotheses Generated and Study Limitations 

 This study generates several testable hypotheses: 1) Individuals with the minor 

allele variants of rs6758866, rs2355570, and rs1517354 have altered GLS gene expression 

and glutaminase enzyme activity.  2) Individuals with abnormal GLS gene expression are at 

greater risk for AD or T2D.  3) Individuals with the minor allele variants rs9789405 and 

rs2287602 have altered expression of the CPS1 gene and altered CPS1 enzyme activity.  4)  

Individuals with altered CPS1 gene expression are at higher risk for major depressive 

disorder.  5) Individuals with abnormal blood ammonia levels are at higher risk for major 

depressive disorder, and reducing blood ammonia may alleviate some of the symptoms of 

MDD. 6) Changes in glutamate levels in the brain due to changes in the expression of GLS, 

GLUL, or CPS1 are common to AD, MDD, and T2D, and these changes contribute to the 

common tissue pathology observed in these diseases.  7)  Drugs that regulate glutamate 

signaling may alleviate some symptoms of AD, MDD, and T2D. 

While this study’s results generate many hypotheses consistent with the published 

literature, the study also has several limitations.  We report a genetic association from just 
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one data set; to decrease the risk of a type 1 error, other data sets with similar and different 

study designs should also be examined for comparable associations.  Only rs1517354, the 

C-C haplotype from rs1517354 and rs883844, and the C-A haplotype from rs12468557 and 

rs2302909 with T2D (Tables 6.4 and 6.7) showed significant associations after a 

Bonferroni correction (p < 0.00111).  Thus, our current findings might be subject to type I 

error, and the results need to be supported by additional large samples in a future study. 

Second, it was not possible to predict the direction of change in gene expression of the 

SNPs rs2287602 and rs1921907 because they were predicted to interact with 

transcription factors that can be either activators or repressors.  Third, GWAS have largely 

not indicated ammonia metabolism gene associations with AD, T2D, or MDD.  This may be 

because the associations are weak or because of incomplete genomic coverage in GWAS 

datasets.  Lastly, the bioinformatics results of this study need to be supported by 

experimentation to verify these predictions.  Even with these limitations, the findings of 

this study are potentially clinically relevant and warrant further investigation due to their 

high explanatory power and their consistency with experimental results. 

 

Conclusions 

 This study used data from a family-based study design to find a novel 

epidemiological association of select ammonia metabolism genes with Alzheimer’s disease, 

major depressive disorder, and type 2 diabetes.  Bioinformatics analyses suggest a 

functional role for many of the identified SNPs.  These functional roles generally fit with 

previously published experimental results.  The associations found in this study should be 

confirmed by other genetic epidemiological studies to increase confidence in our 
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conclusions.  One data set which may replicate the current results is from the Columbia 

University Study of Caribbean Hispanics with Familial and Sporadic Late Onset Alzheimer's 

Disease, dbGaP Study Accession: phs000496.v1.p1.  The next step would be to 

experimentally verify the effects of these SNPs on gene expression and protein levels.  This 

study is a step toward understanding the genetic and metabolic underpinnings of complex 

diseases with heritable components. 
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CHAPTER 7 

CONCLUSIONS 

 

Hypotheses Supported 

 The studies reported in this dissertation investigated similarities in factors involved 

in the pathogenesis of several neurological diseases. Two main hypotheses are supported 

by this research: 

(A) Amyloidogenic proteins have similarities in their residue interaction network  

structures that will provide insight into the formation of amyloid plaques. 

(B) Altered ammonia metabolism and changes in the amount of dietary protein 

under certain conditions affect neurological function and play causative roles 

in several neurological diseases.   

 

Specific Aim 1: Conclusions and Future Directions 

To determine if amyloidogenic proteins have commonalities in their residue 

interaction networks and to determine how these network structures may affect amyloid-

beta plaque formation when combined with 3D structural data. This aim addresses 

hypothesis (A). 

Results from the use of lysozyme as a model for amyloidogenesis demonstrated that 

combining 3D structural data and RIN data can be a powerful approach in the study of 

amyloid formation. Novel residues were identified that are likely to be involved in its 

primary nucleation (residues 21, 62, 104, 122, and 112-117). Next, similar techniques were 
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applied to compare a group of amyloidogenic proteins to random network controls or real 

protein controls. Network characteristics specific to amyloidogenic proteins were 

identified. These characteristics may provide insight into the primary nucleation of a 

variety of amyloidogenic proteins. Abeta42 was analyzed in more detail, and two residues 

(residues 24 and 31) were identified which may be involved in preventing primary 

nucleation. 

 The results reported in this manuscript are in silico and are therefore preliminary. 

Experimental studies are needed to verify the findings. The group of amyloid proteins 

studied was small, so data from the analysis of more structures obtained using a variety of 

solvent conditions would increase confidence in the findings. Mutating the amino acid 

residues that we identified to be of interest for both lysozyme and Abeta42 could provide 

support for the conclusions drawn. 

