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ABSTRACT 

Role of Ataxia-Telangiectasia Mutated Kinase in Cardiac Autophagy and Glucose Metabolism 

Under Ischemic Conditions  

by 

Patsy R. Thrasher 

Ataxia-telangiectasia mutated kinase (ATM), a serine/threonine kinase primarily located in the 

nucleus, is typically activated in response to DNA damage. Individuals with mutations in ATM 

gene develop a disease called Ataxia telangiectasia (AT). These individuals are more susceptible 

to ischemic heart disease and metabolic disorder. Our lab has previously shown that ATM plays 

a critical role in β-adrenergic receptor (β-AR) - and myocardial infarction (MI)-stimulated 

myocyte apoptosis and cardiac remodeling. This study tested the hypothesis that ATM plays a 

critical role in cardiac autophagy and glucose metabolism following MI and ischemia, 

respectively. Early during MI (4 hours after its onset) and 4 hours post-treatment with ATM 

inhibitor KU-55933, ATM deficiency resulted in autophagic impairment in the heart and in 

cardiac fibroblasts, respectively. Such autophagic changes in the heart and in cardiac fibroblasts 

associated with the activation of GSK-3β and mTOR, and inactivation of Akt and AMPK. ATM 

deficiency also augmented autophagy in the infarct region of the heart 28 days post-MI as well as 

in cardiac fibroblasts treated with ATM inhibitor KU-55933 for 24 hours. Autophagic changes in 

the infarct region during ATM deficiency associated with enhanced Akt, Erk1/2, and mTOR 

activation. Additionally, the lack of ATM accelerated glycolysis and gluconeogenesis and 

augmented TCA cycle metabolism under non-ischemic conditions. Following a 20 minute global 

ischemic period, the glycolytic pathway, not the gluconeogenic pathway, was down-regulated 

during ATM deficiency which was found to be associated with alterations in TCA cycle 
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metabolism. Such metabolic rearrangements associated with changes in the phosphorylation of 

Akt, GSK-3β, and AMPK alongside alterations in Glut4 protein expression. Thus, ATM 

deficiency impairs autophagy early after the onset of MI and in cardiac fibroblasts treated with 

ATM inhibitor KU-55933 for 4 hours. In contrast, ATM deficiency appears to augment 

autophagy late post-MI in the infarct region of the heart and in cardiac fibroblasts treated with 

ATM inhibitor KU-55933 for 24 hours. Lack of ATM alters glucose and TCA cycle metabolism 

with and without ischemia. Such findings implicate ATM as a key player in autophagic changes 

in the heart in response to MI as well as in glucose metabolism under non-ischemic and ischemic 

conditions.   
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CHAPTER 1 

INTRODUCTION 

Myocardial Infarction and Heart Failure 

Heart failure is the leading cause of death worldwide; in fact, 17.3 million of the 54 

million total deaths in the world in 2013 were due to cardiovascular disease. Roughly 92.1 

million adults in the United States have at least one type of cardiovascular disease and those 

numbers are expected to increase (Go et al. 2017). Heart disease can occur in response to many 

conditions like coronary artery disease, chronic hypertension, atherosclerosis, and myocardial 

infarction (MI) (Frangogiannis 2008). MI ultimately leads to heart failure by initiating a cascade 

of events collectively known as left ventricular remodeling (LV remodeling/cardiac remodeling), 

a process characterized by changes in ventricular function, shape, and size (Sutton and Sharpe 

2000). LV remodeling is divided into an early phase (within 72 hours post infarction) and a late 

phase (beyond 72 hours post infarction) (Sutton and Sharpe 2000). Within hours of MI, cardiac 

myocytes (the fundamental contractile cell of the myocardium) begin to undergo apoptosis 

(Sutton and Sharpe 2000; Shih et al. 2010). Cardiac myocyte apoptosis triggers expansion of the 

infarcted area (early phase cardiac remodeling) that is subsequently followed by myocardial 

hypertrophy, cardiac fibrosis, and a deterioration of contractile function (late phase cardiac 

remodeling) (Sutton and Sharpe 2000; Shih et al. 2010). Collectively, this process results in a 

poorly functioning left ventricle that progresses to heart failure (Sutton and Sharpe 2000; Shih et 

al. 2010).  
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Autophagy and Heart Failure 

Autophagy is a conserved physiological process in the body that ultimately results in the 

packaging of damaged cytoplasmic components into autophagosomes that fuse to lysosomes for 

degradation (Klionsky et al. 2007; Meijer and Codogno 2009; Jimenez et al. 2014; Bravo-San 

Pedro et al. 2017). Autophagy consist of three main phases: 1) induction and phagophore 

formation, 2) phagophore elongation and autophagosome formation, and 3) lysosomal fusion, 

degradation, and recycling (Mizushima 2007). Autophagy is critical to cellular homeostasis both 

under normal and stressful conditions. Despite its beneficial role, insufficient or excessive 

autophagic activity can result in the development of diseases such as cancer and heart failure 

(Meijer and Codogno 2009; Jimenez et al. 2014; Bravo-San Pedro et al. 2017). In fact, 

autophagic vesicles are present in the heart tissue of patients with idiopathic dilated 

cardiomyopathy (Kostin et al. 2003) and defects in the autophagy-lysosomal pathway is a 

characteristic of Danon disease (Gustafsson and Gottlieb 2009). While autophagy can serve as an 

alternate pro-survival pathway to apoptosis, excessive autophagic flux can lead to apoptosis. 

Because of the complex nature of the process, it is not always clear whether autophagy is 

detrimental or beneficial in different situations, especially in stressful situations. However, 

autophagy is suggested to play a significant role in cardiac remodeling, particularly following 

MI. Studies have shown that autophagy promotes the survival of cardiac myocytes during 

myocardial ischemia and even reduces infarct size and attenuates adverse cardiac remodeling 

post-MI (Kanamori, Takemura, Goto, Maruyama, Ono, et al. 2011; Wu et al. 2014). Moreover, 

defects in autophagy have been linked to cardiac dysfunction and heart failure (Ilkun and 

Boudina 2013). Thus, autophagy is considered cardioprotective and a potential therapeutic target 

for the treatment of heart disease.    
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Metabolism and Heart Failure 

The heart is the most ATP-consuming organ in the body, utilizing 6 kg of ATP to pump 

10 tons of blood daily (Wang et al. 2014; Lopaschuk 2016). Due to the low cardiac ATP reserve, 

the heart requires constant ATP synthesis to maintain contraction and relaxation (Wang et al. 

2014). To achieve constant ATP synthesis, the heart utilizes a wide array of metabolic substrates 

like free fatty acids (FFAs), glucose, lactate, and even ketones (Nagoshi et al. 2011; Doenst et al. 

2013; Wang et al. 2014; Lopaschuk 2016). Under normal physiological conditions, both fatty 

acids and carbohydrates like glucose serve as the main fuels to sustain cardiac function (Nagoshi 

et al. 2011; Lopaschuk 2016). However, under stressful conditions like ischemia, there is a shift 

in metabolic substrate utilization from FFA oxidation to carbohydrate oxidation, an effort that is 

thought to preserve the mechanical function and efficiency of the heart and enhance the recovery 

of post-ischemic function (Lopaschuk 2016). Interestingly this shift from FFA oxidation to 

carbohydrate oxidation, particularly glucose oxidation, is the normal adaptive response of the 

failing heart (Nagoshi et al. 2011; Doenst et al. 2013; Wang et al. 2014). However, studies have 

shown that there are no major metabolic substrate alterations in early-stage heart failure (Recchia 

et al. 1998; Funada et al. 2009; Wang et al. 2014). In fact, there are normal rates of FFA and 

glucose metabolism during the early stages of pacing-induced heart failure in dogs (Recchia et 

al. 1998). Furthermore, a study assessing metabolic substrate utilization by the failing human 

heart using arterio-venous blood sampling demonstrated that FFA uptake was similar in patients 

with early-stage heart failure compared to controls, a phenomenon that has mostly been 

attributed to the wide range of compensatory processes that occur during the early stages of heart 

failure (Funada et al. 2009). However, during end-stage or advanced decompensated heart failure 

FFA uptake is significantly reduced while glucose metabolism is increased (Wang et al. 2014), a 
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phenomenon that may be attributed to the fact that glucose metabolism is more oxygen efficient 

than FFA metabolism (Doenst et al. 2013). In fact, an evaluation of myocardial FFA and glucose 

uptake in patients with congestive heart failure revealed that FFA uptake decreased while 

glucose uptake increased in those heart (Taylor et al. 2001) and glucose metabolism is increased 

in cardiac hypertrophy (Kolwicz and Tian 2011). Thus, metabolic therapy has been proposed as a 

novel means of enhancing cardiac energetics and function in the failing heart (Nagoshi et al. 

2011; Doenst et al. 2013; Wang et al. 2014). Because glucose uptake is increased during end-

stage heart failure, therapies that promote glucose utilization while suppressing FFA metabolism 

have gained considerable attention (Nagoshi et al. 2011; Doenst et al. 2013; Wang et al. 2014). 

 

Ataxia-Telangiectasia Mutated Kinase and Ataxia Telangiectasia Disorder 

Ataxia Telangiectasia Mutated Kinase (ATM) is a 370 kDa serine/threonine kinase 

located primarily in the nucleus where its primary function is to control cell cycle progression 

following double-stranded DNA breaks (Matsuoka et al. 1998; Rotman and Shiloh 1998; Yang 

and Kastan 2000; Abraham 2001; Peretz et al. 2001; Guinea Viniegra et al. 2005; Schneider et 

al. 2006; Halaby et al. 2008). Following DNA damage, ATM is activated via the 

autophosphorylation of several phosphorylation sites such as S2996, S367, S1893, and S1981 

(Bakkenist and Kastan 2003; Kozlov et al. 2006). Active ATM then phosphorylates a plethora of 

downstream targets that are involved in cell cycle arrest (Banin et al. 1998; Matsuoka et al. 

1998). For example, ATM activates p53 and Chk2, proteins critical in checkpoint-mediated cell 

cycle arrest (Banin et al. 1998; Matsuoka et al. 1998). Although the most widely known function 

of ATM is DNA damage repair, ATM also resides in the cytoplasm where it plays a critical role 

in regulating responses to many genotoxic stresses (Watters et al. 1999; Yang and Kastan 2000). 
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For instance, oxidative stress activates ATM (Guo et al. 2010). In fact, reactive oxygen species 

(ROS) can activate ATM directly (Guo et al. 2010). ROS levels are high in the cerebella of 

ATM-deficient mouse brains and there are abnormalities in antioxidant systems in ATM-

deficient cells and tissues (Barzilai et al. 2002). Additionally, ATM-deficient mice exhibit 

alterations in levels of several compounds involved in oxidative stress (Barzilai et al. 2002). 

ATM-deficient mice experienced increased activity of thioredoxin coupled with a significant 

decrease in catalase activity and a significant increase in MnSOD (SOD2) in the cerebella 

(Barzilai et al. 2002). Such alterations indicate the progressive deterioration of the redox balance 

in ATM-deficient mice (Barzilai et al. 2002). ATM-deficient cells also exhibit mitochondrial 

dysfunction as they experience an increase in mitochondrial numbers, a phenomenon that has 

been attributed to impaired mitophagy (Valentin-vega et al. 2012).  

Ataxia Telangiectasia (AT) is a rare multisystemic disease resulting from mutations in the 

ATM gene (Yang and Kastan 2000; Peretz et al. 2001; Halaby et al. 2008). Mutations in the ATM 

gene can result in either protein instability and complete functional loss or it can cause a decrease 

in the amount of functional protein or a decrease in kinase activity (Stewart et al. 2001; 

McKinnon 2004). The latter does not typically result in a severe phenotype as such mutations do 

not result in the complete absence of a functional ATM protein (Stewart et al. 2001; McKinnon 

2004). Individuals with a mutation in one allele, ATM heterozygotes, make up roughly 1.4-2% 

of the population (Lavin et al. 1995; Khanna et al. 2001). Patients with AT can experience 

growth retardation, immunodeficiency, cancer susceptibility, cerebellar ataxia, insulin resistance, 

γ-radiation hypersensitivity, etc (Yang and Kastan 2000; Peretz et al. 2001; Guinea Viniegra et 

al. 2005; Schneider et al. 2006; Halaby et al. 2008). These individuals are also more susceptible 

to ischemic heart disease (Lavin et al. 1995; Khanna et al. 2001) and carriers of a mutated allele 
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are at a higher risk of death between ages 20 and 79 compared to non-carriers (Su and Swift 

2000). On average, carriers of a mutates allele die 7 to 8 years younger than non-carriers with 

ischemic heart disease being the second cause of death in these individuals next to cancer (Su 

and Swift 2000).   

 

ATM and the Heart 

ATM expression in the heart 

Catecholamines, such a norepinephrine, are released during myocardial ischemia and, 

when accumulated, may contribute to ischemic heart disease and heart failure (Foster, Singh, et 

al. 2012). Norepinephrine, acting via β-adrenergic receptor (β-AR) stimulation, induces cardiac 

myocyte apoptosis and myocardial remodeling (Singh et al. 2000; Krishnamurthy et al. 2007). In 

an effort to uncover the effect of β-AR stimulation on the expression of apoptosis-related genes, 

our laboratory used gene array technique to examine the expression of 96 apoptosis-related genes 

in sham and isoproterenol-infused hearts (isoproterenol is a synthetic catecholamine) (Foster, 

Singh, et al. 2012). It was found that β-AR stimulation decreased Bcl-2 expression but increased 

BNIP-3 expression in the heart (Foster, Singh, et al. 2012). However, involvement of BNIP-3 

and Bcl-2 in cardiac myocyte apoptosis and myocardial remodeling had previously been 

examined (Gálvez et al. 2006; Diwan et al. 2007; Hamacher-Brady et al. 2007). What was 

interesting  to observe was that ATM expression increased in hearts following β-AR stimulation 

with isoproterenol (Foster, Singh, et al. 2012). Furthermore, it was observed that ATM mRNA 

increased ~2.5 fold following β-AR stimulation with isoproterenol in cardiac myocytes (Foster, 

Singh, et al. 2012). Thus, our laboratory was the first lab to show that cardiac myocytes express 

ATM at basal levels and that β-AR stimulation increases ATM expression in vivo and in vitro 
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(Foster, Singh, et al. 2012). These data were further confirmed by increased expression of ATM 

in the heart following injuries, providing evidence that ATM protein levels increase in both the 

non-infarct and infarct regions of wild-type (WT) and ATM heterozygous knockout (hKO) 

hearts 1 and 3 days post-MI (Daniel et al. 2014).  

ATM and heart function 

Using ATM knockout (KO) mice to investigate the connection between the lack of ATM 

and basal cardiac structure and function, our laboratory previously provided evidence that ATM 

KO mice had lower left ventricular end-diastolic diameter (LVEDD), left ventricular end-systolic 

diameter (LVESD), left ventricular end-systolic volume (LVESV), systolic and diastolic septal 

wall thicknesses, and LV mass (Foster, Zha, et al. 2012). However, there were no significant 

changes in fractional shortening (%FS) and ejection fraction (%EF) (Foster, Zha, et al. 2012). 

Interestingly, myocardial fibrosis and myocyte cross-sectional area or hypertrophy, both key 

components in regulating heart function, were higher in KO hearts compared to WT hearts 

(Foster, Zha, et al. 2012). Since myocyte hypertrophy serves as a compensatory mechanism that 

improves heart function following hemodynamic overload (St et al. 2000), it is possible that %FS 

and EF are sustained in KO hearts by myocyte hypertrophy even though myocardial fibrosis is 

increased. These results also pointed in the direction of diastolic impairment in the absence of 

ATM under basal conditions.     

Although the lack of ATM did not result in decreased in %FS and EF in the heart under 

basal conditions, studies investigating the role of ATM deficiency in cardiac function post-MI 

revealed that ATM deficiency does not have the same effect on cardiac remodeling early post-MI 

as it does late post-MI. In studies investigating the structure and function of the heart 1, 3, and 7 

days post-MI in ATM hKO mice, m-mode echocardiography revealed that ATM hKO mice have 
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lower left ventricular (LV) diameters and volumes as well as increased %FS and EF 1, 3, and 7 

days post-MI (Foster et al. 2013; Daniel et al. 2014). Additionally, ATM deficient mice 

experienced increased myocardial fibrosis and alpha-smooth muscle actin expression 3 and 7 

days post-MI (Foster et al. 2013; Daniel et al. 2014). Alpha-smooth muscle action (α-SMA) is a 

marker of myofibroblast differentiation and serves as a key indicator of myocardial fibrosis as 

myofibroblasts are the primary source of fibrosis deposition post-MI (Foster et al. 2013; Daniel 

et al. 2014). Furthermore, ATM deficient hearts had increased infarct thickness 7 days post-MI 

(Foster et al. 2013), a phenomenon that may serve as a by-product of increased myofibroblast 

differentiation in ATM deficient hearts and aid in mitigating LV dysfunction early post-MI.   

On the contrary, chronic MI resulted in LV dysfunction during ATM deficiency (Daniel 

et al. 2016). A study exploring cardiac function and remodeling in ATM hKO mice 14 and 28 

days post-MI showed that ATM deficiency results in decreased %FS and EF as well as increased 

LVESV (Daniel et al. 2016). ATM deficient mice also had increased myocyte apoptosis, fibrosis, 

and myocyte hypertrophy (Daniel et al. 2016), all typical characteristics of heart failure during 

the later stages of MI. Interestingly, a similar phenomenon occurred in ATM deficient hearts 28 

days following β-AR stimulation as evidenced by a decrease in %FS and EF together with 

increase in myocyte apoptosis and fibrosis (Foster, Singh, et al. 2012). Together, these results 

provide evidence that ATM is versatile, playing a protective role in the heart early after injury, 

but playing a detrimental role late after injury.  

