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ABSTRACT

Italian Domination in Complementary Prisms

by

Haley Russell

Let G be any graph and let G be its complement. The complementary prism of G

is formed from the disjoint union of a graph G and its complement G by adding

the edges of a perfect matching between the corresponding vertices of G and G. An

Italian dominating function on a graph G is a function such that f : V → {0, 1, 2}

and for each vertex v ∈ V for which f(v) = 0, it holds that
∑

u∈N(v) f(u) ≥ 2. The

weight of an Italian dominating function is the value f(V ) =
∑

u∈V (G) f(u). The

minimum weight of all such functions on G is called the Italian domination number.

In this thesis we will study Italian domination in complementary prisms. First we

will present an error found in one of the references [5]. Then we will define the

small values of the Italian domination in complementary prisms, find the value of the

Italian domination number in specific families of graphs complementary prisms, and

conclude with future problems.
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1 INTRODUCTION

In this thesis we study Italian domination in the family of graphs known as com-

plementary prisms. Before progressing into our discussion we first need to define

some terminology and notation. Let G = (V,E) be a simple undirected graph with

vertex set V = V (G) and edge set E = E(G). The size of G, |E(G)| = m, is the

number of edges in G. Similarly, the order of G, |V (G)| = n, is the number of

vertices in G. For any two vertices a, b ∈ V (G), a and b are adjacent if the edge

ab ∈ E(G). The open neighborhood of a vertex v ∈ V , denoted N(v), consists of the

vertices adjacent to v, and its closed neighborhood, denoted N [v], is the open neigh-

borhood of vertex v together with the vertex v. That is, N(v) = {x | vx ∈ E} and

N [v] = N(v) ∪ {v}. A vertex v ∈ S has a private neighbor with respect to the set S

if there is a w ∈ N(v) ∩ (V − S) for which N(w) ∩ S = {v}. The degree of v is the

cardinality of the open neighborhood of v, or degG(v) = |N(v)|. The maximum degree

of a graph G is denoted ∆(G) =max{degG(v)|v ∈ V (G)} and the minimum degree of

graph G is denoted δ(G) =min{degG(v)|v ∈ V (G)}. A vertex of degree zero is known

as an isolate, or an isolated vertex. A leaf of a graph is vertex of degree one, and the

vertex adjacent to a leaf is called a support vertex. We will let mH denote the union

of m disjoint copies of H. For example, mK2 is the graph formed from m copies of

K2. The complement of a graph G, denoted G, is a graph such that V (G) = V (G)

and E(G) = {xy | xy /∈ V (G)}.

Complementary products were first introduced in [17] as a generalization of Carte-

sian products of graphs. In this thesis, our main focus will be on complementary

prisms which are a sub-family of complementary products. A complementary prism
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of a graph G, denoted GG, is the disjoint union of G and G formed by adding a per-

fect matching between corresponding vertices of G and G. For each v ∈ V (G) let the

corresponding vertex in G be denoted as v. In other words, the graph GG is formed

from G∪G by adding the edge vv for all v ∈ V (G). Several different parameters have

been studied in complementary prisms, see [8, 18, 20, 21]. It is important to observe

that complementary prisms are a generalization of several well known graphs, such as

the Petersen graph which is the complementary prism C5C5, as seen in Figure 1, and

the corona Kn ◦K1 which is the complementary prism KnKn. An example K5K5 is

seen in Figure 1.

v1

v1

v2

v2

v3v3

v4

v4

v5 v5

Petersen Graph-C5C5Petersen Graph-C5C5

v1

v1

v2

v2

v3v3

v4

v4

v5 v5

K5K5K5K5

Figure 1: Complementary prisms: Petersen graph and K5K5

A dominating set of G is a subset S of V such that every vertex in V − S is

adjacent to at least one vertex in S. That is, N [S] = V . The minimum cardinality
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of the dominating sets of G is the domination number, denoted γ(G). A subset S ⊆

V is a 2-dominating set if every vertex of V − S is adjacent to at least two vertices

in S. The minimum cardinality amongst all 2-dominating sets is the 2-domination

number, denoted γ2(G). The 2-domination number was first introduced in [12] and is

generalized as n-domination, see also [3, 22].

Another, equivalent, definition of a dominating set is a subset S of V is a domi-

nating set only if |N [v] ∩ S| ≥ 1, for each v ∈ V . And just as we had previously, the

minimum cardinality amongst these dominating sets of G the domination number. A

double dominating set is a subset S of V such that |N [v]∩S| ≥ 2, for each v ∈ V . The

minimum cardinality of a double dominating set of G is called the double domination

number, denoted γ×2(G). Double domination was introduced in [16] and is a case of

k-tuple domination, see also [7, 9, 15]. It is important to observe that the double

domination number is not defined for graphs that have an isolated vertex.