 

Specific Aim 2: Conclusions and Future Directions 

To create a mathematical model to determine if the amount of dietary protein and 

degree of liver function interact to affect blood ammonia levels and to determine if the 

predicted changes could affect neuron health. This aim addresses hypothesis (B) and 

investigates the potential role of ammonia metabolism in neural function using an 

organismal and tissue level approach. 

There is a large body of evidence that suggests Abeta contributes to oxidative 

damage in AD. One of the most susceptible proteins to oxidative damage in the brain is 

GLUL, an enzyme that functions in the removal of ammonia from the brain and other 

peripheral tissues. Because of the primary role of glutamate metabolism in neural function 
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and the toxicity of ammonia to the central nervous system, I next investigated the effects of 

changing the activities of enzymes involved in liver ammonia metabolism on blood and 

brain ammonia levels. The relationship between dietary protein intake and blood ammonia 

is surprisingly understudied in humans. The in silico model of whole-organism ammonia 

metabolism supports a complex interplay between the amount of dietary protein, the blood 

ammonia concentration, and the activities of ammonia metabolism enzymes. Protein 

restriction for the treatment of hepatic encephalopathy may be appropriate for some 

patients to limit blood and brain ammonia levels. In addition, heterozygosity for CPS1, a 

prevalent condition, may cause chronic, low-level hyperammonemia. Because of the high 

relative toxicity of ammonia on neural cells, the hyperammonemia may lead to cognitive 

impairment and other neurological dysfunction. 

 Considering the potential link between protein level in the diet and blood ammonia 

level, clinical studies elucidating the relationship between the two should be performed. 

Many of the animal studies examining the relationship used exaggerated protein diets, so 

studies using diets that are comparable in protein level to those consumed by humans are 

needed. The decreased viability of differentiated neuroblastoma cells exposed to 

pathological ammonium chloride levels warrants further investigation into the role of 

ammonia in the pathogenesis of neurological diseases. 

 

Specific Aim 3: Conclusions and Future Directions 

To determine if there is an association between single nucleotide polymorphisms 

(SNPs) in the GLS, CPS1, and GLUL genes and AD, MDD, and T2D, and to predict the effects 

of any associated SNPs in the disease processes. This aim addresses hypothesis (B) where I 



217 
 

suggest that altered ammonia metabolism stimulates neuropathology on a molecular and 

cellular level. 

 Data from investigating Specific Aim 2 resulted in further evidence supporting a role 

for pathological changes in the activities of enzymes involved in ammonia metabolism 

causing changes in blood ammonia levels and demonstrated that these altered ammonia 

levels may be toxic to neurons. Considering these results and the existing literature on the 

involvement of changes in glutamate and ammonia metabolism in AD, I investigated the 

possibility that mutations in ammonia metabolism genes were linked to AD, MDD, or T2D. 

SNPs in the GLS gene were found to be linked to AD and T2D, and SNPs in the GLUL and 

CPS1 genes were found to be linked to MDD. Bioinformatic analysis revealed that some of 

these SNPs are predicted to affect the binding of certain transcription factors to the 

promoters of the genes, possibly affecting the levels of expression of the ammonia 

metabolism genes in these diseases. Since these diseases are each associated with cortical 

thinning, since treatment with the NMDA receptor antagonist memantine is beneficial, and 

since they often display comorbidity, dysfunctional ammonia metabolism may partially 

explain some of the common pathologies of these diseases.  

 To further test the hypotheses generated from the data obtained from investigating 

Specific Aim 3, the data from a separate set of subjects could be analyzed to test for similar 

associations. The predicted changes in the affinity of transcription factors for DNA 

sequences containing the predicted functional SNPs would lead to further insight as well. 

Because of the reported associations with ammonia metabolism genes, the beneficial 

effects of memantine and other drugs that interfere with glutamate signaling should be 

further evaluated for the treatment of AD, MDD, and T2D. Altered ammonia and glutamate 
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metabolism appears to be an important factor in the development of several neurological 

diseases. 

 

Summary of Conclusions 

The studies performed further elucidate several common features of neurological 

diseases. First, I used RINs to detect similar features of amyloidogenic proteins that have 

not previously been reported. Because Abeta and ammonia both cause oxidative damage in 

the AD brain, and GLUL, an ammonia metabolism enzyme, is especially susceptible to 

oxidative damage, I explored the possible role of altered ammonia metabolism and altered 

dietary protein intake in the regulation of systemic ammonia levels using a computational 

model of hepatic encephalopathy and CPS1 deficiency. As hypothesized, I found blood 

ammonia levels likely depend heavily on the interaction of protein diet with the activities 

of GLUL, GLS, and CPS1. Because high ammonia levels are toxic to neurons and ammonia 

metabolism genes are involved in critical glutamate signaling, I investigated the possibility 

that SNPs in ammonia and glutamate metabolism genes are linked to AD, MDD, and T2D. 

