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ABSTRACT

A Study of Topological Invariants in the Braid Group B2

by

Andrew Sweeney

The Jones polynomial is a special topological invariant in the field of Knot Theory.

Created by Vaughn Jones, in the year 1984, it is used to study when links in space

are topologically different and when they are topologically equivalent. This thesis

discusses the Jones polynomial in depth as well as determines a general form for the

closure of any braid in the braid group B2 where the closure is a knot. This derivation

is facilitated by the help of the Temperley-Lieb algebra as well as with tools from the

field of Abstract Algebra. In general, the Artin braid group Bn is the set of braids on

n strands along with the binary operation of concatenation. This thesis also shows

results of the relationship between the closure of a product of braids in B2 and the

connected sum of the closure of braids in B2. Results on the topological invariant of

tricolorability of closed braids in B2 and (2,n) torus links along with their obverses

are presented as well.
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1 THE JONES POLYNOMIAL

The Jones polynomial is an example of what is called a knot invariant. A knot

invariant is a function from the set of all knots to any other set such that the function

does not change as the knot is changed up to isotopy [3]. Before we can talk about

the Jones polynomial we first need a few definitions.

1.1 Introductory Definitions

A knot is defined as a closed, non-self intersecting curve that is embedded in three

dimensions that cannot be untangled to produce a single loop [2]. The single loop,

in the above definition, refers to a basic circle which is called the unknot [2]. Any

knot that can be continuously deformed to the unknot is said to be unknotted [2].

Continuously deforming a knot means you are not allowed to tear, rip, or glue the

knot back together at any point during the deformation [2]. A link is defined as a

knotted collection of one or more closed strands [2]. A knot is said to be chiral if it is

topologically distinct from its mirror image, and achiral if it can be deformed into its

mirror image [2]. The smallest example of a nontrivial knot is the trefoil knot, and

an example of a link is the (2,4) torus link shown below:

(2, 4) :
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How exactly do you continuously deform a knot or a link? The answer is through

a sequence of what are known as Reidemeister moves [2]. Reidemeister proved that

every ambient isotopy can be carried out with the following moves in figure 1 [1]:

Figure 1: Ambient Isotopy vs. Regular Isotopy

The above moves have been drawn by Louis Kauffman [1]. They demonstrate when

two links are regular isotopic and when they are ambient isotopic.

In order to study knots, we continuously deform any knot or link diagram until all

crossings have been untangled or spliced. If the knot or link diagram has n crossings,

where n ∈ (N ∪ {0}), then the original diagram will have a total of 2n states. A state

is a diagram that can be used to reconstruct our original knot or link [2]. An example

of a state diagram and its reconstruction, given by Kauffman, follows [2]:
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Figure 2: State Diagram

On the right we see the original diagram and on the left we see a particular state of

the original diagram. In our state we see 2 Bs and 1 A. These letters refer to the kind

of splices we have performed on the three crossings. The two types of splices at our

disposal are Type A and Type B splices [2]. Kauffman explains, ”The regions labelled

A are those that appear on the left to an observer walking toward the crossing along

the undercrossing segments. The B-regions appear on the right for this observer” [2].

Below is a graphical representation of the two splices:

B

B
A A

A-Splice B-Splice

A

B

B

BA A

We can think of the splices as a Type A splice is joining both areas labeled A together

and a Type B splice is joining both areas labeled B together [2].

1.2 The Bracket Polynomial

Now we let B = A−1 and d = −A2 − A−2. An important polynomial in the field

of Knot Theory is called The Bracket Polynomial. This polynomial is defined by
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〈K〉 = 〈K〉(A) =
∑

σ〈K|σ〉d‖σ‖ , where ‖σ‖ is the total number of loops minus one

in the state σ, 〈K|σ〉 is the product of the labels attached to σ, and the sum is taken

over all states of K [2]. The bracket polynomial follows the following three rules [3]:

1.
〈 〉

= 1

2.
〈
L ∪

〉
= (−A2 − A−2)〈L〉

3.
〈 〉

= A
〈 〉

+ A−1
〈 〉

• Rule 1 states that the Bracket Polynomial of the unknot is equal to 1.

• Rule 2 states that adding a disjoint circle to any link or knot diagram changes

the bracket for that link or knot by a factor of −A2 − A−2.

• Rule 3 states that B = A−1

Two examples of bracket polynomials are the brackets for the Hopf link and the

trefoil. The Hopf link can be thought of as two circles that are linked together:

Figure 3: Hopf Link

Let H be the Hopf link and T be the trefoil. Their brackets are as follows:

〈H〉 = −A4 − A−4

11



〈T 〉 = −A5 − A−3 + A−7

However, the bracket polynomial is not a knot invariant under all three Reidemeister

moves [2]. When B = A−1 and d = −A2−A−2 the bracket polynomial is an invariant

under Reidemeister moves 2 and 3 [2]. In order to define a polynomial that is invariant

under all three Reidemeister moves we need some definitions.

1.3 The Normalized Bracket

An oriented link or knot is simply a link or knot with an orientation [2]. We define

the sign of a crossing as follows [2]:

+-

When the orientations both point either up or down then the diagram above on the

left is a negative crossing and the diagram above on the right is a positive crossing

[2]. Next, define the writhe of a link or knot to be the summation of all the signs of

all of the crossings of the link or knot [3]. For example, the trefoil has writhe equal

to 3 because all 3 of its crossings are positive. Let K be an oriented link diagram and

define the Normalized Bracket of K, denoted as LK , as

LK = (−A3)w(K)〈K〉

Where w(K) denotes the writhe of K. The problem is now to show that this nor-

malized bracket is an invariant under all three Reidemeister moves. Another way to

say this is that the normalized bracket is an invariant of ambient isotopy.
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Theorem 1.1. [2] The normalized bracket polynomial LK is an invariant of

ambient isotopy.