ATM and myocyte apoptosis and cardiac fibrosis  

As the primary contractile cell in the heart, myocytes play a significant role in cardiac 

remodeling, putting myocyte apoptosis at the center of structural and functional changes in the 

heart during cardiac remodeling (Walker and Spinale 1999; Haunstetter and Izumo 2000; Nadal-
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Ginard et al. 2003). p53 is a downstream target of ATM and activation of p53 prompts the 

expression of pro-apoptotic genes like Bax (Toshiyuki and Reed 1995). Investigation of the role 

of ATM deficiency in myocyte apoptosis 28 days post β-AR stimulation, ATM heterozygosity 

resulted in an increase in myocyte apoptosis (Foster, Singh, et al. 2012). However, the 

expression and phosphorylation of p53 and expression of Bax increased to a similar extent in 

WT and hKO hearts following β-AR stimulation (Foster, Singh, et al. 2012). Conversely, 

myocyte apoptosis increased roughly 0.4 fold in both WT and KO hearts 24 hours following β-

AR stimulation (Foster, Zha, et al. 2012). In WT hearts only, β-AR stimulation resulted in the 

expression and phosphorylation of p53 and phosphorylation of JNK (Foster, Zha, et al. 2012). 

On the other hand, β-AR stimulation resulted in a decrease in Akt phosphorylation in KO hearts 

compared to WT hearts (Foster, Zha, et al. 2012). Together, these studies suggest that p53 and 

JNK pathways may be involved in β-AR-stimulated myocyte apoptosis in WT hearts, while Akt-

dependent pathways may play a role in regulating apoptosis in KO hearts. Interestingly, Akt 

phosphorylation was lower in the infarct region of ATM deficient hearts 1 day post-MI 

compared to hKO-sham and WT-MI hearts (Daniel et al. 2014). This phenomenon further 

implicates Akt-dependent pathways in myocyte apoptosis during ATM deficiency, particularly 

post injury.   

Myocardial fibrosis is characterized by an accumulation of extracellular matrix (ECM) 

proteins in the interstitium and plays an important role in the development of heart failure by 

acting on systolic and diastolic dysfunction (Kong et al. 2014). Fibroblasts produce enzymes 

such as matrix metalloproteinases (MMPs) and tissue inhibitor of metalloproteinases (TIMPs) 

that influence ECM homeostasis and are key in the deposition of fibrosis in the myocardium 

(Fan et al. 2012). Myocardial fibrosis and MMP-2 protein levels significantly increased in ATM 
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deficient hearts under basal conditions and 28 days post-β-AR stimulation (Foster, Zha, et al. 

2012; Foster, Singh, et al. 2012). However, TIMP-2, an MMP-2 inhibitor, decreased in ATM 

deficient hearts 28 days post-β-AR stimulation (Foster, Singh, et al. 2012). These results 

implicate MMP-2 in myocardial fibrosis at basal levels and following β-AR stimulation during 

ATM deficiency. Contrarily, ATM deficiency resulted in an increase in MMP-9 protein 

expression in the infarct region of the heart 7 days following MI (Foster et al. 2013). However, 

28 days post-MI ATM deficiency resulted in an increase in fibrosis and a decrease in MMP-9 

protein expression in the non-infarct region of the heart (Daniel et al. 2016). These results 

provide evidence that, unlike in the case of β-AR stimulation, MMP-9 plays a role in fibrosis 

post-MI.     

ATM and cardiac inflammation  

 An inflammatory response is vital to cardiac remodeling and repair in response to insults 

such as MI (Frangogiannis 2008). Following MI, neutrophils infiltrate the infarcted area of the 

heart to remove dead cells (Frangogiannis 2008). Subsequently, macrophages engulf apoptotic 

neutrophils that lead to the production of anti-inflammatory cytokines (Frangogiannis 2008). One 

of the major anti-inflammatory cytokines produced is transforming growth factor β (TGF-β), 

which plays a role in myofibroblast differentiation and cardiac remodeling (Frangogiannis 2012).  

 Investigation of the role of ATM deficiency in the inflammatory response post-MI 

revealed that the number of neutrophils and macrophages dramatically increased in the infarct 

region of WT and hKO hearts 1 and 3 days post-MI compared to their respective shams (Daniel 

et al. 2014). Although there was no difference in the number of neutrophils and macrophages in 

the infarct region of hKO hearts 3 days post-MI, there was a significant decrease in the number 

of neutrophils and macrophages in the infarct region of hKO hearts 1 day post-MI (Daniel et al. 
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2014). Additionally, TGF-β protein expression was lower in the infarct region of hKO hearts 3 

days post-MI (Daniel et al. 2014). Collectively, these studies provide evidence that deficiency of 

ATM delays the inflammatory response in the heart early following MI, which may help explain 

improved LV function early post-MI during ATM deficiency.  

 

ATM and Autophagy 

As mentioned prior, autophagy is a catabolic process that functions to remove selected 

cytoplasmic components to maintain cellular homeostasis (Stagni et al. 2018). Autophagy is 

triggered by several phenomena, including nutrient starvation, mitochondrial dysfunction, 

hypoxia, etc (Stagni et al. 2018). Interestingly, cytoplasmic ATM is also activated in response to 

the same stressors (Stagni et al. 2018). In fact, ATM is shown to play a role in autophagy 

induction especially in cancer models (Farooqi et al. 2014; Stagni et al. 2018). Autophagy was 

induced in colorectal cancer cells treated with a low dose of camptothecin; furthermore, 

autophagy inhibitors enhanced apoptosis in these cell (Farooqi et al. 2014). Head and neck 

cancer cells treated with KU-55933, a specific ATM inhibitor, demonstrated increased 

autophagy and treating those cells with autophagy inducers increased KU-55933- induced 

apoptosis (Farooqi et al. 2014). Additionally, there is evidence that ATM activates the AMPK-

ULK1 pathway, a pathway that is known to induce autophagy, in U87MG and U251 glioma cell 

lines (Farooqi et al. 2014). There is recent evidence suggesting that ATM mediates its effects on 

autophagy via mTOR regulation (Farooqi et al. 2014; Stagni et al. 2018). It has been 

demonstrated that ATM activates the TSC2 tumor suppressor via the LKB1/AMPK pathway in 

the breast cancer cell line MCF-7 to repress mTORC1 and induce autophagy in response to 

elevated ROS (Alexander et al. 2010). ATM is also shown to regulate autophagy by sustaining 
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levels and activity of ATG4C protease in cancer cells grown as mammospheres (Antonelli et al. 

2017).  

ATM and Metabolism 

AT patients have an increased risk of developing metabolic diseases such as 

hypertension, insulin resistance, impaired glucose metabolism, and diabetes (Stracker et al. 2013; 

Takagi et al. 2015; Dahl and Aird 2017). In fact, it has been shown that 17% of AT patients 

develop type 2 diabetes mellitus and ATM-/-, ATM+/- /ApoE-/-, and ATM-/- /ApoE-/- mice suffer 

from glucose intolerance (Takagi et al. 2015). In addition to showing that ATM-/- mice were 

glucose intolerant with a condition that mimicked type 2 diabetes mellitus, Takagi et al. also 

showed that ATM+/- male mice fed a high-fat diet had abnormal adipose distribution (Takagi et 

al. 2015). Analysis of brain glucose metabolism in humans with AT and their asymptomatic 

relatives revealed fluctuations in glucose metabolism in AT patients compared to their 

asymptomatic relatives and unrelated controls (Volkow et al. 2014). AT patients had lower 

metabolism in the fusiform gyrus, cerebellar hemispheres, hippocampus, and anterior vermis 

compared to siblings or controls (Volkow et al. 2014). AT patients had higher metabolism in the 

globus pallidus that associated with negative motor performance compared to controls or siblings 

(Volkow et al. 2014).  

ATM signaling has been linked to inulin signaling and subsequent metabolic regulation 

(Bar et al. 1978; Dahl and Aird 2017). Bar et al. showed that monocytes of AT patients have a 

decreased binding affinity for insulin when compared to their unaffected counterparts (Bar et al. 

1978). It has been proposed that ATM signaling through p53 plays a critical role in both insulin 

resistance and glucose homeostasis (Dahl and Aird 2017). Once activated, ATM phosphorylates 

and activates p53 which in turn can suppress glycolysis via a plethora of pathways (Dahl and 
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Aird 2017). p53 can regulate the SLC2A and SLC2A4 genes that encode for the glucose 

transporters GLUT1 and GLUT4 (Dahl and Aird 2017). p53 can also inhibit IKK and activate 

TIGAR to regulate glycolysis (Dahl and Aird 2017). Additionally, KU-55933, a specific ATM 

inhibitor, increased glucose uptake and lactate production in MCF-7 and HepG2 cells (Zakikhani 

et al. 2012). KU-55933 also decreased levels of TCA metabolites fumarate, malate, citrate, and 

α-ketoglutarate in MCF-7 cells, while increasing succinate levels in those cells (Zakikhani et al. 

2012). Collectively, these results place ATM as a critical player in cellular energy metabolism.     

 

Specific Aims 

The overall goal of this study was to determine the role of ATM in cardiac autophagy and 

glucose metabolism under ischemic conditions. The specific aims of this study were to: (1) 

investigate the role of ATM deficiency in autophagy early (4 hours) during MI; (2) examine the 

role of ATM deficiency in autophagy late (28 days) post-MI; and (3) determine the role of ATM 

deficiency in glucose metabolism post-ischemia.    
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Abstract 

Ataxia-telangiectasia mutated kinase (ATM) is activated in response to DNA damage. We have 

previously shown that ATM plays a critical role in myocyte apoptosis and cardiac remodeling 

following myocardial infarction (MI). Here, we tested the hypothesis that ATM deficiency 

results in autophagic impairment in the heart early during MI. MI was induced in wild-type (WT) 

and ATM heterozygous knockout (hKO) mice by ligation of the left anterior descending artery 

(LAD). Structural and biochemical parameters of the heart were measured 4 hours following 

LAD ligation. M-mode echocardiography revealed that MI worsens heart function as evidenced 

by reduced percent ejection fraction and fractional shortening in both groups. However, MI-

induced increase in left ventricular end-diastolic and systolic diameters, and volumes were 

significantly lower in hKO hearts. ATM deficiency resulted in autophagic impairment during MI 

as evidenced by decreased LC3-II, increased p62, decreased cathepsin D protein levels, and 

increased aggresome accumulation. ERK1/2 activation was only observed in WT-MI hearts. 

Activation of Akt and AMPK was lower, whereas activation of GSK-3β and mTOR was higher 

hKO-MI hearts. Inhibition of ATM using KU-55933 resulted in autophagy impairment in cardiac 

fibroblasts as evidenced by decreased LC3-II protein levels and formation of acidic vesicular 

organelles. This impairment associated with decreased activation of Akt and AMPK, but 

enhanced activation of GSK-3β and mTOR in KU-treated fibroblasts. Thus, ATM deficiency 

results in autophagic impairment in the heart during MI and cardiac fibroblasts. This autophagic 

impairment may occur via the activation of GSK-3β and mTOR, and inactivation of Akt and 

AMPK.  
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New & Noteworthy 

ATM plays a critical role in myocyte apoptosis and cardiac remodeling following myocardial 

infarction (MI). Here, we provide evidence that ATM deficiency results in autophagic 

impairment during MI. Further investigation of the role of ATM in autophagy post-MI may 

provide novel therapeutic targets for Ataxia-telangiectasia patients suffering from heart disease.  
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Introduction 

Heart failure is the leading cause of death worldwide. Cardiovascular disease accounted 

for ~17.3 million deaths out of 54 million total deaths worldwide in 2013. Despite having 

medications to manage the complications of heart failure, there is currently no treatment to 

alleviate the condition (18). Coronary artery disease (CAD) is the most common form of heart 

disease with myocardial infarction (MI) as a serious outcome. Treatment of CAD and its 

progression to heart failure remains a challenging area of research (17). 

Ataxia-telangiectasia mutated kinase (ATM) is a ~370 kDa serine/threonine kinase that 

primarily resides in the nucleus (19, 20, 40, 44, 45, 54). The main function of ATM is to control 

cell cycle progression following DNA damage, particularly double strand breaks (1, 36). In 

response to DNA damage, ATM is activated and recruited to DNA double strand breaks. 

Although ATM has mostly been reported as a nuclear protein involved in signaling pathways 

that control DNA damage recognition, it is also located in the cytoplasm where it plays a role in 

several metabolic pathways (50, 54). Mutations in ATM cause a multisystemic disease known as 

Ataxia-telangiectasia (AT) (20, 40, 54). AT heterozygotes, individuals with an ATM mutation in 

one allele, make up a substantial portion of the population (~1.4 to 2%) (25, 30). The incidence 

of AT is significantly higher in consanguineous populations (6). Although AT heterozygotes are 

spared from most of the symptoms of AT, they are more susceptible to ischemic heart disease 

(25, 30).    

Macroautophagy (hereafter called autophagy) is a conserved physiological process in the 

body that ultimately results in the packaging of cytoplasmic components into autophagosomes 

that fuse to lysosomes for degradation (5, 23, 29, 37). Autophagy consist of three main phases: 1) 
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induction and phagophore formation, 2) phagophore elongation and autophagosome formation, 

and 3) lysosomal fusion, degradation, and recycling (38). Autophagy is critical to cellular 

homeostasis under normal and stressful conditions, and plays a crucial role in the development of 

diseases such as cancer and heart failure (5, 23, 37). In fact, autophagy is suggested to play a 

significant role in cardiac remodeling during MI. Studies have shown that autophagy promotes 

the survival of cardiac myocytes, reduces infarct size, and attenuates adverse cardiac remodeling 

post-MI (24, 52). Moreover, defects in autophagy have been linked to cardiac dysfunction and 

heart failure (22). Thus, autophagy is considered cardioprotective and a potential therapeutic 

target for the treatment of heart disease.  

Autophagic changes occur in mouse heart as early as 30 minutes following ligation of the 

left anterior descending artery (LAD). The LC3II-to-LC3-I ratio, an established indicator of 

autophagic turnover, is maximum 4 hours following LAD ligation (24), suggesting that 

autophagic activity increases in the ischemic heart during the early stages of MI. Previously we 

have shown that ATM plays a critical role in myocyte apoptosis and cardiac remodeling 

following β-adrenergic receptor stimulation and MI (10, 11, 14–16). Here, we tested the 

hypothesis that deficiency of ATM impairs autophagic response in the heart early during MI (4 

hours after its onset). The data presented here suggest that ATM deficiency impairs autophagy in 

the heart during MI via the activation of GSK-3β and mTOR, and inactivation of Akt and 

AMPK. 
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Materials and Methods 

Vertebrate Animals  

This investigation conforms to the Guide for the Care and Use of Laboratory Animals 

published by the US National Institutes of Health (NIH Publication No. 85-23, revised 1996). All 

the experiments were performed in accordance with the protocols approved by the East 

Tennessee State University Committee on Animal Care. ATM deficient mice (129xblack Swiss 

hybrid background), generated as described (4), were purchased from Jackson Laboratory. 

Genotyping was performed by PCR using primers suggested by the Jackson Laboratory. Age-

matched (~ 4-month-old) male and female mice were used for the study. Since homozygous 

knockout mice die at approximately 2 months of age due to thymic lymphomas (4), the study 

used ATM heterozygous knockout (hKO; deficient) mice. All mice undergoing surgery (Sham 

and MI) received buprenorphine injections prior to surgery.  

Myocardial Infarction 

Myocardial infarction (MI) was performed as previously described (10). Briefly, mice 

were anesthetized with a mixture of isoflurane (2%) and oxygen (0.5 l/min) inhalation and 

ventilated using a rodent ventilator (Harvard Apparatus). Body temperature was maintained at 

∼37°C using a heating pad. The heart was exposed by a left thoracotomy. The left anterior 

descending coronary artery (LAD) was ligated using a 7-0 polypropylene suture. Sham-operated 

mice underwent the same procedure without ligation of the LAD. At the end of the study period 

(4 hours following LAD ligation), isolated hearts were used for either histology or molecular 

analyses.  
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Echocardiography 

M-mode echocardiography images were obtained using transthoracic short-axis view 

imaging at midpapillary level 4 hours during MI using a Vevo 1100 machine utilizing a 550D 

probe. M-mode tracings were used to calculate percent fractional shortening (%FS) and ejection 

fractions (%EF) and measure heart rate, LV wall thicknesses, end-systolic (LVESD) and end-

diastolic dimensions (LVEDD), and end-systolic (LVESV) and end-diastolic volumes 

(LVEDV). An individual blinded to the experimental groups recorded the images, while a 

second individual assessed the images and calculated the structural and functional parameters of 

the heart.  

Aggresome detection by histological staining 

Paraffin-embedded heart sections were deparaffinized and rehydrated prior to staining. 

The tissue sections were immersed in xylene to remove the paraffin. Subsequently, the sections 

were rehydrated with decreasing ethanol concentrations (100, 90, 80%). The sections were 

stained using Proteostat dye (2000x dilution in PBS from the Proteostat Aggresomes Detection 

Kit, Enzo) for 3 minutes. The tissue sections were then washed in deionized water and destained 

using 1% acetic acid for 20 minutes. After washing with deionized water and PBS, slides were 

mounted using anti-fade mounting media, and visualized using the EVOS FL Auto fluorescence 

microscope (ThermoFisher Scientific). The images were acquired at 20x magnification. The 

number of aggresomes were quantified in the entire LV area.  
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Western blot analysis  

LV or cell lysates were prepared in RIPA buffer [10 mM Tris·HCl (pH 7.2), 158 mM 

NaCl, 1 mM EGTA, 0.1% SDS, 1% sodium deoxycholate, 1% Triton X-100, 1 mM sodium 

orthovanadate, and 0.2 mM phenylmethylsulfonyl fluoride] supplemented with protease 

inhibitors. Equal amounts of proteins (25 μg) were resolved using SDS-PAGE. The proteins 

were then transferred to a PVDF membrane. The membrane was blocked for one hour using 5% 

nonfat milk and incubated overnight with primary antibodies against LC3B (1:1000), p62 

(1:1000), p-Akt (ser-473; 1:1000), p-GSK-3β (ser-9; 1:1000), p-mTOR (ser-2448; 1:1000), p-

ERK1/2 (1:1000) (Cell Signaling), cathepsin D (1:1000), or p-AMPK (thr-172; 1:1000) (Santa 

Cruz). The immune-complexes were detected using appropriate secondary antibodies and 

chemiluminescent reagents. Protein signals were visualized using ImageQuant LAS 500 imager 

and quantified using ImageQuant TL software (GE). Equal protein loading for phosphoproteins 

was verified by reprobing/probing the membranes using anti-Akt, anti-GSK-3β, anti-AMPK, 

anti-mTOR, anti-ERK1/2 and anti-GAPDH antibodies. Quantitative analyses showed no 

differences in total protein levels for these proteins among the groups. Therefore, all the western 

blot data is normalized using GAPDH as a loading control.   

