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ABSTRACT 

Escaping the Arrhenius Tyranny: Metabolic Compensation During Exposure to High 

Temperature in Daphnia  

by 

Bret L. Coggins 

Poikilothermic organisms experience trade-offs by differential physiological demands generated 

by temperature extremes. Many such organisms exhibit acclimatory effects, adjusting their 

metabolism and physiology to recently experienced temperatures. One such acclimatory effect is 

metabolic compensation, the deceleration of biological rates below Arrhenius expectations. 

Daphnia magna is eurythermal, and if acclimated to mildly stressful temperatures first, survives 

longer in lethal temperatures. This study examined the effect of ambient temperature (5°C-37°C) 

and acclimation history (lifetime at 10°C or 25°C) on the oxygen consumption rates of 8 

genotypes of Daphnia with high or low acute temperature tolerance. There were decelerations of 

respiratory rates across a temperature gradient when acclimated to 25°C or following short 8-

hour acclimation to measurement temperatures. Daphnia exposed to a near-lethal temperature 

(35°C) with a 24-hour recovery period at 25°C-acclimation temperature showed no difference in 

respiratory control compared to unexposed 25°C-acclimated Daphnia. Genotypes showed no 

difference in potential compensatory ability.   
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CHAPTER 1 

INTRODUCTION 

Poikilotherms and the Constraints of Temperature 

Poikilotherms must adjust their metabolism and physiology to fluctuations in 

environmental temperatures in order to survive because all their biological functioning is a direct 

product of ambient temperature’s influence on chemical reaction rates. Since biological enzyme 

rates are largely influenced by thermodynamic law, temperature is often a major constraint for 

the habitat range of a poikilotherm. Different poikilothermic organisms can exploit habitat 

temperatures ranging from below 0°C up to 50°C, yet the limit to the thermal range of tolerance 

for a given poikilothermic species is set by the amount of physiological plasticity. It is well 

established that some organisms are quite tolerant to the biological stress associated with 

temperature changes and their enzymatic Q10s are a direct function of their habitat temperature 

(Rao and Bullock 1954; Radmer and Kok 1978; Thornton and Lessen 2011; Arcus et al. 2016). 

However, there is considerable variation in biological rates with increases in temperature (Jacobs 

1928; Huey and Kingsolver 2011). One type of plastic physiological response to elevated 

temperatures is reduced metabolic rates to compensate for high costs of maintaining energy 

homeostasis in the stressful temperature (Sokolova et al. 2012). Fish, like the shorthorn sculpin, 

Myoxocephalus scorpious, show considerable capacity to metabolically compensate to their 

thermal environment by fully restoring their resting metabolism and partial recovery of aerobic 

scope and feeding activity (Sandblom et al. 2014). However, specific mechanisms of such plastic 

responses are poorly understood. There is an increasing importance in understanding energy 

homeostasis as well as the physiological changes that occur within the maintainable levels of a 

stressor plasticity as the mechanisms that set the limit of stress tolerance (Sokolova et al. 2012).  
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Thermal Tolerance in Daphnia 

Daphnia magna are excellent model organisms because of their cyclic parthenogenesis 

and diverse occupation of most of the northern hemisphere. Short generation times and 

robustness along a thermal gradient allow rapid acquisition of respiratory data across a broad 

temperature range with high resolution.  Part of their robustness to temperature comes from their 

ability to acclimate to new ambient temperatures, even if they are mildly stressful (Paul et al. 

2004). Furthermore, acclimation to higher, stressful temperatures increases their time of survival 

in lethal temperatures (Paul et al. 2004; Yampolsky et al. 2014; Geerts et al 2015). An addition 

benefit of the system is that specific genotype lineages can be obtained from specific locations of 

varying climates. Since genotypes can be isolated, and Daphnia magna’s primary mode of 

reproduction is asexual, acclimation to higher temperatures can occur in the absence of selection. 

As such, Daphnia are ideal organisms to determine whether energy conservation (genotype 

alone) or compensation (some regulatory plasticity conserved across genotypes) is prevalent.  