Proof. [2] Let K be any oriented link diagram. Because w(K) and 〈K〉 are both

invariants of regular isotopy, meaning they are invariants under Reidemeister moves

of types two and three, then LK is also an invariant of regular isotopy. In order to

show this normalized bracket is an invariant of ambient isotopy we need to show that

it is invariant under type one moves as well.

Let J = >

M =

N = >

P =

We first note that 〈J〉 = 〈M〉 and 〈N〉 = 〈P 〉 because the bracket does not depend

on orientation.

LJ = (−A3)−w(J)〈M〉

= (−A3)−[1+w(N)](−A3)〈P 〉

= (−A3)−w(N)〈P 〉

= LN

�

This proof demonstrates that the normalized bracket is an invariant under all

13



three Reidemeister moves. Now that the normalized bracket polynomial has been

introduced we are ready to discuss the Jones polynomial.

1.4 Formal Definition of Jones Polynomial

The 1-variable Jones polynomial, VK(t), is a Laurent polynomial in the variable

t1/2 assigned to an oriented link K [3]. A Laurent polynomial, in one variable over a

field F, is defined as a linear combination of both negative and positive powers of the

variable with coefficients as elements of the field F. The Jones polynomial satisfies

the following three properties [3]:

• If K and K
′

are ambient isotopic then VK(t) = VK′ (t)

• The Jones polynomial of an oriented unknot is equal to 1.

• t−1V − tV = (t1/2 − t−1/2) V

The next theorem will prove vital in the coming pages of results.

Theorem 1.2. [2] Let LK(A) = (−A3)−w(K)〈K〉. Then LK(t−1/4) = VK(t)

Proof. [2] Let B = A−1. We know the following formulas from the Bracket Poly-

nomial:〈 〉
= A

〈 〉
+B

〈 〉
〈 〉

= B
〈 〉

+ A
〈 〉

So,

B−1
〈 〉

− A−1
〈 〉

= (A
B
− B

A
)
〈 〉

Normalization gives us
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A
〈 〉

− A−1
〈 〉

= (A2 − A−2) 〈 〉

Set c = w( ) so we have w( ) = c + 1 and w( ) = c− 1. Setting η = −A3 and

multiplying on both sides of the above equation by η−c we get

A
〈 〉

η−c − A−1
〈 〉

η−c = (A2 − A−2) 〈 〉 η−c

Factoring on the left side of the equation gives us,

Aη
〈 〉

η−(c+1) − A−1η−1
〈 〉

η−(c−1) = (A2 − A−2) 〈 〉 η−c

Now we can simplify this expression such that we get,

AηL − A−1η−1L = (A2 − A−2) L .

Simplifying further we get,

−A4L + A−4L = (A2 − A−2) L .

Now if we allow A = t−1/4 then by substitution we get the following:

t−1L − tL = (t1/2 − t−1/2) L

This proves the third property of the three properties listed earlier. Property two is

shown from the fact that the Jones Polynomial of any oriented unknot is equal to 1.

So let U be any oriented unknot. We know from properties of the normalized bracket

that LU = 1 = VU . So, LU(t−1/4) = 1 = VU(t). This proves property two. Property

1 is also shown through properties of the normalized bracket.

�
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2 THE ARTIN BRAID GROUP Bn

A group G is defined as a set S paired with an operation ∗ such that [4]

1. ∗ is associative

2. ∃ e ∈ S such that ∀ s ∈ S s ∗ e = s and e ∗ s = s

3. ∃ s−1 ∈ S for each s ∈ S such that s ∗ s−1 = e and s−1 ∗ s = e.

In this thesis we are concerned with groups where the elements of the groups are

braids. A braid is formed by taking n points in a plane and attaching strands to

these points so that parallel planes intersect the strands in n points [2]. A simple

example of a braid is a braid on three strands with only one crossing.

We can create a group where the elements of the group are braids and the opera-

tion ∗ is defined as concatenation. Let Bn be the set of all braids on n strands where

n ∈ N [2]. Concatenation is defined as taking two braids in the group Bn, stacking

one on top of another, and creating a new braid that is also an element of Bn [2].

Let b1 and b2 be elements of the braid group B2. The following is an example of the

operation of concatenation:

16



b1 : b2 : b1 ∗ b2 :

The group (Bn, ∗) is called The Artin Braid Group [2]. Every braid in Bn can

be produced by the set of generators σ1, σ2, σ3, ...., σn−1 where these generators are

defined as follows [1]:

σ1 : σ2 : σ3 :

all the way until we reach the final generator

σn−1 :

The first generator is a braid on n strands with one positive crossing where strands

1 and 2 have been crossed. The second generator is a braid on n strands with one

positive crossing where strands 2 and 3 have been crossed. The number of generators

a given braid group has depends on the particular braid group being studied. B2, the

group of all braids on two strands, has one generator. This generator is

σ1 :

17



The inverse of any one of these generators is simply the generator where instead of

having one positive crossing there is one negative crossing, where the strand on the

left crosses over the strand on the right, rather than under. Now, define a braid word

to be a sequence of these generators and their inverses [2]. For example, σ1σ1σ1 where

σ1 ∈ B2 is a braid word. The Artin Braid Group can be expressed with all of these

generators along with the relations below: [2]

1.) σi σ
−1
i = 1 for i = 1, ...., n− 1

2.) σi σi+1 σi = σi+1 σi σi+1 for i = 1, ......n− 2

3.) σi σj = σj σi for |i− j| > 1.