A Roman dominating function, or RDF, on G is a function such that f : V →

{0, 1, 2} and every v ∈ V for which f(v) = 0 is adjacent to at least one vertex u for

which f(u) = 2. For any Roman dominating function f of G, and i ∈ {0, 1, 2}, let

Vi = {v ∈ V | f(v) = i}. Since this partition determines f , we write f = (V0, V1, V2).

The weight of a Roman dominating function is the value f(V ) =
∑

u∈V (G) f(u),

equivalently f(V ) = |V1| + 2|V2|. The minimum weight of a Roman dominating

function is the Roman domination number of G, denoted γR(G). Roman domination

was motivated by Stewart in [27] and a Roman dominating function was first formally

defined in [6]. Roman domination has been studied in numerous papers, see [1, 2, 4,

10, 11, 13, 14, 23, 24, 25, 26, 29].
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The final parameter we define is a variation of both 2-domination and Roman

domination. An Italian dominating function, or IDF, on a graph G is a function such

that f : V → {0, 1, 2} and for each vertex v ∈ V for which f(v) = 0, it holds that

∑
u∈N(v) f(u) ≥ 2. Similar to Roman domination, an Italian dominating function f

of G can also be partitioned into three sets such that f = (V0, V1, V2). The weight

of an Italian dominating function is the value f(V ) =
∑

u∈V (G) f(u), equivalently

f(V ) = |V1|+2|V2|. The minimum weight of all such Italian dominating functions on

G is called the Italian dominating number, denoted γI(G). Italian domination was

first introduced in [5] under the name Roman {2}-domination, in 2016. The concept

has also been explored in [19] and [28]. An example of Italian domination is given in

Figure 2, for two graphs where the assignment of a γI(G)-function of the graph is on

the vertices.

0 1

1 0

1

1

0

2

0 0

Figure 2: Examples of Italian domination

It follows directly from the above definitions that the Italian domination number

of any graph G is bounded by

γ(G) ≤ γI(G) ≤ γR(G) ≤ 2γ(G).
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This string of inequalities was given in [5, 28]. Also following directly from the above

definitions the Italian domination number of an isolate free graph is bounded by

γ(G) ≤ γI(G) ≤ γ2(G) ≤ γ×2(G).

This string of inequalities was partially studied in [5] and given in its entirety in [28].

These two strings of inequalities that bound the Italian domination number are of

particular interest because the Roman domination number and the double domination

number of a graph are generally incomparable parameters; this was the motivation

behind [28].

To further our discussion of Italian domination, we need to define some related

terminology given in [28]. A graph is defined to be an I1 graph if every minimum

weight Italian dominating function exclusively uses the set {0, 1}. Analogously, a

graph is defined to be an I2 graph if every minimum weight Italian dominating func-

tion is exclusively the set {0, 2}. Finally a graph is an I1a graph if the range of some

minimum weight Italian dominating function is the set {0, 1}. A graph is called a

Roman graph if γR(G) = 2γ(G). Similarly, a graph is defined to be an Italian graph

if γI(G) = 2γ(G).

It is clear from the definitions that if G is Italian, then it is also Roman. It is

not necessarily true that if a graph is Roman, then it is Italian. Consider the graph

P5 as an example. We have that γ(P5) = 2, γR(P5) = 4, and γI(P5) = 3, making

P5 a graph that is Roman but not Italian. Notice any graph that is I1 cannot be

an Italian or Roman graph. Also every I2 graph is an Italian graph and therefore a

Roman graph as well. Not every Italian graph, however, is necessarily an I2 graph.

Consider the graph P2 for example. It is clear that γ(P2) = 1 and γI(P2) = 2 making
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P2 an Italian graph. Observe that one possible Italian dominating function of P2

assigns both vertices a 1. Thus, implying that, P2 is an Italian graph that is not an

I2 graph.

As stated previously, in this thesis we study Italian domination of complementary

prisms. First, in Section 2, we will conduct a literature survey over all known, relevant

work to this thesis. In Section 3 we will correct an error found in [5], the small values

of Italian domination in complementary prisms are defined and discussed, the Italian

domination number is found for specific classes of graph’s complementary prisms, and

general bounds are observed for the Italian domination number in complementary

prisms. Then we conclude with future problems.
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2 LITERATURE SURVEY

This section will present some background results to this research. These results

were the catalyst and motivation behind this thesis. First we present all known

relevant results regarding the Italian dominating number, and then we present the

results from a similar paper to this thesis.