Fibroblast isolation and treatment 

Adult rat cardiac fibroblasts were isolated as previously described (53). The cells were 

grown to confluence in Dulbecco’s modified Eagle’s medium (DMEM) supplemented with 10% 

heat-inactivated fetal bovine serum and serum starved for 5 hours before use. The cells were then 

treated with the ATM inhibitor KU-55933 (KU; 100 μM; Tocris) for 4 hours. The cells were 

maintained in serum-free DMEM for the duration of the treatment.  
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Evaluation of acidic vesicular organelles by acridine orange 

At the end of the study period, fibroblasts treated with KU for 4 hours were incubated 

with 1 μg/mL acridine orange (Sigma) in serum-free DMEM for 15 minutes. The cells were then 

washed three times using PBS and observed using the EVOS FL Auto fluorescence microscope 

(ThermoFisher Scientific). All images were acquired at 20x magnification. Occurrence of acidic 

vesicular organelles was measured by the intensity of orange fluorescence using NIS-Elements 

image analysis software (Nikon). Aggresomes were quantified by counting cells in 15 randomly 

chosen fields per dish for each experiment.  

Statistical analysis 

Data are expressed as means ± SE. Data were analyzed using Student's t-test or a two-

way analysis of variance followed by the Student-Newman-Keuls test. P values of <0.05 were 

considered to be significant. 

Results 

Echocardiographic measurements 

M-mode echocardiography showed no difference in echocardiographic parameters 

between the two sham groups. MI significantly decreased %EF (WT-sham, 59.26±2.39; hKO-

sham, 61.09±2.43; WT-MI, 31.59±5.75*; hKO-MI, 26.95±5.16*; *p<0.05 vs. respective sham; 

n=5) and FS (WT-sham, 30.96±1.66; hKO-sham, 32.17±1.69; WT-MI, 14.95±2.97*; hKO-MI, 

12.29±2.69*; *p<0.05 vs. respective sham; n=5) in both groups compared to their respective 

shams. However, there was no significant difference in %EF and FS between the two genotypes 

post-MI (Figure 2.1A-2.1B). MI increased LVEDD (WT-sham, 3.19±0.17; hKO-sham, 
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3.36±0.33; WT-MI, 3.62±0.10*; hKO-MI, 3.07±0.16#; *p˂0.05 vs respective sham; #p˂0.05 vs 

WT-MI; n=5), LVESD (WT-sham, 2.21±0.13; hKO-sham, 2.30±0.26; WT-MI, 3.09±0.18*; 

hKO-MI, 2.65±0.14#; *p˂0.05 vs respective sham; #p˂0.05 vs WT-MI; n=5), LVEDV (WT-

sham, 41.70±4.76; hKO-sham, 49.10±10.67; WT-MI, 55.67±3.47*; hKO-MI, 38.41±5.02#; 

*p˂0.05 vs respective sham; #p˂0.05 vs WT-MI; n=5), and LVESV (WT-sham, 17.06±2.30; 

hKO-sham, 19.90±4.85; WT-MI, 36.68±5.41*; hKO-MI, 26.44±3.42#; *p˂0.05 vs respective 

sham; #p˂0.05 vs WT-MI; n=5) in WT when compared to WT-sham group. However, there was 

no significant increase in LVEDD, LVESD, LVEDV, and LVESV in hKO-MI versus hKO-sham 

group. In fact, these parameters were significantly lower in the hKO-MI versus WT-MI group 

(Figure 2.1C-2.1F). Heart rates, and posterior and septal wall thicknesses were not found to be 

significantly different between the two MI groups (data not shown).  
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Expression of autophagy-related proteins in cardiac tissue  

LC3 is considered as one of the most important autophagy markers since it is essential to 

autophagosome formation (39). In mammalian cells, LC3 is processed into LC3-I, a soluble form 

of LC3. LC3-I is then modified to LC3-II, a membrane-bound form of LC3, by the addition of 

Figure 2.1. Echocardiographic analysis of heart function. MI was performed in WT and hKO 

mice. Indices of cardiac function; percent ejection fraction (%EF), percent fractional 

shortening (%FS), LVEDD, LVESD, LVEDV, and LVESV were calculated using 

echocardiographic images 4 hours following LAD ligation. A: %EF. B: %FS. C: LVEDD. D: 

LVESD. E: LVEDV. F: LVESV. *p˂0.05 vs respective sham; #p˂0.05 vs WT-MI; n=5. 

LVEDD, LV end-diastolic diameter; LVESD, LV end-systolic diameter; LVEDV, LV end-

diastolic volume; LVESV, LV end-systolic volume.  
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phosphatidylethanolamine (PE). To date, LC3-II is the only well-characterized protein that is 

specifically localized to autophagosomes throughout the autophagy process, from 

autophagosome formation to lysosomal degradation. Thus, measuring the levels of LC3-II 

protein is suggested to be a good marker for early autophagosome formation (39). Western blot 

analysis of LV lysates using an anti-LC3 antibody revealed a significant increase in LC3-II 

protein levels in hKO-sham versus the WT-sham group (Figure 2.2). LC3-II protein levels were 

significantly increased in the WT-MI group when compared to the WT-sham. In contrast, LC3-II 

protein levels were significantly lower in the hKO-MI group when compared to the hKO-sham 

and WT-MI groups (*p˂0.05 vs respective sham; #p˂0.05 vs WT-MI; n=4-7; Figure 2.2).  

 
Figure 2.2. ATM deficiency reduces LC3-II protein levels 4 hours during MI. Total LV 

lysates, prepared from sham and MI hearts, were analyzed by western blot using LC3B 

antibodies. Top: western blot exhibiting immunostaining for LC3-I, LC3-II and GAPDH. 

Bottom: quantitative analysis of LC3-II normalized to GAPDH (*p˂0.05 vs respective sham; 

#p˂0.05 vs WT-MI; n=4-7).  
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p62 is an autophagy receptor, meaning that it recognizes and transports misfolded 

proteins to the autophagosome for degradation by lysosomes (33). Cathepsin D, a lysosomal 

protease, is involved in lysosomal degradation of misfolded proteins (49). Both p62 and 

cathepsin D are critical to autophagic clearance or the degradation of autophagolysosomes. p62 

protein levels were significantly higher in the hKO-sham group when compared to its WT 

counterpart (Figure 2.3A). p62 protein levels remained unchanged in WT-MI group. However, 

p62 protein levels were significantly greater in hKO-MI group versus the hKO-sham and WT-MI 

groups (*p˂0.05 vs respective sham; #p˂0.05 vs WT-MI; n=5-7; Figure 2.3A). Cathepsin D 

protein levels were not significantly different between the two sham groups. Cathepsin D protein 

levels remained unchanged in WT-MI group. However, MI led to a significant decrease in 

cathepsin D levels in hKO group versus hKO-sham and WT-MI groups (*p˂0.05 vs respective 

sham; #p˂0.05 vs WT-MI; n=4-5; Figure 2.3B).  

 

 

Figure 2.3. ATM deficiency increases p62 protein levels and decreases cathepsin D protein 

levels 4 hours during MI. Total LV lysates, prepared from sham and MI hearts, were analyzed by 

western blot using anti-p62 (A) and anti-cathepsin D (B) antibodies. Both p62 bands were 

analyzed. Top: western blots exhibiting immunostaining for p62, cathepsin D, and GAPDH. 

Bottom: quantitative analyses of p62 and cathepsin D protein levels normalized to GAPDH 

(*p˂0.05 vs respective sham; #p˂0.05 vs WT-MI; n=4-7). 
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Activation of signaling molecules related to autophagy 

Typically, Akt signaling acts as a positive regulator of autophagy (47). However, there 

are several downstream targets of Akt, such as GSK-3β, AMPK, and mTOR, that can act to 

either upregulate or downregulate the autophagy pathway. Inactivation (phosphorylation) of 

GSK-3β induces autophagy (7, 35, 51), while activation (phosphorylation) of AMPK stimulates 

autophagy (27) and activation (phosphorylation) of mTOR inhibits autophagy (27, 28). 

Phosphorylation of Akt remained unchanged in the sham groups and in the WT group post-MI. 

However, phosphorylation of Akt was significantly lower in the hKO-MI group when compared 

to hKO-sham and WT-MI groups (*p˂0.05 vs respective sham; #p˂0.05 vs WT-MI; n=5-7; 

Figure 2.4A). Akt acts as an upstream regulator of GSK-3β, phosphorylating it at serine 9 and 

inactivating it (13). Phosphorylation of GSK-3β was significantly lower in the hKO-MI group 

when compared to hKO-sham and WT-MI groups (*p˂0.05 vs respective sham; #p˂0.05 vs WT-

MI; n=5-7; Figure 2.4B). AMPK phosphorylation was significantly lower in the hKO-MI group 

when compared to hKO-sham and WT-MI groups (*p˂0.05 vs respective sham; #p˂0.05 vs WT-

MI; n=5-7; Figure 2.4C). mTOR phosphorylation was significantly lower in hKO-sham vs WT-

sham. MI significantly increased mTOR phosphorylation in both genotypes versus their 

respective sham groups. However, phosphorylation of mTOR was significantly greater in hKO-

MI when compared to WT-MI group (*p˂0.05 vs respective sham; #p˂0.05 vs WT-MI; n=4-5; 

Figure 2.4D).  
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ERK1/2 activation acts as a positive regulator of autophagy (47). ERK1/2 

phosphorylation was not significantly different between the two sham groups. ERK1/2 

phosphorylation was significantly higher in the WT-MI compared to the WT-sham group 

(*p˂0.05 vs respective sham; #p˂0.05 vs WT-MI; n=7; Figure 2.5). It remained unchanged 

between the hKO-MI vs hKO-sham group.   

 

Figure 2.4. ATM deficiency affects activation of Akt, GSK-3β, AMPK, and mTOR 4 hours 

during MI. Total LV lysates, prepared from sham and MI hearts, were analyzed by western 

blot using anti-p-Akt (A), anti-p-GSK-3β (B), anti-p-AMPK (C), and anti-p-mTOR (D) 

antibodies. Top: western blots exhibiting immunostaining for p-Akt, p-GSK-3β, p-AMPK, p-

mTOR, and GAPDH. Bottom: quantitative analyses of p-Akt, p-GSK-3β, p-AMPK, and p-

mTOR normalized to GAPDH (*p˂0.05 vs respective sham; #p˂0.05 vs WT-MI; n=4-7).   
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Aggresome formation in cardiac tissue  

Aggresomes are aggregates of misfolded proteins within cells, which can ultimately be 

degraded by the autophagy pathway (46). The number of aggresomes was significantly lower in 

hKO-sham when compared to WT-sham group. MI led to decreased number of aggresomes in 

WT-MI versus WT-sham group. However, the number of aggresomes was significantly higher in 

hKO-MI group when compared to hKO-sham and WT-MI groups (*p˂0.05 vs respective sham; 

#p˂0.05 vs WT-MI; n=3; Figure 2.6).  

 

 

Figure 2.5. ERK1/2 activation 4 hours during MI. Total LV lysates, prepared from sham and 

MI hearts, were analyzed by western blot using phospho-specific ERK1/2 antibodies. Top: 

western blot exhibiting immunostaining for p-ERK1/2 and GAPDH. Bottom: quantitative 

analysis of p-ERK1/2 normalized to GAPDH (*p˂0.05 vs respective sham; n=7).   



40 
 

 

 

 

Autophagic response in cardiac fibroblasts  

Cardiac fibroblast-specific deletion of ATM in mice is shown to play a pivotal role in 

doxorubicin-induced cardiotoxicity (55). In fact, cardiac fibroblasts serve as a major cell type 

involved in deposition of fibrosis in the heart post-MI (48). To investigate if inhibition of ATM 

affects autophagic response of cardiac fibroblasts, serum-starved cultures of cardiac fibroblasts 

were treated with KU (100 μM) for 4 hours. Western blot analyses of cell lysates showed a 

significant decrease in LC3-II protein levels in KU-treated cells (*p˂0.05 vs CTL; n=3; Figure 

2.7). ATM inhibition had no effect on p62 and cathepsin D protein levels (data not shown).  

Figure 2.6. ATM increases aggresome accumulation in the LV 4 hours during MI. Left: 

Proteostat dye-stained images obtained from the LV of WT and hKO hearts 4 hours during 

MI. Red fluorescent staining indicates aggresomes. Right: quantitative analysis of aggresomes 

in the LV region (*p˂0.05 vs respective sham; #p˂0.05 vs WT-MI; n=3). 
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KU treatment significantly decreased phosphorylation of Akt, GSK-3β, and AMPK 

(*p˂0.05 vs CTL; n=3; Figure 2.8A-2.8C). However, it significantly increased mTOR 

phosphorylation (*p˂0.05 vs CTL; n=3; Figure 2.8D).  

Figure 2.7. Inhibition of ATM reduces LC3-II protein levels in cardiac fibroblasts. Serum-

starved cardiac fibroblasts were treated with KU-55933 (100 µm; ATM inhibitor) for 4 hours. 

Total cell lysates were analyzed by western blot using LC3B antibodies. Top: western blot 

exhibiting immunostaining for LC3-I, LC3-II and GAPDH. Bottom: quantitative analysis of 

LC3-II normalized to GAPDH (*p˂0.05 vs CTL; n=3). 
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The formation of acidic vesicular organelles (AVOs) is a key characteristic of cells that 

have passed through autophagy. AVOs, such as autolysosomes, increase upon autophagy 

induction (43). KU significantly decreased AVO formation in cardiac fibroblasts 4 hours post-

treatment (*p˂0.05 vs CTL; n=3; Figure 2.9). 

Figure 2.8. Inhibition of ATM affects activation of Akt, GSK-3β, AMPK, and mTOR in 

cardiac fibroblasts. Serum-starved cardiac fibroblasts were treated with KU-55933 (100 µm; 

ATM inhibitor) for 4 hours. Total cell lysates were analyzed by western blot using anti-p-Akt 

(A), anti-p-GSK-3β (B), anti-p-AMPK (C), and anti-p-mTOR (D) antibodies. Top: western 

blots exhibiting immunostaining for p-Akt, p-GSK-3β, p-AMPK, p-mTOR, and GAPDH. 

Bottom: quantitative analyses of p-Akt, p-GSK-3β, p-AMPK, and p-mTOR normalized to 

GAPDH (*p˂0.05 vs CTL; n=3). 
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Discussion 

ATM typically becomes activated in the presence of double-stranded DNA breaks (1, 

36). Thus, most of the studies regarding ATM and autophagy have been in relation to the DNA 

damage response. This is the first study investigating the role of ATM in cardiac autophagy, 

particularly during MI. A major finding of this study is that ATM deficiency results in 

autophagic impairment 4 hours during MI. This is evidenced by decreased LC3-II, increased 

p62, decreased cathepsin D protein levels, and enhanced aggresome accumulation. In accordance 

with in vivo data, ATM inhibition also resulted in autophagic impairment in adult cardiac 

Figure 2.9. Inhibition of ATM decreases acidic vesicular organelle (AVOs) formation in cardiac 

fibroblasts. Cardiac fibroblasts were treated with KU-55933 (100 µm) for 4 hours and then 

stained with acridine orange dye. Left: Orange fluorescent staining indicates acidic vesicular 

organelles (AVOs). Right: quantitative analysis of acidic vesicular organelles (AVOs) in cardiac 

fibroblasts (*p˂0.05 vs CTL; n=3).   
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fibroblasts as shown by a reduction in LC3-II protein expression and decrease in acidic vesicular 

organelle (AVO) formation. Further, we provide evidence that ATM deficiency may exert its 

effect on autophagy during MI via the activation of GSK-3β and mTOR and inactivation of Akt 

and AMPK as phosphorylation of Akt, GSK-3β, and AMPK decreased during MI, while mTOR 

phosphorylation increased during MI.  

MI worsened heart function 4 hours during MI as evidence by a decrease in %EF and FS 

in both groups when compared to their respective sham group. This is consistent with the 

observations of de Andrade et al. (2015) in CD1 mice where MI led to decreased %EF and FS 4 

hours following LAD ligation (3). Previously we provided evidence that ATM deficiency 

improves left ventricular (LV) function 1 day following LAD ligation as observed by hKO-MI 

hearts exhibiting higher %EF and FS coupled with lower LVESV and LVEDV when compared 

to WT-MI group (10). Here, %EF and FS remained unchanged between the two MI groups 4 

hours following LAD ligation. The observed no significant difference in %EF and FS between 

WT and hKO hearts may relate to an early observation time point (4 hours vs 24 hours after 

LAD ligation).    

Autophagy is suggested to be cardioprotective, reducing infarct size and attenuating 

adverse cardiac remodeling post-MI (24, 52). Moreover, defects in autophagy have been linked 

to cardiac dysfunction and heart failure (22). Thus, autophagy is typically upregulated post-MI 

(2, 24, 52). Specifically autophagy is induced in the acute phase of MI but impaired in the later 

phase of MI (24, 52). However, the mechanism(s) by which these autophagic changes occur 

post-MI is unknown. In our study, MI resulted in autophagic induction early during MI in WT 

hearts as evidenced by high LC3-II protein levels coupled with reduced aggregate accumulation. 
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Interestingly, Akt, GSK-3β, and AMPK phosphorylation was unaffected in WT hearts during 

MI. However, phosphorylation of mTOR (activation) and activation of ERK1/2 were 

significantly higher in WT hearts during MI. Several studies suggest that ERK1/2 signaling 

positively regulates autophagy (21, 47, 57). However, the involvement of mTOR in ERK1/2-

mediated autophagic changes are not completely clear. Zhang et al. showed that mTOR 

inhibition results in ERK1/2 activation that induces autophagy in hepatocellular carcinoma (56). 