The closure of any braid b is simply joining the strands together in a way such

that none of these connections intersect each other. Kauffman gives an example, [2]

Figure 4: Closure

Another example would be if we were to take the braid word σ1 σ1 σ1 and take

its closure we obtain the Trefoil Knot. One of the results of this thesis will be a gen-

eral form of the Jones Polynomial of the closure of any braid in B2. An important

theorem that relates braids to knots and links is Alexander′s Theorem.
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Alexander’s Theorem [5] Each link in three-dimensional space is ambient isotopic

to a link in the form of a closed braid.

Proof. Alexander proved this theorem by the following: [5] ”Suppose we have a

link L and its projection. We orient the components of L. We then choose a point P

on the projection such that P does not intersect the knot. Though P is a point in

the projection, it is helpful to think of P as an axis extending through the projection

plane. The goal will be to manipulate L so that every component is oriented in a

particular direction around this axis. Fix an orientation about P. We consider a finite

number of subarcs of L such that each subarc is either oriented in our orientation or

in the reverse orientation, not both. If there are no subarcs oriented in the reverse

direction, then were done. Otherwise, choose some subarc S which is oriented oppo-

site our chosen orientation. We divide up S further into a finite number of subarcs

Si, such that each subarc contains at most one crossing. Now consider an arbitrary

Si. Keeping the endpoints of the subarc fixed, we can pull the subarc across our axis

P to give it the correct orientation. We pull it over all other parts of the knot, except

possibly the single crossing on Si. Note that we can avoid adding another crossing

to any part of S which is still oriented incorrectly, which ensures that S is re-oriented

in a finite number of steps. To every subarc oriented in the reverse direction, we can

apply the same procedure, splitting it up into subarcs with at most one crossing and

then pulling each piece over the knot and across the axis. We can continue doing this

until we have a link which is all oriented around the axis. But this is exactly what we

want, because a link that is entirely oriented around an axis is braided around that

axis. If we take a half-plane through the axis going out to infinity, this half-plane

19



necessarily passes through every strand, and can be regarded as the plane of the braid

closure.”

�

This theorem guarantees that for every knot or link there is a closed braid that

the knot or link is ambient isotopic to. We will see later that (2,n) torus links are

ambient isotopic to the closures of braids in the braid group B2. This will be shown

through the fact that B2 is a cyclic group with generator σ1.

20



3 DETERMINATION OF THE FIRST RESULT

In this section I will derive a general form for the closure of any braid in B2. I will

do this with the help of the Temperley-Lieb Algebra. Alexander′s Theorem relates

some knot or link to the closure of these braids. To begin, B2 is the group of all

braids on two strands. B2 is cyclic, meaning the group can be generated by a single

element of B2 [4]. Every braid group Bn, for n ∈ N, is infinite meaning that there are

an infinite number of elements in the group.

3.1 The Braid Group B2

Below, I prove some properties of B2.

Theorem 3.1. B2
∼= (Z,+)

Proof. From Group Theory, we know that (Z,+) is an infinite cyclic group [4].

B2 is also an infinite cyclic group. Also from Group Theory, we know that an infinite

cyclic group is isomorphic to the integers [4]. Therefore, B2
∼= (Z,+).

�

Theorem 3.2. B2 is an abelian, nilpotent, solvable group

Proof. Because B2 is isomorphic to the integers it is an abelian group. Because

it is abelian it is nilpotent [4]. Lastly, because it is nilpotent it is solvable [4]. �

These theorems give us some characteristics about the group B2. The braid group

B2 will prove important when deriving the Jones polynomial for braids in B2.
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3.2 The Bracket for Braids along with the Temperley-Lieb Algebra

Just like with knots and links, braids also have writhe. Define the writhe of a

braid as the summation over all crossings of a braid b [2]. When doing this, we need

to keep in mind which crossings are positive and which crossings are negative. The

same rule applies for braids as it did for knots and links when determining the sign

of a crossing in a braid b [2]. We are also able to determine the bracket for braids

just like we were able to determine the bracket for knots and links.

Let σi be an arbitrary generator of Bn [2]

σi

Taking the bracket of this generator gives us the following: [2]

〈σi〉 = A〈1n〉 + A−1

〈 〉

Simplifying we have 〈σi〉 = A 〈1n〉 + A−1 〈Ui〉 [2]. We can repeat the same pro-

cess as above and derive the formula 〈σ−1i 〉 = A−1〈1n〉+A〈Ui〉. Here 1n is the identity

element of Bn and Ui is an element of what is called the Temperley-Lieb Algebra

or An [2]. An algebra is defined as a vector space with multiplication [2]. Let R be

a commutative ring and let δ ∈ R where δ = −A2 − A−2 [3]. The Temperley-Lieb

Algebra, sometimes denoted as TLn(δ), is the algebra generated by the elements [3]
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U1 U2

Culminating with the generator

Un−1

The bracket for braids is similar to the bracket for knots and links but will uti-

lize the Temperley-Lieb Algebra. First, let U (b) ≡ b, where b is a braid word and

U (b) is a product of elements Ui [2]. Every product when closed gives a collection of

loops [2]. If we set U as such a product then 〈U〉 = 〈U〉 = δ‖U‖ where ‖U‖ denotes

the number of loops minus one in the closure of U [2].∑
s〈b|s〉Us

here s is indexed over all of the states of the braid b [2], 〈b|s〉 is a product of powers

of A [2], and Us is the U -product [2].The bracket for b is defined as [2]

〈b〉 = 〈U (b)〉 =
∑

s〈b|s〉〈Us〉

=
∑

s〈b|s〉δ‖s‖

It is also important to note that the Temperley-Lieb Algebra can be expressed

with the above generators along with the following relations [3]:

23



1.) UiUi±1Ui = Ui

2.) UiUi = δUi

3.) UiUj = UjUi for |i− j| > 1.

An example of computing the bracket for b = σ3
1 follows:

U (b) = (A+ A−1U1)
3

= A3 + 3AU1 + 3A−1U2
1 + A−3U3

1 .