2.1 Italian Domination

The following theorems and results are not an exhaustive list of results regarding

the Italian domination number, rather, it is a list of all known relevant results. For

a more complete list of results regarding the Italian dominating number the reader

is referred to [5, 19, 28]. It is important to note that Italian domination was first

introduced in [5] as Roman {2}-domination and was denoted γ{R2}(G). For clarity

all results from [5] have been alerted to reflect our notation for Italian domination

number. First we have several bounds on the Italian domination number.

Proposition 2.1. [5] For every graph G, γ(G) ≤ γI(G) ≤ γR(G).

Observation 2.2. [5] For a graph G, γ(G) < γI(G) < γR(G) is possible, even for

paths.

Theorem 2.3. [5, 28] For every graph G, γI(G) ≤ 2γ(G).

Proposition 2.4. [5] For every graph G, γI(G) ≤ γ2(G).

The next result observes a case when the bound in Proposition 2.4 is sharp.

Corollary 2.5. [5] For every graph G with ∆(G) ≤ 2, γI(G) = γ2(G).

14



Using Corollary 2.5 the Italian domination number for two important families of

graphs are given below.

Corollary 2.6. [5, 28] For the classes of paths Pn and cycles Cn, γI(Pn) = ⌈n+1
2
⌉

and γI(Cn) = ⌈n
2
⌉.

The following proposition characterizes when the bound in Proposition 2.4 is

sharp.

Proposition 2.7. [28] For all G, γI(G) = γ2(G) if and only if G is I1a.

These next results give upper bounds on the Italian domination number.

Theorem 2.8. [28] For all connected graphs G with n ≥ 3 vertices, γI(G) ≤ 3n
4
.

Theorem 2.9. [28] Let G be a graph with n ≥ 3 vertices and δ ≥ 2. Then γI(G) ≤ 2n
3
.

Theorem 2.10. [28] Let G be a graph with n vertices and minimum degree δ ≥ 3.

Then γI(G) ≤ n
2
.

Let a circulant graph Cn(x1, x2, x3) be a graph with n vertices v0, v1, ..., vn−1 with

vi adjacent to each vertex vi±xj
, j ∈ {1, 2, 3}, where addition is done mod n. The

following is a conjecture regarding circulant graphs.

Conjecture 2.11. [28] The Italian domination number γI(G) = n
2
for G = C4k(1, 2k, 4k−

1) and for G = C8k(1, 4k, 8k − 1).

A regular graph is a graph in which every vertex has the same degree. If every

vertex of graph G has degree r, then we say G is a r-regular graph. The next two

results are about 4-regular graphs.

15



Proposition 2.12. [28] There exist infinitely many bipartite 4-regular graphs G such

that G has n vertices, γ2(G) = n
2
, and γI(G) < γ2(G).

Proposition 2.13. [28] Let G be a 4-regular, diameter two graph with n = 10 vertices.

Then γ(G) ≤ 3 and γI(G) ≤ 5.

The final results in this subsection are fundamental results regarding the Italian

domination number of graphs that are trees.

Corollary 2.14. [28] For the path Pn with n odd and n 6= 3 ia an 1i graph and these

are the only paths that are I1.

Proposition 2.15. [28] The paths P2, P3, P6 are the only Italian paths and no paths

are I2.

Theorem 2.16. [28] Let T be a tree with n > 1 vertices. Then γ(T ) < γI(T ).

Observation 2.17. [19] If T ′ is a subtree of a tree T , then γ(T ′) ≤ γ(T ) and γI(T
′) ≤

γI(T ).

2.2 Complementary Prisms

Now results from a similar paper to this thesis, that is about Roman domination

in complementary prisms, is presented, see [1]. The first result characterizes the

complementary prisms having γR(GG) ∈ {2, 3, 4}.

Theorem 2.18. [1] Let G be a graph of order n. Then

1. γR(GG) = 2 if and only if G = K1.

2. γR(GG) = 3 if and only if G = K2 or G = K2.

16



3. γR(GG) = 4 if and only if γR(G) = 3 and G has an isolated vertex or γR(G) = 3

and G has an isolated vertex

The next lower bound follows directly from Theorem 2.18.

Corollary 2.19. [1] If G and its complement G are isolate-free graphs, then γR(GG) ≥

5.

Next the Roman domination number of the complementary prism when G = Kn

is given.