Choi et al. demonstrated that ERK1/2 activation induced autophagy in luteal cells independent of 

mTOR activation (9). Additionally, ERK1/2 activation results in autophagic impairment in 

irinotecan-induced steatohepatitis (34). In the current study, we provide evidence that ERK1/2 

activation may be involved in the induction of autophagy in WT hearts during MI. However, 

further investigations are needed to define the correlation between ERK1/2 and mTOR 

activation.  

ATM is suggested to play a role in autophagy, particularly following DNA damage in 

cancer models. ATM is shown to be necessary for autophagy induction in response to ionizing 

radiation in Hela cells, a human cervical cancer cell line (32). ATM-mediated phosphorylation of 

PTEN promoted autophagy in cancer cells in response to DNA-damage causing agents (8). 

ATM/AMPK  signaling promoted autophagy induction in mouse spermatocytes in response to 

cadmium-induced oxidative stress (31). In the present study, we provide evidence that ATM is 

critical in cardiac autophagy at basal levels and during MI. ATM deficiency induces autophagy 

at basal levels as indicated by increased LC3-II protein levels coupled with an accumulation of 

p62. However, the number of aggresomes were lower in hKO-sham versus WT-sham group. 

Thus, it is possible that under basal conditions ATM deficiency results in enhanced autophagic 

flux; such enhancement could result in the accumulation of LC3-II and p62 and the rapid 
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degradation of aggresomes. During MI, ATM deficiency resulted in reduced LC3-II, increased 

p62, decreased cathepsin D protein levels and enhanced aggresome accumulation. Similarly, 

ATM inhibition resulted in a reduction in the LC3-II protein levels in cardiac fibroblasts. 

Although inhibition of ATM had no effect on p62 and cathepsin D protein expression in cardiac 

fibroblasts, the formation of acidic vesicular organelles was reduced. Together, these results 

suggest that ATM deficiency impairs autophagy in the heart at all three stages (autophagy 

induction, autophagosome formation, and autophagolysosome degradation) during MI and in 

cardiac fibroblasts. In ATM deficient hearts during MI, initiation of autophagy is lower as 

evidenced by decreased LC3-II. The enhanced accumulation of p62 and aggresomes is likely due 

to decreased cathepsin D levels, indicating impairment in aggresome degradation. In KU-treated 

cardiac fibroblasts, initiation of autophagy is decreased as evidenced by decreased LC3-II levels. 

The decrease in acidic vesicular organelles coupled with no changes in p62 and cathepsin D 

suggests a lack of autophagosome formation and subsequent degradation. Thus ATM deficiency 

impairs autophagy in the heart during MI and in cardiac fibroblasts by inhibiting autophagy 

induction, autophagosome formation, and autophagolysosome degradation. These findings 

ultimately reveal that ATM is critical in cardiac autophagy regulation in the presence and 

absence of an insult.     

The Akt/GSK-3β pathway is well known as a pro-survival pathway as it typically 

prevents apoptotic signaling (12). Akt signaling has also been implicated in the regulation of 

autophagy. Akt activation induces autophagy in the brain following middle cerebral artery 

occlusion, resulting in neuroprotection (42). Pharmacological inhibition of GSK-3β induces pro-

survival autophagic signals in human pancreatic cancer cells (35). Additionally, knockdown of 

GSK-3β increases basal autophagy and AMPK signaling in human aortic endothelial cells (51). 
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AMPK functions as an energy sensor in cells that is activated by ATP depletion or glucose 

starvation (41). In the heart, AMPK activation is critical to the heart’s response to stresses such 

as ischemia (41). Pharmacological activation of AMPK has cardioprotective effects, protecting 

the heart against ischemia-reperfusion injury by maintaining ATP levels post ischemia and 

reducing infarct size (26). AMPK activation promotes autophagy (27). Under conditions of low 

energy levels and hypoxia, AMPK inhibits mTOR (the master regulator of autophagy) activity 

via the phosphorylation of Raptor (7, 28). In the present study, we provide evidence that 

autophagic enhancement during ATM deficiency under basal conditions does not involve 

alterations in Akt, GSK-3β, or AMPK phosphorylation as those parameters remained unchanged 

in ATM deficient hearts. However, mTOR phosphorylation was lower in ATM deficient hearts, 

indicating that enhanced autophagic response in ATM deficient hearts under basal conditions 

may be mTOR dependent. ATM deficiency may cause autophagic impairment during MI and in 

cardiac fibroblasts via the activation of GSK-3β and mTOR, and inactivation of Akt and AMPK. 

We suggest that inactivation of Akt causes a reduction in GSK-3β phosphorylation, thus 

activating GSK-3β. Increased GSK-3β activity may result in a decline in AMPK phosphorylation 

and activation. This decline in AMPK activation results in mTOR activation that ultimately 

inhibits autophagic response. However, further investigations are necessary to confirm the 

relationship between the activation of GSK-3β and mTOR, and inactivation of Akt and AMPK in 

regulating autophagy during MI in ATM deficient hearts.     

In summary, WT hearts exhibited autophagy induction during MI, a phenomenon most 

likely because ERK1/2 activation. Under basal conditions, ATM deficiency results in enhanced 

autophagic response that appears to be mTOR dependent. In addition, ATM deficiency results 

autophagic impairment in all phases (autophagy induction, autophagosome formation, and 
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autophagolysosome degradation) during MI and in cardiac fibroblasts via the activation of GSK-

3β and mTOR, and inactivation of Akt and AMPK. It should be emphasized that our data on 

ATM deficiency and cardiac autophagy are obtained 4 hours following LAD ligation. The 

experimental time point should be extended beyond 4 hours to investigate the long-term effects 

of ATM deficiency on autophagic changes in the heart.  
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Abstract 

Ataxia-telangiectasia mutated kinase (ATM) is a cell cycle checkpoint protein activated in 

response to oxidative stress and DNA damage. We have previously shown that ATM deficiency 

impairs autophagic response in the heart early during myocardial infarction (MI). Here, we tested 

the hypothesis that ATM deficiency augments autophagy in the heart in a chronic MI (28 days 

post-MI) setting. MI was induced in wild-type (WT) and ATM heterozygous knockout (hKO) 

mice by ligating the left anterior descending artery (LAD). Levels of LC3-II and p62, major 

markers of autophagy, remained unchanged in the non-infarct region of the heart. Interestingly, 

MI altered autophagy in the infarct region of both WT and hKO hearts as evidenced by increased 

LC3-II and Beclin protein levels coupled with decreased p62 protein levels. However, Levels of 

LC3-II and cathepsin D were significantly higher in hKO-infarct hearts versus WT-infarct. 

Activation of AMPK was higher in the WT-Infarct group, while activation of Akt and mTOR 

was higher in the hKO-infarct versus WT-Infarct group.  In vitro, treatment of cardiac fibroblasts 

using KU-55933, an inhibitor of ATM, augmented autophagy as evidenced by increased LC3-II 

protein levels and decreased p62 protein levels. Thus, ATM deficiency results in autophagic 

augmentation in the infarct region of the heart 28 days post-MI and in cardiac fibroblasts.  
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Introduction 

Heart failure is the number one cause of death worldwide (12). Myocardial infarction 

(MI) is the most common cause of heart failure (31). Following MI, the heart undergoes 

remodeling, a process that ultimately changes the architecture and composition of the left 

ventricle(33). Macroautophagy, hereafter referred to as autophagy, is a degradative process in the 

body that serves to maintain cellular homeostasis by packaging cytoplasmic components into 

autophagosomes for eventual degradation by lysosomes (6, 16, 20, 26). Autophagy maintains 

homeostasis under normal conditions and is suggested to play a critical role in the development 

of pathologies such as cancer, diabetes, and heart failure (6, 15, 26). It is shown to play a key 

role in myocyte apoptosis and cardiac remodeling post-MI (16, 43). Autophagy is activated in 

cardiac myocytes within 30 minutes following permanent coronary ligation in a mouse model 

(16). Autophagic activity was particularly higher in myocytes bordering the infarcted region 

(16). Furthermore, pharmacological inhibition of autophagy increased infarct size by 31% (16), 

while pharmacological activation of autophagy attenuated cardiac remodeling and dysfunction 7 

and 21 days post-MI (43). Thus, autophagy is considered cardioprotective and could serve as a 

therapeutic strategy for both acute and chronic MI.  

Ataxia-telangiectasia mutated kinase (ATM) is a serine/threonine kinase typically 

activated in response to DNA damage (1, 25). Although it is primarily located in the nucleus, it is 

suggested to have cytoplasmic functions including regulating responses to an array of genotoxic 

stresses in addition to mediating several metabolic pathways (4, 13, 39, 46). Individuals with a 

mutation in the ATM gene develop a multisystemic disease known as Ataxia Telangiectasia (AT) 

(14, 29, 46). These individuals make up roughly 1.4 to 2% of the population (17, 22) and are at a 
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higher risk of death between ages 20 and 79 (34). Previously, we examined the role of ATM in 

autophagy early (4 hours) during MI (38). It was observed that ATM deficiency impairs 

autophagic response under basal conditions as well as following MI (38). This impairment in 

autophagy during ATM deficiency associated with activation of GSK-3β and mTOR, and 

inactivation of Akt and AMPK (38). In the present study, we tested the hypothesis that ATM 

deficiency augments autophagic response in the heart late post-MI (28 days after its onset). The 

data presented here suggests that ATM deficiency augments autophagy in the infarcted region of 

the heart 28 days post-MI, which associates with the activation of Akt and mTOR.  
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Materials and Methods 

Vertebrate Animals 

This study conforms to the Guide for the Care and Use of Laboratory Animals published 

by the US National Institutes of Health (NIH Publication No. 85-23, revised 1996). All 

experiments were performed in accordance with the protocols approved by the East Tennessee 

State University Committee on Animal Care. ATM deficient mice (129xblack Swiss hybrid 

background), generated as described (3), were purchased from Jackson Laboratory. Age-matched 

(aged ~4 months) female and male mice were used for the study. Since homozygous knockout 

mice die at roughly 2 months of age from thymic lymphomas (3), the study used ATM 

heterozygous knockout (hKO; deficient) mice. All mice undergoing surgery (Sham and MI) 

received buprenorphine injections prior to and 24 hours following surgery.  

Myocardial Infarction 

Myocardial infarction (MI) was performed as previously described (9). Briefly, mice 

were anesthetized with a mixture of isoflurane (2%) and oxygen (0.5 l/min) inhalation and 

ventilated using a rodent ventilator (Harvard Apparatus). Body temperature was maintained at 

∼37°C using a heating pad. The heart was exposed by a left thoracotomy. The left anterior 

descending coronary artery (LAD) was ligated using a 7-0 polypropylene suture. Sham-operated 

mice underwent the same procedure without ligation of the LAD. At the end of the study period 

(28 days following LAD ligation), isolated hearts were separated into infarct and non-infarcted 

LV regions for molecular analyses.   
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Fibroblast isolation and treatment  

Adult rat cardiac fibroblasts were isolated as previously described (45). The cells were 

grown to confluence in Dulbecco’s modified Eagle’s medium (DMEM) supplemented with 10% 

heat-inactivated fetal bovine serum. The cells were serum starved for 5 hours prior to use. The 

cells were then treated with the ATM inhibitor KU-55933 (KU; 100 μM; Tocris) for 24 hours. 

The cells were maintained in serum-free DMEM for the duration of the treatment.  

Western blot analysis 

LV or cell lysates were prepared in RIPA buffer [10 mM Tris·HCl (pH 7.2), 158 mM 

NaCl, 1 mM EGTA, 0.1% SDS, 1% sodium deoxycholate, 1% Triton X-100, 1 mM sodium 

orthovanadate, and 0.2 mM phenylmethylsulfonyl fluoride] supplemented with protease 

inhibitors. Equal amounts of proteins (25 μg) were resolved using SDS-PAGE. The proteins 

were then transferred to a PVDF membrane. The membrane was blocked for one hour using 5% 

nonfat milk and incubated overnight with primary antibodies against LC3B (1:1000), p62 

(1:1000), p-Akt (ser-473; 1:1000), p-GSK-3β (ser-9; 1:1000), p-mTOR (ser-2448; 1:1000), p-

Erk1/2 (1:1000) (Cell Signaling), cathepsin D (1:1000), Beclin (1:000), or p-AMPK (thr-172; 

1:1000) (Santa Cruz). The immune-complexes were detected using appropriate secondary 

antibodies and chemiluminescent reagents. There were no significant differences in GAPDH 

levels between genotypes or groups, therefore GAPDH (1:10,000; Cell Signaling) 

immunostaining was used as the protein loading control. Protein signals were visualized using 

ImageQuant LAS 500 imager and quantified using ImageQuant TL software (GE).  
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Statistical analysis 

Data are expressed as means ± SE. Data were analyzed using Student's t-test or a two-

way analysis of variance followed by the Student-Newman-Keuls test. P values of <0.05 were 

considered to be significant. 

Results 

Expression of autophagy-related proteins in cardiac tissue 

LC3 is considered to be one of the most important markers of autophagy as it is essential 

to autophagosome formation (28). In mammalian cells, LC3 is processed to LC3-I and 

subsequently LC3-II by the addition of phosphatidylethanolamine (PE) (28). p62, an autophagy 

receptor, aids in the tagging and transportation of misfolded proteins to the autophagosome by 

working in conjunction with the ubiquitin-proteasome pathway (23). Western blot analysis 

showed increased levels of LC3-II in hKO-sham versus WT sham (Fig 3.1A). However, LC3-II 

protein levels remained unchanged in the non-infarct LV in both genotypes when compared to 

the respective sham groups. No significant differences were observed in p62 protein levels 

among the four groups (Fig 3.1B). In the infarct LV region, there was a significant increase in 

LC3-II protein levels in both MI groups. Interestingly, the levels of LC3-II protein were 

significantly greater in hKO-MI group versus WT-MI (*p˂0.05 vs respective sham; #p˂0.05 vs 

WT-Inf; n=4-5; Fig 3.2A). The levels p62 were decreased to a similar extent in the two MI 

groups when compared to their respective shams (*p˂0.05 vs respective sham; n=4-5; Fig 3.2B). 

Based on these observations, infarct LV lysates were used for further molecular analysis.    
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Beclin, a mammalian ortholog of the yeast autophagy-related gene 6 (Atg6), also plays a 

critical role in autophagosome formation (42). Beclin acts during the initiation stage of 

Figure 3.1. LC3-II and p62 protein levels 28 days post-MI in the non-infarct region. Total LV 

lysates, prepared from sham and infarct (Non) regions post-MI, were analyzed by western blot 

using anti-LC3B (A) and anti-p62 (B) antibodies. Top: western blots exhibiting 

immunostaining for LC3-I, LC3-II, p62, and GAPDH. Bottom: quantitative analyses of LC3-

II and p62 protein levels normalized to GAPDH (*p˂0.05 vs respective sham; n=3-4). 

Figure 3.2. LC3-II and p62 protein levels 28 days post-MI in the infarct region. Total LV 

lysates, prepared from sham and infarct (Inf) regions post-MI, were analyzed by western blot 

using anti-LC3B (A) and anti-p62 (B) antibodies. Top: western blots exhibiting 

immunostaining for LC3-I, LC3-II, p62, and GAPDH. Bottom: quantitative analyses of LC3-

II and p62 protein levels normalized to GAPDH (*p˂0.05 vs respective sham; #p˂0.05 vs 

WT-Inf; n=4-5). 
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autophagy by forming the isolation membrane, a double-membrane structure that engulfs 

cytoplasmic material to form the autophagosome (42). Although there was no significant 

difference in Beclin protein levels in hKO-sham versus WT-sham group, Beclin protein levels 

were increased to a similar extent in the infarct region of both WT and hKO groups (*p˂0.05 vs 

respective sham; n=3-4; Fig 3.3A).   Cathepsin D is a lysosomal endopeptidase involved in 

lysosomal degradation of misfolded proteins (37). p62 and cathepsin D play a critical role in 

autophagic clearance or autophagolysosome degradation. Cathepsin D protein levels were also 

not significantly different between the two sham groups (Fig 3.3B). Cathepsin D protein levels 

remained unchanged in the infarct region of WT-MI group, however, there was a significant 

increase in cathepsin D protein levels in hKO-MI group versus WT-MI group (#p˂0.05 vs WT-

Inf; n=3-4; Fig 3.3B). 

 

 

 

 

Figure 3.3. Beclin and cathepsin D protein levels 28 days post-MI in the infarct region. Total 

LV lysates, prepared from sham and infarct (Inf) regions post-MI, were analyzed by western 

blot using anti-Beclin (A) and anti-cathepsin D (B) antibodies. Top: western blots exhibiting 

immunostaining for Beclin, cathepsin D, and GAPDH. Bottom: quantitative analyses of 

Beclin and cathepsin D protein levels normalized to GAPDH (*p˂0.05 vs respective sham; 

#p˂0.05 vs WT-Inf; n=3-4). 
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Activation of signaling molecules related to autophagy 

Typically, Akt, AMPK, and Erk1/2 signaling are all positive regulators of autophagy (7, 

24, 35, 41), while mTOR is a well-known negative regulator of autophagy (18, 19). 

Phosphorylation of Akt, AMPK, Erk1/2, and mTOR was not significantly different between the 

two sham groups (*p˂0.05 vs respective sham; #p˂0.05 vs WT-Inf; n=3-4; Fig 3.4A-D). 

However, phosphorylation of Akt was greater in the infarct region of hKO-MI, not in WT-MI, 

group versus hKO-sham (Fig 3.4A). On the other hand, AMPK phosphorylation was 

significantly greater in in the infarct region of WT-MI, not in hKO-MI, group versus WT-sham 

and hKO-MI (Fig 3.4B). MI led to a similar increase in Erk1/2 phosphorylation in the infarct 

region of both genotypes (Fig 3.4C). Increased phosphorylation of mTOR was only observed in 

the infarct region of hKO-MI group which was found to be significantly greater versus the WT-

MI group (Fig 3.4D).   
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Autophagic response in cardiac fibroblasts  

Cardiac fibroblasts play an important role in fibrosis deposition in the heart post-MI (36). 