〈b〉 = 〈U (b)〉 = A3〈12〉 + 3A〈U1〉 + 3A−1〈U2
1 〉 + A−3〈U3

1 〉

If we want to translate this bracket for b to the bracket for b, noticing that the closure

of b is in fact the trefoil, we have that

〈12〉 = δ

〈U1〉 = 1

〈U2
1 〉 = δ

〈U3
1 〉 = δ2 where δ = −A2 − A−2

So, 〈b〉 = A3(−A2 − A−2) + 3A + 3A−1(−A2 − A−2) + + A−3(A4 + 2 + A−4)

= −A5 − A−3 + A−7

This is the bracket polynomial of the trefoil. It is the same as if we were to calculate

the bracket of the trefoil by splicing the crossings one by one. A smaller example is if

b = σ1 for σ1 ∈ B2 then U (b) = A+A−1U1. This mean that 〈b〉 = A〈12〉 + A−1〈U1〉.

By substitution we have that 〈b〉 = −A3 − A−1 + A−1 which simplifies to −A3. We

can see that calculating the brackets of closed braids is facilitated with the help of

the Temperley-Lieb Algebra.
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3.3 Determination

With this derivation we will only be interested in the braids with a finite number

of crossings. We start with the group B2. As mentioned, B2 is a cyclic group with

the generator σ1. Because any braid b ∈ B2 can be generated from σ1 the problem of

determining the Jones polynomial for the closures of these braids becomes a problem

of looking at braids with all negative crossings or all positive crossings. For example,

the braid that is generated by the word σ1 σ1 σ1 σ1 σ
−1
1 σ1 has a closure that is

ambient isotopic to the closure of the braid word generated by σ1 σ1 σ1 σ1. B2 is a

group implying that its operation ∗, which in this case is concatenation, is associative.

So, σ1 σ1 σ1 σ1 σ
−1
1 σ1 = σ1 σ1 σ1 σ1 (σ−11 σ1) = σ4

1. So, the answer to the problem

requires us to look at the writhes of the braids in question. Start with braids whose

writhes are equal to 1 or greater than one. So we are looking at braids of the form

b = σn1 where n ∈ N. We know that U (σn1 ) = (A + A−1U1)
n where U1 ∈ A2 [2].

Here, A2 is the particular Temperley-Lieb Algebra we will be using in this derivation.

Using binomial expansion we get the following:

(A+ A−1U1)
n =(

n
0

)
An(A−1U1)

0 +
(
n
1

)
An−1(A−1U1)

1 +
(
n
2

)
An−2(A−1U1)

2 + . . . +
(
n
n

)
A0 (A−1U1)

n

Simplifying this expression gives us,

An +
(
n
1

)
An−1A−1U1 +

(
n
2

)
An−2(A−1U1)

2 + . . . + (A−1U1)
n =

An +
(
n
1

)
An−2U1 +

(
n
2

)
An−4U2

1 + . . . + A−nUn
1 .

From the section on the bracket for braids we know that if b is a braid word then

〈b〉 = 〈U (b)〉. This means that

〈U (b)〉 = An〈12〉 +
(
n
1

)
An−2〈U1〉 +

(
n
2

)
An−4〈U2

1 〉 + . . . + A−n〈Un
1 〉
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= Anδ +
(
n
1

)
An−2 +

(
n
2

)
An−4δ + . . . + A−n δn−1

This is the general form for the bracket of any braid with positive writhe in the group

B2. This equals the bracket for the closure of any braid in B2. Let b ∈ B2 be a braid

with positive writhe and let b̄ be the closure of b. We have the following:

〈σn1 〉 =An(−A2−A−2) +
(
n
1

)
An−2 +

(
n
2

)
An−4(−A2−A−2) + . . . + A−n(−A2−A−2)n−1

= −An+2−An−2 +
(
n
1

)
An−2 +

(
n
2

)
(−An−2−An−6) + . . . + A−n(−A2−A−2)n−1

This is the general form of the bracket polynomial of the closure of the braid word

σn1 . The next question is what is the bracket polynomial of the closure of the braid

word σn+1
1 ?

We know a recursion formula for closed braids of this form [2]. It is the following:

〈σn+1
1 〉 = A〈σn1 〉 + (−1)nA−3n−1. This formula allows us to see how the bracket

changes as we add positive crossings to an already existing closed braid with all

positive crossings. The new bracket is simply a sum of two terms. The first term is

the previous bracket multiplied by A, and the second term is namely (−1)nA−3n−1.

The sign of this second term is dependent on the parity of n. For example, if we start

with n = 1 we have that 〈σ1〉 = −A3. We then can calculate 〈σ2
1〉. In fact, we can

calculate all of them. Below are a few examples,

〈σ1〉 = −A3

〈σ2
1〉 = −A4 − A−4

〈σ3
1〉 = −A5 − A−3 + A−7

〈σ4
1〉 = −A6 − A−2 + A−6 − A−10

〈σ5
1〉 = −A7 − A−1 + A−5 − A−9 + A−13

What we can see from this recursion is that the number of crossings in our braid,

26



where these crossings are all positive, is equal to the number of terms in the bracket

polynomial for that braid. This is what the brackets for particular closures look like.

To return to the general form of the bracket for σn1 for n ∈ N we have the formula

〈σn1 〉 = −An+2−An−2 +
(
n
1

)
An−2 +

(
n
2

)
(−An−2−An−6) + . . . + A−n(−A2−A−2)n−1.

Now we need the general formula for the normalized brackets of these closed braids.

We know that

L σn1 = (−A)−3n 〈σn1 〉

From this formula and simplifying we get that L σn1 equals

A2−2n + (1− n)A−2−2n + n2−n
2

(A−2−2n +A−2n−6) + . . . + A−4n(A2−3n +A−2−3n)n−1

The signs of these normalized polynomials follow a somewhat alternating pattern.