Proposition 2.20. [1] If G = Kn, then γR(GG) = n+ 1.

The following two results give lower bounds on the Roman domination number

for complementary prisms.

Theorem 2.21. [1] For any graph G of order n, γR(GG) ≥max{γR(G), γR(G)} + 1

with equality if and only if G or G has an isolated vertex.

Corollary 2.22. [1] If neither graph G nor its complement G has an isolated vertex,

then γR(GG) ≥max{γR(G), γR(G)}+ 2.

The following shows that the bound given in Corollary 2.22 is sharp.

Theorem 2.23. [1] If neither graph G nor its complement G has an isolated vertex

and one of them has a vertex of degree one, then γR(GG) =max{γR(G), γR(G)}+ 2.

Theorem 2.23 gives the Roman domination number for the complementary prisms

of paths.

Corollary 2.24. [1] For paths G = Pn where n ≥ 3, γR(GG) = ⌈2n
3
⌉+ 2.

17



Next we have an upper bound for the Roman domination number of complemen-

tary prisms.

Observation 2.25. [1] For any graph G, γR(GG) ≤ γR(G) + γR(G).

Lastly we are given a lower bound and an upper bound for the Roman domination

number in complementary prisms when the diam(G) ≥ 3 such that neither G nor G

has an isolated vertex.

Theorem 2.26. [1] Let G be a graph with diam(G) ≥ 3 such that neither G nor G

has an isolated vertex. Then γR(G) + 2 ≤ γR(GG) ≤ γR(G) + 4.

18



3 RESULTS

In this section we present an error that we found in [5] and correct it by defining

a new type of private neighbor. Then we present key results regarding the Italian

domination number in complementary prisms.

3.1 Error

Below is the statement made in [5] that is incorrect.

Statement 3.1. [5] For every graph G, there exists a γI-function f = (V0, V1, V2)

such that either V2 = ∅ or every vertex of V2 has at least three private neighbors in

V0 with respect to the set V1 ∪ V2.

A counterexample to Statement 3.1 is the star graph K1,3 with one of its edges

subdivided. Figure 3 gives an γI-function of this graph. Let us assume Statement 3.1

holds. In the Italian domination function given in Figure 3 the only vertex in V2 is

v3 and it does not have three private neighbors in V0 with respect to the set V1 ∪ V2,

by Statement 3.1, this implies there exists a γI-function such that V2 = ∅. But this

v51

v40

v32

v20 v1 0

Figure 3: Counterexample to Statement 3.1
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means the graph in Figure 3 can be Italian dominated by assigning three vertices a 1;

however, this is clearly impossible. Thus, as stated previously, Statement 3.1 is false.

We would like to alter Statement 3.1 to make it true. To do so we will define a

new type of private neighbor. Let f = (V0, V1, V2) be a γI-function and S = V1 ∪ V2.

We say that a vertex w ∈ V0 is an Italian private neighbor of v ∈ S with respect to

S if
∑

u∈N(w)−{v} f(u) < 2. Implementing this new definition we have the following.

Proposition 3.2. For every graph G, there exists a γ{R2}-function f = (V0, V1, V2)

such that either V2 = ∅ or every vertex of V2 has at least three Italian private neighbors

in V0 with respect to the set V1 ∪ V2.

Proof. Amongst all γI-functions, let f = (V0, V1, V2) be one with |V2| as small as

possible. If V2 = ∅, then we are finished. Thus, assume V2 6= ∅. If a vertex a ∈ V2

has no Italian private neighbors in V0 with respect to V1 ∪ V2, then we can reduce

the weight of f by assigning the value of 1 to a instead of 2, a contradiction. Hence,

every vertex in V2 must have at least one Italian private neighbor in V0.

Assume that a vertex x ∈ V2 has at most two Italian private neighbors in V0. Sup-

pose x has only one Italian private neighbor b ∈ V0. Then either
∑

y∈N(b)−{x} f(y) = 1

or
∑

y∈N(b)−{x} f(y) = 0. If
∑

y∈N(b)−{x} f(y) = 1, then we can reduce the weight of f

by assigning the value of 1 to x instead of 2, a contradiction. Hence,
∑

y∈N(b)−{x} f(y) =

0. Now we let f ′ = (V0−{b}, V1∪{b, x}, V2−{x}). Clearly, f ′ is a is a γI(G)-function

with fewer vertices assigned a 2 than under f , a contradiction to our choice of f .

Thus, x has two Italian private neighbors in V0, say u and v.