Fibroblasts participate in the healing process of the heart by differentiating into myofibroblasts 

(5). Myofibroblasts are found in the infarct region of the heart following MI and aid in wound 

closure (8). Previously, we found that inhibition of ATM with KU (100 µM) for 4 hours 

negatively regulated autophagy in cardiac fibroblasts (38). Here, we investigated if autophagy is 

positively or negatively regulated in cardiac fibroblasts 24 hours following treatment with ATM 

Figure 3.4. Activation of Akt, AMPK, Erk1/2, and mTOR 28 days post-MI in the infarct 

region. Total LV lysates, prepared from sham and infarct (Inf) regions post-MI, were analyzed 

by western blot using anti-p-Akt (A), anti-p-AMPK (B), anti-p-Erk1/2 (C), and anti-p-mTOR 

(D) antibodies. Top: western blots exhibiting immunostaining for p-Akt, p-AMPK, p-Erk1/2, 

p-mTOR, and GAPDH. Bottom: quantitative analyses of p-Akt, p-AMPK, p-Erk1/2, and p-

mTOR normalized to GAPDH (*p˂0.05 vs respective sham; #p˂0.05 vs WT-Inf; n=3-4). 
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inhibitor, KU-55933 (KU). Western blot analyses of cell lysates showed a significant increase in 

LC3-II (*p˂0.05 vs CTL; n=4; Figure 3.5A) protein levels coupled with a significant decrease in 

p62 protein levels (*p˂0.05 vs CTL; n=4; Figure 3.5B) in KU-treated cells.  

 

 

 

 

Discussion 

We have previously shown that ATM deficiency results in autophagic impairment early 

during MI (38). This is the first study investigating the role of ATM in cardiac autophagy in a 

chronic setting post-MI in mice. A major finding of this study is that ATM deficiency does not 

impair autophagic response in the non-infarct LV region 28 days post-MI. However, it augments 

autophagy in the infarct region via a different mechanism(s) than WT hearts. MI augments 

autophagy in the infarct regions of both WT and hKO hearts as evidenced by increased LC3-II 

and Beclin protein levels and decreased p62 protein levels. However, changes in autophagy may 

be more pronounced during ATM deficiency as evidenced by increased protein levels of LC3-II 

Figure 3.5. LC3-II and p62 protein levels in cardiac fibroblasts. Serum-starved cardiac 

fibroblasts were treated with KU-55933 (100 µm; ATM inhibitor) for 24 hours. Total cell 

lysates were analyzed by western blot using LC3B (A) and p62 (B) antibodies. Top: western 

blot exhibiting immunostaining for LC3-I, LC3-II, p62, and GAPDH. Bottom: quantitative 

analysis of LC3-II normalized to GAPDH (*p˂0.05 vs CTL; n=4). 
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and cathepsin D. Furthermore, autophagic changes in WT hearts post-MI associates with 

enhanced AMPK activation, while autophagic changes in hKO hearts post-MI associates with 

enhanced Akt and mTOR activation. ERK1/2 activation was increased to a similar extent in both 

MI groups. In vitro, ATM inhibition for 24 hours resulted in altered autophagic response in 

cardiac fibroblasts as evidenced by an increase in LC3-II protein levels coupled with a decrease 

in p62 protein levels.  

Concurring with our previous finding that ATM alters autophagy at basal levels (38), 

LC3-II protein levels were significantly higher in ATM deficient hearts under basal conditions. 

However, there were no significant changes in Beclin, p62, or cathepsin D protein levels or 

signaling molecules related to autophagy in ATM deficient hearts. In our previous study, p62 

protein levels were higher, while mTOR phosphorylation was lower in ATM deficient hearts 

under basal conditions (38). The reasons for these discrepant findings may include the age of the 

animals. In our previous study, the animals were ~4 months of age, while the mice in the current 

study are ~5 months of age. Autophagy is a dynamic process (27). It is possible that autophagic 

flux may change with age. However, further investigations are needed to explore this possibility. 

Although autophagy is typically upregulated post-MI, studies have shown that autophagic 

activity often fluctuates throughout the duration of MI (16, 43). While it has been shown that 

autophagy is sharply induced 12-24 hours post-MI in the infarct boarder zone, it has also been 

shown to decrease 5-21 days post-MI in that same region (43). However, autophagosomes have 

been detected in surviving cardiomyocytes in chronic stages of MI, connecting autophagy to 

cardiac myocyte survival during the later stages of MI (21). We have previously shown that MI 

results in autophagic induction 4 hours during MI in WT hearts as evidenced by high LC3-II 
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protein levels coupled with reduced aggregate accumulation (38). Furthermore, phosphorylation 

of Erk1/2 was also higher 4 hours during MI in WT hearts (38). In the present study, MI resulted 

in autophagic augmentation 28 days post-MI in the infarct region as evidenced by an increase in 

both LC3-II and Beclin protein levels coupled with a decrease in p62 protein levels. 

Interestingly, phosphorylation of Erk1/2 and AMPK were significantly higher in the infarct 

region of WT hearts post-MI. Both AMPK and Erk1/2 have been implicated in the regulation of 

autophagy, typically acting as positive regulators of autophagic activity. Intermedin, a 

proopiomelanocortin-derived peptide, attenuated MI injury through the activation of autophagy 

in a rat model of ischemic heart failure via the activation of MAPK/ERK1/2 pathways (40). The 

compound curcumin induced autophagy in malignant glioma cells by activating Erk1/2 (32). 

Furthermore, inhibition of the Erk1/2 pathway inhibited curcumin-induced autophagy and 

apoptosis (32). AMPK, the energy sensor in cells, is a key player in the heart’s response to stress 

(e.g. ischemia) (30). Under glucose starvation, AMPK promotes autophagy by directly activating 

Ulk1 via the phosphorylation of Ser 317 and Ser 777 (2, 18). Genetic inhibition of AMPK in 

cardiac myocytes attenuates cardiac autophagy, exacerbates cardiac dysfunction, and increases 

mortality in diabetic mice (44). Although Erk1/2 and AMPK signaling pathways have 

independently been shown to activate autophagy, there is evidence to suggest that an interplay 

between the two pathways may play an important role in the regulation of autophagy. Porcine 

circovirus type 2 induces autophagy in PK-15 cell via AMPK/Erk1/2 signaling (47). Thus, it is 

possible that the augmentation of autophagy in the infarct region 28 days post-MI in WT hearts 

may be due to Erk1/2 and AMPK signaling acting independently or in conjunction.  

Similar to WT hearts post-MI, there was a significant increase in LC3-II and Beclin 

protein levels 28 days post-MI in the infarct region of ATM deficient hearts coupled with a 
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decrease in p62 protein levels. Together, these results suggest that MI alters autophagy in the 

infarct region of ATM deficient hearts 28 days post-MI as well. However, the mechanism(s) by 

which autophagy is augmented in ATM deficient hearts appear to be different than that of WT 

hearts. Although Erk1/2 activation was increased to a similar extent in both genotypes post-MI, 

activation of Akt and mTOR was higher in ATM deficient hearts post-MI. Activation of Akt and 

Erk1/2 is shown to positively regulate autophagy (35), while activation of mTOR is known to 

negatively regulate autophagy (7). Thus, it is possible that the autophagic changes in ATM 

deficient hearts post-MI involves both Akt and Erk1/2 signaling that is independent of mTOR 

activation.  

Previously we have provided evidence that cardiac cell apoptosis is lower in the infarct 

region of ATM deficient hearts when compared to their WT counterparts 28 days post-MI (10). 

This decrease in apoptosis associated with decreased activity of GSK-3β, a pro-apoptotic kinase 

(10). Activation of Akt is known to phosphorylate and inactivate GSK-3β (11). Consistent with 

these observations, we observed enhanced activation of Akt in ATM deficient hearts.  ATM 

deficient hearts also exhibited higher levels of LC3-II and cathepsin D protein in the infarct 

region indicating augmented autophagy during ATM deficiency post-MI.  Inhibition of GSK-3β 

using CHIR99021 induced an autophagic response in human pancreatic cancer cells (24) and 

knockdown of GSK-3β increased basal autophagy in human aortic endothelial cells (41). Thus, it 

is possible that the alterations in autophagy in the infarct region of ATM deficient is due to 

inactivation of GSK-3β (phosphorylation) despite a decrease in AMPK activity and increase in 

mTOR activity. Together, these data provide evidence for a link between Akt/GSK-3β pathway, 

apoptosis, and autophagy in the infarct region of ATM deficient hearts 28 days post-MI. It is 
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possible that cardiac cell apoptosis is lower in ATM deficient hearts since autophagy is altered in 

response to activation of Akt and inactivation of GSK-3β. 

Fibroblasts play a central role in post-MI repair and remodeling. In fact, fibroblasts 

constitute the majority of cells in the infarcted area during the infarct healing phase post-MI (36). 

Treatment of adult cardiac fibroblasts with the ATM inhibitor KU-55933 for 24 hours resulted in 

autophagic changes as evidenced by an increase in LC3-II protein levels and a decrease in p62 

protein levels. In our previous study, we provided evidence that treatment of cardiac fibroblasts 

with ATM inhibitor KU-55933 for 4 hours results in autophagic impairment in adult cardiac 

fibroblasts as levels of LC3-II protein were lower in KU-treated cells (38). Together, these 

results provide evidence that autophagic activity changes over time in cardiac fibroblasts in 

response to ATM inhibition, an observation similar to ATM deficient hearts post-MI. The 

autophagic changes seen 4 hours post ATM inhibition (38) are different from those seen 24 

hours post ATM inhibition.  

In summary, both WT and hKO hearts exhibited augmented autophagy in the infarct 

regions, not the non-infarct region, 28 days post-MI. Autophagic changes are more pronounced 

in ATM deficient hearts post-MI as well as in cardiac fibroblasts treated with ATM inhibitor. 

The signaling molecules involved in autophagic changes appeared different between the two 

genotypes. Autophagy changes in WT hearts post-MI may involve the activation of AMPK and 

Erk1/2, while autophagy changes in hKO hearts post-MI involves activation of Akt and Erk1/2 

that appears to be mTOR independent. Autophagy regulation in ATM deficient hearts may also 

occur via the involvement of Akt-mediated inactivation of GSK-3β. It should be emphasized that 

our collective data investigating the role of ATM in cardiac autophagy are obtained 4 hours post-
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MI (38) or 28 days post-MI. Intermediate time points between 4 hours and 28 days post-MI may 

be helpful to understand the full scope of molecular changes involved in autophagic flux during 

ATM deficiency post-MI.     

Acknowledgements 

Technical help received from Barbara A. Connelly is appreciated. 

Funding 

This work was supported by Merit Review awards (BX002332 and BX000640) from the 

Biomedical Laboratory Research and Development Service of the Veterans Affairs Office of 

Research and Development, National Institutes of Health (R15HL129140), and funds from 

Institutional Research and Improvement account (to KS) and C06RR0306551. 

Disclosures 

No conflicts of interest, financial or otherwise, are declared by the authors. 

 

 

 

 

 



71 
 

References 

 

1.  Abraham RT. cell cycle checkpoint signaling therough the ATM an ATR kinases. Genes 

Dev 15: 2177–2196, 2001. 

2.  Alers S, Löffler AS, Wesselborg S, Stork B. Role of AMPK-mTOR-Ulk1/2 in the 

regulation of autophagy: cross talk, shortcuts, and feedbacks. Mol Cell Biol 32: 2–11, 

2012. 

3.  Barlow C, Hirotsune S, Paylor R, Liyanage M, Eckhaus M, Collins F, Shiloh Y, Crawley 

JN, Ried T, Tagle D, Wynshaw-boris A. Atm - deficient mice : a paradigm of ataxia 

telangiectasia. Cell 86: 159–171, 1996. 

4.  Barzilai A, Rotman G, Shiloh Y. ATM deficiency and oxidative stress: a new dimension 

of defective response to DNA damage. DNA Repair (Amst) 1: 3–25, 2002. 

5.  Baum J, Duffy HS. Fibroblasts and myofibroblasts: what are we talking about? J 

Cardiovasc Pharmacol 57: 376–379, 2011. 

6.  Bravo-San Pedro JM, Kroemer G, Galluzzi L. Autophagy and mitophagy in 

Cardiovascular Disease. Circ Res 120: 1812–1824, 2017. 

7.  Chang Hwa Jung, Seung-Hyun Ro, Jing Cao, Neil Michael Otto. mTOR regulation of 

autophagy. FEBS Lett 584: 1287–1295, 2010. 

8.  Cleutjens JP, Verluyten MJ, Smiths JF, Daemen MJ. Collagen remodeling after 

myocardial infarction in the rat heart. Am J Pathol 147: 325–38, 1995.  

9.  Daniel LL, Daniels CR, Harirforoosh S, Foster CR, Singh M, Singh K. Deficiency of 

ataxia telangiectasia mutated kinase delays inflammatory response in the heart following 

myocardial infarction. J Am Heart Assoc 3: 1–12, 2014. 

10.  Daniel LL, Scofield SL, Thrasher P, Dalal S, Daniels CR, Foster CR, Singh M, Singh K. 

Ataxia telangiectasia mutated kinase deficiency exacerbates left ventricular dysfunction 

and remodeling late after myocardial infarction. Am J Physiol Heart Circ Physiol 311: 

H445-H452, 2016. 

11.  Fang X, Yu SX, Lu Y, Bast RC, Woodgett JR, Mills GB. Phosphorylation and 

inactivation of glycogen synthase kinase 3 by protein kinase A. Proc Natl Acad Sci U S A 

97: 11960–11965, 2000. 

12.  Go AS, Mozaffarian D, Roger VL, Benjamin EJ, Berry JD, Borden WB, Bravata DM, Dai 

S, Ford ES, Fox CS, Franco S, Fullerton HJ, Gillespie C, Hailpern SM, Heit JA, Howard 

VJ, Huffman MD, Kissela BM, Kittner SJ, Lackland DT, Lichtman JH, Lisabeth LD, 

Magid D, Marcus GM, Marelli A, Matchar DB, McGuire DK, Mohler ER, Moy CS, 

Mussolino ME, Nichol G, Paynter NP, Schreiner PJ, Sorlie PD, Stein J, Turan TN, Virani 

SS, Wong ND, Woo D, Turner MB. Heart disease and stroke statistics--2017 update: a 

report from the american heart association. Circulation 135: e1-e458, 2017. 

13.  Guo Z, Deshpande R, Paull TT. ATM activation in the presence of oxidative stress. Cell 

Cycle 9: 4805–4811, 2010. 

14.  Halaby MJ, Hibma JC, He J, Yang DQ. ATM protein kinase mediates full activation of 

Akt and regulates glucose transporter 4 translocation by insulin in muscle cells. Cell 



72 
 

Signal 20: 1555–1563, 2008. 

15.  Jimenez RE, Kubli DA, Gustafsson ÅB. Autophagy and mitophagy in the myocardium: 

Therapeutic potential and concerns. Br J Pharmacol 171: 1907–1916, 2014. 

16.  Kanamori H, Takemura G, Goto K, Maruyama R, Ono K, Nagao K, Tsujimoto A, Ogino 

A, Takeyama T, Kawaguchi T, Watanabe T, Kawasaki M, Fujiwara T, Fujiwara H, 

Seishima M, Minatoguchi S. Autophagy limits acute myocardial infarction induced by 

permanent coronary artery occlusion. Am J Physiol Heart Circ Physiol 300: H2261–

H2271, 2011. 

17.  Khanna KK, Lavin MF, Jackson SP, Mulhern TD. ATM, a central controller of cellular 

responses to DNA damage. Cell Death Differ 8: 1052–65, 2001. 

18.  Kim J, Kundu M, Viollet B, Guan K-L. AMPK and mTOR regulate autophagy through 

direct phosphorylation of Ulk1. Nat Cell Biol 13: 132–141, 2011. 

19.  Kim YC, L. GK. mTOR: a pharmacologic target for autophagy regulation. J Clin Invest 

125: 25–32, 2015. 

20.  Klionsky DJ, Cuervo AM, Seglen PO. Methods for monitoring autophagy from yeast to 

human. Autophagy 3: 181–206, 2007. 

21.  Lavandero S, Chiong M, Rothermel BA, Hill JA. Autophagy in cardiovascular biology. J 

Clin Invest 125: 55–64, 2015. 

22.  Lavin MF, Khana KK, Beamish H, Spring K, Watters D, Shiloh Y. Relationship of the 

ataxia-telangiectasia protein ATM to phosphoinositide 3-kinase. Trends Biochem Sci 20: 

382–383, 1995. 

23.  Liu WJ, Ye L, Huang WF, Guo LJ, Xu ZG, Wu HL, Yang C, Liu HF. p62 links the 

autophagy pathway and the ubiqutin–proteasome system upon ubiquitinated protein 

degradation. Cell Mol Biol Lett 21: 1–14, 2016. 

24.  Marchand B, Arsenault D, Raymond-Fleury A, Boisvert FM, Boucher MJ. Glycogen 

synthase kinase-3 (GSK3) inhibition induces prosurvival autophagic signals in human 

pancreatic cancer cells. J Biol Chem 290: 5592–5605, 2015. 

25.  Matsuoka S, Huang M, Elledge SJ. Linkage of ATM to cell cycle regulation by the Chk2 

protein kinase. Science 282: 1893–1897, 1998. 

26.  Meijer AJ, Codogno P. Autophagy: Regulation and role in disease. Crit Rev Clin Lab Sci 

46: 210–240, 2009. 

27.  De Meyer GRY, Martinet W. Autophagy in the cardiovascular system. Biochim Biophys 

Acta 1793: 1485–95, 2009. 

28.  Mizushima N, Yoshimori T. How to interpret LC3 immunoblotting. Autophagy 3: 542–

545, 2007. 

29.  Peretz S, Jensen R, Baserga R, Glazer PM. ATM-dependent expression of the insulin-like 

growth factor-I receptor in a pathway regulating radiation response. Proc Natl Acad Sci U 

S A 98: 1676–1681, 2001. 

30.  Qi D, Young LH. AMPK: energy sensor and survival mechanism in the ischemic heart. 

Trends Endocrinol Metab 26: 422–29, 2015. 