The causal mechanism for thermal acclimation in Daphnia is still not fully known, and 

intensive metabolic studies have not been coupled with the acclimation process. Prior work has 

investigated the role of antioxidants and membrane structure during acclimation (Coggins et al. 

2017). While there are significant changes in both antioxidant capacity and membrane fluidity 

with higher temperatures, neither fully explains the mechanism for heat tolerance. Both of these 

findings do however corroborate with the gene regulation patterns found in heat acclimated 

Daphnia pulex and are useful to consider in the context of a metabolic study because any 

modification of the oxidative environment or membrane properties should have downstream 

effects on metabolic activity and functionality (Yampolsky 2014). For heat-acclimation in 

Daphnia, there are increases in antioxidant capacity and significant membrane polarity changes 
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with insignificant variation in lipid peroxidation (Coggins et al. 2017). This is likely due to less 

polyunsaturated fatty acid (PUFA) presence in higher temperatures and more antioxidant 

activity, both of which are beneficial to mitochondrial function because they are the respective 

main generators/targets and scavengers of ROS (Schonfeld et al. 2011). Excessive (2hr) exposure 

to a lethal temperature effectively sees antioxidant capacity reach its limit in Daphnia, so a 

shorter exposure without exceeding the antioxidant activity limit may ensure survival and at least 

partial recovery of metabolic function. While the relationship between lipid structure and 

respiration in Daphnia is untested at present, a diet supplemented with liposomes of increasing 

amounts of polyunsaturated fatty acids effectively eliminates the enhanced temperature tolerance 

effect achieved by heat acclimation (Martin-Creuzburg et al. unpublished data; Figure 5). High 

levels of unsaturation in mitochondrial membranes causes higher free radical damage and 

compromises membrane integrity leading to inefficient energy return and eventually the release 

of cell death signals ( Pamplona et al. 2000;Al-Gubory 2012). In fact, bioaccumulation of UFAs 

in the mitochondrial membrane is associated with decreased longevity (Pamplona et al. 2000).  

Perhaps changes in regulation of respiration rate may be an important compensatory mechanism 

to manage the direct and indirect generation of ROS to combat compromised mitochondrial 

membranes, though this is difficult to disentangle from drops in respiration just due to the 

structural damage creating inefficiency and eventually an energy deficit. However, any 

adjustment to organismal respiration rates likely stems directly from changes at the 

mitochondrial level, and modulation of membranes can physically gate metabolic processes. 

Results from previous studies that the author was involved in focused on the roles of membrane 

structure and oxidative environment (Figures 5,6) and how they can be linked to respiratory 

activity are discussed later.  
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Part of understanding the physiological processes involved in energy homeostasis across 

temperatures requires the differentiation of constitutive defenses and inducible ones. Often, 

organisms have constitutive adaptations for a small range of thermal habitats that allow for 

enhanced metabolic efficiency in temperatures relevant to the organism. Antarctic fish 

(Notothenia rossii) have high ATPase activity in low temperatures compared to tropical fish 

(Amphiprion sebea) because they somehow reduce activation energy for ATPase compared to 

tropical counterparts (Johnston & Walesby 1977). A Daphnia population resurrected from 

ephippia initially laid 40 years prior which had lower thermal tolerance than the current 

population from the same lake, showing evidence for rapid evolution to temperature changes 

(Geerts et al. 2015).  Conversely to local adaptation of constitutive physiological changes, some 

crustaceans acclimated to temperatures above or below their normal range and respectively 

cooled or heated to the opposite acclimation temperature show no irreversible changes to 

excitatory junctional potentials within the 10°C acclimation range (Stephens & Atwood 1982). 

Drosophila can sustain metabolic rates in cold environments comparable to the rates observed at 

room temperature, but selection for higher metabolic rates does not appear to occur in cold 

acclimated populations (Alton et al. 2016).  Exact physiological mechanisms for thermal 

tolerance can be difficult to tease apart, but reversibility of reaction rates is vital to differentiating 

plastic acclamatory effects from local adaptation to a certain temperature even if the mechanism 

is initially poorly characterized.  