We have the following possibilities
∑

y∈N(u)−{x} f(y) = 1 and
∑

y∈N(v)−{x} f(y) =

1,
∑

y∈N(u)−{x} f(y) = 0 and
∑

y∈N(v)−{x} f(y) = 0, or, without loss of generality,

20



∑
y∈N(u)−{x} f(y) = 1 and

∑
y∈N(v)−{x} f(y) = 0. If

∑
y∈N(u)−{x} f(y) = 1 and

∑
y∈N(v)−{x} f(y) = 1, then we can reduce the weight of f by assigning the value

1 to x instead of 2, a contradiction. Let us assume that
∑

y∈N(u)−{x} f(u) = 0 and

∑
y∈N(v)−{x} f(u) = 0. Define a function f 1 = ({x}∪V0−{u, v}, V1∪{u, v}, V2−{x}).

Clearly, f 1 is a γI(G)-function with fewer vertices assigned a 2 under f 1 than under

f , contradicting our choice of f . Hence, it must be the case, without loss of gen-

erality, that
∑

y∈N(u)−{x} f(y) = 1 and
∑

y∈N(v)−{x} f(y) = 0. Define a function

f 2 = (V0 − {v}, V1 ∪ {v, x}, V2 − {x}). Clearly, f 2 is a γI(G)-function with fewer

vertices assigned a 2 under f 2 than under f , again contradicting our choice of f .

3.2 Small Values

We begin with an observation from the definition of Italian domination and com-

plementary prisms.

Observation 3.3. For any graph G, γI(GG) ≥ 2.

Here we will consider complementary prisms having small Italian domination num-

bers, specifically the complementary prisms having γI(GG) ∈ {2, 3, 4}. First we

characterize when γI(GG) = 2 and γI(GG) = 3.

Theorem 3.4. For any graph G, γI(GG)=2 if and only if G = K1.

Proof. If G = K1, then GG = K2 and γI(GG) = 2.

Assume γI(GG) = 2. It follows that any γI-function of weight 2 allows for only

two possible labelings, (1) f(v) = 2 and f(u) = 0 for every u ∈ V (GG) − {v} and

(2) f(v) = 1, f(u) = 1, and f(w) = 0 for all w ∈ V (GG) − {u, v}. For the former,
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without loss of generality, let f(v) = 2 and v ∈ V (G). Thus, the only vertices Italian

dominated by f are in N [v]. Since N [v] ∩ V (G) = {v}, it follows that |V (G)|=1.

Hence, G = K1. See Figure 4.

Next assume that f(v) = 1, f(u) = 1, and f(w) = 0 for all w ∈ V (GG)− {u, v}.

If u and v are both in G (respectively, G), then the vertices of G (respectively, G)

are not Italian dominated. Hence, we may assume, without loss of generality, that

v ∈ V (G) and u ∈ V (G). If u = v, then it follows that G = K1. Hence, assume

that u 6= v, say u = w where w 6= v. Thus, in order to Italian dominate v, it follows

that v ∈ N(w). But then w is not adjacent to v, so w is not Italian dominated, a

contradiction.

v1 v1

Figure 4: Complementary prism where G = K1

Lemma 3.5. [5, 28] For the classes of paths Pn and cycles Cn, γI(Pn) = ⌈n+1
2
⌉ and

γI(Cn) = ⌈n
2
⌉.

Theorem 3.6. For any graph G, γI(GG)=3 if and only if G = K2.

Proof. If G = K2 or G = K2, then GG is the path P4 and by Lemma 3.5, we have

that γI(P4) = ⌈5
2
⌉ = 3.
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Assume γI(GG) = 3. Let f be a γI-function of GG. By Theorem 3.4, G has at

least two vertices. We consider the two possible labelings (1) one vertex is assigned

weight 2 and one vertex is assigned a weight 1 and (2) three vertices are each assigned

a weight 1.

Case 1. f(v) = 2 and f(u) = 1.

We may assume that v ∈ V (G). If u is also in G, then its corresponding vertex

u ∈ G is not Italian dominated. Thus, u ∈ V (G). This implies that u and v are the

only vertices in G, so G has order two. Furthermore, G = K2 or G = K2. See Figure

5.

Case 2. f(v) = f(u) = f(w) = 1.

If all vertices assigned 1 under f are contained in G (respectively, G), then the

vertices of G (respectively, G) are not Italian dominated. Thus, we may assume

without loss of generality, that f(u) = f(v) = 1 and f(w) = 1 where u, v ∈ V (G)

and w ∈ V (G). If w /∈ {u, v}, then w is adjacent to both u and v to Italian dominate

them. But then w is not adjacent to u nor v and hence is not Italian dominated, a

contradiction. Thus, w ∈ {u, v}, say w = u. Now every vertex in V −{u} is adjacent

to u and at least one of u and v, implying that G has order 2. Thus, G ∈ {K2, K2}.

