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ABSTRACT
Geostatistical Analysis of Potential Sinkhole Risk: Examining Spatial and Temporal
Climate Relationships in Tennessee and Florida
by

Kimberly Blazzard

Sinkholes are a significant hazard for the southeastern United States. Although differences in
climate are known to affect karst environments differently, quantitative analyses correlating
sinkhole formation with climate variables is lacking. A temporal linear regression for Florida
sinkholes and two modeled regressions for Tennessee sinkholes were produced: a general
linearized logistic regression and a MaxEnt derived species distribution model. Temporal results
showed highly significant correlations with precipitation, teleconnection patterns, temperature,
and CO., while spatial results showed highly significant correlations with precipitation, wind
speed, solar radiation, and maximum temperature. Regression results indicated that some
sinkhole formation variability could be explained by these climatological patterns and could

possibly be used to help predict when/where sinkholes may form in the future.
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CHAPTER 1
INTRODUCTION
Sinkhole Problems

Some of the most sinkhole susceptible areas coincide with areas of low socio-economic
status; between the 1970s and 1980s, 38 lives were lost in sinkholes in the Gualeng Province of
South Africa (Buttrick et al. 2001). Cooper et al. (2011) outlined additional sinkhole-related
issues. Storm runoff can exacerbate sinkhole formation and increase pollution into karstic
aquifers, improperly installed heat pumps can allow more pollution into the karst aquifers, bridge
spans may collapse in them, drainage ditches commonly cause sinkholes along roads, and
leaking pipes, failed sewer and water systems, and poorly designed drainages also contribute to
sinkhole development (Veni et al. 2001; Waltham et al. 2005). A study in Pretoria, South Africa
determined that 96% of nearly 400 sinkholes were at least influenced by anthropogenic activities
(Veni et al. 2001).

Weary and Doctor (2014) approximated that 18% of the United States is underlain by
soluble rocks with the potential for karstic formations; these karstic rock types are found within
all 50 states. From 2000-2015, the cost of damages due to karst-related incidents in the US
averaged $300,000,000 per year (Weary 2015).

Cooper et al. (2011) also indicated that many counties and states within the United States
have varying regulations concerning what is required for sinkholes in hazard avoidance and land
development. In Florida, the influence of urban and agricultural land use is altering and reducing
natural drainage and recharge, increasing the susceptibility of karst aquifer contamination
(Tihansky and Knochenmus 2001). More than 100 million dollars in sinkhole-related structural

damage is reported every year in Florida (Florea 2008). Numerous insurers either ceased writing
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homeowner’s policies or tripled insurance premiums by 2006 due to increasing sinkhole claims
(Florea 2008). As of 2017, Florida and Tennessee were the only U.S. states to require property
insurance companies to offer sinkhole coverage. The 2017 Florida Statute 627.706 requires
property insurance to include damages to “Catastrophic ground cover collapse”. Tennessee laws
required similar until a 2014 amendment of the 2014 Tennessee Code 56-7-130 changed the law
to only “make available” sinkhole coverage. In Florida, residential property insurance
deductibles may range from 1 — 10% of sinkhole losses within the policy dwelling limits. These
amendments and high property deductibles help transfer the cost of damages back on the
homeowner saving the insurance company on costs. For example, if a house sustains $100,000 of
damages due to a sinkhole, the homeowner could be responsible for a $10,000 deductible.
Preventative measures could reduce the financial burden laid on both homeowners and insurance

companies.

Formation

Sinkholes naturally form in five main soluble rock types: limestone, dolostone, gypsum,
halite (salt), and chalk (Cooper et al. 2011). The focus of this research is on sinkholes in the
carbonate (limestone and dolostone) regions of Tennessee and Florida. Karst consists of unique
landforms that form from weathering and erosion of soluble rock (Ritter et al. 2011). Karst is
typically associated with landforms formed in limestone and dolomite such as caves, sinkholes,
and sinking rivers. Limestone is made of the mineral calcite (CaCOs3) and dolostone is made of
the mineral dolomite (CaMg(COzs).). (Note: the terms dolostone and dolomite are often used
interchangeably.) As water passes through the atmosphere and through soil, carbon dioxide
(CO) is dissolved into the water creating a weak carbonic acid. The carbonic acid then dissolves

the CaCOs creating a void (Borsato et al. 2015).
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Another term occasionally used for a sinkhole is “doline.” Although Ritter et al. (2011)
claim that in North America they are used interchangeably (Ritter et al. 2011), in other locations
the terms have different meanings. In South Africa, sinkholes are landforms that form quickly
without warning and generally have a diameter less than 100 m, while dolines form slowly over
weeks to years and are typically large depressions of 30 m to 1 km in diameter (Buttrick et al.
2001).

Six main types of sinkholes are recognized: solution sinkholes, collapse sinkholes,
caprock sinkholes, dropout sinkholes, suffosion sinkholes, and buried sinkholes. Solution
sinkholes undergo dissolution at the surface, whereas collapse, caprock, dropout, and buried
sinkholes undergo dissolution under the surface of the earth creating a void. Collapse sinkholes
form when the surface collapses into the void below. Caprock sinkholes have a cap of insoluble
rock that eventually collapses into the void; these sinkholes slowly evolve over more than 10,000
years. Dropout sinkholes form when soil collapses into a soil void. Buried sinkholes have been
buried with soil (Ritter et al. 2011). Suffosion sinkholes form with the down-washing of soil into
bedrock features.

Sinkhole formation is accelerated by increases in: water, exposed rock surface, CO-
partial pressure, and temperature. Although calcite and dolomite decrease in solubility with
increasing temperature, the solubility increases with increasing CO: partial pressure (Ritter et al.
2011) (Fig 1). For example, increasing vegetation will increase the CO- levels in water resulting
in an increase in soil CO; partial pressure. The soil COz partial pressure (pCO>) is the main
determinant in groundwater pCO> (Zeng et al. 2016). Increasing the outside air temperature will
allow for greater vegetative growth assuming there are sufficient water and nutrients and

assuming the plant is not overburdened by excessive heat. Since the temperature of groundwater
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is generally more stable than the temperature of the outside air (Winter et al. 1998), an increase
in temperature for outside air should ultimately allow for an increase in CO> levels dissolved in

groundwater.
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Figure 1: Mineral solubility vs CO: partial pressure. (Adapted from Ritter et al, 2011)

Other features affecting sinkhole formation in particular include slope and geologic
structures such as bedding-plane partings and fractures (Sweeting 2017). Greater slopes restrict
pooling, decreasing the chance for water to dissolve the underlying rocks. In this way, solution
sinkhole frequency is inversely proportional to the surface slope (Ritter et al. 2011). Jones and
Banner (2003) support this idea with their work on a Barbados aquifer. They found that regions

of high sinkhole densities have characteristics of low relief where dry valleys do not have well
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developed karst landforms. Geologic structures, in particular fractures and porosity, affect how
water infiltrates through the rock. In Barbados, soil permeabilities are much lower than the
permeabilities of the underlying Pleistocene limestone. As sinkholes are filled with low-
permeability/high porosity clay-rich soils, infiltration rates are slowed, ponding is minimized,
and losses due to evapotranspiration are minimized. This leads to better aquifer recharge through
karst shafts than through larger interfluvial sinkholes (Tullstrom 1964; Smart and Ketterling
1997; Jones and Banner 2003). In turn, this creates more sinkholes. In addition, sinkholes are
more likely to form in dense limestones that are well-jointed; as the grain size increases from
micritic to sparitic, the dissolution process is negatively influenced as less grain surface area is
exposed to dissolution (Sweeting 2017). The fractures allow for selective dissolution over
uniform surficial dissolution.

Collapse dolines are more than just a collapse of sediment into a cave, as dolines can
have volumes a hundred times larger than the largest cave systems. As collapse happens, it
blocks the routes of water systems allowing for an increased hydraulic gradient and flow
velocity. This in turn accelerates the dissolution process in new areas allowing for continued
collapse (Gabrovsek and Stepisnik 2011). Two main types of collapse infilling may occur:
continuous and discontinuous (Fig 2). Continuous consists of fractures (not at the surface) that
maintain a certain limiting aperture by collapsing material into the void at the same rate as is
dissolved. Discontinuous consists of fractures that grow in size until a collapse shrinks the

aperture back down to a smaller size then restarts growth (Gabrovsek and Stepisnik 2011).
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Time ﬁ Continuous Infilling

Width 1 Width 2 Width 3 Width 4
Width 1 Width 2 Width 3 Width 4
Width 1 Width 1 Width 1 Width 2
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Time % Discontinuous Infilling

Figure 2: Continuous vs Discontinuous sinkhole infilling over time

When water percolates through caves or if the humidity in the chambers is high,
weathering allows for cracks to form (Parise and Lollino 2011). This reduces the rock tensile
strength allowing shearing along fractures and joints, floor heaving and roof lowering within the
underground cavern (seen as ground surface subsidence), and “rock noises” before total collapse
(Parise and Lollino 2011). Building structures on top of these at-risk areas increases the force
and lowers the stability of the rock even more.

Since water seeps through fractures, and sinkholes form around these fractures, sinkholes
can be used to display fault zones and groundwater paths. Florea (2005) used a geographic

information system (GIS) to map all sinkholes found on USGS 1:24000 scale Kentucky

17



topographic maps. On a macro scale, Florea was able to trace the Rough River Fault zone with
sinkhole sites and find karst boundaries along fault offsets. On a meso-scale, sinkholes were
found tracing along NW-trending fractures and surrounding the Versailles impact structure. It
was noted that not all fractures have associated sinkholes and many sinkhole alignments
currently follow along unknown faults and fractures. One hypothesis for this suggests that karstic
regions with faults but no sinkholes may be a sign that mylonitization is preventing groundwater
flow (Taylor 1992; Florea 2005). Correlation between sinkhole and fault locations in Kentucky

infer that similar correlations may exist within other states, such as Tennessee and Florida.

Climate Impacts

Rising levels of CO- are amplifying changes in climate around the globe, manifesting in
warmer temperatures overall and increasingly erratic and extreme rainfall. Polar amplification
entails that higher latitudes are more affected by this warming (Moran 2009). As temperature
rises, polar ice caps melt and seawater experiences thermal expansion. According to the
Intergovernmental Panel on Climate Change (IPCC) 5th Assessment Report, global mean sea
level is expected to rise approximately 0.35 - 0.54 m by 2080 (IPCC 2014). Coastal and
terrestrial water sources are influenced by sea level. As sea levels rise, so does the water table.
Cowling (2016) researched this correlation with respect to glacial-interglacial cycling and found
that a cooling, dry climate associated with glaciation lowered sea level and water table. In
contrast, a shallower water table would concentrate dissolution at lesser depths, which could
allow for an increase in sinkhole formation over time. Examples of this type of occurrence are
occasionally visible around dams (Flores-Berrones et al. 2011).