We see the pattern from calculating the normalized brackets for 〈σ1〉 to 〈σ5
1〉.

Lσ1 = 1

L
σ2
1

= −A−2 − A−10

L
σ3
1

= A−4 + A−12 − A−16

L
σ4
1

= −A−6 − A−14 + A−18 − A−22

L
σ5
1

= A−8 + A−16 − A−20 + A−24 − A−28

As we increase the number of positive crossings in our braids the more terms we have

in both the normalized and unnormalized brackets. In the normalized brackets, we

see that the first two coefficients will always be equivalent. Then starting with term

two there is an alternating pattern of the signs of therms of the polynomials. We

have shown that the normalized bracket is an invariant under all three Reidemeister

moves.

These normalized bracket polynomials are equivalent to the normalized bracket
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polynomials for (2,n) torus links where n ∈ N. For example, we have shown that

L
σ3
1

= A−4 + A−12 − A−16. This is the same normalized bracket for the trefoil. The

trefoil is ambient isotopic to the closure of the braid b ∈ B2 where w(b) = 3.

The closure of the braid word σn1 is of the form of the (2,n) torus link. For now

we are dealing with n ∈ N. Any torus link or knot can be formed through a sequence

of loops through the torus and revolutions around the torus with one or more strands

[2]. The following example is the (2,5) torus knot:

(2, 5) :

This also means that the (2,n) torus link, for n ∈ N, is ambient isotopic to the closure

of any braid b ∈ B2 where w(b) = n. So far we have only shown this to be true for

values of n that are natural numbers but it will be shown that this is true for all

integers. Using the formula Lσn
1
(t−1/4) = Vσn

1
(t) we can calculate some examples of

Jones polynomials of these braids.

Vσ1 = 1

V
σ2
1

= −t1/2 − t5/2

V
σ3
1

= t1 + t3 − t4

V
σ4
1

= −t3/2 − t7/2 + t9/2 − t11/2
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V
σ5
1

= t2 + t4 − t5 + t6 − t7

The braids with positive writhe in B2 are ambient isotopic to torus links of type (2, n)

for n ∈ N. Denote L = K(2, n) where K(2, n) denotes the torus link on 2 strands

with n crossings. We know that the Jones polynomials of these torus knots, for when

n is odd, are equal to the following: [6]

VL(t) = t
n−1
2 +

n−1∑
k=1

(−1)k+1t(k+
n+1
2

)

So for n ≥ 1, Vσn
1
(t) = t

n−1
2 +

n−1∑
k=1

(−1)k+1t(k+
n+1
2

) for σ1 ∈ B2. Now, what about

for n ≤ −1? In other words, what about the braids with all negative crossings? We

will use the following theorem to determine the Jones polynomial of these braids:

Theorem 3.3. [2] If K∗ is the mirror image of an oriented link diagram K then

LK∗(A) = LK(A−1).

Proof. [2] Reversing all crossings exchanges the roles of A and A−1 in the defi-

nition of 〈K〉 and LK .

�

Consequently, a braid with n negative crossings is the mirror image of a braid with

n positive crossings. This means that the Jones polynomial of braids with negative

writhes is equivalent to the Jones polynomial of braids with the same number of

crossings (where these crossings are positive) except the signs of the exponents are

the opposite sign of its mirror image counterpart.

For odd n we know the following:
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V
σ−n
1

(t) = t−
n−1
2 +

n−1∑
k=1

(−1)k+1t−(k+
n+1
2

)

Lastly, what about the braids whose writhes are equal to zero? For example, The

braid b generated by the word σ1 σ
−1
1 has writhe equal to zero. We know that σ1

σ−11 = 12 which means that the closure of the word σ1 σ
−1
1 is ambient isotopic to the

closure of 12. The identity braid of B2 is the braid:

12

The closure of this braid yields two disjoint circles. We know the bracket polyno-

mial of one disjoint circle is equal to zero. We also know that adding a disjoint

circle to a knot or link diagram changes the bracket by a factor of −A2 − A−2.

This means that 〈12〉 = −A2 − A−2. The normalized bracket of 12 is equal to

(−A)0〈12〉 = 〈12〉. Calculating the Jones polynomial of this closure requires us to

use the formula L12(t
−1/4) = V12(t). So, V12(t) = −t−1/2 − t1/2. We note that 12 is

achiral meaning that it is not topologically different from its mirror image meaning

that the closure of this identity element will have a mirror image with an identical

Jones polynomial.
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4 DETERMINING POLYNOMIALS FOR b1 # b2 FOR b1, b2 ∈ B2

Next, we will define what the connected sum of two knots is. This operation is

only defined for knots so what happens if we want to connect a knot to a link? Which

component of the link do we connect the knot to? This problem does not occur in

this section’s results because our links σ2k
1 have two components which are identical.

So it will not matter which component of the link we connect the knot to.

4.1 The Connected Sum of Knots

Given two knot diagrams, let’s call these diagrams k1 and k2, the connected sum

of k1 and k2 is defined as the following:

k1

k2

Symbolically
k1 # k2

We are going to be interested in the connected sum of the closures of two braids

b1, b2 ∈ B2. The question is what is the bracket polynomial of this sum? How do we

calculate the bracket polynomial? The answer to this question relies on the fact that

any braid in B2 with writhe equal to n or -n for n ∈ (N ∪ {0}) is going to have a

closure that is ambient isotopic to either σn1 or σ−n1 respectively. So again, we need

only look at braids with all positive crossings, all negative crossings, or zero crossings.

The braid with zero crossings is the identity braid 12. We now calculate the bracket

polynomial for σ1 σn1 for n ∈ (Z− {0}). If n = 0 then we have 〈σ1 12〉 = 〈 σ1 〉 =
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(−A2−A−2) 〈σ1〉 = 〈σ1〉 〈12〉. So the bracket of the sum is the product of the brackets.