Plastic Responses to Temperature 

In cases when a poikilotherm can acclimate to temperature fluctuations higher than its 

norm it is often ambiguous whether the organism is simply maintaining temperature-dependent 

energy homeostasis (conservation) or adjusting some physiological parameter(s) to offset energy 
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demands (compensation) after the onset of respective threshold shifts in temperature (Sokolova 

et al. 2012). The former process suggests any differential ability to tolerate heat stress among 

individuals is due largely to differential quality in genotypes. More robust genotypes will 

experience a temperature in which their respiratory systems begin to physically fail and they 

eventually die, just like those maladapted to high temperature environments. The only difference 

being that adapted genotypes are able to sustain structural integrity and meet their 

environmentally-determined energetic demand longer and therefore survive longer in high 

temperatures.  The latter process would suggest that thermal acclimation is not just a direct 

consequence of a genotype’s biogeographic history (Chopelet et al 2008). Compensation implies 

that reaction rates will decrease not because of better constitutive protection, but because a shift 

in temperature signals for inducible elements to regulate energetic output and expenditure despite 

the rather ubiquitous influence temperature has on chemical reaction rates (Sandblom et al. 

2014).  If constitutive adaptations to maintain fully temperature-dependent metabolism is the 

predominant mechanism for thermal acclimation, biochemical reaction rates should match 

Arrhenius expectations with environmental temperature until they reach a state of respiratory 

failure. Conversely, in the case of compensation, changes in metabolic activity or physiological 

parameters will conform to Arrhenius predictions until a transitional temperature is reached that 

induces physiological changes to offset the costs of high energetic demand (Sokolova et al. 

2012). Inevitably, when an organism reaches the lethal limits of its tolerance range (a second 

transitional temperature), conservation strategies will be prioritized simply because energetic 

demand becomes an impossible constraint. 

Based on the Arrhenius equation, biological rates typically double with a 10-degree 

increase in temperature (Rao and Bullock 1954). The inverse relationship between enzymatic 
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rates often does not hold strictly true. Rates can often decelerate outside expectations with 

temperature increase causing “breaks” from linearity in traditional Arrhenius plots (Truhlar & 

Cohen 2001).  While there are clear temperature ranges for organisms where Arrhenius 

expectations are meet, there is increasing evidence that these expectations do not hold true 

outside of those ranges (Kavanau 1950; Barnes et al. 1968; Leenson 1999).  Thermal 

performance curves (TPCs) can be plotted which show performance of specific rates across a 

temperature gradient. The advantage of these plots is that they characteristically have absolute 

performance maxima that reveals the optimum temperature for the rate being studied, while the 

width of the curve reveals the thermal breadth of the rate (Schulte 2015). Since thermal 

performance curves do not “break” when biological rates decelerate possibly showing metabolic 

compensation), these plots are useful in showing trends of biological rates with increasing 

temperature that otherwise may be unnoticed in other plots.  

If metabolic compensation is uncoupled from genotype quality as a plastic trait that has 

not been canalized, it is difficult to imagine both processes happening simultaneously because 

conservation maintains temperature dependent rates until they are unsustainable, while 

compensation still allows other processes to occur by differential regulation of metabolic activity 

(Guderley and St-Pierre 2002). If metabolic compensation is occurring, acclimation and 

subsequent measurement of metabolic activity across a thermal range will either shift the 

temperature of optimal performance or change the shape of the performance curve to reach that 

optimal temperature (Schulte et al. 2011). This not to say that locally adapted constitutive 

defenses and plastic mechanisms that are not under selective pressure are mutually exclusive. In 

fact, some form of damage control must be coupled with compensation in some organisms, as 

evidenced by the full recovery of only certain components of metabolism in heat-acclimated 
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Myoxocephalus scorpious (Sandblom et al. 2014).  To reiterate, showing metabolic 

compensation in an organism will require not only testing for the effects of temperature on the 

metabolic rates of both locally adapted and temperature-acclimated organisms, but damage to 

metabolic systems at temperature extremes must also be assessed.  

Differentiating Compensation and Damage 

In regards to metabolic damage, it is important to consider the functional efficiency of 

mitochondria such as substrate conversion rates and electron transport chain (ETC) activity. 