73 
 

31.  Shih H, Lee B, Lee RJ, Boyle AJ. The aging heart and post-infarction left ventricular 

remodeling. J Am Coll Cardiol 57: 9–17, 2010. 

32.  Shinojima N, Yokoyama T, Kondo Y, Kondo S. Roles of the Akt/mTOR/p70S6K and 

ERK1/2 signaling pathways in curcumin-induced autophagy. Autophagy 3, 2007. 

33.  St MG, Sutton J, Sharpe N. Left ventricular remodeling after myocardial infarction 

pathophysiology and therapy. Circulation 101: 2981–2988, 2000. 

34.  Su Y, Swift M. Mortality rates among carriers of ataxia-telangiectasia mutant alleles. 

Annu Intern Med 133: 770–778, 2000. 

35.  Suffixidharan S, Jain K, Basu A. Regulation of autophagy by kinases. Cancers (Basel) 3: 

2630–2654, 2011. 

36.  Talman V, Ruskoaho H. Cardiac fibrosis in myocardial infarction—from repair and 

remodeling to regeneration. Cell Tissue Res 365: 563–581, 2016. 

37.  Tatti M, Motta M, Di bartolomeo S, Scarpa S, Cianfanelli V, Cecconi F, Salvioli R. 

Reduced cathepsins B and D cause impaired autophagic degradation that can be almost 

completely restored by overexpression of these two proteases in Sap C-deficient 

fibroblasts. Hum Mol Genet 21: 5159–5173, 2012. 

38.  Thrasher P, Scofield S, Dalal S, Crawford C, Singh M, Singh K. Ataxia-telangiectasia 

mutated kinase deficiency impairs autophagic response early during myocardial infarction. 

Am. J. Physiol. Heart Circ Physiol, 2018, In press. 

39.  Valentin-vega Y a, Maclean KH, Tait-mulder J, Milasta S, Dorsey FC, Cleveland JL, 

Green DR, Kastan MB, Dc W, Steeves M. Mitochondrial dysfunction in ataxia-

telangiectasia Mitochondrial dysfunction in ataxia-telangiectasia. 119: 1490–1500, 2012. 

40.  Wei P, Yang X-J, Fu Q, Han B, Ling L, Bai J, Zong B, Jiang C-Y. Intermedin attenuates 

myocardial infarction through activation of autophagy in a rat model of ischemic heart 

failure via both cAMP and MAPK/ERK1/2 pathways. Int J Clin Exp Pathol 8: 9836–

9844, 2015. 

41.  Weikel KA, Cacicedo M, Ruderman NB, Ido Y. Knockdown of GSK3 β increases basal 

autophagy and AMPK signalling in nutrient-laden human aortic endothelial cells. Biosci 

Rep 36: 1–16, 2016. 

42.  Wirawan E, Lippens S, Vanden Berghe T, Romagnoli A, Fimia GM, Piacentini M, 

Vandenabeele P. Beclin1: A role in membrane dynamics and beyond. Autophagy 8: 6–17, 

2012. 

43.  Wu X, He L, Chen F, He X, Cai Y, Zhang G, Yi Q, He M, Luo J. Impaired autophagy 

contributes to adverse cardiac remodeling in acute myocardial infarction. PLoS One 9: 1–

11, 2014. 

44.  Xie Z, He C, Zou MH. AMP-activated protein kinase modulates cardiac autophagy in 

diabetic cardiomyopathy. Autophagy 7: 1254–1255, 2011. 

45.  Xie Z, Singh M, Singh K. Differential regulation of matrix metalloproteinase-2 and -9 

expression and activity in adult rat cardiac fibroblasts in response to interleukin-1β. J Biol 

Chem 279: 39513–39519, 2004. 

46.  Yang DQ, Kastan MB. Participation of ATM in insulin signalling through 



74 
 

phosphorylation of eIF-4E-binding protein 1. Nat Cell Biol 2: 893–898, 2000. 

47.  Zhu B, Zhou Y, Xu F, Shuai J, Li X, Fang W. Porcine Circovirus Type 2 Induces 

Autophagy via the AMPK/ERK/TSC2/mTOR Signaling Pathway in PK-15 Cells. J Virol 

86: 12003–12012, 2012. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



75 
 

CHAPTER 4 

LACK OF ATAXIA-TELANGIECTASIA MUTATED KINASE ALTERS GLUCOSE AND 

TRICARBOXYLIC ACID CYCLE METABOLISM IN THE HEART 

Patsy R. Thrasher1, Ying Li1, Marc O. Warmoes2, Penghui Lin2, Vijayakumar Guntupalli1, 

Jonathan M. Peterson3, Gary L. Wright1, Mahipal Singh1, and Krishna Singh1,4 

 

1Department of Biomedical Sciences; 3Department of Health Sciences, East Tennessee State 

University, Johnson City, TN; 2Center for Environmental and Systems Biochemistry, Markey 

Cancer Center, University of Kentucky, Lexington, KY; 4JHQ Veterans Affairs Medical Center, 

Mountain Home, TN 

 

 

Running title: ATM deficiency and glucose metabolism in the heart   

 

Total number of figures: 7       

 

Key words: ATM, glucose, TCA cycle, metabolism, ischemia 

 

*Correspondence: Krishna Singh, Ph.D.  

Department of Biomedical Sciences 

James H Quillen College of Medicine  

East Tennessee State University  

PO Box 70582, Johnson City, TN 37614  

Ph: 423-439-2049  

Fax: 423-439-2052  

E-mail: singhk@etsu.edu 

 

 

 

mailto:singhk@etsu.edu


76 
 

Abstract 

Abnormalities in glucose metabolism are implicated in the progression of heart failure. Ataxia-

telangiectasia mutated kinase (ATM) is a cell cycle checkpoint protein activated in response to 

DNA damage. Mutations in ATM cause a multisystemic disease known as Ataxia-telangiectasia 

(AT) that is often accompanied by glucose intolerance. Previous work from our lab has shown 

that lack of ATM induces structural and functional changes in the heart. Here we tested the 

hypothesis that lack of ATM alters cardiac glucose and TCA cycle metabolism with or without 

ischemia. Isolated wild-type (WT) and ATM knockout (KO) hearts underwent retrograde 

perfusion through the aorta using KH buffer containing U-13C6 glucose for 30 minutes. A 

separate group of hearts also underwent global ischemia for 20 minutes. Analyses of metabolome 

reservoir for the incorporation of 13C using nuclear magnetic resonance (NMR) spectroscopy and 

ion chromatography mass spectrometry (IC-MS) revealed that lack of ATM accelerates 

glycolysis and gluconeogenesis in non-ischemic hearts in addition to augmenting TCA cycle 

metabolism. Global ischemia augments the gluconeogenic pathway in WT hearts, while it 

augments the glycolytic pathway in KO hearts that is associated with TCA cycle changes. 

Additionally, global ischemia has no effect on glycolytic or gluconeogenic pathways with 

minimal effects on TCA cycle metabolism in KO hearts compared to WT hearts. 

Phosphorylation of AMPK decreased post-ischemia in both WT and KO hearts, while it 

increased in KO hearts under non-ischemic and ischemic conditions compared to WT hearts. 

Glut4 protein expression decreased in KO hearts when compared to KO non-ischemic and WT 

ischemic hearts. Activation of Akt was lower, while activation of GSK-3β was higher post-

ischemia in WT and KO hearts. Non-ischemic KO hearts also exhibited lower Akt activation and 

higher GSK-3β activation when compared to WT non-ischemic hearts. Thus, ATM affects 
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cardiac metabolites with and without ischemia which associated with changes in activation of 

Akt, GSK-3β, and AMPK alongside alterations in Glut4 protein levels. 
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Introduction 

Heart failure is the leading cause of death and disability globally (28, 35) and is estimated 

to increase 25% by 2030 (35). Heart failure is a complex syndrome that results from a plethora of 

diseases, ranging from diabetes, hypertension, and ischemic heart disease (35). However, a 

common thread that runs through the various etiologies leading to heart failure is modified 

cardiac metabolism (35). Recent studies reveal that metabolic remodeling is a prominent feature 

of heart failure (28, 35). Thus, metabolic therapy has risen as a promising approach to treating 

heart disease (32).  

Under normal conditions or normoxia, glycolysis and the tricarboxylic acid (TCA) cycle 

contribute roughly 5% of the total ATP produced (11, 27, 28). Ischemia is associated with 

dramatic metabolic abnormalities in the heart, causing changes to organ function and even 

eventual heart failure (1, 27). One of the modifications that occurs in cells under ischemic 

conditions is the switch from aerobic to anaerobic metabolism (1), resulting in the predominant 

use of carbohydrates like glucose as an energy substrate (1, 27). Glucose uptake and glycolysis 

are accelerated in an effort to maintain myocardial energetics during myocardial ischemia (10, 

27, 28, 32). In fact, increased glucose metabolism has been implicated in the progression of heart 

failure as it is upregulated in hypertrophied hearts (22). Dysfunction or depletion of the TCA 

cycle results in a decline in cardiac function (19). In addition to glycolysis, gluconeogenesis, 

another carbohydrate metabolism pathway, is also critical in the maintenance of cell energy 

homeostasis under normal and ischemic conditions (1). Although predominantly shown in liver, 

gluconeogenesis has been shown to increase in the rabbit heart under non-ischemic and ischemic 

conditions (1).  
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Ataxia-telangiectasia mutated kinase (ATM), a serine/threonine kinase, is generally 

activated in response to oxidative stress and DNA damage. It plays a critical role in cell cycle 

arrest and DNA repair. Although primarily located in the nucleus, it is found in the cytoplasm 

where it is suggested to play a pivotal role in metabolic pathways (7). It is suggested to modulate 

carbon metabolism in cancer cells (7, 24, 31). Deficiency of ATM affects metabolic parameters 

in mice (31). ATM+/- mice fed a western diet were glucose intolerant and insulin resistant 

compared to ATM+/+ mice (31). Furthermore, ATM+/- mice had higher systolic and diastolic 

blood pressure (31). Mutations in the ATM gene cause an immunodeficiency and neuronal 

degeneration disease called Ataxia-telangiectasia (AT), a disorder that affects 1:40,000-

1:100,000 people worldwide (7). AT patients exhibit many characteristics of metabolic disease, 

including susceptibility to diabetes and impaired glucose metabolism (33).   

Previous work from our lab has shown that lack of ATM induces structural and 

functional parameters of the heart (18). We have also provided evidence that ATM plays an 

important role in myocyte apoptosis and myocardial remodeling following myocardial infarction 

and β-adrenergic receptor stimulation (8, 9, 16, 17). Here, we tested the hypothesis that lack of 

ATM alters cardiac glucose and TCA cycle metabolism pre- and post-myocardial ischemia. The 

data presented here suggest that lack of ATM alters glucose and TCA cycle metabolism in the 

heart before and after global ischemia that associates with changes in the activation of AMPK, 

Akt, GSK-3β and Glut4 protein levels.  
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Materials and Methods 

Vertebrate Animals  

This investigation conforms to the Guide for the Care and Use of Laboratory Animals 

published by the US National Institutes of Health (NIH Publication No. 85-23, revised 1996). All 

the experiments were performed in accordance with the protocols approved by the East 

Tennessee State University Committee on Animal Care. ATM heterozygous mice (129xblack 

Swiss hybrid background), generated as described(3), were purchased from Jackson Laboratory. 

ATM homozygous knockout (KO) mice were generated by breeding ATM heterozygous mice. 

Genotyping was performed by PCR using primers suggested by the Jackson Laboratory. Age-

matched (~ 2-month-old) male and female (WT and KO) mice were used for the study.  

Langendorff perfusion of heart with 13C6-glucose  

Hearts were excised from WT and KO mice and briefly washed in PBS to remove excess 

blood. Hearts were then immediately perfused retrogradely with KH buffer containing U-13C6 

glucose [(in mmol/L) 118.5 NaCl, 4.7 KCl, 1.2 MgSO4, 1.2 KH2PO4, 24.8 NaCHO3, 2.5 CaCl2, 

and 10.6 U-13C6 glucose] for 30 minutes as previously described (38). The KH buffer was 

maintained at 37°C and equilibrated with 95% oxygen and 5% carbon dioxide. Flow rate was 

measured using the Transonic Systems Inc. T106 Small Animal Flow Meter. There was no 

significant difference in flow rate between WT and KO hearts (data not shown).  
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Quenching and extraction of polar compounds, lipids, and proteins  

At the end of the 30 minute period, a group of hearts were subjected to 20 minutes of 

global ischemia. Tissue extraction was performed as previously described (13). Briefly, hearts 

were snap frozen and ground into powder using liquid nitrogen. Roughly 20 mg of tissue powder 

was placed into a 15 mL polypropylene conical centrifuge tube and shaken vigorously in a 

mixture of chilled acetonitrile (2 mL), nanopore water (1.5 mL), and HPLC-grade chloroform (1 

mL). The mixture was centrifuged at 3500xg for 20 minutes at room temperature to separate the 

polar (top), tissue debris (primarily denatured proteins; middle), and lipid (bottom) layers. The 

polar and lipid layers were collected, and the tissue debris layer was further extracted using 0.5 

mL of chloroform: methanol: butylated hydroxytoluene (BHT) (2:1:1 ratio). The tissue debris 

layer, collected in a 1.5 microfuge tube, was centrifuged at 14,000xg for 20 minutes at 4°C to 

separate the three phases again. The extracted polar and lipid fractions were pooled with their 

main fractions. The polar and tissue debris fractions were lyophilized overnight, and the dry 

weight of tissue debris was used to normalize the metabolic content. The polar extracts were 

redissolved in 100% D2O comprised of 30 nmol perdeuterated 2,2′-dimethyl-2-silapentane-5-

sulfonate (DSS) as an internal chemical shift and concentration reference for Nuclear Magnetic 

Resonance (NMR) measurement.        

Determination of cardiac metabolites incorporated with 13C 

Lyophilized samples from both WT and KO hearts were analyzed using Ion 

Chromatography Mass Spectrometry (IC-MS) and Nuclear Magnetic Resonance (NMR) 

spectroscopy to determine cardiac metabolites as previously described (13).   
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Preparation of myocardial tissue for western blot analysis  

WT and KO hearts were perfused retrogradely with Krebs-Henseleit (KH) buffer [(in 

mmol/L) NaCl 118, NaHCO3 25, KCl 4.75, MgSO4 1.2, KH2PO4 1.2, CaCl2 1.9 and glucose 

11.9] for 30 minutes. A group of the hearts as also subjected to 20 minutes of global ischemia. 

The hearts were then snap frozen in liquid nitrogen, pulverized, and suspended in RIPA buffer 

[10 mM Tris-HCl (pH 7.2), 158 mM NaCl, 1 mM EGTA, 0.1% SDS, 1% sodium deoxycholate, 

1% Triton X-100, 1 mM sodium orthovanadate, 0.2 mM phenylmethylsulfonyl fluoride] with 

added protease inhibitors for protein analysis.   

Western blot analysis  

Equal amounts of heart lysates (25 μg) were resolved using SDS-PAGE. The proteins 

were then transferred to a PVDF membrane. The membrane was blocked for one hour using 5% 

nonfat milk and incubated overnight with primary antibodies against p-Akt (ser-473; 1:1000), p-

GSK-3β (ser-9; 1:1000), Akt (1:1000), GSK-3β (1:1000), AMPK (1:1000) (Cell Signaling), p-

AMPKα (1:1000), or Glut4 (1:1000) (Santa Cruz). Total protein immunostaining was used as a 

loading control for phosphorylated proteins, while GAPDH was used as a loading control for 

Glut4 protein. The immune-complexes were detected using appropriate secondary antibodies and 

chemiluminescent reagents. Protein signals were visualized using ImageQuant LAS 500 imager 

and quantified using ImageQuant TL software (GE). 
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Statistical analysis 

Data are expressed as means ± SE. Data were analyzed using a two-way analysis of 

variance followed by the Student-Newman-Keuls test. P values of <0.05 were considered to be 

significant. 

Results 

Glycolytic metabolites  

Formation of glucose-6-phosphate (G6P) is the first reaction of glycolysis. G6P can then 

be converted into pyruvate through a multi-step process involving the formation of fructose-6-

phosphate (F6P) and phosphoenolpyruvate (PEP). Alternatively, it can be converted into 

glucose-1-phosphate (G1P) for conversion into glycogen. Using 13C6-glucose (+6) isotopomer 

perfusion in isolated hearts, we observed significantly higher levels of six labelled carbon 

metabolites (+6 G1P, G6P and F6P; Fig 4.1A-C) and three labelled carbon metabolites (Fig 4.1D 

and 4.1F) in ATM deficient hearts versus WT (Fig 4.1A-C). The levels of labelled metabolites 

was ~4.8, 9.7, 7.0, 4.6 and 2.7 fold higher for G6P, F6P, G1P, PEP and pyruvate, respectively, in 

ATM deficient hearts vs WT without ischemia. Global ischemia (20 minutes) did not change 

levels of G6P, F6P and G1P in WT group. However, the levels of  three carbon labelled 

metabolites, PEP and pyruvate, were significantly lower in WT-ischemic group vs WT-non-

ischemic group. On the other hand, global ischemia in ATM KO hearts led to a significant 

decrease in all five metabolites vs KO-non-ischemic group (Fig 4.1A-1E). In fact, there was no 

significant difference in the levels of six or three carbon metabolites between the two ischemic 

groups. 



84 
 

 

 

 

Gluconeogenic metabolites  

Using 13C6-glucose (+6) isotopomer perfusion in isolated hearts, we observed 

significantly higher levels of three carbon labelled (+3) metabolites, G1P and F6P, in ATM 

deficient hearts versus WT (Fig 4.2A, 4.2C). Global ischemia (20 minutes) increased the levels 

of three carbon labelled metabolites G1P, G6P, and F6P in WT group. However, global ischemia 

did not change levels of three carbon labelled metabolites (G1P, G6P, and F6P) in KO-ischemic 

Figure 4.1. Glycolytic metabolites. Levels of glycolytic metabolites were measured in WT and 

KO hearts 20 minutes post-ischemia using Ion Chromatography Mass Spectrometry (IC-MS). 