4.2 〈σ1# σn1 〉 = 〈σ1〉 〈σn1 〉 for n ∈ (Z− {0})

Theorem 4.1. 〈σ1# σn1 〉 = 〈σ1〉 〈σn1 〉 for n ∈ (Z− {0})

Proof. We note the closure of a power of σn1 is a knot if n is odd. If n is even, it is a

two component link. Since the two components are identical, it does not matter which

component we join σ1 to, and so we can extend the idea of connected sum of knots

to the connected sum of links in this special case. Let kn = σn1 . Consider the following:

kn

σ1 # σn1 :

We also note that any braid in B2 with positive or negative writhe can be reduced to

a braid with all positive or all negative crossings respectively. This means the result

will hold for any b ∈ B2. To calculate the bracket of σ1 # σn1 : we first have that

〈σ1 # σn1 〉 = A
〈
kn

〉
+ A−1〈kn〉

〈σ1 # σn1 〉 = Aδ〈kn〉 + A−1〈kn〉.

We also know that δ = −A2 − A−2. So by substitution we know the following:

〈σ1 # σn1 〉 = A(−A2 − A−2)〈kn〉 + A−1〈kn〉.

= (−A3 − A−1) 〈kn〉 + A−1〈kn〉.
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= −A3 〈kn〉 − A−1 〈kn〉 + A−1 〈kn〉.

〈σ1 # σn1 〉 = −A3 〈kn〉.

We know that 〈σ1〉 = −A3 and we set σn1 = kn. So, 〈σ1 # σn1 〉 = 〈σ1〉 〈σn1 〉 as desired.

�

It is important to note that the above result holds for the bracket of σ−11 σn1 for

n ∈ (Z − {0}) as well. This is true by the same reasoning as above except for the

fact that 〈σ−11 〉 = −A−3 as opposed to −A3. Now is this result true for σn1 σm1 for

m,n ∈ N? It turns out the answer is yes.

Theorem 4.2. 〈σn1 #σm1 〉 = 〈σn1 〉 〈σm1 〉 for m,n ∈ N.

Proof. Let m,n ∈ N. We will prove this theorem by induction. Let m = 1. By theo-

rem 4.1 〈σn1 #σ1
1〉 = 〈σn1 〉 〈σ1

1〉. Now assume that 〈σn1 # σm1 〉 = 〈σn1 〉 〈σm1 〉 for m,n ∈ N.

Consider the following diagram of σn1 # σm+1
1 . Denote σn1 as kn.

knσn1 # σm+1
1 :
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In the previous diagram there are a total of n+m+1 positive crossings. We first want

to unravel the crossing at the bottom of the diagram. When we splice this crossing

we will have the following equation:

〈σn1 #σm+1
1 〉 = A〈knkm〉 + A−1〈P 〉 where P is

knP :

From our inductive hypothesis we know that 〈kn#km〉 = 〈kn〉 〈km〉. So,

〈σn1 #σm+1
1 〉 = A〈kn〉〈km〉 + A−1〈P 〉. But what is 〈P 〉? If we examine P we see that it

has n + m positive crossings. It has n crossings in kn and m crossings in the remaining

part of the structure. Let L be the part of P such that P = kn#L. One way we could

calculate 〈P 〉 is to go crossing by crossing and calculate its bracket manually. That

would be a valid procedure. Another way of calculating 〈P 〉 is to recognize that we

know what the bracket of L is equal to. We know that L has m positive crossings
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and is of the form:

L :

We know for this form that 〈L〉 = (−A−3)m [2]. So, 〈P 〉 = 〈kn〉(−A−3)m and by

substitution we have 〈σn1 #σm+1
1 〉 = A〈kn〉〈km〉 + A−1〈kn〉(−A−3)m.

= 〈kn〉 (A〈km〉+ A−1(−A−3)m)

Recognizing that (A〈km〉+A−1(−A−3)m) = 〈σm+1
1 〉 and that we set kn = σn1 we have

that 〈σn1 #σm+1
1 〉 = 〈σn1 〉 〈σm+1

1 〉 for m,n ∈ N.

�

We note that this theorem shows that when you take two different braids, both of

which have positive writhes, or that both of the braids have negative writhes due to

mirror images, then the bracket of the connected sum of their closures is equal to the

product of the brackets of the closures. It is still to be shown that this is also true for

braids with negative writhes. The proof to show this would more than likely follow a

similar procedure as to the previous proof for positive writhes.
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4.3 The Normalized Bracket of b1 # b2

We can use this result and expand it to the normalized bracket of b1 # b2. We

first note that the following two results hold for braids in which we have proven that

〈b1#b2〉 = 〈b1〉 〈b2〉

Theorem 4.3. Lb1#b2
(A) = Lb1

(A)Lb2
(A) for b1, b2 ∈ B2.

Proof. Let b1, b2 ∈ B2 where w(b1) = n and w(b2) = m for n,m ∈ Z. We know that

〈b1 # b2〉 = 〈b1〉 〈b2〉, LK = (−A3)−w(K)〈K〉, and w(b1 # b2) = n + m. So, we have

that

Lb1#b2
(A) = (−A3)−(n+m)〈b1 # b2〉

= (−A3)−n (−A3)−m 〈b1〉 〈b2〉.

= Lb1
(A) Lb2

(A)

�

4.4 The Jones Polynomial of b1 # b2

The question now is if the Jones Polynomial of b1 # b2 is equal to the product of

b1 and b2’s respective Jones Polynomials. The answer is yes. We will show this with

a proof.