Regulation of ETC activity is critical to longevity and stress response because at reproductive 

maturity it suppresses heat shock response accelerating senescence (Labbadia et al. 2017). Mild 

downregulation of ETC activity stops suppression of heat shock response and increases vitality 

and lifespan, with effects exceptionally notable after the onset of sexual maturity (Labbadia et al. 

2017). Heat shock response is one of many cascading factors that likely aid in acclimation, so 

downregulation of antagonistic metabolic activity can be adaptive and regulated by means other 

than purely physical damage. Furthermore, ETC to cellular respiration ratio is an already 

established quantification for acclimation in Daphnia (Simcic & Brancelj 1997). Interestingly, 

short-term hypoxia can enhance survival time in lethal temperatures in Daphnia (Coggins et al. 

2017; Figure 6), and hypoxia inducible factor directly interacts with heat shock factors (Baird et 

al. 2006). Given heat shock factor 1’s prominent involvement in ETC activity (Labbadia et al. 

2017), mitochondrial function and respiration again seem to be very relevant areas for 

investigation thermal tolerance. Coupling information about mitochondrial performance, like 

ATP and lactate generation, with organismal respiration at different temperatures will provide 

better resolution when distinguishing between respiratory failure and compensation because 

compensation should maximize respiratory efficiency and allow at least partial recovery to 
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metabolic function after short exposure to a lethal temperature while failure will see substantial 

and irreversible decreases in respiration and substrate conversion. Mechanistic insight can be 

gained about metabolic compensation by examining mitochondrial performance, and oxygen 

consumption by the whole organism should not only provide some evidence of compensation if 

it exists but also will allow inference about mitochondrial oxidative performance.  

Studies of Metabolic Compensation  

There is evidence of metabolic compensation in various poikilotherms, both terrestrial 

and aquatic in both low and high temperature extremes. Eastern newts, Notophthalmus 

viridescens, have been shown to adjust metabolic enzyme activity such as creatine kinase and 

citrate synthase to enhance locomotor performance in cold temperatures (Mineo & Schaeffer 

2015). Marine gastropods from a subarctic region experience less metabolic rate depression in 

extremely cold temperatures than their temperate counterparts, but exhibit no ability to 

compensate when exposed to warmer temperatures (Sokolova & Pörtner 2003). An Antarctic 

amphipod, Gondogeneia Antarctica, with a low thermal tolerance range exhibits no changes in 

metabolism when exposed to combinations of salinity and temperatures from 0 to 2.5°C, but 

enters a conservation phase at 5°C (Gomes et al. 2013). Three species of invasive blue mussels 

exhibit generally significant compensation to higher temperatures by adjusting heart rate, with 

the degree of compensation matching their respective habitat ranges (Braby & Somero 2006). 

Potential compensation in the opposite direction has also been addressed as a prior study with 

Daphnia magna found that clones locally adapted to colder temperatures have higher respiratory 

rates at 15ᵒC than those adapted to warmer environments (Chopelet et al. 2008). Southern 

Catfish, Silarus meridionalis, have been shown to seasonally compensate by adjusting the 

oxidative capacity of tissue-specific mitochondria (Yan & Xie 2015). Higher oxidative capacity 



 
 

16 
 

occurred in colder months with a simultaneous reduction in their upper thermal tolerance limits, 

outlining a clear trade-off between efficiency of metabolic performance and reactive oxygen 

species (ROS) generation. 

Of course, there are cases where there appears to be no compensation during acclimation. 

The long-jaw mudsucker, Gillichthys mirabilis, for example, can acclimate to different 

temperatures, but there has been no evidence of compensation in resting metabolic rates or heart 

rates (Jayasundara & Somero 2013). The difficulty in definitively declaring there is no 

compensatory mechanism in play largely depends on the selection of physiological parameters 

chosen to investigate. In general, basal energy requirements and cardiorespiratory activity are 

much more flexible than the upper tolerance limits of stress in an organism (Sandblom et al. 

2016). Using organisms that can tolerate a wide range of a given stress are ideal for a 

compensatory study because there is more resolution in their transitional temperatures before a 

lethal range is encountered (Giomi and Portner 2013).  

Metabolic Compensation in Daphnia? 