As CO: levels increase in the atmosphere, CO returns to the ground by means of acid

rain. Increased atmospheric CO- also increases the efficiency of plant water usage (Gedney et al.
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2006; Macpherson et al. 2008); which increases CO». The natural groundwater pH at present is
~6 in the majority of the world (Knutsson 1994). In areas with weathering-resistant minerals
(non-carbonates) in bedrock and soils, Knutsson (1994) found that groundwater acidification is
increasing. In carbonate systems, the opposite effect has been documented. Zeng et al. (2016)
identified examples attributed to increased CO.. In the past half century, the Mississippi River
increased in alkalinity approximately 20% (Raymond and Cole 2003; Raymond et al. 2008; Zeng
et al. 2016). The Konza Prairie, USA increased in alkalinity 13% between 1990 and 2005
(Macpherson et al. 2008; Zeng et al. 2016). Macpherson et al. (2008) found an increase in
dissolved calcium and magnesium in these karstic waters. Together, the two minerals made up
82-94% (by weight) of the total dissolved material. They proposed that the increase in CO2 was
the cause for the increased chemical weathering and resulted in increasing alkalinity in karstic
waters (Fig 3). As CO: levels increase, the probability of sinkhole formation may therefore
increase but to what extent is unknown. Understanding how these levels influence sinkholes for

future protective measures is needed.
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Figure 3: Diagram of CO: affecting sinkhole formation

Another influence on weather-related factors includes teleconnections. Teleconnections

are recurring deviations of standard pressure heights above sea level, impacting weather patterns
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at a regional scale (Wallace and Gutzler 1981; Barnston and Livezey 1987; Duffy et al. 2005).
The most well-known teleconnection impacting the United States is the El Nifio/Southern
Oscillation (ENSO). The National Oceanic and Atmospheric Administration (NOAA) monitors
the teleconnection monthly indices for the northern hemisphere as they are the main drivers of
climatic patterns for the United States. These teleconnections directly influence precipitation,

temperature, significant weather events, etc.

Modeling Methods

Buttrick et al. (2001) developed a method for hazard and risk assessments for the
dolomitic lands of South Africa to morphometrically determine sinkhole risk including variables
such as sinkhole size, depth, and whether dewatering had occurred. The risk assessment also
considered measures suggested by the Joint Structural Division (2000) to prevent catastrophes,
such as building raft foundations underneath housing units to span a sinkhole; this would prevent
the house from collapsing, allow an escape for the occupants and limit structural damage to the
house (as cited in Buttrick et al. 2001).

MacGillivray (1997) reviewed different quantitative techniques for measuring karst
terrain. He found that before the 1970s, most sinkholes were categorized qualitatively by shape
and origin. By the 1980s, morphometric approaches were embraced. These approaches include
indices for surface roughness, bedrock properties (including porosity, purity, permeability, and
strength), and a double Fourier series analysis of topographic variance. Morphometric techniques
are the current main facilitators for the research in karst geohazards and anthropogenic-related

karst problems.
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Study Objectives and Research Questions

Climate factors are known to influence sinkholes but few studies link the two. Geospatial
(GIS) models are increasingly employed to model sinkhole hazards, however, these models
generally do not include climatic variables. Generally, sinkholes are mapped at a local scale,
negating the change in climatic variables over space. For example, variables used to model
sinkhole risk in a temperate environment are different than those used in a tropical environment,
so the two environments are modeled separately. Gaining climate-related information from
multiple locations, or at a regional scale, may help to link these differing environments. Also, as
climate changes over time, these answers may expose potential shifts in sinkhole hazard
locations.

This thesis is composed of two main studies: a temporal study of Florida sinkholes and a
two-part spatial study of Tennessee sinkholes. Due to differing data, conducting a spatial study
of Florida sinkholes and a temporal study of Tennessee sinkholes was deemed inappropriate. The
thesis will seek to answer the following questions.

Study One:

1. How are specific weather patterns associated with sinkhole formation in Florida?
2. To what extent does climate impact sinkhole-forming regions in Florida?
3. Where are hotspots for sinkhole formation in Florida?

Study Two:

1. Which climate variables are the most influential in predicting sinkhole formation?
2. Where are sinkholes expected to form in Tennessee based on climate-sinkhole

relationships?
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CHAPTER 2
TELECONNECTION AND CLIMATE EFFECTS ON FLORIDA SINKHOLES - A
TEMPORAL STEPWISE MULTIPLE LINEAR REGRESSION APPROACH
By:

Kimberly Blazzard, Ingrid Luffman, T. Andrew Joyner

Abstract
Little is known about the temporal correlation between Florida sinkhole formation and climatic
patterns. This study utilized a stepwise linear regression methodology to examine relationships
between Florida sinkhole and subsidence events, teleconnection phases, and other climatological
patterns. Significant (northern hemisphere) monthly and seasonal teleconnection phases
(National Weather Service Climate Prediction Center), statewide precipitation and temperature
averages (Florida Climate Center), and average COz levels (NOAA Earth System Research
Laboratory) were the covariates. Event records were also offset by month/multi-month and
season/multi-season time periods to examine lagged relationships. Results showed a statistically
significant (p < 0.01) positive correlation between sinkhole event formation and the East Atlantic
Pattern, precipitation, temperature, and CO.. Regression results indicated that as much as 23% of
sinkhole formation variability could be explained by these teleconnection phases and
climatological patterns and may be useful in identifying periods at higher risk for sinkhole

formation.

Keywords: Sinkhole, Doline, GIS, Climate, Predictive Modeling, Karst, Florida, Linear

Regression
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Introduction
Environmental Background

Florida has a humid subtropical climate north of Lake Okeechobee and a tropical climate
south of Lake Okeechobee. Average annual precipitation is 150.4 cm (59.21 inches). Average
low temperature ranges from 15° C (39° F) in January to 22° C (72° F) in July and August.
Average high temperature ranges from 18° C (64° F) in January to 33° C (92° F) in July and
August (USClimateData, 2017).

Florida covers 170,304 km? (65,755 mi?) of land which is almost entirely underlain by
carbonates (Lane, 1986). Although Florida’s basement rock consists of Paleozoic igneous and
metamorphic rocks, it is overlain by varying thicknesses of carbonates with interbedded
sandstones and shales (Fig 4); this is the basis for the Florida Platform which makes up the
Florida peninsula (Scott, 2001). The siliciclastics (the sandstones and shales) are Late Miocene
to Pliocene and are underlain by Middle Miocene carbonates and overlain by Quaternary
carbonates. The Florida Platform is considered to be one of the largest carbonate platform
systems created during Earth’s geologic history (Cunningham et al., 2003; Poag, 1991). Since all
regions of Florida contain carbonate layers, all regions are at risk of sinkhole formation;
locations not labeled as carbonates may still have dissolution below the top layer of rock

allowing for the surface layers of rock and soil to suddenly collapse forming a sinkhole (Fig 5).
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Figure 4: Florida geologic map created from USGS MRData.
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Figure 5: Florida geologic timescale produced as part of the Florida Geological Survey,
Open File Report No. 80
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According to the National Land Cover Database 2011 (NLCD2011), Florida contains
approximately 35% wetlands, 17% planted/cultivated land, 17% forest, and 15% developed land.
Of the sinkholes mapped since 1954, 56% of the sinkholes reside within land of minimal
development (open space developed — low intensity developed), 19% within medium to high
developed lands, 7.7% within forests, and 6.5% within planted/cultivated lands (with the

remaining 10.8% distributed among the remaining land types) (Fig 6).
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Figure 6: Florida land cover map with sinkhole locations.

Statistical Background

Linear regression is a statistical technique used to model a linear relationship between
two variables by creating a linear equation. The dependent variable (the variable to be predicted)

is assumed to be continuous and normally distributed (at least for smaller samples) (Sainani,
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2013). Multivariate linear regression includes multiple variables as predictors (Sainani, 2013),
where the intercept (A) is a constant and the coefficients (b;) are multiplied to each independent
variable (X;):

Y =A4+Db*Xy + byxX, + ... + b, *xX,
When working with multiple independent variables, not all variables may combine together to
affect the dependent variable. A stepwise regression is useful for reducing the number of
independent variables (Parinet et al., 2015).

After a regression model is developed, two main diagnostic statistics must be explored,
the R? value and the p-value. The R? value determines how much variability in the dependent
variable is explained by the independent variables. For example, an R? value of 0.123 would
explain 12.3% of the variability. The p-value determines how significant the different predictors
are and the overall significance of the model. A p-value below .05 is considered significant while

a p-value below .01 is considered highly significant.

Research Questions
1. How are specific weather patterns associated with sinkhole formation in Florida?
2. To what extent does climate impact sinkhole-forming regions in Florida?

3. Where are hotspots for sinkhole formation in Florida?

Data and Methods
Spatial Distribution of FL sinkholes
Sinkhole and subsidence event records, available from 1948 to 2016 from the Florida

Department of Environmental Protection Geospatial Open Data, were obtained and converted
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into a point shapefile using ArcMap (Fig 7). The records include 3,516 data points with
accompanying latitude and longitude. Additional information including the report source, repair
status, soil type, event date, date reviewed, county, township, width, depth, slope, and extra notes
were attached for each sinkhole/subsidence report if known. Florida roads were downloaded as a
2013 TIGER/line shapefile from Data.Gov. All data were projected into the NAD 1983 HARN

Florida GDL Albers (meters) projection.
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Figure 7: Florida sinkholes recorded since 1948.

Crimestat IV was used to compute spatial statistics for the Florida sinkholes (using the
road network as a distance reference), while ESRI ArcMap 10.5 was used to visualize the
sinkholes, roads, and resulting statistics. First, a spatial distribution analysis was conducted to

find the average location of the sinkholes and to find where the majority of the sinkholes are
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forming. This was done by calculating the mean center, the geometric mean, the harmonic mean,
the median center and the mean center of minimum distance.

Next, a Nearest Neighbor Analysis (NNA) was conducted to quantitatively describe the
dispersion of the sinkholes. Results of the NNA are calculated on the Nearest Neighbor Index
scale (NNI). An NNI score less than one implies that the incidents are clustered, equal to one
indicates they are randomly dispersed in space, and more than one implies they are regularly
dispersed. A rectangular border correction was applied to compensate for the fact that the nearest
neighbor to some of the sinkholes may actually be north of the Florida boundary.

Then, a hot spot analysis was conducted to identify where the sinkholes concentrate. This
was computed using a Nearest-Neighbor Hierarchical Spatial Clustering analysis. A cluster was
defined as a minimum of 100 sinkhole sites within a 10-mile radius. A 1x standard deviation was
utilized to show the standard deviation of distances of the sinkhole locations from the mean
center.

Lastly, three kernel density estimates (KDE) were developed to model locations with the
highest risk for sinkhole formation. Since sinkholes require certain features (such as a karst
lithology), it is possible that the area of influence can decline rapidly near an incident; three
different kernel distribution bandwidth combinations were selected for this reason. KDE#1
included a negative exponential distribution, an adaptive bandwidth, and a minimum sample size
of 100. KDE#2 included a normal distribution, an adaptive bandwidth, and a minimum sample
size of 100. KDE#3 included a normal distribution and a fixed interval of h, = 13.63 km (8.5
miles) determined from the Fotheringham Rule, where N is the total number of

occurrences/points and o is the standard distance deviation.

he = [2/(3N)]"/*o
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Sinkholes were also graphed displaying the number of sinkholes formed for each month
and season, and mapped to show the sinkhole locations. The general location map and cluster
analysis were used to determine which cities in Florida are most vulnerable to sinkholes and to

select focal areas for linear regression modeling.