Theorem 4.4. Vb1#b2(t) = Vb1 (t)Vb2(t)

Proof. Vb1#b2(t) = Lb1#b2
(t−1/4) by definition

= Lb1
(t−1/4) Lb2

(t−1/4) by Theorem 4.3
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= Vb1(t) Vb2(t)

�

4.5 Conclusion on Jones Polynomials

Our first result was based on the fact that B2 is a cyclic group and the fact that

any braid word can be reduced to a power of σ1, a power of σ−11 , or the identity

element 12. These facts allowed us to show that braids with positive writhe n odd

have closures with a Jones Polynomial of V (t) = t
n−1
2 +

n−1∑
k=1

(−1)k+1t(k+
n+1
2

). Their

mirror images, which would be braids with negative writhe m where m = −n, have

a Jones Polynomial of V (t) = t−
n−1
2 +

n−1∑
k=1

(−1)k+1t(k−
n+1
2

). It was also shown that

V12(t) = −t−1/2 − t1/2. Our second result showed that for a particular set braids in

B2, these braids were enumerated in previous sections, that the Jones polynomial of

the connected sum of the closures of these braids was equal to to the product of the

brackets themselves. Notationally, 〈b1#b2〉 = 〈b1〉〈b2〉. It is also worth noting that

we showed that the product of brackets for these braids was equal to the bracket of

products as well as the product of normalized brackets is equal to the normalized

bracket of products of the form b1 # b2 for b1, b2 ∈ B2. The Jones Polynomial is

just one example of a topological invariant in the field of Knot Theory. The second

invariant this thesis discusses is the invariant known as tricolorability.
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5 TRICOLORABILITY

Tricolorability is another example of a knot invariant. It can be used to determine

when a knot is not topologically equivalent to the unknot [7]. However, if two knots

are both tricolorable that does not mean they are ambient isotopic [7]. This will be

seen when determining which braids in B2 have closures that are tricolorable.

5.1 Definition of Tricolorability

A knot is tricolorable if each strand on the diagram can be colored using the

following two rules [7]:

• Three colors must be used

• At each crossing, the three incident strands are either all the same color or all

different colors.

The following theorem will allow us to draw our conclusions on the tricolorability of

braids in B2.

Theorem 5.1. [7] Tricolorability is a Knot Invariant

If two knots are ambient isotopic to each other then they will both be either tri-

colrable or not tricolorable. Tricolorability is a knot invariant which allows us to dis-

tinguish when knot diagrams are not ambient isotopic to the diagram of the unknot.

The unknot is not tricolorable so any diagram that is tricolorable is not topologically

equivalent to the unknot.
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5.2 Which b ∈ B2 have tricolorable closures?

We can see here that the unknot is not tricolorable as only one color can be used

to color a circle. We determined that if w(b) = ±1 then b was ambient isotopic to

the unknot. So, for b ∈ B2, if w(b) = ±1 then b is not tricolorable. Also, 12 is not

tricolorable because the closure of 12 ∈ B2 yields two circles. We can only use two

colors to color two circles. This means that for b ∈ B2 if w(b) = 0 then b is not

tricolorable. Consider b for b ∈ B2 such that w(b) = ±2. From the section on the

Jones polynomial we determined that if w(b) = ±2 for b ∈ B2 then b was a link. If

this closure is tricolorable and is ambient isotopic to another link does that mean the

second link is also tricolorable? This answer is not necessarily. We know that tricol-

orability can only be used to determine if two knots are ambient isotopic and one is

tricolorable then the other is most certainly tricolorable. Theorem 5.1 demonstrated

that. However, this is untrue for links. Consider the following diagram [2]:

These two links are ambient isotopic to one another. However, the diagram on the

left is not tricolorable but the diagram on the right is. So in general, if two links

are ambient isotopic to one another and one is tricolorable we cannot automatically

assume that the second is also tricolorable. We note that in the previous section on

the Jones polynomial we determined a general form for the closure of any element
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of B2. The results showed that if b had even writhe then the closure of b was a link

because of the facts that b had two components and Vb(t) had terms with noninteger

exponents indicating that they were links. There were closures of braids that were

not links but knots. For example σ3
1 was the trefoil. The mirror images of the links

and knots are also links and knots respectively.

5.3 Results on Tricolorability

We first prove that (2, 3n) torus links are tricolorable for n 6= 0

Theorem 5.2. (2,3n) torus links are tricolorable for n ∈ (Z− {0})

Proof. We have shown through the Jones polynomial that the closure of any braid

in B2 whose writhe equals three is ambient isotopic to the trefoil and consequently

braids whose writhes are equal to -3 have closures that are ambient isotopic to the

mirror image of the trefoil. So, if w(b) = ±3 then b is tricolorable. Assume that k is

a (2,3n) torus link where w(k) = 3n for n ∈ Z>0.

b :

In the above diagram b ∈ B2 has a writhe that is a positive multiple of 3. The

diagram has been turned 90◦ to facilitate the process of coloring. We can now begin

coloring b. because any braid word in B2 to all positive, negative, or no crossings, b

is a braid with all positive crossings. The traditional colors we use to color knots are
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red, blue, and green [7]. Color the first three strands of b.

b :

Note that what occurs in the ellipsis in the above diagram is a sequence of positive

crossings where the total number of positive crossings is equal to some positive mul-

tiple of three. If we repeat the same coloring scheme for the remaining strands we

will have

b :

Taking the closure of this braid will give us

k :

We see here that k is tricolorable. Let 3n be any positive multiple of 3. Then if

w(k) = 3n, k is tricolorable. The mirror image of k is also tricolorable. This proves

the theorem.

�
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This theorem gives us two results on tricolorability. The first result gives us a set

of torus links that are tricolorable. What this theorem also tells us is that braids

with writhes that are odd multiples of three have closures that are tricolorable as

well as are their mirror images. This is true because the closures of these braids are

knots and not links. Braids that have writhes that are even multiples of three have

closures that are links and not knots. The following two proofs will give us braids

whose closures are not tricolorable. Consider the (2,5) torus knot:

(2, 5) :

Theorem 5.3 The (2,5) torus knot is not tricolorable.