See Figure 5.

Corollary 3.7. For any graph G 6= K1 and G 6= K2, γI(GG) ≥ 4.

Next, we will there are several types of graphs whose complementary prisms have

γI(GG) = 4.

Theorem 3.8. If γI(G) = 3 and G has an isolated vertex, then γI(GG) = 4.
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v1

v2

v1

v2

Figure 5: Complementary prism where G = K2

Proof. Assume that γI(G) = 3 and G has an isolated vertex, say v. By Corollary 3.7,

we have γI(GG) ≥ 4. Note that by assigning a 2 to v, v Italian dominates V (G)∪{v}.

Since v is an isolate of G and γI(G) = 3, it follows that γI(G−v) = 2. Thus, assigning

2 to v and a 0 to each vertex in V (G) ∪ {v}and a γI-function of G − {v} yields an

Italian dominating function of GG. Hence, γI(GG) ≤ 4, and so, γI(GG) = 4.

Corollary 3.9. If G is a star with order n ≥ 3, then γI(GG) = 4.

Proof. Let G be a star with order n ≥ 3. Since G is a star, the support vertex

v ∈ V (G) is an isolated vertex in G and the leaf vertices in G will form a complete

graph on n − 1 vertices in G. It is now clear that, G has an isolated vertex and

γI(G) = 3. It follows directly from Theorem 3.8 that γI(GG) = 4.

Even though there is an infinite family of graphs for which Theorem 3.8 holds.

The converse of Theorem 3.8 does not always hold. Notice if G = C4, then γI(G) = 2,

G = 2K2, and γI(G) = 4. We have the following.

Theorem 3.10. If G = C4, then γI(GG) = 4.

Proof. Consider GG where G = C4. Let the vertices of G and G be labeled as shown

in Figure 6. Consider the Hamiltonian path v1, v1, v3, v3, v2, v2, v4, v4. Beginning at
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v1 label this vertex 1, and proceed by labeling every other vertex with a 1. This

produces the assignments shown in Figure 7. Thus, γI(GG) ≤ 4. Equality follows

from Corollary 3.7. Hence, γI(GG) = 4.

v4

v1 v2

v3

v4

v1 v2

v3

Figure 6: Complementary prism where G = C4

v4

v1 v2

v3

v4

v1 v2

v3

1

1

0

1

0

0

1

0

Figure 7: Italian domination of complementary prism where G = C4

For the following lemma we need to define a family of graphs F , from [9] we have

that, F = {G |G ∈ {P2, P3}} ∪ {G |G is a graph with an induced P4 such that every

vertex in G − P4 is adjacent to the support vertices of P4 and not adjacent to the

leaves of P4}.

Lemma 3.11. [9] Let G be a graph. Then γ×2(GG) = 4 if and only if G ∈ F .
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Notice that P2 = K2, and by Theorem 3.6, we have γI(P2P 2) = 3. Also notice

that γI(P 3) = 3 and P 3 has an isolated vertex. Then by Theorem 3.8, we already

know that, γI(P3P 3) = 4. We define a family of graphs G = {G |G is a graph with

an induced P4 such that every vertex in G−P4 is adjacent to the support vertices of

P4 and not adjacent to the leaves of P4} such that we have the following.

Theorem 3.12. If G ∈ G, then γI(GG) = 4.

Proof. Recall that γI(G) ≤ γ×2(G) when G has no isolated vertices, and by definition

GG will be isolate free. Notice that G ⊂ F . Thus, by Corollary 3.7 together with

Lemma 3.11, we have that, 4 ≤ γI(GG) ≤ γ×2(GG) = 4. Ergo, we have the desired

result that γI(GG) = 4.

Once again, we have that the converse of Theorem 3.11 is not necessarily true.

For example, by Theorem 3.9, γI(C4C4) = 4 but C4 /∈ G.

3.3 Specific Families

Notice when G = K1, K2, K3, by Theorems 3.4, 3.6, 3.8 (respectively), we have

that γI(GG) = 2, 3, 4 (respectively). This prompts us to determine what the Italian

domination number of a complementary prism when G = Kn (see Figure 8) and

inspires the following.

Theorem 3.13. If G = Kn or G = Kn, then γI(GG) = n+ 1.