Florida Temporal Linear Regression

Karst sinkholes often develop shortly after periods of heavy rain and may be connected to
larger, macro-climatic patterns. Recent research indicated that a 200-m-long collapse zone, in
Guanxi, China, was preceded by a year-long drought followed by a heavy, single day rain event
(469.8 mm total) (Gao, 2013). To determine empirical linear trends in long-range forecasting,
linear regression is historically the base method (Blender, Luksch, Fraedrich, and Raible, 2003).

This study primarily utilized stepwise linear regression to examine relationships between
Florida sinkhole collapse/formation and other subsidence events, teleconnection phases, and
climatological patterns. Monthly and seasonal teleconnection phases, available from the National
Weather Service Climate Prediction Center, were used for regression analysis and include the
following teleconnections: North Atlantic Oscillation (NAO), East Atlantic Pattern (EA), West
Pacific Pattern (WP), East Pacific/North Pacific Pattern (EP/NP), Pacific/North American
Pattern (PNA), East Atlantic/West Russia Pattern (EA/WR), Scandinavia Pattern (SCA), and El
Nifio-Southern Oscillation (ENSO) (utilizing the Nifio 3.4 SST Index). These teleconnections
include the National Oceanic and Atmospheric Administration (NOAA) prioritized monthly
indices. NOAA monthly precipitation totals and monthly average temperatures for the Tampa,
Lake City, Tallahassee, and Orlando, Florida regions were downloaded. Average global CO>
levels were obtained from the NOAA Earth System Research Laboratory (measurements from

the Mauna Loa Observatory in Hawaii). Combined sinkhole and subsidence event records were
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available from the Florida Department of Environmental Protection Geospatial Open Data portal.
Although subsidence events may form differently from sinkholes (for example, from broken
water lines), the dataset did not differentiate between the two event types. Sinkhole records were
subdivided into regions within 50 mile and 100 mile radii around the Tampa, Lake City,
Tallahassee, and Orlando weather stations. Sinkholes were totaled per month and totaled per
season. These totals were also log-transformed for analyses. In addition, the event records were
offset by month/multi-month (1-3 months) and season/multi-season time periods (1-2 seasons),
compared to the independent variables (total monthly sinkholes, total season sinkholes, etc), to
examine possible lagged relationships. All statistical calculations were processed in SPSS
Statistics. The time range included January 1954 to June 2016. For comparative analysis, a
Poisson loglinear regression with the zero count data, a Poisson loglinear regression without the
zero count data, and a negative binomial with log link, and an OLS enter-method (vs. stepwise)
regression models were developed using the same variables on the Tampa 50 mile, monthly total
dataset.

The carbon dioxide (CO>) levels oscillated higher and lower along an overall increasing
trend, ranged from 327.20 ppm to 403.95 ppm (Fig 8). The dataset contains recorded values from
1974 to present. The teleconnections oscillate between a positive and negative around a value of
0 (showing normal climate conditions) (Fig 9). Visually, the ENSO data shows an overall
oscillatory pattern ranging from 24.52° C to 29.14° C (measured from sea surface temperatures)

(Fig 10).
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Figure 8: Change of COz levels (ppm) since 1974
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Figure 9: Monthly teleconnection trends showing general oscillation of indices
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Results

Spatial Distribution of FL sinkholes

The geometric mean and mean center of minimum distance are approximately 13 km
apart. The mean center is located at -82.40 W, 28.81 N or approximately 9 km west of Fort
Cooper State Park (Fig 11). The mean center is approximately 20 km NE of the harmonic mean,
9.45 km NE of the geometric mean, 13 km NNE of the median center, and 16.7 km NNW of the

mean center of minimum distance. The five points range across an expanse of 139.9 km?.
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Figure 11: Centrographic statistics of Florida sinkholes displaying the mean center,
harmonic mean, geometric mean, median center, and mean center of the minimum
distance. The overall trend shows the mean point north of Brooksville.

The mean nearest neighbor distance was 1,232.90 m with a minimum distance of 0.00 m.
The Nearest Neighbor Index equaled 0.202 showing that sinkholes are spatially clustered (p =

0.0001).
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The hot spot analysis found nine clusters primarily located around major cities (Fig 12).
These major cities include Tallahassee, Lake City, Tampa, and Orlando. The majority of the

clusters are found within the Tampa region.
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Figure 12: Florida cluster analysis showing the regions where there are at least 100
sinkholes within a 10 mile radius. Nine clusters were found around Tallahassee, Lake City,
Tampa, and Orlando.
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KDE#1 showed no areas of sinkhole density, so it was discarded. KDE#2 (Fig 13) and
KDE#3 (Fig 14) showed better interpolated surfaces, however, KDE#3 best fit the actual
locations of the recorded sinkholes. KDE#2 included large sections of low sinkhole density as
being susceptible. KDE#3 shows which areas, within the clustered regions, have the highest

density of sinkholes.
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Figure 13: Florida KDE#2 shows an interpolated density surface utilizing a normal
distribution, adaptive bandwidth, and a minimum sample size of 100.
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Figure 14: Florida KDE#3 shows an interpolated density surface utilizing a normal
distribution and a fixed interval of 13.63 km.

Results from Linear Regression of Florida

Since the largest clusters were centered around Tampa, Lake City, Tallahassee, and
Orlando, these cities were selected for linear regression modeling.

Approximately 24.5% (R? = 0.245, p = 0.000) of sinkhole variability within 100 miles of

Orlando was explained using precipitation, ENSO, CO., and the PNA (Table 1). Within 50 miles
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of Lake City, 24.0% (R? = 0.240, p = 0.000) of sinkhole variability could be explained by the
precipitation, NAO, and SCA. Only 11.2% (R? = 0.112, p = 0.000) of sinkhole variability could
be explained in the region of Tallahassee by precipitation. The Tampa region had minimal
sinkhole variability explained by precipitation. The most significant climate variable affecting
the sinkholes in all four cities was precipitation. The included explanatory variables were
determined as statistically significant (p < 0.05). The sinkhole monthly lag and seasonal lag
times showed a lower R? with each variable (if at all) compared to the month/season in which the
sinkhole actually formed. Seasonal data, compared to monthly data, showed an increase in R?
values by 0.6% for the Lake City region, but decrease in R? for all other regions. Explanatory
teleconnection patterns for the differing regions included ENSO, PNA, NAO, EP/NP, SCA, and

WP.
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Table 1: Florida sinkhole regression results based on differing climate variables.

Time Conditions Dependent Variable Independent Variables Retained Adjusted

frame R?

2 100 mile (160 km) Log sinkholes Precipitation, ENSO, CO2, PNA 0.227

§ | radius from Orlando | Log of 1 month time lag | ENSO, Precipitation, CO2 0.123

E: Sinkholes NAO 0.020

1 month time lag EP/NP, ENSO, NAO 0.070

50 mile (80 km) Log sinkholes Precipitation 0.105

radius from Log of 1 month time lag | NAO, EP/NP, CO2 0.076

Tallahassee Sinkholes Precipitation, CO2, ENSO 0.098

50 mile (80 km) Log sinkholes Precipitation, EP/NP 0.038
radius from Tampa Log of 1 month time lag | None -

Sinkholes NAO 0.011

50 mile (80 km) Log sinkholes Precipitation, NAO, SCA 0.219

radius from Lake City | Log of 1 month time lag | Precipitation 0.057

Sinkholes Precipitation 0.081

1 month time lag Precipitation 0.010

50 mile (80 km) Log sinkholes CO2, WP, ENSO 0.177

radius from Orlando | Log of 1 month time lag | CO2 0.086

Sinkholes Precipitation, CO2, EA 0.080

1 month time lag CO2, Temperature 0.035

All Florida Log of Sinkholes Precipitation 0.036

Log of 1 month timelag | ENSO, EA 0.038

Sinkholes Precipitation, NAO 0.018

1 month time lag Precipitation 0.010

® 100 mile (160 km) Log of Sinkholes Precipitation 0.153

§ radius from Orlando | Log of season time lag Precipitation 0.105

3 Sinkholes NAO 0.127
- Log of 1 season time lag | None -

50 mile (80 km) Log of Sinkholes Precipitation, NAO 0.228

radius from Tampa Sinkholes Precipitation, NAO 0.127

Log of 1 season time lag
1 season time lag

None
None

Precipitation, average temperature, and the EA significantly influenced sinkhole
formation while the PNA, NAO, SCA, and WP negatively influenced sinkhole formation.

ENSO, CO», and the EP/NP displayed both positive and negative influences on sinkhole

formation depending on the location.
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The largest spikes in sinkhole formation occurred in January 2010 with 160 sinkholes and
June 2012 with 153 sinkholes (Fig 15). The next largest spikes occurred in May 1964 and
September 1988 with 47 sinkholes each. No significant rain events occurred during or directly
before any of the four spikes (Fig 16). This shows that although there is a general correlation
between precipitation and sinkhole formation within this area, it is not the primary factor

affecting the most significant events.
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Figure 15: Florida Sinkhole Formation over time graph displaying the total sinkholes
formed per month since 1954.
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Figure 16: Total Florida sinkholes and precipitation each month from 1950-2016
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The seasons ranked from largest to smallest total sinkhole formations included summer
(776 sinkholes), spring (757 total sinkholes), winter (632), and fall (506) (Fig 17). The average
sinkhole total per season ranged from 2.72 in fall to 4.15 in summer (Fig 18). The months with
the largest sinkhole totals included January (368) and May (324). The months with the lowest
sinkhole totals included November (112) and December (116) (Fig 19). The average sinkhole
formed per month ranged from January (5.84) to November (1.81) (Fig 20). Since the data do not
include the months of July — Dec 2016, the data totals are slightly skewed, yet the small averages
for each of these months show that the missing data would have negligible impact on overall
monthly totals. For example, adding an additional ~2 sinkholes to the month of November
(bringing the total to 114) would still leave November with the lowest total of sinkholes formed.
An independent-samples Kruskal-Wallis test determined no significant differences between
seasons or between months. However, January 2010 recorded 160 sinkholes and June 2012
recorded 153 sinkholes; this accounts for over 1/3 of the total sinkholes recorded for January and
over % of the total sinkholes for June. When these events are treated as outliers and not included
within analysis, the Kruskal-Wallis tests determined a significant difference between months of

sinkhole formation (p = 0.021) but still not between seasons of sinkhole formation (p = 0.088).
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Figure 17: Total Florida sinkholes per season from 1954 to 2016.
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Figure 18: Average total sinkholes formed in Florida for each season from Jan 1954 - June
2016.
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Figure 20: Average total sinkholes formed in Florida from Jan 1954 - June 2016.
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Of the three Poisson models, the “negative binomial with log link” model was determined
to be the best fit (AIC = 1965) compared to the “Poisson loglinear” models (zero count data
removed AIC = 2206; zero count data included AIC = 3182) as it had a better AIC. The negative
binomial with log link model (including the zero count months) included precipitation, average
temperature, CO2, NAO, EA, and EP/NP as significant variables in sinkhole formation (p <

0.05).