Just as there is conflicting literature about metabolic compensation in other organisms, 

there is a paucity of evidence for compensation in cladocerans, despite Daphnia’s remarkable 

and well-characterized ability to tolerate a wide range of temperatures (Paul et al., 2004). The 

information that is present is contradictory. In fact, one of the few studies regarding changes in 

Daphnia pulex’s metabolic capacity at different temperatures reported very low plasticity  (Jose 

et al. 2009). In contrast, a more recent look at the functional genomics of Daphnia pulex during 

thermal acclimation shows downregulation of metabolism, suggesting there may indeed be 

compensatory mechanisms in play (Yampolsky et al. 2014). While specific mitochondrial 

functions were up-regulated by temperature, almost all gene expression involving DNA 
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replication and DNA repair activity decreased in heat-acclimated Daphnia.  The highly 

differential gene activity in regulatory pathways during acclimation to high temperature was only 

observed in clones locally adapted to warmer environments, suggesting that differences in 

thermal tolerance may be at least in part to this differential capacity for such regulation. On the 

other hand, mitochondria-specific functions, including citric acid cycle, oxidative 

phosphorylation, and steroid biosynthesis, were up-regulated in both northern and southern 

clones, suggesting a universal regulation of mitochondria and membrane-specific activity. A 

similar study in zebrafish shows downregulation of all catabolic pathways during heat 

acclimation (Vergauwenet et al. 2010).   

Predictions  

If clones either locally adapted or acclimated to high temperatures exhibit exponential 

increases in respiratory rates before transitioning to a range of high temperatures in which 

respiration is independent of temperature (before reaching a critical, lethal temperature), then 

Daphnia potentially metabolically compensates to high temperature. Figures 1B, C show 

potential patterns in oxygen consumption that may be seen with acclimation, but any decrease in 

respiration with high temperature that isn’t presumably metabolic depression could be a 

compensatory response. Acclimation may either additionally or alternatively shift the critical 

temperature, though this seems less likely (Sandblom 2016). Alternatively, without 

compensation, TPCs should be largely be temperature-dependent throughout with increases in 

respiration directly corresponding to increases in temperature until the critical temperature is 

exceeded (Figure 1A). In this case, any differential performance at high temperature should be 

explained by differences in acute thermal tolerance among clones. 
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A regression of locally adapted or acclimated to high temperature clones is expected to be 

nonlinear and independent of temperature (for at least a small range of temperatures) in 

acclimated clones. A curvilinear and temperature-independent response in the cold-acclimated 

Daphnia could be metabolic compensation to low temperature if higher metabolic activity occurs 

at low temperature because it is beneficial for performance in cold environments (Guderley and 

St-Pierre 2002). Potential patterns of metabolic compensation can be corroborated if respiration 

returns to the same levels as controls in 25˚C following a 24-hour recovery period after a 1-hour 

exposure to 37 ˚C. High amounts of irreparable respiratory damage after exposure to 37˚C will 

corroborate whether metabolic compensation is happening because it implies that high 

temperature acclimated Daphnia do not compensate but are instead able to partially reduce heat-

induced damage for a short time.  

 This study aims to address the question whether metabolic compensation in Daphnia 

magna plays a role in heat tolerance.  Specifically, we aimed to find out if oxygen consumption 

increases with increasing temperature in accordance to Arrhenius expectations regardless of  

Daphnia genotypes’ local adaptations (e.g. origin from different climates) and of Daphnia 

temperature histories. We hypothesized that temperature-dependent profile of in oxygen 

consumption will be different in Daphnia acclimated, prior to the measurements, to different 

temperatures. Namely, if there are patterns indicative of metabolic compensation, we expect that 

high temperature (25˚C) acclimated Daphnia will show stronger metabolic compensation that 

low temperature (10˚C) acclimate ones. Finally, we aimed to find out whether the observed 

reduction of oxygen consumption at high temperatures can be reversed or is caused by 

irreversible damage.  
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Figure 1. Predictions for Respiratory Regulation in high and low heat-tolerant clones (by 
adaption or acclimation). a. Respiratory failure across all clones with a single, irrecoverable 
transitional temperature in each type of individual; in heat-tolerant individuals this temperature is 
higher. b. Compensation in high tolerant clones in which reaction rates are sustained after the 
first transition temperature until reaching a lethal transition. Heat tolerant clones have a higher 
critical temperature. c. Compensation in high tolerant clones. Critical temperature is the same 
across clones. 
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CHAPTER 2 