Proof. Without loss of generality, let G = Kn, where n ≥ 1. Then G is the empty

graph on n vertices. Now consider GG. So, for every v ∈ V (G), its open neighborhood

will only consist of its corresponding vertex in G. Notice that a function assigning

26



a 1 to each v ∈ V (G), a 1 to any vertex v ∈ V (G), and a 0 to all other vertices is

indeed an Italian dominating function of GG. Hence, γI(GG) ≤ n+ 1.

Now, we must show γI(GG) ≥ n+1. Let f be a γI-function of G. It is clear that

for every vertex in V (G), either f(v) ≥ 1 or f(v) = 2. This implies that γI(GG) ≥ n.

Note that if f has total weight n, then each vertex in V (G) is assigned a 1 under f ,

and every vertex in V (G) is assigned a 0. But then the vertices in G are not Italian

dominated by f . Hence, γI(GG) ≥ n+ 1 and so γI(GG) = n+ 1 as desired.

vn

v3

v2

v1

vn

v3

v2

v1

Figure 8: Complementary prism where G = Kn

For the complementary prism of any graph we observe the following lower bound.

Observation 3.14. For any graph G, γI(GG) ≥ max {γI(G), γI(G)}.

Next we show that the bound of Observation 3.14 is sharp for complementary

prisms with G = mK2, where m ≥ 2.

Theorem 3.15. If G = mK2 with order n, where m ≥ 2, then γI(G) = n and

γI(GG) = n.
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Proof. Let n be the order of G. By Theorem 3.4, γI(K2) = 2. Thus if G = mK2,

where m ≥ 2, then γI(G) = mγI(K2) = n.

First let m = 2. Notice G = C4. And by Theorem 3.10, γI(GG) = 4 and we have

the desired result. Hence we may assume m ≥ 3 which means n = 2m ≥ 2(3) = 6.

Label the vertices of G as shown in Figure 9. Notice the function that assigns a 1

to each vk with odd k ≤ n − 1, a 1 to each vl with even l ≤ n, and a 0 otherwise is

indeed an Italian dominating function of GG. Thus, γI(GG) ≤ n
2
+ n

2
= n

Finally, we must show γI(GG) ≥ n. First note that G has n vertices and since

the degree of every v ∈ V (G) is 1, we have the degree of every vertex in V(G) to be

n−1−1 = n−2. Clearly if you assign any two non-adjacent vertices inG a 1 and assign

a 0 to all other vertices you have γI-function for G and γI(G) = 2. By Observation

3.14, γI(GG) ≥ max {γI(G), γI(G)}= γI(G) = n. Ergo, γI(GG) = n.

vn−1 vn

v3 v4

v1 v2

Figure 9: Vertex labeling of G = mK2

For the complementary prism of any graph, we observe the following upper bound

on the Italian domination number.

Observation 3.16. For any graph G, γI(GG) ≤ γI(G) + γI(G).
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Now we show that the bound of Observation 3.16 is sharp for complementary

prisms with G = Km,l, where m, l ≥ 5.

Theorem 3.17. If G = Km,l, where m, l ≥ 5, then γI(GG) = 8.

Proof. Let G=Km,l, where m, l ≥ 5 and let the bipartite set containing m number

of vertices be called M and the bipartite set containing l number of vertices be L.

Then G is two disjoint complete graphs Km and Kl. Note that the function assigning

a 1 to any two vertices in each of V (M), V (L) ,V (Km), V (Kl), and a 0 to all other

vertices is indeed an Italian dominating function of GG. Thus, γI(GG) ≤ 8.

Assume γI(GG) ≤ 7. Let f be a γI(GG)-function that has a weight of 7. By the

Pigeonhole Principle, f will assign at least one of M , L, Km, Kl a weight of 0 or 1.

First assume, without loss of generality, that f assigns Km a weight of 0. Then the

vertices in M must Italian dominate their corresponding vertices in Km. Hence, f

assigns each vertex in M a 2 giving M a weight of at least 10, a contradiction. Thus,

the function f must assign a weight of at least 1 to both Km and Kl. Now assume,

without loss of generality, that f assigns Km a weight of 1. Let f assign any one

vertex, say v, in Km a 1 and a 0 to all other vertices in Km. To Italian dominate

the vertices assigned a 0 in Km, we must assign their corresponding vertices in M at

least a 1, implying that the weight of M is at least four by our choice of m. Since

f assigns a weight at least 1 to Kl, at most one other vertex in GG can be assigned

a 1. Notice that v has not been Italian dominated. To Italian dominate v, f either

assigns v a 1 or a vertex in L a 1. If f assigns v a 1, then l − 1 vertices in Kl are

not Italian dominated, a contradiction. So, f assigns a vertex in L a 1. Then at least

l− 2 in Kl are not Italian dominated, a contradiction. Therefore, f must assign both

29



Km and Kl at least a weight of 2.