Discussion

Regression Results and Covariates

During the dates of increased sinkhole formation, significant spells of freezing
temperatures occurred. Aurit, Peterson, and Blanford (2013) found that when Florida experiences
a frost-freeze event, the farmers utilize a larger supply of groundwater to protect crops by the use
of spray-freezing. In particular, this practice is often used on strawberry crops as Florida is the
primary producer of strawberries in the US during the winter. Although other methods to protect
the crops exist, this method is particularly effective and affordable. An excess of groundwater
withdrawal causes the water table to drop allowing for the sinkholes to quickly form, which are
generally clustered near groundwater pumps. This could explain why average temperature was
not found to be a significant factor. Although dissolution should be greater with warmer
temperatures, the lowering of the groundwater table is more significant. Having greater rates for
both high and low temperatures is a non-linear relationship that is not properly captured in linear
models. It also shows that although climate factors do have an impact on sinkholes,
anthropogenic influences (such as groundwater use) can have a more pronounced effect.

Precipitation was the most highly correlated variable; this was expected as sinkholes

require water for dissolution. However, the reaction of the karst environments to water table
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fluctuations is more telling than the regular influx of runoff into the system (Cahalan, 2015)
making the correlation harder to detect.

Of the teleconnections, ENSO and NAO were the most commonly incorporated variables
within the models. These variables match the expected result. ENSO is known to significantly
affect precipitation, temperature, and CO: plant uptake in Florida (Malone et al., 2014).

The monthly regression determined better results for the Orlando, Tallahassee, and Lake
City regions while the seasonal regression had better results for the Tampa region. The log-
transformed sinkhole datasets showed the best results compared to the total sinkhole count, time
lag counts, and log-transformed time lag counts.

Limitations

The dataset contains a mixture of sinkholes and subsidence events. If a small subsidence
event occurs due to an anthropogenic event, such as a broken pipe line, occurs, it should not be
counted as a sinkhole. Since no differentiation could be made for certain throughout the dataset,
all sinkhole/subsidence occurrences were treated equally.

The dataset contains the dates when the sinkholes occurred; this means that people were
around at the time of the occurrence to notice the sinkhole appear or form. More sinkholes may
form under the same conditions, but if they are in more remote locations, than they may not be
recorded skewing the data. Saying that the sinkholes are only clustered around the cities would
be a poor assumption as more sinkholes may be in more remote locations away from observance.

The NOAA Global Monitoring Division collects CO> data at four different observatories
(Mauna Loa, Hawaii; American Samoa; Barrow, Alaska; and South Pole, Antarctica). Since
none of these observatories are located in Florida, the Mauna Loa, Hawaii data were utilized.

Since data were not taken directly from Florida, the actual values may differ; Florida and Hawaii
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have differing weather patterns, differing total vegetative areas and densities (for absorbing
COy), and differing distances to CO> emitting volcanoes.
Future Work, Implications, and Conclusions

Future work includes replicating the models with daily temperature and precipitation data
compared to the used monthly averages. With this finer temporal scale, it may be easier to
observe specific freeze/frost events and/or large precipitation events. For example, if farmers
know that a frost/freeze event is about to happen, then groundwater may significantly drop right
before the event. These frost/freeze days may then show a correlation to a negative time lag of
sinkhole formation.

Another consideration is to add a binomial frost/freeze event variable determining
whether or not a frost/freeze event has occurred. This could help account for specific dewatering
events while keeping the average temperature variable to account for normal dissolution
processes.

Carbon Dioxide levels have generally increased over time while maintaining their natural
fluctuations. De-trending the CO. may reveal a better correlation between the natural CO>
fluctuations and sinkhole formation.

The Poisson regression models for Tampa had very different results than the OLS
stepwise regression. The OLS regression only included the NAO, whereas the Poisson negative
binomial with log link model included precipitation, average temperature, CO2, NAO, EA, and
EP/NP to be significant variables in sinkhole formation (p < 0.05). The Poisson regression does
not include an adjusted R? value for the model but AIC values could be calculated for both

models. The AIC for the OLS regression was 4836 showing the OLS regression as the worst
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method of all the utilized methods. Future research includes re-running all the models with the
Poisson negative binomial with log link analyses.

For having such a high risk of sinkhole formation, Florida should have a more complete
catalogue of sinkholes within the state than what is currently available. The creation of such a
dataset is highly recommended. Knowing where the sinkholes are and how different factors
influence sinkhole formation should be a high priority for Florida for the safety of the people.
This study showed that increased precipitation is the most influential (climate-related) variable
on sinkhole formation; with this information more widely published, the public can be better
prepared for when sinkholes are more likely to form.

In conclusion, sinkhole formation can minimally be modelled using precipitation,
temperature, CO», and teleconnection data with a linear regression model. Other models, such as
the Poisson negative binomial regression may show better results, but is currently part of
ongoing investigation. Using these variables to help predict when sinkholes might form may
allow for a forewarning to the public within high risk zones allowing time for safety measures to

be implemented.
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CHAPTER 3
CLIMATE EFFECTS ON TENNESSEE SINKHOLES: GLM LOGISTIC REGRESSION AND
MAXENT DERIVED APPROACHES
By:

Kimberly Blazzard, T. Andrew Joyner, Ingrid Luffman

Abstract
In Tennessee, sinkholes are prevalent in the center and eastern portions of the state, and 18,081
sinkholes have been recorded from topographic maps, indicating that sinkholes are a serious risk.
For this study, two models were used to model the probability of sinkhole formation: a general
linearized (GLM) logistic regression approach and a MaxEnt derived species distribution model.
WorldClim climate normals were used for analysis and combined with known significant non-
climate variables. Results showed a highly significant (p < 0.001) correlation between sinkhole
events and precipitation, maximum temperature, solar radiation, wind speed, slope, distance to
rivers, carbonate bedrock, and distance to faults and were retained as variables for both models.
The final logistic regression model had a pseudo-R? value of 0.329 and correctly identified
87.6% of the validation data within very high and high risk zones. Areas of highest sinkhole risk

were found in the Valley and Ridge Province and the Nashville Basin Province.

Keywords: Sinkhole, Doline, GIS, Climate, Predictive Modeling, Karst, Tennessee, Logistic

Regression, MaxEnt, R
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Introduction
Environmental Background

Tennessee covers 109,849km? (42,143 mi?). It ranks first among all US states for the
number of caves (Veni et al., 2001). With over 18,000 sinkholes currently mapped and numerous
others still forming, sinkholes are a significant problematic feature of the Tennessee landscape.
These sinkholes include both dissolution and collapse types within carbonate lithologies.

Most of Tennessee experiences a temperate climate, with mild winters and warm
summers (UTIA, 2017). Normal precipitation ranges from 109 to 203 cm (43 to 80 inches) per
year with the lowest values within the northeastern portion of the state and the highest values
along the southeastern half of the North Carolina border. The normal average temperature ranges
from 6° to 18° C (43° to 64° F) with a general trend of cooler temperatures in the northeast and
warmer temperatures in the southwest; the coolest temperatures do not follow this trend as they
are located at the highest elevations within the Appalachian Mountain range (Fig 21). Normal
maximum temperature ranges from as high as 35° C (95° F) in July to as low as 1° C (34° F) in
January, and normal minimum temperatures range from as low as -9° C (16° F) in January to as

high as 24° F (75° F) in July (Tennessee Climate Office).

e

3

- Cu\mberland Plateau

) e y Valley and Rldge

s fdua‘shwlle Basm ~ S g
{1 T ,: { alachran "Western Toe"
West'Tennessee '/ PPP

o

0 50 100 200

Figure 21: Tennessee Physiographic Provinces; USGS data.gov
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The National Land Cover Database 2011 (NLCD) indicates that land use in the state
consists of forests (including deciduous, evergreen, and mixed) (39.7%), pasture/hay/cultivated
crops (29.0%), developed landscape (9.8%), shrub/grasslands (6.2%), wetlands (2.9%), open
water (2.1%), and barren landscape (0.2%).

The western half of Tennessee is relatively flat with gently rolling plains. This region
ranges from 61-76 m (200-250 ft) near the Mississippi River to ~183m (~600 ft) above sea level
near the Tennessee River (UTIA, 2017; NCDC). This region is primarily underlain by Tertiary-
Quaternary silts, sand, and mudrocks (Fig 22) (Table 2). The easternmost portion of the state is
encompassed by the Appalachian Mountain Range. This region is primarily underlain by
Cambrian-Ordovician carbonates but with a mixture of greywackes, siltstones, shale, sandstone,
carbonates, and quartzites on the easternmost boundary. The central portion of the state is an
eroded dome (Tennessee Central Basin) exposing an Ordovician limestone surrounded by
Mississippian cherts, mudstones, and claystones (USGS MRData). The carbonate regions of
interest, which are most susceptible to sinkhole formation, are within the Mississippian,

Ordovician, and Cambrian age rocks.

— Faults
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Figure 22: Tennessee Geologic Map from USGS MRData
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Table 2: Tennessee rock types per geologic unit. Data obtained from the TN Department of
Environment & Conservation.

Quaternary — Tertiary
Cretaceous
Pennsylvanian
Mississippian

Devonian - Silurian
Ordovician

Ordovician — Cambrian

Cambrian

Precambrian

Statistical Background

Sand, silt, clay, gravel, and loess

Sand, clay, silt, and gravel

Sandstone, shale, conglomerate, siltstone, and coal

Limestone, chert, shale, siltstone, sandstone, and dolostone
Limestone, chert, shale, and sandstone

Limestone, shale, dolostone, siltstone, sandstone, and claystone
Dolostone, limestone, shale, chert, siltstone, and sandstone

Shale, dolostone, limestone, sandstone, conglomerate, quartzite,
arkose, greywacke, and siltstone

Sandstone, conglomerate, siltstone, arkose, greywacke, quartzite,
phyllite, slate, schist, metamorphosed lavas and tuffs, metagabbro,
rhyolites, diorite, granite, granitic gneisses, monzonite, quartz

latites, anorthosite, and diabase

Menard (2010) explained that if the regression was trying to show a linear relationship

(as with an ordinary least squares (OLS) linear regression,) the intercept would represent the

value of the dependent variable when the value of the independent variables equal zero. The

independent variable coefficients represent the change in the value of the independent variable

with a one-unit increase in the value of the dependent variable. The logistic regression does not

estimate a linear relationship but produces an s-shaped curve model predicting the probability of

an occurrence happening (Fig 23). Logistic modeling has been successfully used to model
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sinkhole probability for varying locations including Konya, Turkey (Ozdemir, 2015); Guangxi,
China (Zhou, Yan, Chen, and Zhang, 2016), and the Apulia Region, Italy (Pellicani, Spilotro,

and Gutiérrez, 2016).
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Figure 23: An OLS regression (top) creates a linear relationship while a logistic regression
(bottom) creates an s-shaped relationship showing the probability between the dependent
variable occurring vs. not occurring. This theoretical example shows the probability a
customer would wait to be seated at a restaurant based on the approximate wait time.

Logistic regression results produce regression coefficients for each variable expressing
their log-odds (or logit) of occurrence. Other ways to interpret the results include calculating the

odds:

0dds = elo9it(¥)
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or determining the probability:

Probability = odds /[1 + odds]
The odds describe the relative chance of the dependent variable occurring (a sinkhole forming);
it is bounded below by 0, but not bounded above (Fox, 2008). For example, an odds-ratio of 3
can be read as: a 3 to 1 chance that a sinkhole will form. The probability is the chance of
something happening ranging from 0 (not likely to happen) to 1 (most likely to happen). For
example, a 0.5 probability can be read as: a fifty percent chance that a sinkhole will form. Note:
the probability surface is created within a logistic regression. The logit is the natural logarithm of
the odds; this creates symmetry around 0 allowing for infinitely large and small values (Fox,
2008; Menard, 2010). Of the three result interpretation styles, the odds and the probability are
generally easier for people to comprehend while the logit is considered the best mathematical
form for analyzing dichotomous dependent variables (Menard, 2010).