MATERIALS AND METHODS 

Daphnia Cultures 

Lineages of Daphnia magna from 6-8 different genotypes, 3-4 with high and 3-4 low 

acute temperature tolerance (Table 1), were maintained at 20°C with a 12:12 LD cycle in 100 

mL flasks of COMBO medium (Kilham et al. 1998) at the density of 6-10 individuals per flask. 

All cultures were fed the green algae Scenedesmus obliquus supplemented with essential 

minerals and vitamins to a final concentration of 50,000 cells per individual per flask every two 

days. Scenedesmus obliquus offers complete nutritional supplementation for Daphnia magna as 

long as it is supplemented with B-vitamins (Mehdipour et al. 2011). The amount and type of 

food per individual was chosen to promote somatic growth without overinvestment into 

reproduction because the aim of the study was to only influence respiration rates by temperature 

in healthy, well-fed individuals rather than starved ones or clutches of eggs the mothers carry 

which undoubtedly have their own respiration rate. Scenedesmus obliquus was also chosen to 

avoid the addition of PUFAs which influence reproduction and thermal tolerance (Schlotz et al. 

2012; Martin-Creuzburg et al. unpublished data). COMBO medium and flasks were replaced 

every 4 days to prevent waste buildup and to keep density constant.  
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Table 1. Location and Thermal Tolerance of Daphnia Genotypes Used. Genotype ID is 
presented along with habitat type, geographic coordinates, and temperature tolerance 
characterized by survival time after immediate exposure to a lethal temperature.  

 

 

Acclimation  

 Adult Daphnia from the 20°C lines were transferred to either 10°C, 15°C, or 25°C (+/- 

1°C) incubators and reared for 2 additional generations before any experimental work was 

conducted (Yampolsky et al. 2014). To obtain the 10°C- and 25°C-acclimated Daphnia of 

approximately the same age simultaneously for common garden experiments the 25°C 

acclimation lines were set up with a delay. Temperature ramping was achieved by keeping the 

Daphnia at a starting temperature for measurement (e.g., 5°) overnight prior to the measurements 

with a daily 5°C increase to the next measurement temperature.  

 

 

CloneID Type of Habitat Latitude Longitude Acute 
Temperature 

Tolerance 

FI-FSP1-
16-2 

summer rock pool 60° 10.062" 25° 47.677" Low 

GB-EL75-
69 

year-round pond 51°30′26″ -0°7′39″ Low 

IL-MI-8 Mediterranean pond 31° 42' 52.42" 35° 3' 3.38" High 
IR-GG1-7 lake 37° 54' 54.92" 46° 41' 58.29" Low 
DE-S3-3      pond 48° 48' 189.6" 9° 10'23.18" High 
FR-SA-1 Mediterranean pond 43° 27' 37.06" 4° 39' 09.83" High 
HU-HO-2 pond 46° 47' 50.03" 19° 08' 17" Low 
HU-K-6 lake 46° 47' 33.3" 19° 10' 53.84" High 
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Respirometry 

 Measurements of oxygen consumption, were conducted using two 4-channel Firesting O2 

Fiber Optic Oxygen Meters (PyroScience, Aechen, Germany). Both sensors were placed inside 

an incubator set to assay temperatures ranging from 5°C to 37°C. For a reliable signal for each 

measurement, three Daphnia were placed in a specialized 4 mL vial (4ml Ox Vial, PyroScience) 

which constitutes an experimental replicate in all experiments to be described. Measurements 

were carried out in closed systems at 5 second intervals for a duration long enough to cover 

either 3 hours (5°C and 10°C for the shared history experiment) or 90 minutes (any other 

temperature during all other experiments) of usable data. This measurement range ensured at 

least a 0.5mg/L drop in oxygen concentration at each temperature (typically a 1-1.5 mg/L drop 

and never below 5mg/L at the end of the measurement). This allowed a sufficient amount of 

oxygen consumption for reliable detection without to inducing hypoxia. To ensure circulation 

across the measurement area of the vials, lids were modified with an additional airtight space for 

a magnetic stir rod bringing the total volume of the chambers to 5 mL. To prevent damage to the 