Proof. To show this we need to examine two cases. The first case will be if we want

to color the strands of the first crossing all the same color. The second case will be if

we want to color the strands different colors. We begin with case 1.

Case 1: If we want to color the first strands of the first crossing of this knot all

the same color, let’s use the color green, we will have a diagram that looks like the

following:
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(2, 5) :

Notice that in order to abide by the rules of tricolorability the strands of the next

crossing must be all green as well. This is also true for the third, fourth, and fifth

crossings meaning that if we color one crossing all of the same color, green, then we

will have the following:

(2, 5) :

Case 2: Now we need to color the first strands of the first crossing all three different

colors. If we color the crossing in such a way, abiding by the rules of tricolorability,

then coloring the next strands until we reach the final crossing, we will get a diagram

that looks like the following noting that the roles of the colors are interchangeable.
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(2, 5) :

We get a clashing of colors in the diagram which means that if we color the first

crossing all three different colors then the (2,5) torus knot is not tricolorable. We

have shown this is true for both cases which means that the (2,5) torus knot is not

tricolorable. �

Consequently, because of this proof the mirror image of the (2,5) torus knot is also

not tricolorable by the same procedure. Another consequence to this theorem is that

for b ∈ B2 if w(b) = ±5 then b is not tricolorable. This is true due to the fact

that tricolorability is a knot invariant and that if w(b) = ±5 then b will be ambient

isotopic to the (2,5) torus knot. There are other braids in B2 whose closures are not

tricolorable. First, we will prove the following on torus knots:

Theorem 5.4. (2,3n + 2) torus links for n a natural number are not tricolorable.

Proof. First, let b ∈ B2 such that w(b) = 3n + 2 for n a natural number. We have

already shown the case for n = 1. Consider the following diagram of b for n > 1

b :
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We note what occurs in the above ellipsis is a sequence of m positive crossings where

m is a positive multiple of 6 or equal to zero. We also note that we have a braid

with all positive crossings because any word in B2 can be reduced to a word with

all positive, negative, or no crossings. If we were to color this braid, where the first

crossing was all the same color, we would get a 1-coloring of the braid and so its

closure would also be a 1-coloring. This is seen through a process similar to that

in Theorem 5.3. Now if we were to begin coloring this braid, where all three colors

are used to color the strands of the first crossing, we would have the following diagram:

b :

Following the rules of tricolorability, if we were to color these crossings up until

the final two crossings we would have the following:

b :

Before continuing to color we note that what we have colored r positive crossings,

in accordance with the rules of tricolorability, where r is a positive odd multiple of

three. We now complete the coloring of the braid:

b :
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Taking the closure of b we have a (2, 3n + 2) torus link

b :

Coloring the closure, while still abiding by the rules of tricolorability, gives us the

following diagram:

b :

Noting that the roles of the colors are interchangeable this completes the proof.

�

We can see here, by similar reasoning, because these links are not tricolorable their

mirror images are also not tricolorable. This theorem also gives us information about

a collection of braids in B2. Any braid that has a writhe equal to ±(3n + 2) for n

an odd integer, as these closures are knots and not links, have closures that are tri-

colorable. We know that if two knots are ambient isotopic to one another and one is
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tricolorable then the other is tricolorable as well [7]. We prove one more theorem on

the topic of tricolorability.

Theorem 5.5. (2,3n + 1) torus links for n a natural number are not tricolorable

Proof. Let b ∈ B2 and let w(b) = 3n+ 1 for n a natural number. Examples of these

numbers are 4, 7, 10, 13, 16, ... Consider the following diagram of b:

b :

We note what occurs in the above ellipsis is a sequence of m positive crossings where

m is a positive multiple of 3 or equal to zero. We also note that we have a braid

with all positive crossings because any word in B2 can be reduced to a word with all

positive, negative, or no crossings. Following the same coloring scheme as in theorem

5.4. we color all of the crossings b up until the final crossing:

b :

We see that we are forced to color the final strand blue. Taking the closure of this

braid will give us a (2, 3n+1) torus link, and completing the coloring we see that

we have a collision of colors on the strands that complete the closure of the braid.

This means that b is not tricolorable when we want to color the first crossing with

three different colors. If we want to color the first crossing the same color, we get a
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situation where we are forced to color b with only one color. So b is not tricolorable.

�

Just like for theorem 5.4. the mirror image of these links are also not tricol-

orable by similar reasoning. Consequently, this theorem gives us another collection

of braids whose closures are not tricolorable. Namely, braids whose writhes are equal

to ±(3n+ 1) for n an odd integer.

To conclude tricolorability it is important to reiterate the fact that tricolorability

is a knot invariant. We have been concerned with braids that have odd writhe because

these are the braids whose closures are knots and not links. This was shown in the

section on the Jones polynomial. We have determined two different set of braids one

whose closures are not tricolorable and the other whose closures are tricolorable.

48



6 FURTHER RESEARCH

What remains to be done is to extend these results to the braid group B3 and

beyond. The group B3 is the set of all braids on three strands with the operation

of concatenation. B3 is not a cyclic group as it takes two elements to generate the

entire group. Namely, these elements are σ1 and σ2 :

σ1 : σ2 :

What is to be done is to determine a general form of the Jones polynomial for

the closure of any braid in B3. The results on tricolorability can also be extended to

B3. Another invariant is what is called the Alexander-Conway polynomial. More

research to be conducted is to determine the general form of the Alexander-Conway

polynomial for the closure of any braid in B2 as well as for B3, B4, up to a general

case for Bn. Another open problem is to find a knot whose Jones polynomial is 1 but

is not ambient isotopic to the unknot.
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