A variable with an odds less than 1 implies a negative relationship, while an odds ratio
more than 1 implies a positive relationship (King, 2017). For positive relationships, the higher
the odds ratio, the higher likelihood that a sinkhole will form; for negative relationships, the
lower the odds ratio, the lower the likelihood that the dependent variable (in this case, a sinkhole)
will form as the independent variable increases (King, 2017).

Area under the curve (AUC) is calculated by a receiver operating characteristic (ROC)
analysis in MaxEnt (Phillips, Aneja, Kang, and Arya, 2006; Anderson, Lew, and Peterson,
2003). An AUC of 0.5 indicates that the model’s performance is no better than random with
better values closer to 1.0 (Young, Carter, and Evangelista, 2011). If the AUC value, or the
probability of success, is greater than 0.5, than the model is qualitatively considered a success,

while a value less than 0.5 is qualitatively considered a failure (Menard, 2010).
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The MaxEnt model output includes a series of response curves for each variable. Each
plot models one independent variable while holding the other independent variables constant at
their mean (BCCVL, 2016), and displays the change of probability (from O to 1) over the range
of values for the particular variable. So, if a variable has a changing probability from one side of
the graph to the other, than the area of higher probability shows the optimal values for
“occurrence” of the point variable. The threshold applied to the response curves indicates the
“cut-off point” for the optimal value ranges to be considered. If the response curve is relatively

flat, then no optimal range is found.

Research Questions
1. Which climate variables are the most influential in predicting sinkhole formation?
2. Where are sinkholes expected to form in Tennessee based on climate-sinkhole

relationships?

Data and Methods
Spatial Distribution of TN sinkholes
A sinkhole shapefile was created from a database of sinkhole locations recorded from
USGS TN topographic quadrangles and obtained from the University of Tennessee-Knoxville
(tnlandforms.us). It includes 18,081 sinkhole records with the following attribute data: latitude,
longitude, perimeter, area, depth, volume, and elevations (Fig 24). Lithologic data, including
faults systems (line shapefiles) and rock types (polygon shapefiles), were collected from USGS

Mineral Resources. Tennessee roads were downloaded as a line shapefile from Data.Gov. All
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data were projected into the NAD 1983 StatePlane Tennessee FIPS 4100 (meters) projection and

mapped using ESRI ArcMap 10.5.1.

Elevation (m)

I High : 2016.22
I E— \liles Lo 234065
0 50 100 200 e Sinkholes

Figure 24: Mapped Tennessee sinkholes and elevation.

Spatial distribution analysis was conducted to locate the geographic center of the sinkhole
dataset and to identify sinkhole clusters. This was done by calculating the mean center, the
geometric mean, the harmonic mean, the median center, and the mean center of minimum
distance using Crimestat IV.

Second, a Nearest Neighbor Analysis (NNA) was conducted to quantitatively describe
dispersion of the sinkholes using the Nearest Neighbor Index (NNI). A rectangular border
correction was applied as some of the sinkholes’ nearest neighbors’ may actually lie outside of
the Tennessee boundaries.

Third, a hot spot analysis was conducted to identify where the sinkholes concentrate. This
was computed using a Nearest-Neighbor Hierarchical Spatial Clustering analysis. A cluster was
determined if there was a minimum of 100 sinkhole sites within a 10 mile radius. A 1x standard

deviation was utilized.
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Lastly, three kernel density estimates (KDE) were conducted to model hotspots of
highest risk for sinkhole formation. Since sinkholes require certain features (such as a karst
lithology), it is possible that the area of influence can decline rapidly near an incident; three
different kernel distribution and bandwidth combinations were chosen for this reason. KDE#1
used a negative exponential distribution, an adaptive bandwidth, and a minimum sample size of
100. KDE#2 used a normal distribution, an adaptive bandwidth, and a minimum sample size of
100. KDE#3 used a normal distribution and a fixed interval of 11.26 km (7 miles) calculated
using the Fotheringham Bandwidth Formula with N equaled the total number of
occurrences/points and o was the standard distance deviation.

ho = [2/(3N)]"*o
The concluding KDE surface was then visually compared to faults and lithology within

Tennessee.

Logistic Regression Model

This study utilized a logistic regression model to examine relationships between
Tennessee sinkholes and climatological patterns and other long-term variables known to impact
sinkholes. These other variables include: slope (derived from %5 arc-second (10 m?) National
Elevation Dataset), bedrock lithology (USGS MRData), distance to major faults (derived from
USGS MRData), and distance to rivers/streams (derived from USGS HydroSHEDS). Climate
normals data, available from WorldClim at a resolution of 30 arc seconds (1 km?) included
annual minimum temperature, annual maximum temperature, average range of temperature, and
annual precipitation interpolated from 1950-2000 data and annual average water vapor pressure
(kPa), annual average wind speed (m s), and annual average solar radiation (kJ m day?)

interpolated from 1970-2000 data since data were not available prior to 1970. The bedrock
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lithology was converted into a binary variable representing presence of carbonate rock; if the
lithology included a carbonate rock (limestone, dolostone, or calcarenite), it was assigned a 1,
while all other lithologies were assigned a 0. This file was then converted into a raster file.

The normal wind speed ranged from 1.87 to 6.2 m s (Fig 25). Generally, the highest
wind speeds were found in areas of high and low elevation where there was higher exposure. The
highest values were found within the Appalachian Mountain Range and within the western third
of the state. The lowest values were found within the Valley and Ridge Province and the

Sequatchie Valley Province (Fig 21 and 25).
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Figure 25: Candidate variables relevant to sinkhole formation (independent variables)
compared to mapped sinkhole sites (dependent variable). Sources: National Elevation
Dataset, USGS MRData, USGS HydroSHEDS, World(Clim, University of Tennessee
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Normal solar radiation ranges from 14,070 to 15,502 kJ m day’. The lowest values are
primarily located around the regions of higher population. This is distinctly seen around
Nashville, Memphis, Chattanooga, and the Tri-Cities region. The lowest values are found within
the south-western portion of the state, not including the Memphis suburban region. Note: this
variable is typically measured as the irradiance, or the amount of light energy from a light source
(such as the sun) that hits a square meter of an object (such as the ground) over a second (Garner
2008).

The normal water vapor pressure ranges from 0.84 to 1.42 kPa. The lowest values are
found along the eastern boundary of the state, particularly within the northeastern corner of the
Appalachians. The highest values are found within the southwestern corner of the state near
Memphis. There is a general gradient of values ranging from these low to high areas.

The normal precipitation ranges from 108.7 to 198.9 cm (42.8 to 78.3 inches). The
highest values are found along the southeastern border and surrounding the Sequatchie Valley.
The lowest values are found within the northern portion of the Valley and Ridge Province.

The normal minimum temperature ranges from 1° C (33.8° F) to 10.4° C (50.75° F). The
lowest of these temperatures follow along the eastern boundary of the state at the highest
elevations within the Appalachians, while the highest of these temperatures are found in the
south-western portion of the state. There is a general gradient between the low and high values.

The normal maximum temperature ranges from 11.3° C (52.4° F) to 22° C (71.6° F).
There is a general gradient from lower temperatures in the north to higher temperatures in the
south. However, the lowest of these temperatures are found within the Appalachian Mountains

and within the Cumberland Plateau Province.
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The normal average monthly temperature range spans from 9° - 14° C (17.7° to 26.85°
F). The smallest temperature range is located along the western boundary of the state and within
the Cumberland Plateau Province. The region with the largest normal temperature range is within
the Central Basin Province and the Western Highland Rim Province.

The carbonate bedrock primarily underlies the Valley and Ridge, Sequatchie Valley, and
Nashville Basin Provinces. The carbonate layers overlap into the other provinces, but only the
top bedrock layer is mapped during geologic mapping (not including cross sections). Therefore,
an area may have a differing bedrock top layer, but may still have an underlying carbonate layer
allowing for collapse sinkholes to form. This variable was created from a general bedrock
lithology shapefile delineated into a bivariate layer of positive (1) or negative (0) carbonate. The
carbonate bedrocks included limestone, dolostone, and calcarenite (a carbonate with sand-sized
clasts (Orme 1982)).

The slope ranges from 0 to 80.9°. The areas of highest slope are within the Appalachian
Mountain Range. There are several areas of low slope, with the largest areas including the
Nashville Basin Province and the western quarter of the state.

The majority of the mapped faults are along the Appalachian Mountains and throughout
the Valley and Ridge Province. Fewer faults are mapped within the western portion of the state,
forming a gradient from small distances to faults in the east to greater distances to faults in the
west. The distances range from 0 meters to 211,530 meters.

The distance from rivers ranges from 0 meters to 6185.1 meters. There is no particular
pattern differentiating areas of short/long distance. The rivers are generally evenly-distributed

throughout the state.
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Absence data points were also created to compare actual sites to areas lacking in
sinkholes. These points were created in ESRI ArcMap 10.5 using a systematic sampling method
for the same rectangular extent as the Tennessee boundary. The method created a grid with
points located within each grid. These points did not overlap with actual sinkhole locations, and
points outside of the Tennessee boundary were discarded. This created a total 1,308 absence sites
periodically distributed.

Data from the independent variables were extracted at presence and absence points. From
the presence sites, the data were partitioned randomly into training and testing data. For this
purpose, 70% of records (12,657 sinkholes) were used to model the regression and 30% (5424
sinkholes) were used for model validation. The 70% data point set and the absence points, with
their accompanying attribute data, were joined and a new binary variable was created assigning
the true sinkhole sites a value of 1 and the absence sites a value of 0. Spearman correlation
coefficients were calculated in SPSS 24 and models were developed in R.

Within R, a general linearized model (GLM) was utilized for the logistic regression.
> log_datal = read.table("TNSinks9.csv", sep=",", header = TRUE)
> names(log_datal); dim (log_datal)
> model2 <- glm(ID ~ precinchpr + RiverDist2 + FaultDist2 + WindCLip_P + avesolar_P +
tngeolrast + tnslp2 + tmax_proj, data = log_datal, family = binomial ())
> summary (model2)

The R? value was calculated by the following equation:
1 — (Null Deviance / Residual Deviance)
The first regression model included all variables. After determining which variables were not

significant, the regression was reproduced without the non-significant variables. The model was

tested several times with differing individual variables to determine if certain variables were not
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included due to possible multicollinearity as no multicollinearity diagnostics were produced with
the model.