Each of these diseases had an association with GLUL, GLS, or CPS1, and some of the intronic 

SNPs are predicted to regulate gene expression. These associations may partially explain 

the common neural pathology observed in these diseases. This dissertation demonstrates 

that taking a broad view of neurological diseases and their causes can provide novel 

insights into their pathogeneses. 
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Personal Perspective 

My undergraduate research included elucidating the interaction of Abeta with 

resveratrol and the interaction of insulin with phenol red. This work with amyloidogenic 

proteins in monomeric form sparked an interest in AD and related amyloidoses that I 

carried with me into my Ph.D. studies. During my graduate coursework, I realized that 

complex network analysis could provide a unique perspective on protein structural studies 

because it is a relatively new approach. I was able to find no studies that had applied 

complex network analysis to amyloidogenic proteins. Since there is little 3D structural and 

sequence similarity among amyloidogenic proteins in their soluble form, I hypothesized 

that there may be similarities in network connections. The results of my studies have 

encouraged me to continue using the approach in future research. 

There is a need for more protein structural studies using network analysis. To 

advance the field, protein structures with well-known functions should be re-examined 

from a network perspective to find correlations with network metrics (Chapter 2). In 

addition to correlations, drug design approaches that consider residue interaction 

networks could be effective. For example, the results reported in Chapter 3 suggests that 

drugs that stabilizes the network structure of Abeta42 in a more nonpolar environment 

could prevent unfolding and subsequent oligomer and fibril formation. This could occur 

through stabilizing the predicted interaction between Val24 and Ile31. However, if 

stabilizing the network is the goal, perhaps other residues in the vicinity could also be a 

target. A network perspective could provide a wider range of drug targets not previously 

considered. The allosteric inhibition and activation of enzymes provides an example of this 

principle. The binding of an inhibitor or activator to residues away from the active site can 
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change both the 3D and network structures of a protein and therefore change the activity 

of the enzyme. Similarly, network analysis may help researchers discover previously 

unidentified drug targets that exert profound effects on enzyme activity even though they 

are not near the active site. 

The series of studies on ammonia and glutamate metabolism in this dissertation was 

inspired by my grandfather, Wayne Birchfield. His stroke and subsequent medical care 

helped me understand the strong connection that exists between ammonia and glutamate 

metabolism and brain function. During a literature search on the cognitive effects of 

hyperammonemia, I found research supporting a role for ammonia in other neurological 

diseases, particularly AD. I came to appreciate the roles that ammonia and glutamate 

metabolism appear to play in a variety of neurological diseases (Chapters 4, 5, and 6).  

When initiating my research, I discovered that the focus of AD research is currently 

on the Abeta peptide. While Abeta exerts negative effects on the brain in AD, the lack of 

understanding of the nature of its role in both AD and normal physiology is striking. Even 

the structure of Abeta and which forms in the brain are most prevalent are contested after 

25 years of intense study (Wildburger et al. 2017), a testament to the complexity of AD 

pathogenesis. 

 The paucity of current treatment options should encourage researchers to examine 

other factors of AD pathology besides Abeta oligomerization and fibrillization (Herrup 

2015). I reviewed the literature on changes in amino acid metabolism in AD (Chapter 5) 

and found much evidence supporting pathological changes. Furthermore, identifying these 

changes provides opportunities for therapeutic intervention. Researchers need to untangle 

which changes contribute to disease and which changes are protective adaptations to 
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disease processes. Treatments for AD patients may one day include dietary supplements to 

help alleviate some symptoms that may occur due to changes in metabolism in AD. While 

AD will not be cured by dietary interventions alone, they may alleviate some symptoms or 

delay progression of the disease. 

After finishing my Ph.D. studies at East Tennessee State University, I will begin as an 

Assistant Professor of Biology at Mars Hill University. There I will continue research into 

neurological diseases and other interests. I would like to continue exploring the role of 

ammonia in neurological functions using C. elegans as a model organism. Does ammonia 

affect the ability of C. elegans to learn? (Yes, there are assays for C. elegans memory 

(Nuttley et al. 2002; Ardiel and Rankin 2010; Li et al. 2013)!) If so, what factors are 

involved? Because magnetic fields are effective as a treatment for some neurological 

diseases (Chou et al. 2015; Rutherford et al. 2015), I would also like to use C. elegans and S. 

cerevisiae as models for the effects of static magnetic fields on mitochondrial function 

(which declines in neural aging). I plan to further investigate residue interaction networks 

in CPS1, antimicrobial proteins, and protein toxins. I will also continue ongoing projects 

investigating tryptophan metabolism in AD, glutathione metabolism in AD, and pneumonia 

infection in AD patients. My Ph.D. research has helped me understand the power of the 

scientific method and an interdisciplinary approach. I will emphasize these points in my 

future endeavors in both research and higher education. 
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