A: G1P (+6). B: G6P (+6). C: F6P (+6). D: PEP (+3). E: Pyruvate (+3). *p<0.05 vs. WT-non; 
#
p<0.05 vs. KO-non; n=3-7. G1P, Glucose-1-Phosphate; G6P, Glucose-6-Phosphate; F6P, 

Fructose-6-Phosphate; PEP, Phosphoenolpyruvate. (+n) represents the number of 
13

C carbons 

incorporated into that metabolite.   
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group vs KO-non-ischemic group (Fig 4.2A-4.2C). There was no significant difference in the 

levels of three carbon labelled metabolites between the two ischemic groups.   

 

 

 

Glycogen and Lactate levels 

There was no difference in glycogen levels between WT and KO hearts under non-

ischemic Glycogen levels were significantly decreased post-ischemia in both groups with no 

difference between the two genotypes (WT-non, 9.27±1.69 nmol/mg; WT-isch, 1.16±0.41* 

nmol/mg; KO-non, 8.81±1.84 nmol/mg; KO-isch, 0.50±0.34# nmol/mg; *p<0.05 vs. WT-non; 

#p<0.05 vs. KO-non; n=3-5; Figure 4.3A). There were no significant changes in lactate (+3) 

levels in the heart (WT-non, 1059864.79±653274.58 nmol/g/protein; WT-isch, 

Figure 4.2. Gluconeogenic metabolites. Levels of gluconeogenic metabolites were measured 

in WT and KO hearts 20 minutes post-ischemia using IC-MS. A: G1P (+3). B: G6P (+3). C: 

F6P (+3). *p<0.05 vs. WT-non; n=3-7. G1P, Glucose-1-Phosphate; G6P, Glucose-6-

Phosphate; F6P, Fructose-6-Phosphate. (+n) represents the number of 
13

C carbons 

incorporated into that metabolite.   
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2393917.12±1125072.61 nmol/g/protein; KO-non, 2630613.33±1606850.02 nmol/g/protein; 

KO-isch, 5801752.79±2585945.95 nmol/g/protein; n=5-7; Figure 4.3B).  

 

 

 

TCA cycle metabolites  

Citrate levels  

Citrate levels were not different between the two non-ischemic groups. Global ischemia 

decreased citrate levels to a similar extent in both groups (WT-non, 320.12±134.82 

nmol/g/protein; WT-isch, 40.42±9.18* nmol/g/protein; KO-non, 236.70±49.32 nmol/g/protein; 

KO-isch, 104.37±40.19# nmol/g/protein; *p<0.05 vs. WT-non; #p<0.05 vs. KO-non; n=4-6; 

Figure 4.4A)  

Isocitrate levels  

Isocitrate levels were significantly lower in KO hearts under non-ischemic conditions 

compared to WT hearts. Global ischemia led to a significant decrease in isocitrate levels in WT 

Figure 4.3. Glycogen and Lactate levels. Glycogen levels were measured in WT and KO hearts 

20 minutes post-ischemia using Nuclear Magnetic Resonance (NMR) spectroscopy, while 

lactate levels were measured in those hearts 20 minutes post-ischemia using IC-MS. *p<0.05 vs. 

WT-non; 
#
p<0.05 vs. KO-non; n=3-7. (+n) represents the number of 

13
C carbons incorporated 

into that metabolite.   



87 
 

hearts compared to their non-ischemic counterpart. Isocitrate levels remained unchanged in KO 

hearts compared to their non-ischemic counterpart with no significant difference between the two 

genotypes post-ischemia (WT-non, 147.89±51.30 nmol/g/protein; WT-isch, 5.48±2.70* 

nmol/g/protein; KO-non, 23.43±18.72* nmol/g/protein; KO-isch, 19.89±12.93 nmol/g/protein; 

*p<0.05 vs. WT-non; n=4-6; Figure 4.4B).  

α-ketoglutarate levels 

α-ketoglutarate levels were significantly higher in KO hearts under non-ischemic 

conditions compared to WT hearts. Global ischemia decreased α-ketoglutarate levels in both 

groups with no significant difference between the two genotypes post-ischemia (WT-non, 

1.20±0.27 nmol/g/protein; WT-isch, 0.23±0.11* nmol/g/protein; KO-non, 6.56±1.06* 

nmol/g/protein; KO-isch, 0.15±0.06# nmol/g/protein; *p<0.05 vs. WT-non; #p<0.05 vs. KO-non; 

n=3-7; Figure 4.4C).   

Succinate levels  

Succinate levels were significantly higher in KO hearts under non-ischemic conditions 

compared to WT hearts. Global ischemia increased succinate levels significantly in WT hearts, 

not in KO hearts (WT-non, 7.82±1.83 nmol/g/protein; WT-isch, 331.31±59.67* nmol/g/protein; 

KO-non, 37.94±4.84* nmol/g/protein; KO-isch, 86.71±34.26$ nmol/g/protein; *p<0.05 vs. WT-

non; $p<0.05 vs. WT-isch; n=3; Figure 4.4D).   
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Fumarate levels 

Fumarate levels were significantly higher in KO hearts under non-ischemic conditions 

compared to WT hearts. Global ischemia increased fumarate levels in both genotypes with no 

difference between the two groups (WT-non, 49.81±13.77 nmol/g/protein; WT-isch, 

204.89±53.14* nmol/g/protein; KO-non, 99.06±14.45* nmol/g/protein; KO-isch, 260.17±26.55# 

nmol/g/protein; *p<0.05 vs. WT-non; #p<0.05 vs. KO-non; n=4-6; Figure 4.4E).   

Malate levels  

Malate levels were not different between the two genotypes under non-ischemic 

conditions. Malate levels remained unchanged between the two groups post-ischemia when 

compared to their respective non-ischemic group. However, malate levels were significantly 

higher post-ischemia in KO hearts compared to WT hearts (WT-non, 110.99±34.93 

nmol/g/protein; WT-isch, 96.39±13.59 nmol/g/protein; KO-non, 206.01±102.89 nmol/g/protein; 

KO-isch, 221.62±36.31$ nmol/g/protein; $p<0.05 vs. WT-isch; n=5-7; Figure 4.4F). 
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Aspartate and Glutamate levels  

Aspartate and glutamate levels remained unchanged among the four groups (data not 

shown).  

ATP levels 

ATP levels were significantly higher in WT hearts under non-ischemic conditions 

compared to KO hearts. Global ischemia significantly decreased ATP levels in WT hearts 

Figure 4.4. TCA cycle metabolites. Levels of TCA cycle metabolites were measured in WT and 

KO hearts 20 minutes post-ischemia using IC-MS. A: Citrate. B: Isocitrate. C: α-ketoglutarate. 

D: Succinate. E: Fumarate. F: Malate. *p<0.05 vs. WT-non; 
#
p<0.05 vs. KO-non; 

$
p<0.05 vs. 

WT-isch; n=3-7. All (+n) metabolite data was pooled to yield total TCA cycle metabolite levels.          
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compared to their non-ischemic counterpart. ATP levels remained unchanged in KO hearts post 

ischemia (WT-non, 838.50±401.60 nmol/g/protein; WT-isch, 43.46±34.21* nmol/g/protein; KO-

non, 8.07±5.79* nmol/g/protein; WT-isch, 1.07±0.58 nmol/g/protein; *p<0.05 vs. WT-non; n=3-

7; Figure 4.5).  

 

AMPK activation and Glut4 expression 

Phosphorylation (activation) of AMPK was significantly higher in KO hearts under non-

ischemic conditions compared to WT hearts. Global ischemia decreased activation of AMPK in 

both groups. However, phosphorylation of AMPK remained significantly higher in KO hearts 

compared to WT hearts post-ischemia (*p<0.05 vs. WT-non; #p<0.05 vs. KO-non; $p<0.05 vs. 

WT-isch; n=4-5; Figure 4.6A).  

Figure 4.5. ATP levels. ATP levels were measured in WT and KO hearts 20 minutes post-

ischemia using IC-MS. *p<0.05 vs. WT-non; n=3-7.  
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Glut4 protein levels were not different between the two genotypes under non-ischemic 

conditions. Global ischemia significantly decreased Glut4 levels in KO group, not in WT 

(#p<0.05 vs. KO-non; $p<0.05 vs. WT-isch; n=4-5; Figure 4.6B).  

 

 

 

Akt and GSK-3β activation 

Phosphorylation (activation) of Akt was significantly higher in WT hearts under non-

ischemic conditions compared to WT hearts. Global ischemia significantly decreased Akt 

phosphorylation in both groups when compared to their respective non-ischemic group. There 

was no statistical difference in Akt phosphorylation between the two genotypes post-ischemia 

(*p<0.05 vs. WT-non; #p<0.05 vs. KO-non; n=5; Figure 4.7A).  

Phosphorylation at Ser-9 inactivates GSK-3β (14). Phosphorylation of GSK-3β was 

significantly lower in KO hearts under non-ischemic conditions compared to the WT hearts. 

Figure 4.6. AMPK activation and Glut4 expression. Heart lysates, prepared from WT and KO 

hearts, were analyzed by Western blot using anti-p-AMPK (A) and Glut4 (B) antibodies. Top: 

western blots exhibiting immunostaining for p-AMPK, Glut4, and GAPDH. Bottom: 

quantitative analyses of p-AMPK normalized to AMPK and Glut4 normalized to GAPDH 

(*p<0.05 vs. WT-non; 
#
p<0.05 vs. KO-non; 

$
p<0.05 vs. WT-isch; n=4-5).  
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Global ischemia decreased GSK-3β phosphorylation on both groups when compared to their 

respective non-ischemic group. There was no statistical difference in GSK-3β phosphorylation 

between the two genotypes post-ischemia (*p<0.05 vs. WT-non; #p<0.05 vs. KO-non; n=5; 

Figure 4.7B). 

 

 

 

Discussion 

A major finding of this study is that the lack of ATM accelerates glycolysis and 

gluconeogenesis and augments TCA cycle metabolism in the heart under non-ischemic 

conditions. Global ischemia augmented the gluconeogenic pathway in WT hearts, while it 

augmented the glycolytic pathway during ATM deficiency which associated with changes in 

TCA cycle metabolites. ATP levels were significantly lower in ATM deficient hearts. Global 

Figure 4.7. Akt and GSK-3β activation. Heart lysates, prepared from WT and KO hearts, 

were analyzed by Western blot using anti-p-Akt (A) and anti-p-GSK-3β (B) antibodies. 

Top: western blots exhibiting immunostaining for p-Akt, p-GSK-3β, and GAPDH. 

Bottom: quantitative analyses of p-Akt and p-GSK-3β normalized to Akt and GSK-3β 

(*p<0.05 vs. WT-non; 
#
p<0.05 vs. KO-non; n=5). 
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ischemia decreased ATP levels in both genotypes. These metabolic changes associated with 

alterations in the activity of AMPK, Akt, and GSK-3β as well as protein levels of Glut4.   

AT patients, patients with mutations in ATM gene, are predisposed to breast and 

pancreatic cancer and ischemic heart disease. These patients also show enhanced susceptibility to 

diabetes and impaired glucose metabolism (7, 33). In fact, AT patients exhibit lower metabolism 

in cerebellar hemisphere, anterior vermis and fusiform, while exhibiting higher metabolism in 

globus pallidus (34). This decreased metabolism in globus pallidus  correlated negatively with 

motor performance (34). Previously, our lab provided evidence that lack of ATM induces 

structural and functional changes in the heart with enhanced cardiac fibrosis and hypertrophy 

(18). Here we observed that lack of ATM results in enhanced glycolysis and gluconeogenesis at 

under non-ischemic conditions as evidenced by an increase in glycolytic metabolites such as 

G1P (+6), G6P (+6), F6P (+6), PEP (+3), and pyruvate (+3), and gluconeogenic metabolites such 

as G1P (+3) and F6P (+3) when compared to WT hearts. Additionally, ATP levels were lower in 

ATM null hearts under non-ischemia. This is consistent with the observations of Zakikhani et al. 

where glucose uptake and glycolysis were higher, while ATP levels were lower in MCF-7 and 

HepG2 cells treated with an ATM inhibitor KU-55933 (40). It was interesting to note that lack of 

ATM had no effect on glycogen and lactate levels under non-ischemic conditions. The enhanced 

glycolysis in ATM null hearts suggests metabolic stress. It is possible that glycolysis is enhanced 

in KO hearts as an attempt to replenish ATP levels and maintain somewhat proper functioning of 

the heart. However, these efforts may be restrained by enhanced gluconeogenesis, another mode 

by which homeostasis could be restored. It is also possible that glycogen levels remained 

unchanged under non-ischemic conditions in KO hearts due to rapid cycling of both glycolytic 

and gluconeogenic pathways. 
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The metabolic demand of the heart per gram is the highest in the body (37). Adequate 

amount of ATP must be generated to support the contractile activity of the heart and to support 

viability (37). About 4% of ATP in the heart is derived from glycolysis, while >95% of ATP is 

derived from oxidative phosphorylation at the electron transport chain in mitochondria (37). 

Cardiac ischemia associates with dramatic changes in metabolism. Due to depletion of O2, 

mitochondrial oxidative phosphorylation decreases, while glycolysis accelerates (27). Since 

mitochondria are unable to oxidize pyruvate, pyruvate is converted into lactate (27). As 

expected, global ischemia decreased ATP levels and glycogen levels in WT hearts. Global 

ischemia also associated with increased levels of gluconeogenic metabolites, such as G1P (+3), 

G6P (+3), and F6P (+3). The levels of glycolytic metabolites, PEP (+3) and pyruvate (+3), were 

significantly lower in ischemic WT hearts. Levels of lactate tended to be higher with ischemia, 

although the data remained insignificant. These data point towards the augmentation of the 

gluconeogenic pathway in WT hearts post-ischemia. Furthermore, the decrease in glycogen 

levels post-ischemia is indicative of glycogen breakdown. Glycogen is a critical energy 

repository in the heart and can quickly be mobilized if needed (35). During energy deficiency, 

glycogen breakdown is enhanced to accommodate the rapid changes in cardiac demand (35). In 

rat kidney, 30 minutes of ischemia led to enhanced gluconeogenesis (23). Gluconeogenesis is 

suggested to be correlated with glycogen metabolism in rabbit hearts during ischemia and 

reperfusion as ischemia (5 minutes) decreased glycogen levels and increased the expression of 

phosphoenolpyruvate carboxykinase, an important enzyme involved in the regulation of 

gluconeogenesis (1). Given that there is no significant change in lactate levels, and the levels of 

glycolytic metabolites PEP (+3) and pyruvate (+3) are lower in WT hearts post-ischemia, it is 
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possible that PEP (+3) and pyruvate (+3) contribute to the gluconeogenic pathway. It is also 

possible that glycogen is mobilized in WT hearts post-ischemia for gluconeogenesis.  

In contrast to WT hearts, ATP levels were lower in KO hearts and remained unchanged 

post-ischemia. Interestingly, non-ischemic levels of glycolytic metabolites - G1P (+6), G6P (+6), 

F6P (+6), PEP (+3), and pyruvate (+3) were significantly greater in KO hearts vs WT hearts. 

Global ischemia decreased the levels of these metabolites with no difference between the two 

genotypes. Two gluconeogenic metabolites GIP (+3) and F6P (+3) were also greater in non-

ischemic KO hearts and global ischemia had no effect on gluconeogenic metabolites. Like WT 

hearts, global ischemia decreased glycogen levels with no change in lactate levels. It appears that 

global ischemia augments the glycolytic pathway in KO hearts. The decrease in glycogen stores 

coupled with the decrease in glycolysis may indicate a preference for glycogen metabolism as 

opposed to metabolizing exogenous glucose in KO hearts post-ischemia.  

Additionally, global ischemia decreased levels of citrate, isocitrate, and α-ketoglutarate, 

while increasing levels of succinate and fumarate. Since the TCA cycle is oxygen-dependent, the 

levels of TCA cycle metabolites citrate, isocitrate, and α-ketoglutarate are expected to be lower 

in WT hearts post-ischemia. Unexpectedly, ischemia elevated levels of succinate and fumarate in 

WT hearts. Succinate is suggested to play a critical role in the heart’s response to ischemia-

reperfusion injury, and is considered as a universal signature of ischemia (5, 30) as its 

accumulation has been seen during hypoxia in isolated adult rat heart cells (21) and in isolated 

mouse hearts (2). The sources of increased succinate can include the conversion of aspartate and 

glutamate to succinate (2) or reduction of malate to succinate via the reverse reaction of 

succinate dehydrogenase during ischemia (2, 30). Of note, accumulation of fumarate is suggested 
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to play a cardioprotective role (2). Therefore, it is possible that enhanced production of succinate 

and fumarate from amino acid metabolism may be an attempt to generate energy through 

intermediary metabolism, while playing a protective role to reverse/negate the negative 

consequences of cardiac ischemia.     

KO mice also exhibited altered TCA cycle metabolism under non-ischemic conditions. 

Isocitrate levels were lower, while α-ketoglutarate, succinate, and fumarate levels were higher in 

KO hearts. The decrease in isocitrate levels could be due to the usage of pyruvate to fuel 

glycolytic and gluconeogenic cycling as opposed to being utilized to drive the TCA cycle. The 

increase in the levels of α-ketoglutarate, succinate, and fumarate may in part be attributable to 

anaplerosis of the TCA cycle. Amino acids play a critical role in cardiac metabolism, as they are 

regarded as cardioprotective substrates and produce low levels of acidic by-products (12). 