The logistic regression coefficients were then applied back to the independent variables
within ArcMap to create a new map. First, independent variables were resampled to the same
spatial resolution (30 arc-seconds) and extent. Second, all independent variables were multiplied
by their coefficients (calculated in R). Next, the rasters were combined into one mapped surface
using the equation for logistic regression to display the probability with the intercept («), the
slopes of each independent variable (5;), and each independent variable (x;):

Yi = (ea+ﬂixi) /(1 + ea+ﬁixi)

The hazard areas were classified into five different groups using a geometrical interval
classification to determine zones of very low risk, low risk, medium risk, high risk, and very high
risk. Probability at both the 70 percent sinkhole training sites and the 30 percent sinkhole testing
sites was extracted, the percentages of each risk category were compared for the testing and
training data to determine model accuracy. An accurate model will have similar percentages of
sinkholes within each category for both training and testing data. If the model does not project
the validation sites onto higher risk zones, then the percentages would not be similar and the
model would be poor.

Finally, the determined risk zones were compared to Tennessee land cover classifications
(National Land Cover Database, 2011) to determine the types of land cover most at risk for
sinkhole development and to determine how much developed land area is at risk. This developed
area includes open space, low intensity, medium intensity, and high intensity. The National Land

Cover Database explains the difference between the upper and lower ranges as:
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Developed, Open Space: areas of mixed vegetation and constructed materials with
impervious surfaces accounting for less than 20% of total land cover.

and,
Developed, high intensity: areas of large development and population with impervious
surfaces accounting for 80% to 100% of total land cover.

MaxEnt Model

A second model was created utilizing MaxEnt software Version 3.4.1 - a platform
originally developed to produce maximum entropy species distribution models. Although
MaxEnt is most commonly used for ecological modelling, it is useful for non-species presence
data. Successful examples include landslide spatial modeling (Chen, Pourghasemi, Kornejady,
and Zhang, 2017) and rhythmite spatial modeling (Shunk, 2009). The MaxEnt model is
considered a spatial logistic regression while the first model used a general linearized logistic
regression that has been spatially displayed. The spatial logistic regression attempts to
accommodate for spatial autocorrelation. Spatial autocorrelation is when an observed value is
dependent on the values of neighboring locations (Diao, 2015). A comparison of the two models
should determine if the MaxEnt program is a good alternative to traditional spatial modelling
methods. For the MaxEnt model, the same dependent and independent variables were used as
with the first model (GLM).

One way to determine the validity of the model is to determine how many validation
points are accurately predicted above a determined threshold. MaxEnt produces various
thresholds specific to the model. The recommended threshold method for large datasets of
presence/absence data, where random points are used instead of true absences, is one that

maximizes the sum of the sensitivity and specificity (Liu, Newell, and White, 2016). Liu et al.
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(2016) explains that the sensitivity is the proportion of correctly predicted presences from all
presences and the specificity is the proportion of correctly predicted absences from all absences.
Menard (2010) further explains that when the sensitivity is 100%, the specificity is 0% and when
the specificity is 100%, the sensitivity is 0%. Two thresholds were used for this model: the
“Equal training sensitivity and specificity” threshold and the “Maximum training sensitivity plus
specificity” threshold. The maximum training threshold was also used to quantitatively analyze
the response curves produced for each of the variables. These response curves show how each
variable influences the MaxEnt model by displaying how the predicted probability of presence
changes as each independent variable changes, while isolating all other variables at their mean

sample value.

Results
Spatial Distribution of TN sinkholes
The harmonic mean, geometric mean, and the mean center converged in similar
locations, approximately 27.4 km (17 miles) northeast of Crossville (Fig 26). The median center
is approximately 21 km (13 miles) WNW from the mean center and the mean center of the

minimum distance is approximately 22.5 km (14 miles) WSW from the mean center.
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Figure 26: Crimestat statistical analysis of Tennessee sinkholes displaying the mean center,
harmonic mean, geometric mean, median mean and mean center of the minimum distance.
The overall trend shows the mean point in the northeastern portion of the state.

The mean nearest neighbor distance was 513.64 meters with a minimum distance of
38.98 meters. The Nearest Neighbor Index equaled 0.348, indicating that sinkholes are clustered.
The results were highly significant with a p-value = 0.0001.

The hot spot analysis found 41 clusters, of which 23 were within the Valley and Ridge
Province along the eastern border of Tennessee (Fig 27). The other clusters were found within
the Eastern Highland Rim Province, the northernmost portion of the Western Highland Rim

Province, and the center of the Nashville Basin Province of Tennessee.
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Figure 27: Tennessee cluster analysis showing the regions where there are at least 100
sinkholes within a 10 mile radius. 41 clusters were found, mostly within the Appalachian
Mountains.

KDE#1 showed hundreds of tiny, sporadic areas of sinkhole density; this is not helpful
for estimating which regions have higher susceptibility, so it was discarded. The visual
assessment of KDE#2 (Fig 28) and KDE#3 (Fig 29) showed better interpolated surfaces,
however, KDE#3 best fit the actual locations of the recorded sinkholes. KDE#2 overestimates
the density in areas with fewer sinkholes and underestimates the density in areas with higher
sinkhole occurrences. KDE#3 shows which areas, within the clustered regions, have the highest
density of sinkholes. Since this KDE surface is the best of the three models, it is utilized for the

rest of the comparisons.
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Figure 28: Tennessee KDE#Z2 shows an interpolated density surface utilizing a normal
distribution, adaptive bandwidth and a minimum sample size of 100.
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Figure 29: Tennessee KDE#3 shows an interpolated density surface utilizing a normal
distribution and a fixed interval of seven miles.

When compared to a lithologic map, all regions of highest sinkhole density generally

matched with the carbonate areas (Fig 30).
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Figure 30: KDE#3 overlaid on a Tennessee carbonate map. The areas of highest density
overlap with the carbonate layers.

The visual qualitative assessment of the fault comparison showed that the highest density
areas matched with fault zones in the Valley and Ridge Province, but not with the faults in the

other regions (Fig 31).

KDE#3
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Figure 31: KDE#3 overlaid with the Tennessee major faults show a visual correlation in the
eastern portion of the state (the Appalachian Mountains), but not in the central or western
portions of the state.
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Logistic Regression Model

The calculated linear equation (log odds) inputted into the logistic equation for the
mapped model (Fig 32) with accompanying correlation coefficients was:
z=a+ ,Bl.xl- = 81.25 + (0.04906 * precipitation) + (0.0001221 * rivers) + (—0.00001424 =
faults) + (—1.31 * wind) + (—0.008339 * solar radiation) + (1.171 * carbonates) +

(0.000006737 * max temperature) + (—0.1506 * slope)

: S :
B Very Low I Low [ ] Moderate [ High [ very High & 700 - bilea
Climate Based Sinkhole Risk for Tennessee

Figure 32: Tennessee sinkhole risk zones predicted using precipitation, high temperature,
wind speed, solar radiation, distance to major faults, distance to rivers, lithology, and slope.

The overall pseudo-R? of 0.329 indicates that the model accounts for approximately 33%
of the variability. An AUC of the model calculated as 0.838. The water vapor pressure, average
annual temperature, and average temperature range were rejected from the model, either for non-
significance or for multi-collinearity. The average minimum temperature showed a possible
correlation with the sinkholes, however, when both minimum and maximum temperatures are
added to the model, the minimum temperature was rejected. When the solar radiation and wind
were excluded, the overall pseudo-R? dropped to 0.176.

When the independent climate variables retained by the model were separately compared
to the sinkhole locations, the order of highest correlation to least correlation was: solar radiation
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(pseudo-R? = 0.119), wind (pseudo-R? = 0.115), carbonates (pseudo-R? = 0.103), distance from
faults (pseudo-R2 = 0.102), precipitation (pseudo-R? = 0.0517), slope (pseudo-R? = 0.0496), and
maximum temperature (pseudo-R? = 0.0236) (Fig 33). The individual model for distance from

rivers (pseudo-R? = 0.0002) became non-significant.
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Figure 33: Pseudo-R? for univariate spatial logistic regression models on sinkhole presence.

The regression coefficient, for a particular variable, may display the amount of influence
it has on the model. This means that for a one-unit increase in precipitation, a 0.049 increase in
the log-odds for sinkhole formation is expected. Therefore, the odds of sinkhole formation are
increased with a one-unit increase in precipitation by 1.05 and the probability by 0.512. The
carbonate bedrock had the largest positive relationship (3.22 odds ratio); this shows that the odds
of sinkhole formation are increased by a factor of 3.22 in areas of carbonate bedrock. The largest
negative relationship was with wind (0.27 odds ratio); this shows that the odds of a sinkhole are

increased by a factor of 3.7 as wind decreases (Table 3).
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Table 3: Significant independent variables with regression coefficients, significance, odds,
and probability. All individual models were significant at p < 0.01.

Variable Regression Coefficient Odds Probability
(Intercept) | 8.125e+01

Precipitation | 4.906e-02 1.05033 0.512
Distance to Rivers | 1.221e-04 1.00012 0.500
Distance to Faults | -1.424e-05 0.99999 0.500
Wind | -1.310e+00 0.26982 0.212
Solar Radiation | -8.339e-03 0.99169 0.498
Carbonate Bedrock | 1.171e+00 3.22199 0.763
Maximum Temperature | 6.737e-01 1.96207 0.662
Slope | -1.506e-01 0.86019 0.462

All variables, except for distance to rivers, were found to have a correlation with sinkhole
formation (Table 4). Water vapor pressure had a high correlation (above 0.5) with precipitation,
average temperature, distance to faults, wind speed, solar radiation (0.928), maximum
temperature, and minimum temperature; this shows high multicollinearity.

Comparing the pseudo-R? with the correlations chart shows that the wind and solar
radiation both have the largest (negative) correlations and largest pseudo-R? when compared to

sinkhole formation. While the
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Table 4: SPSS significant Spearman correlation coefficients to p < 0.01 (**).

. R Average | Distance Wind Solar Water Maximum |Temperature| Minimum
Sinkholes | Precipitation - vapor Slope
temperature | to faults speed radiation temperature range temperature
pressure
Sinkholes 1 -.1657 -.138" -1477 -.2487 217" -.194" -.143" 069" -1477 -.0747
Precipitation -.165" 1 405" 456" .380" 442" 564" 385" -.245" 4747 -o71”
Average 138" 405" 1 392" 405" 694" 876" 893" 121" 878" 226"
temperature - ’ : ’ : : : - : -
Distance to o - - - " - - o - -
faults -.147 456 .392 1 746 077 528 357 -.333 493 -.143
\Wind speed -.248" 380" 405" 746" 1 147" 581" 423" -.202"7 4817 -.1457
Solar 217" 442" 694" 077" 147" 1 750" 762" 106" 664" 112"
radiation - . . . } . ) . . -
\Water vapor 194" 564" 876" 528" 581" 750" 1 928" -.093" 908" -.2327
Meximum 143" 3857 893" 357" 423" 762" 928" 1 107" 853" 223"
temperature - : : : ’ : : : : -
Temperature x| o *x - ™ *% x| - - o
P .069 -.245 121 -.333 -.202 .106 -.093 107 1 -.350 .057
range
Minimum 147" 474" g78"| 493" 4817|647 008" 853" 350" 1 -236"
{emperature - . . . . . . .85 -35 -
Slope -.074" -.0717 -.226" -.143" -.1457 -1127 -.232" 2237 057" -.236" 1

The overall sinkhole hazard ranged in probability from 0.000 — 0.999 (Table 5). From the
training data, 117 sinkholes were not assigned a risk zone as they were located on the Tennessee
border. Of the training data assigned a risk zone, 57.6% were projected into the very high risk
category, 30.0% in the high risk category, 8.4% in the medium risk category, 3.4% in the low

risk category, and 0.63% in the very low risk category.
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Table 5: Logistic Regression sinkhole risk zones based on range of probability

Sinkhole Risk Range of Probability
Very High | 0.945-0.999
High | 0.837-0.945
Medium | 0.626-0.837
Low | 0.211-0.626
Very Low | 0.000-0.211

From the 30% validation group, 45 sinkholes were not assigned a risk zone as they were
located on the Tennessee border. No probability could be calculated for sinkholes directly on the
border. Of the sinkholes that were assigned a risk zone, 58.2% were projected into the very high
risk category, 29.6% into the high risk category, 8.4% into the medium risk category, 3.2% into
the low risk category, and 0.6% into the very low risk category (Figs 34-35; Table 5). This shows
that at least 96.2% of the sinkholes were accurately predicted within a medium to very high risk

Zone.
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Figure 34: Comparison of sinkhole probabilities of model data vs. validation data indicates
good model fit. Distribution of validation data with 87.6% of points in very high and high
risk zones also indicates good model fit.