Now assume, without loss of generality, that M is assigned a weight of 0. Then

the vertices in L must either Italian dominate themselves or the vertices of Kl must

Italian dominate them.

For each v ∈ L, if v Italian dominates itself, then a weight of at least one is added,

and if v ∈ V (Kl) Italian dominates v, then a weight of at least 2 is added. Hence,

γ(GG) ≥ 4 + 5, a contradiction. Thus, M and L must both be assigned at least a

weight of 1. Assume, without loss of generality, that M has a weight of 1. Let f

assign any vertex in M a 1, say v, and all other vertices in M a 0. Since f assigns

a weight of at least 1 to L and a weight of at least 2 to both Km and Kl, exactly

one other vertex can be assigned 1 under f . Notice that v and at most two other

vertices of M are Italian dominated. If L is assigned only a weight of 1, then each of

the m− 1 vertices assigned a 0 in M must have their corresponding vertices assigned

a weight of at least 1 in Km. This means at least 4 vertices in Km are assigned a 1

by choice of m, a contradiction. Thus L must be assigned a weight of 2. But then at

least l−4 vertices in L assigned 0 under f are not Italian dominated, a contradiction.

Therefore, γI(GG) = 8 as desired.

Notice that Observation 3.16 together with Lemma 3.5 gives the following bounds

for paths γI(PnP n) ≤ ⌈n+1
2
⌉ + 3 and γI(CnCn) ≤ ⌈n

2
⌉ + 3 for cycles. Our next two

results show that we can do better.

Theorem 3.18. If G=Pn, where n ≥ 4, then γI(GG) ≤ ⌈n+3
2
⌉.

Proof. Let n be the order of G and let G = Pn, where n ≥ 4. Label the vertices as

shown in Figure 10, where v3 and vn−2 are adjacent only if they are not adjacent in
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G. Notice that a function assigning a 1 to v1, a 1 to vn, and an Italian domination

of the path Pn−2 with weight ⌈ (n−2)+1
2

⌉ to the path v2, ...vn−1 in which v2 and vn−1

are assigned a 1, and a 0 otherwise is an Italian dominating function of GG. Thus,

γI(GG) ≤ ⌈n−1
2
⌉+ 2 = ⌈n−1

2
+ 4

2
⌉ = ⌈n−1+4

2
⌉ = ⌈n+3

2
⌉.

vn

vn−1

vn−2

v3

v2

v1

vn

vn−1

vn−2

v3

v2

v1

Figure 10: Complementary prism where G=Pn

Theorem 3.19. If G=Cn, where n ≥ 4, then γI(GG) ≤ ⌈n+3
2
⌉.

Proof. Let n be the order of G and let G = Cn, where n ≥ 4. Label the vertices as

shown in Figure 11, where v3 and vn−2 are adjacent only if they are not adjacent in

G. Notice that a function assigning a 1 to v1, a 1 to vn, and an Italian domination of

31



the path Pn−2 with weight ⌈ (n−2)+1
2

⌉ to the path v2, ...vn−1 in which v2 and vn−1 are

assigned a 1, and a 0 otherwise is a γI-function of GG. Thus,

γI(GG) ≤ ⌈n−1
2
⌉+ 2 = ⌈n−1

2
+ 4

2
⌉ = ⌈n−1+4

2
⌉ = ⌈n+3

2
⌉.

vn

vn−1

vn−2

v3

v2

v1

vn

vn−1

vn−2

v3

v2

v1

Figure 11: Complementary prism where G=Cn

3.4 Concluding Remarks

The investigation of domination parameters of complementary prisms is still on

going. We conclude this thesis by mentioning some open questions and problems

suggested by this research.

1. Characterize the graphs G with γI(GG) = 4.
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2. Characterize the graphs attaining the bounds in Observation 3.14 and Obser-

vation 3.16.

3. Characterize the I2/ I1 graphs.

4. It was observed in the Introduction that a graph that is I2 is Italian, but not

every Italian graph is I2. Characterize Italian graphs.

5. Given that a graph G is I1, I1a, or I2 what can be said about relating γI(G)

and the following domination parameters γ2(G), γR(G), and γ×2(G)?

6. Since complementary prisms by definition have no isolated vertices, an interest-

ing problem is to consider the relationship between γ×2(GG) and γR(GG).
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