Glutamate, a key amino acid in cellular metabolism, can easily be converted to α-ketoglutarate in 

times of stress (12). Aspartate has the ability to remove excess TCA cycle intermediates 

downstream from the conversion to succinate (12). Here, glutamate and aspartate levels were not 

significantly different between the two non-ischemic groups. It is possible that substrates other 

than glutamate and aspartate may contribute to α-ketoglutarate formation in KO hearts. Global 

ischemia decreased citrate and α-ketoglutarate levels in both genotypes, however, fumarate 

levels were increased in KO hearts, indicating that the TCA cycle may be defective or down-

regulated in KO hearts during global ischemia. Fumarate levels may be higher due to its potential 

cardio-protective effect. Despite the robust changes seen in KO hearts under non-ischemic 

conditions when compared to WT hearts, global ischemia had no effect on the glycolytic and 

gluconeogenic pathways in KO hearts. It appears that KO hearts are metabolically stressed 

without the superimposed insult.  
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AMPK is a key component of many metabolic pathways in the heart, as it serves to 

maintain cellular homeostasis (20, 26, 28, 39). AMPK is activated in response to an increase in 

the AMP:ATP ratio and metabolic stresses like ischemia and oxidative stress (20, 26, 28, 39). In 

fact, AMPK is a key regulator of glucose metabolism as its activation triggers catabolic 

pathways like glycolysis to produce ATP (20, 26, 28, 39), while turning off anabolic pathways 

that utilize ATP such as gluconeogenesis (26, 39). In order to increase glucose uptake, AMPK 

increases GLUT1 expression and GLUT4 translocation to the plasma membrane (20, 28, 32, 35). 

However, GLUT1 is the predominant glucose transporter in the fetal heart, while GLUT4 is the 

predominant form in the adult heart (10, 11). In fact, after birth GLUT4 replaces GLUT1 

yielding a 20-fold decrease in GLUT1 and a 4-fold increase in GLUT4 mRNA and protein (10). 

While GLUT1 is important for basal glucose uptake in the fetal heart, GLUT4 mediates glucose 

uptake in the adult heart and is correlated with sustained cardiac function (10, 11). Here we 

observed that AMPK activity is higher in KO non-ischemic hearts. Global ischemia decreased 

AMPK activity in both genotypes. On the other hand, GLUT4 expression was not different 

between the two non-ischemic groups. Global ischemia decreased GLUT4 expression in KO 

group, not in WT group. The observation of higher AMPK activity in non-ischemic KO hearts is 

consistent with the observations Zakikhani et al. where AMPK phosphorylation was increased in 

MCF-7, HeLa, and HepG2 cells treated with the ATM inhibitor KU-55933 (40). This increased 

AMPK activation may be a response to low ATP levels in KO hearts under non-ischemic 

conditions. Although GLUT4 protein levels were not significantly different between WT and KO 

groups under non-ischemic conditions, high AMPK activation may explain the accelerated 

glycolysis. On the other hand, decreased AMPK activation in WT hearts post-ischemia may 

explain the increase in gluconeogenic metabolites to maintain homeostasis in the face of 
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ischemic stress, while AMPK activation in KO hearts post-ischemia may be correlated with low 

GLUT4 protein levels and glycolysis.  

Akt signaling plays a key role in cell survival and glucose metabolism (4, 6, 36). In 

cancer cells, Akt signaling associates with an increase in glucose metabolism (6). Akt promotes 

glucose uptake by increasing GLUT1 expression on the cell surface and promoting the 

translocation of GLUT4 to the plasma membrane (4, 36). Akt also affects glucose metabolism by 

phosphorylating or inactivating GSK-3β, which in turn stimulates glycogen synthesis (25, 29). 

Ischemia increases GSK-3β transcription in rabbit hearts, followed by a decrease in glycogen 

content, suggesting that glycogen consumption during ischemia is regulated by GSK-3β (15). In 

the present study, non-ischemic KO hearts exhibited decreased Akt activation and increased 

GSK-3β activation versus the WT non-ischemic hearts. Previously, our lab reported no 

significant change in phosphorylation of Akt and GSK-3β between WT-sham and KO-sham 

groups (18). It should be noted that hearts in the present study were subjected to a 30 minute 

perfusion with KH buffer post-excision prior to the preparation of heart lysates. Furthermore, the 

previous study used LV lysates for western blot analyses (18), while the current study used 

whole heart lysates. Interestingly, glycogen levels were comparable between the two genotype, 

supporting the possibility of rapid cycling of both glycolytic and gluconeogenic pathways in KO 

hearts. Global ischemia enhanced GSK-3β activity, while decreasing Akt activity and glycogen 

levels. These data suggest that glycogen consumption is regulated by Akt/GSK-3β pathway in 

both genotypes post-ischemia. In the KO hearts, however, Akt activity may also be involved in 

Glut4 expression as Glut4 protein levels were lower in KO hearts post-ischemia as well.  
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In summary, we provide evidence that the lack of ATM accelerates glycolysis and 

gluconeogenesis in the heart during non-ischemic conditions to augment TCA cycle metabolism. 

Global ischemia augments the gluconeogenic pathway in WT hearts, while it augments the 

glycolytic pathway during ATM deficiency which associates with changes in TCA cycle 

metabolites. Additionally, global ischemia had no effect on glycolytic or gluconeogenic 

pathways in KO hearts, suggesting the possibility that the KO hearts are already metabolically 

stressed under non-ischemic conditions. The aforementioned metabolic changes associated with 

changes in the activity of signaling kinases such as Akt, GSK-3β, and AMPK, and Glut4 protein 

levels. Together, these data support the finding that ATM affects cardiac metabolites with and 

without ischemia. However, it should be emphasized that our data on ATM deficiency and 

metabolic changes are obtained 20 minutes post-global ischemia. A thorough time course 

analysis of various metabolites and signaling molecules involved metabolism may provide 

further insights into the mechanism by which ATM affects cardiac energetics.  
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CHAPTER 5 

CONCLUSION 

Mutations in ATM gene cause a multisystemic disease known as Ataxia telangiectasia 

(AT) (Lavin et al. 1995; Su and Swift 2000). AT patients are susceptible to ischemic heart 

disease  and metabolic disorders (Lavin et al. 1995; Su and Swift 2000). Using ATM deficient 

mice, this study investigated the role of ATM in cardiac autophagy and glucose metabolism 

under ischemic conditions. A major finding of this study is that ATM deficiency results in 

autophagic impairment in the heart 4 hours during MI and 4 hours post- inhibition in cardiac 

fibroblasts, while it augments autophagic response in the infarct region of the heart 28 days post-

MI and 24 hours post-inhibition in cardiac fibroblasts. Early during MI (4 hours after its onset), 

ATM deficiency resulted in autophagic impairment in all phases (autophagy induction, 

autophagosome formation, and autophagolysosome degradation) and in cardiac fibroblasts via 

the activation of GSK-3β and mTOR, and inactivation of Akt and AMPK. Late during MI (28 

days post-MI), ATM deficiency augmented autophagy only in the infarcted region of the heart, 

which associated with the activation of Erk1/2, Akt and mTOR. Additionally, ATM affected 

glucose metabolism with and without ischemia. The lack of ATM accelerated glycolysis and 

gluconeogenesis, and augmented TCA cycle metabolism under non-ischemic conditions. Global 

ischemia augmented the glycolytic, not the gluconeogenic, pathway during ATM deficiency. 

Such metabolic changes associated with alterations in the activity of AMPK, Akt, and GSK-3β 

as well as protein levels of Glut4. Overall, the data presented here implicates ATM as a key 

player in autophagic changes in the heart in response to MI as well as in glucose metabolism 

under non-ischemic and ischemic conditions.  
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ATM and Cardiac Autophagy 

Early during MI (4 hours after its onset), ATM deficiency impaired autophagy in the 

heart at all three stages (autophagy induction, autophagosome formation, and 

autophagolysosome degradation) and in cardiac fibroblasts treated with the ATM inhibitor KU-

55933 for 4 hours. Such autophagic changes in the heart and in cardiac fibroblasts associated 

with the activation of GSK-3β and mTOR, and inactivation of Akt and AMPK. Although 

typically associated with apoptotic signaling (Endo et al. 2006), Akt/ GSK-3β signaling has also 

been implicated in autophagy regulation. Akt activation (phosphorylation) and GSK-3β 

inactivation (phosphorylation) induces autophagy following middle cerebral artery occlusion that 

ultimately results in neuroprotection in the transient cerebral ischemic rat model (Qi et al. 2012). 

Furthermore, the GSK-3β inhibitor CHIR99021 induced an autophagic response in human 

pancreatic cancer cells (Marchand et al. 2015). Additionally, GSK-3β activity has been linked to 

AMPK activity, the energy sensor in cells that functions to maintain homeostasis by responding 

to ATP depletion. Suppression of GSK3β using CHIR99021 in human aortic endothelial cells 

resulted in increased basal autophagy and AMPK activity (Weikel et al. 2016). It is well-known 

that AMPK activation activates autophagy and can do so via inactivating the master regulator of 

autophagy, mTOR (Chang Hwa Jung, Seung-Hyun Ro, Jing Cao, Neil Michael Otto 2010; Kim 

et al. 2011; Kim and L. 2015). Thus, it is possible that inactivation of Akt leads to the activation 

of in GSK-3β phosphorylation, thus activating GSK-3β. Increased GSK-3β activity may result in 

a decline in AMPK phosphorylation and activation. This decline in AMPK activation may result 

in mTOR activation that ultimately inhibits autophagic response. Interestingly, ATM deficiency 

resulted in enhanced autophagic response under basal conditions. However, such autophagic 

changes did not associate with alterations in Akt, GSK-3β, or AMPK activity. However, mTOR 
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phosphorylation was lower in ATM deficient hearts, indicating that enhanced autophagic 

response in ATM deficient hearts under basal conditions may be mTOR dependent. Together, 

these data suggest that ATM deficiency serves a pro-autophagic role under basal conditions that 

changes upon the onset of MI, and that the signaling molecules involved in ATM-mediated 

autophagic response are different under basal conditions and early during MI. 

ATM deficiency also augmented autophagy the infarct region of the heart 28 days post-

MI as well as in cardiac fibroblasts treated with ATM inhibitor KU-55933 for 24 hours. 

Augmented autophagy in the infarct region of the hearts associated with enhanced Akt, Erk1/2, 

and mTOR activation. Activation of Akt and Erk1/2 is shown to positively regulate autophagy 

(Suffixidharan et al. 2011), while activation of mTOR is known to negatively regulate autophagy 

(Chang Hwa Jung, Seung-Hyun Ro, Jing Cao, Neil Michael Otto 2010). Thus, it is possible that 

the autophagic changes in ATM deficient hearts post-MI involves both Akt and Erk1/2 signaling 

that is independent of mTOR activation. Furthermore, we previously found that activation of 

GSK-3β was lower in the infarct region of ATM deficient hearts compared to their WT 

counterparts (Daniel et al. 2016). Of interest is to note that the decrease in GSK-3β activity 

associated with a decrease in apoptosis in the infarct region of the heart (Daniel et al. 2016). As 

GSK-3β is a downstream target of Akt (Fang et al. 2000), it is possible that activated Akt 

phosphorylated and inhibited (phosphorylated) GSK-3β. Such inhibition of GSK-3β, a pro-

apoptotic kinase (Daniel et al. 2016), could have resulted in the decrease in apoptosis and 

changes in autophagy.  

While autophagy is typically enhanced following MI, there have been contrasting reports 

of autophagic activity in the non-infarct region of the heart following MI. For instance, Chi et al. 
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showed that LC3 protein expression revealed that LC3 protein levels were significantly lower in 

the remote non-infarcted region of the rabbit hearts 1, 4 and 8 weeks after MI compared with 

sham animals (Chi et al. 2018). Furthermore, Beclin1 and Atg5 protein expression was 

significantly lower in the remote non-infarcted region 4 weeks post-MI compared with sham 

animals (Chi et al. 2018). Although statistically insignificant, p62 protein levels tended to 

increase 4 weeks post-MI compared with sham animals (Chi et al. 2018). On the other hand, it 

has also been shown that autophagic activity is augmented in the non-infarcted remote area and 

border area post-MI, and the autophagic activity progressively increases in the remote area up to 

3 weeks post-MI (Kanamori, Takemura, Goto, Maruyama, Tsujimoto, et al. 2011; Kanamori et 

al. 2013). In the current study, we observed increased LC3-II protein levels and decreased p62 

protein levels in WT non-infarct LV 28 days post-MI, suggesting autophagic alterations. 

Interestingly, ATM deficiency did not affect autophagic response in the non-infarct LV region 28 

days post-MI. Thus, it is presently unclear why autophagic activity was unchanged in the non-

infarct region of the heart 28 days post-MI in response to ATM deficiency and such a 

phenomenon warrant future investigations.  

Collectively, these results indicate that ATM deficiency serves to enhance autophagy 

under basal conditions while also augmenting autophagic activity in the infarct region during a 

chromic model of MI (28 days post-MI) and 24 hours post ATM inhibition in cardiac fibroblasts. 

However, during the early stages of MI (4 hours during MI) and 4 hours following ATM 

inhibition in cardiac fibroblasts, ATM deficiency impairs autophagic response. While autophagic 

enhancement during ATM deficiency is mTOR dependent under basal conditions, its 

augmentation is mTOR independent in the infarct region 28 days post-MI. Furthermore, 

autophagic response during ATM deficiency in the heart and in cardiac fibroblasts does not seem 
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to involve other signaling molecules (Akt, GSK-3β, Erk1/2, AMPK) until the onset of MI. Four 

hours after the onset of MI, autophagic impairment is driven by inactivation of Akt and AMPK, 

and activation of GSK-3β and m-TOR. On the contrary, autophagic changes in the infarct region 

28 days post-MI associates with activation of Akt, Erk1/2, and mTOR and inactivation of GSK-

3β. These results suggest that the role of ATM in autophagic response changes over the time 

course of MI (ATM deficiency has different effects in autophagy 4 hours into MI as opposed to 

28 days post-MI), and the mechanisms by which these changes occur with time are also 

different. Thus, future investigations involving intermediate time points between 4 hours and 28 

days post-MI should be conducted to understand the full scope of molecular changes involved in 

autophagic flux during ATM deficiency post-MI. Also, the utilization of autophagy inhibitors 

and activators in future studies may help elucidate the mechanisms by which ATM deficiency 

alters autophagy post-MI.       

ATM and Cardiac Glucose Metabolism 

Another interesting major finding of this investigation is that the lack of ATM accelerates 

glycolysis and gluconeogenesis, and augments TCA cycle metabolism under non-ischemic 

conditions. Additionally, ATP levels were lower in ATM null hearts under non-ischemia, while 

glycogen levels were comparable between WT and KO hearts. The enhanced glycolysis in ATM 

null hearts suggest metabolic stress. It is possible that glycolysis is enhanced in KO hearts as an 

attempt to replenish ATP levels and proper functioning of the heart. However, these efforts may 

somewhat be restrained by enhanced gluconeogenesis, another mode by which homeostasis 

could be restored (Aguiar et al. 2017). It is also possible that glycogen levels remained 

unchanged under non-ischemic conditions in KO hearts due to rapid cycling of both glycolytic 
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and gluconeogenic pathways. Furthermore, 20 minute global ischemia down-regulated the 

glycolytic pathway, not the gluconeogenic pathway, during ATM deficiency. Glycogen stores 

were also significantly reduced in ATM null hearts post-ischemia. Glycogen is a critical energy 

repository in the heart and can quickly be mobilized if needed (Wang et al. 2014). During energy 

deficiency, glycogen breakdown is enhanced to accommodate the rapid changes in cardiac 

demand (Wang et al. 2014). When coupled with decreased glycolysis, a decrease in glycogen 

levels indicate a preference for glycogen metabolism as opposed to metabolizing exogenous 

glucose in KO hearts post-ischemia.   

AMPK is a key regulator of glucose metabolism as its activation triggers glycolysis to 

produce ATP (Long and Zierath 2006; Heidrich et al. 2010; Wu and Wei 2012). To increase 

glucose uptake, AMPK increases GLUT1 expression and GLUT4 translocation to the plasma 

membrane (Heidrich et al. 2010). Like AMPK, Akt promotes glucose uptake by increasing 

GLUT1 expression on the plasma membrane and promoting the translocation of GLUT4 to the 

plasma membrane (Chaanine and Hajjar 2011; Ward and Thompson 2012). Akt also 

phosphorylates or inactivates GSK-3β, which in turn stimulates glycogen synthesis (Oreña et al. 

2000; Lee and Kim 2007). Here, activation of AMPK was higher in ATM null hearts under non-

ischemic conditions, suggesting its involvement in the accelerated glycolysis in response to low 

ATP levels. However, global ischemia decreased AMPK activation in ATM null hearts, a 

phenomenon that may explain low GLUT4 protein expression and glycolysis in these hearts. 

Global ischemia enhanced GSK-3β activity, while decreasing Akt activity in KO hearts. These 

data suggest that glycogen consumption is regulated by Akt/GSK-3β pathway in KO hearts post-

ischemia, and that Akt activity may also be involved in Glut4 expression as Glut4 expression 

was lower in those hearts post-ischemia as well.  



110 
 

ATM null hearts exhibited altered TCA cycle metabolism under non-ischemic conditions. 

Isocitrate levels were lower, while α-ketoglutarate, succinate, and fumarate levels were higher in 

null hearts. The decrease in isocitrate levels could be due to the usage of pyruvate to fuel 

glycolytic and gluconeogenic cycling as opposed to being utilized to drive the TCA cycle. 

Succinate plays a critical role in the heart’s response to ischemia-reperfusion injury and is 

considered a universal signature of ischemia (Chouchani et al. 2014; Pell et al. 2016). 

Accumulation of fumarate is suggested to play a cardioprotective role (Ashrafian et al. 2012). 

The increase in the levels of α-ketoglutarate, succinate, and fumarate may in part be attributable 

to the contribution of amino acid metabolism. Global ischemia decreased citrate and α-

ketoglutarate levels in null hearts, however, fumarate levels were increased, indicating that the 

TCA cycle may be defective or down-regulated in the absence of ATM during global ischemia. 

Fumarate levels are higher due to its potential cardio-protective effect. 

Altogether, these results indicate that the lack of ATM results in accelerated 

gluconeogenesis and glycolysis under non-ischemic conditions and that global ischemia down-

regulates glycolysis in ATM null hearts. Such changes were also accompanied by alterations in 

TCA cycle metabolism that may serve as cardio-protective. Overall changes in glucose 

metabolism in ATM null hearts were driven by alterations in the activity of AMPK, Akt, and 

GSK-3β as well as protein levels of Glut4. Although these findings are novel and hold the 

potential to shed light on the role of ATM in glucose metabolism, a thorough time course 

analysis of various metabolites and signaling molecules involved metabolism is needed to 

provide further insights into the mechanism by which ATM affects cardiac energetics.  
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