Miles + Validation Sites @ Low Risk [T High Risk
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Figure 35: Sinkhole probability map with overlay of sinkhole validation dataset.
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The highest hazard zones were located in the Valley and Ridge Province and the
Nashville Basin Province, and overlap with the mapped sinkhole clusters/regions of highest
sinkhole density. The lowest risk zones were located within the West Tennessee Province.

When compared to National Land Cover Data, 26846.96 km? of land (24.4% of
Tennessee) falls within the very high risk zone. Within this zone, the highest affected areas
include the Pasture/Hay and Cultivated Crops classification (9552.56 km?) followed by the
Deciduous Forest classification (7021.53 km?). Within the combined Developed classifications
(open space, low intensity, medium intensity, and high intensity), a total of 5115.68 km? is

included (Fig 36).
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Figure 36: Graph displaying the total amount of diftering land covers (Km?) within each

risk zone.

For the high risk zone, 21,713.12 km? was included (20.0% of Tennessee). Of this, the

majority of the land falls within the Deciduous Forest classification with 8764.8 km? followed by
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the Pasture/Hay and Cultivated Crops classification (6744 km?). Of the combined Developed
classifications, approximately 2078.79 km? of land are included.

Of all risk zones, the developed classifications primarily overlie the very high risk zone.
The land covers with the highest percentages within the very high risk zone include: open water,
barren land, grassland/herbaceous pasture/hay, and all developed classifications. The land covers
with the highest percentages within the very low risk zone include: herbaceous wetlands, woody
wetlands, cultivated crops, and shrub/scrub.

Overall, the Deciduous Forest classification covered the largest area of land within each
risk zone. The largest percentage of Deciduous Forest lies within the low risk zone; the

evergreen forest classification had the same result.

MaxEnt Model

The AUC value for the MaxEnt model is 0.684 (Fig 37). Yackulic et al. (2012) explains
that the MaxEnt AUC does not follow the traditional definition for an AUC which classifies
presences vs. absences; MaxEnt calculates AUC from the presence vs. background points
(pseudo absences created by the model in lieu of true absences). This difference precludes
comparison with AUC values from other models. However, the MaxEnt AUC is generally

accepted otherwise.
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Figure 37: Sinkhole Risk map created using MaxEnt.

The “equal training sensitivity and specificity” threshold yielded a value of 0.505 and the
“maximum training sensitivity plus specificity” threshold yielded a value of 0.419 (Fig 38). For
the equal training threshold, 65% of the test sinkhole sites were included and for the maximum

training threshold, 89% of the test sinkhole sites were included.
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Figure 38: Sensitivity vs. 1-Specificity for sinkhole graph displaying the MaxEnt derived
AUC.

A jackknife of regularized training gain (Fig 39) displays the gain of each variable for the
model if ran in isolation, the gain of the model without the variable, and the training gain with all
variables. This model included carbonate bedrock, distance from faults, precipitation, distance
from rivers, solar radiation, maximum temperature, slope, wind, and water vapor pressure as

significant, although, no p-values were produced for each variable.
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Jackknife of regularized training gain for sinkhole
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Figure 39: MaxEnt-derived jackknife of regularized training gain, which indicates how the
independent variables influenced sinkhole formation under diftering circumstances.

The thresholds applied to the response curves determined the optimal ranges for each of

the continuous variables (Table 6). Each of the response curves are included below (Figs. 40 —

47).

Table 6: MaxEnt-derived the ranges for each of the independent variables for optimal

sinkhole formation.

Variable

Optimal Range for sinkhole formation

Distance from faults
Precipitation

Solar radiation
Maximum Temperature
Slope

Wind

Distance to rivers

Water Vapor Pressure

<0.6x10°m

<147 cm (58 in)

< 15,200 kJ/m?*day
> 18° C (64.5° F)
<48°

<29m/s

N/A

N/A
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Figure 40: MaxEnt derived optimal distance to fault range for sinkhole formation.
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Figure 41: MaxEnt derived optimal precipitation range for sinkhole formation.
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Response of Sinkholes to Solar Radiation
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Figure 42: MaxEnt derived optimal solar radiation range for sinkhole formation.
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Figure 43: MaxEnt derived optimal maximum temperature range for sinkhole formation.
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Response of Sinkholes to Slope
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Figure 44: MaxEnt derived optimal slope range for sinkhole formation.
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Figure 45: MaxEnt derived optimal wind speed range for sinkhole formation.
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Response of Sinkholes to Rivers
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Figure 46: MaxEnt derived optimal distance to rivers range for sinkhole formation.
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Figure 47: MaxEnt derived optimal water vapor pressure range for sinkhole formation.
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A comparison of the overall mapped surfaces shows that the MaxEnt model predicts a
lower probability for each risk zone than the logistic regression model, which varies spatially.
The northern portions of the state had relatively equal areas within their prospective risk zones.
The southern portions of the state displayed an overall lower risk within the MaxEnt model.

For the MaxEnt model, the overall sinkhole risk probability ranged from 0.000 to 0.742
(Table 7). From the 30% test site group, 38 sinkholes were not assigned a hazard zone as they
were located on the Tennessee border. No probability could be calculated for sinkholes directly
on the border. Of the sinkholes that were assigned a hazard zone, 64.0% were projected into the
very high risk category, 31.6% into the high risk category, 2.8% into the medium risk category,
1.4% into the low risk category, and 0.20% into the very low risk category. This shows that at
least 98.4% of the sinkholes were accurately predicted within a medium to very high risk zone.
Table 7: MaxEnt model sinkhole risk probability ranges

Sinkhole Risk Range of Probability
Very High | 0.509-0.742
High | 0.339-0.509
Medium | 0.215-0.339
Low | 0.124-0.215
Very Low | 0.000-0.124

When the MaxEnt model’s risk zones are ranged with the same probability ranges as the
logistic regression, the risk zones are dramatically reduced in area. No areas fall within the high
or very high risk zones and small patches of medium risk zones are scattered within the northern

portions of the Nashville Basin, Valley and Ridge, and Eastern Highland Rim. The medium risk
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zone contains 3.4% of sinkholes from the 30% test group, while the low risk zone contains

95.1%, and the very low risk zone contains 1.5%.

Discussion
Model Comparison

Both models projected the highest risk zones within the following provinces: the Valley
and Ridge, the Nashville Basin, the northwestern-most portion of the Highland Rim, the northern
half of the eastern side of the Highland Rim, and the Sequatchie Valley. Both models displayed
the areas of lowest risk within the West Tennessee Province and the Appalachian Province.
However, the MaxEnt model incorporates less of the Appalachian Province than the original
model, particularly along the western portion of the province.

Both models included maximum temperature, distance to faults, solar radiation, slope,
wind, rivers, and precipitation. The difference in probability between the logistic regression and
MaxEnt models is partially attributed to the inclusion of water vapor pressure in the MaxEnt
model. If the water vapor pressure is truly non-significant (or at least causing collinearity), as the
logistic regression suggests, then the MaxEnt model should not have included this variable
allowing for distorted results.

Another difference between the probabilities of the two models is due to varying spatial
autocorrelation differences. The cluster analysis determined that there is spatial autocorrelation.
The MaxEnt model treats the spatial autocorrelation as one occurrence directly influencing
another occurrence. For clarification, the MaxEnt program is generally used to map species, for
example, red pandas. Where one red panda is located, there are likely to be more in the same
location because animals need each other to survive. Also, one red panda may create another red

panda hence more pandas in the same area. Sinkholes are not necessarily clustered because they
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are creating each other and need each other to survive; sinkholes cluster only because they have
similar necessary environmental conditions. Both models had very similar results and
complimented each other. Since the first study obtained slightly better results, it shows that
incorporating measures for spatial autocorrelation may have limited benefits.

This jackknife display, created by MaxEnt, agrees with the logistic regression model in
that the most correlated variable is wind and the least correlated variable is the distance to rivers.
Covariates

The negative “distance from faults” correlation shows how groundwater often follows
faults and joints. Since the faults form a path of least resistance (compared to going through the
rock), the continuous flow of water through the faults allows more dissolution. This creates
greater voids and thus a higher sinkhole susceptibility. The optimal range created from the
threshold determined that after approximately 0.6 x 10° m, the distance to a fault is not as
influential. This determination is reasonable as fault-related fractures are not continuous; the
fractures related to faults become smaller and fewer with distance from the fault reducing the
likelihood of a sinkhole.

The “positive” precipitation correlation not only matches the expected result, but also
agrees with the Florida results. Although the two regressions’ results are interpreted differently
and to different degrees, they both indicate that increased precipitation influences sinkhole
formation. Increased precipitation increases groundwater flowing through the karstic system
allowing for increased dissolution. The MaxEnt model shows a slight positive correlation
between the precipitation and sinkhole formation, but to a point (with a maximum probability
around 50 inches); overall, it has a negative correlation. It is unknown why this model has an

overall trend opposite the other models. Two possible theories include: 1) when the groundwater
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system is saturated, i.e., as the threshold is reached, the infiltration reduces and collects as
surface water runoff for streams and 2) like in Florida, as the groundwater system is filled, the
hydrostatic pressure is able to support the ground from collapsing and requires a sudden drop in
water level (example: excessive water pumping) before the ground can collapse forming a
sinkhole. These reasons also explain why the optimal precipitation range includes values less
than 58 inches.

For solar radiation, no significant correlation was expected; however, a negative
correlation between solar radiation and sinkhole risk was observed. One explanation for the
observed negative correlation is that areas of lower solar radiation coincide with areas of higher
population and development, such as around Nashville, Memphis, and Knoxville (determined
qualitatively). Anthropogenic influences, such as leaking pipes have been found to form
“artificial” sinkholes (Lee, Shin, Ko, and Chang, 2016). This anthropogenic influence may have
increased sinkhole occurrence in these areas, and may be the factor related to sinkhole formation,
with solar radiation having a spurious relationship. Lower solar radiation values around cities can
be indicative of smog. This could explain why the optimal solar radiation range is for values less
than 15,200 kJ/m?*day. To test this hypothesis, SPSS was used to compare solar radiation values
at sinkhole sites with a bivariate variable of the National Land Cover Data’s (MLCC, 2017) land
cover designated as “Developed” (including all the developed classifications) vs. undeveloped.
This comparison found a highly significant but small correlation between the two (r = -0.088, p =
0.000). Although this result supports the hypothesis (less radiation where there is development),
the small correlation indicates there may be a better, unknown explanation for the observed

correlation between solar radiation and sinkhole formation.
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The positive “temperature” correlation matched the expected results. Although carbonate
solubility decreases as temperature increases, warmer water can hold more dissolved material
than colder water (Fig 1). The more material is able to dissolve, the higher the sinkhole
likelihood. Also, warmer outside air temperatures, with enough nutrients and water, increase
plant photosynthesis and soil CO; levels. This increase in CO2 has a greater impact on mineral
solubility than groundwater temperature. The warmer temperatures match the optimal range for
values above 64.5 degrees Fahrenheit.

A negative “slope correlation” suggests that infiltration and dissolution are more likely to
happen where water can puddle. If water is quickly moved downhill from a source, there is not
enough time for dissolution to occur. This idea is reflected well within the MaxEnt model’s
optimal range of slope values below 48 degrees, with an increase in sinkhole probability as the
slope decreases.

Wind had a significantly negative correlation. This shows that as wind decreases, the
likelihood of a sinkhole forming increases. It is possible that the decrease in wind would allow
more aeration of atmospheric CO> into the underlying soil and plants. It is also possible that the
areas of higher wind speeds are also at higher elevations. Since karst limestone is easily
dissolved, it is less likely to be found at these same elevations. Elevation was not used as a
determining factor in this study as it was not a climate variable, to avoid model over-
specification, and to minimize an excess of variables. When wind data were compared to
elevation in SPSS Statistics 23, a significantly strong negative correlation (r = -0.515, p = 0.000)
was found. When comparing elevation with wind data confined within the optimal range
suggested for sinkhole formation, only a weak correlation was found (r = -0.077, p = 0.000).

When compared at a more local level, opposing results were found; the Valley and Ridge
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Province = 0.578 (p = 0.000) and the Highland Rim Province = -0.512 (p = 0.000) showing
opposing wind/elevation correlations within carbonate provinces. Also, the areas of highest wind
speed are located within the highest and lowest elevation locations. This determines that no real
determination can be made concerning correlation between wind and elevation within the
carbonate regions. Although elevation could be considered for future studies, it does not explain
the correlation between wind and sinkhole sites.

The lower wind speeds are not necessarily found at the lowest of elevations but within
valleys, particularly in the Valley and Range Province and in the Sequatchie Valley Province.
These valleys not only block wind but also allow the channeling of water. It is suggested that the
wind variable acts as a surrogate variable for the topography. Although slope was used to try to
show one aspect of topography, where areas of puddling would be highest, the wind variable was
more effective. For example, a valley, like a cup, can hold a greater amount of water than a plane
than is flat like a plate. It is currently unknown if the optimal range for wind speed would be
helpful for future studies, but should definitely be considered within future sinkhole studies as
the optimal range of lower values may indicate possible valleys.

A positive “distance from rivers” correlation is also to be expected. In regions of high
groundwater infiltration, there is less surface water flow and vice versa. This is due to the
lithology of the system. For example, in a highly insoluble rock, the water cannot infiltrate into
the ground, so it travels above the surface; whereas, carbonates are easily soluble, so instead of
the water flowing on the surface, it infiltrates into the ground. It is expected that although the
sinkholes are further from streams, they should be closer to groundwater conduits. However, as
there is no groundwater conduit network dataset for the whole of Tennessee, it could not be

utilized or proven within this case study. No optimal range for the distance of rivers was found
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due to all values being above the threshold; according to the threshold, all the values are within
the optimal range for sinkhole formation. The graph appears to show that the optimal distance
from rivers is at ~450 meters, but the value’s probability range is less than 3.5% from lowest to
highest probability making the optimal probability relatively negligible and not useful for this

particular model.

Logistic Regression Model Validation

For the sample sites and test sites comparison, the test sites should be categorized with
similar percentages to each risk category. If the percentages were very different, then the model
would not be accurate for predicting where the sinkholes would form. Since all of the test site
percentages for each of the hazard categories were within 1% of the sample site percentages, this
comparison determines the model to be good.

The overall pseudo-R? value may seem low compared to other methods for predicting
sinkhole formation sites. Other significant variables not included in this model include: rock
hardness, soil depth, depth to groundwater, and proximity to pipes and wells. Since all of these
variables are very significant factors in sinkhole formation, they are the primary focus of
sinkhole prediction and may outweigh the climatic variables in significance. However, the
climatic variables should not be ignored. Since this study focused on the impact of climatic
variables (even with their smaller significance) on sinkholes and not known physical factors, this
model is determined to be useful in identifying the additional influence of climate on sinkhole

formation.

Implications, Limitations, and Future Work
As the Tennessee sinkholes did not include the dates when the sinkholes formed, the

climate data may not match the exact conditions under which each sinkhole formed. Without
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these data, future climate values cannot be substituted for current climate conditions to predict
possible future sinkhole risk zones. However, as the landscape changes slowly over time, the
overall change in climate values over space should have similar correlations. For example, even
if average temperatures increase, the ratio of differing temperatures from one region to another
should remain relatively the same. This allows for this study to still be valid. A database of
newly forming sinkholes with their formation dates should be started for the state.

The spatial statistics showed the mean center in an area lacking in sinkholes. A better
representation can be made by splitting the dataset into two groups representing the regions with
the most clusters, particularly the regions to the east and west of the Cumberland Plateau
Province.

Assuming the wind variable is a surrogate variable for topography distinguishing where
the valleys are located, there may be a better variable to use in place of wind. One such
possibility includes using a curvature index. Determining this or other possible substitutes for
correlation is needed for future work.

The work should also be replicated at a finer scale for more precise results. Light
detection and ranging (LiDAR) would allow finer scaled data for elevation and slope. A finer
scaled slope should show more accurate locations for puddling than the current 1/3 arc second
data used for this study. However, obtaining climate data at the same scale as LIDAR data may
be difficult to obtain without sufficient weather station and may be unobtainable for larger
regions.

The majority of Tennessee developed land within the very high risk sinkhole zones

shows that this risk is a definite concern for the public and not just for buildings within the
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forests or grasslands. Making sure that the public and developed lands are protected from
sinkholes should be considered during future development.
Conclusions

In conclusion, sinkhole formation can be modelled using precipitation, maximum
temperature, solar radiation, wind speed, slope, distance to rivers, carbonate bedrock, and
distance to faults. While, spatial and non-spatial logistic regression models are complementary, a
spatial model may not best map sinkhole hazard. Using these variables to help better map the
sinkhole hazard for Tennessee may help homebuyers, construction companies, and insurance
companies make wiser decisions when deciding how and where to buy and how to best protect a

building from potential sinkhole collapse.
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CHAPTER 4
CONCLUSION

The objectives of this thesis were to quantitatively determine climate correlations to
sinkhole formations at a regional scale to form regression models for predictive sinkhole
formation zones and times.

While Florida’s primary water source is groundwater, Tennessee has a greater variability
of groundwater and surface water intake sources. The USGS estimated that in 2000, Tennessee
consumed approximately 321 million gallons per day of public groundwater (Webbers 2003),
while in Florida during 2012, approximately 2.03 billion gallons per day of public groundwater
were used (Marella 2015). More surface water intake should reduce the amount of
anthropogenic-related sinkhole appearances. Although the risk is still there for certain areas,
Tennessee should be a better study site for these climatic studies than Florida.

Study one found that although sinkholes have a higher likelihood of forming after large
precipitation events, they are more likely to form during frost-freeze events due to excessive
groundwater withdrawal. As sinkholes are more likely to form with warmer temperatures (when
frost-freeze events are absent), no correlation could be made between sinkhole formation and
temperature. Some teleconnection indices, including the NAO, PNA, ENSO, EP/NP, and SCA,
could also be linked to sinkhole formation but with limited effect. The effect of these parameters
on sinkhole formation may be as much 25% in some locations.

Study two found that sinkholes are correlated with precipitation, temperature, distance to
faults, and slope. It also found highly significant correlations with solar radiation and wind
speed, which had greater regression coefficients and R? values than the other climate variables.

Wind speed was found to be a surrogate variable for topography, better expressing the areas of
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puddling than slope. Solar radiation has a small correlation with the type of landcover, but a
better explanation is still needed; this should be considered for future research. Of the different
temperature variables (maximum temperature, minimum temperature, average temperature, and
temperature range), the maximum temperature was found to have the highest correlation with
sinkholes.

Of the two Tennessee models, the MaxEnt model was found to be slightly less accurate
than the logistic regression model. Although the MaxEnt model accounts for spatial
autocorrelation, unlike the logistic regression model, the MaxEnt model included water vapor
pressure, which was deemed to have high multi-collinearity with the other variables. It also
presented lower probabilities for each hazard level. Overall, both models were accurate at
predicting sinkholes but the logistic regression is recommended model of choice due to its better
accuracy and higher AUC.

The Florida study showed that CO- was significantly correlated with sinkhole formation,
but long term CO> datasets are spatially limited. Results for the spatial analysis could be
improved with spatial CO> levels. The Tennessee correlations may also be more accurately
predicted with the addition of sinkhole occurrence dates. Obtaining these data could significantly
and positively influence future studies; it would determine the exact weather conditions in which
sinkholes form. With this data, future predicted climate levels could be applied to help determine
if the sinkhole formation zones are expanding and/or intensifying. Future research includes using
these same techniques on different regions for comparative analysis if the data are available.

The two states’ sinkhole databases could be greatly improved. For Tennessee, currently
forming sinkholes should be catalogued with their formation dates like the Florida database.

Determining the date of formation may be difficult for dissolution sinkholes. One suggestion for
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dealing with this is to set a standard depth a sinkhole must attain before being included within
the database. When the sink has obtained this minimum depth, then the approximate date should
be recorded. For Florida, a more complete sinkhole database should be created including all the
mapped sinkholes in the state like the Tennessee sinkhole catalogue. With this information, a
spatial study could be made for the Florida sinkholes and a temporal study for the Tennessee
sinkholes. Then the two states could be compared to determine possible climate links between
the two differing climatic regions.

Sinkhole catalogues should not include subsidence events as subsidence events are
formed differently. Specific governmental requirements should be enforced to determine which
catalogue an event should be included in; such requirements should include depth, roundness,
perimeter, surface area/volume, and probable cause of occurrence including whether or not it is
natural or anthropogenic in nature (for example: is it caused from a broken water line or a
precipitation event?).

With this information, the public could become more informed of the possible sinkhole
risk in their location. Better regulations could be made to either determine sinkhole insurance
rates or to include sinkhole prevention methods during land development. Knowing the locations
of the highest risk zones could help save both insurers and insureds money. Knowing the optimal
weather patterns that influence sinkhole formation could keep both the public and the
government on alert when optimal sinkholes conditions are met; this could possibly save lives.

The Florida study complimented other studies showing that groundwater withdrawal may
have a distinct influence on sinkhole formation. The amount of water exiting through
groundwater pumps should be regulated. If sinkholes are forming on private property due to

water overuse, then insurance companies may not want to cover these particular claims. If
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farmers or other groundwater pump owners are causing sinkholes and/or sinkhole related

damages to land not of their own, then they could be held responsible.
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