Daphnia, the open side of the stirring space was covered with a single layer, 59% open area 

nylon mesh that still promoted circulation.  To avoid any potential temperature fluxes in the 

incubator and avoid increased risk of water contamination, all vials were submerged in a 4 L dry 

bath of Lab Armor beads (Lab Armor LLC, Cornelius, Oregon). An external temperature probe 

for each Firesting system was placed on either end of the bath to ensure homogenous 

temperature between channels. The bath was placed on top of a magnetic stir plate with separate 

stirring sections with the same stirring intensity for each vial. 

 COMBO medium was aerated for at least 8 hours in each assay temperature for use in 

experimental vials. The aerated medium was passed through a sterile 0.2 µm disk filter into each 
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chamber to minimize potential bacterial contamination in the experimental vials. No food was 

added to the chambers, and Daphnia were transferred to temporary flasks of same temperature as 

their acclimation or current temperature before transfer to experimental vials. One control vial 

containing only sterile COMBO medium was measured for the full duration of each assay 

temperature in each experiment. Vials were cleaned with 70% ethanol each day and calibrated by 

factory specifications at the start of every temperature change. To further reduce variation, only 

adult female Daphnia without eggs, or eggs in the first stage of development were used for 

measurements. To achieve this, replicate sets of Daphnia were staggered in experiments by egg 

development stage.  

Shared History Experiments 

 Two experiments were conducted in which there was no difference in temperature history 

between Daphnia used in the experiments. Daphnia were first raised at 20˚C for multiple 

generations before adults were weighed (mg wet mass-blotted on filter paper to remove excess 

water) on an analytical balance and transferred to 5˚C for 2 days with subsequent measurement 

of oxygen consumption at 5˚C. After measurements were completed for an assay temperature (2 

replicate sets of daphnia per clone, roughly 6-8 hours of measurement), Daphnia were 

transferred to new flasks and acclimated for 8 hours to a gradual 5˚C increase in temperature. 

During the acclimation period which was from birth to 1st clutch of eggs, Daphnia were fed on 

their normal 2-day schedule and were reweighed before each measurement period if there was 

mortality in a replicate. The 5˚C measurements continued sequentially to 30˚C, at which point 

many replicates had died. To avoid an imbalanced design in higher temperatures, the experiment 

ended after measurement at 30˚C. It should be noted that genotypes DE-S3-3 and FI-FSP1-16-2 

were not used in this preliminary study because these cultures were not synchronized with the 
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others for the timing of this experiment. The goal of this experiment was to avoid allowing a 

lifetime acclimation effect and to simply get some idea of how respiration looks across most of 

Daphnia magna’s thermal range. These experiments were conducted over a few days starting in 

relatively low temperatures, so any aging effect was minimal.  

 To further test shared acclimation history especially at the higher range of thermal 

tolerance, Daphnia were reared for 2 generations at 15˚C before oxygen consumption was 

measured in 5˚C increments from 15˚C to 30˚C. An additional measurement was taken at the 

absolute limit of thermal tolerance, 37˚C. The sequence of measurements and 8-hour 

acclimations followed the same methodology as the other shared history experiment, but 3 

replicates were measured per clone because there were less assay temperatures and measurement 

times were all 90 minutes. Genotype FI-FSP1-16-2 was still not synchronized for experimental 

use at this time, so it was not included in this study. Again, the goal here was to avoid 

acclimation history differences and to further increase resolution on expected respiratory rates at 

each assay temperature. Measuring first at their acclimation temperature should also have 

prevented any potential temperature shock that could influence initial respiration rates. 

Acclimation Temperature Experiment 

 Daphnia from 8 genotypes (Table 1) were acclimated to either 10°C or 25°C and 

remained in their acclimation temperature until use in a single oxygen consumption measurement 

(3 Daphnia/respiration vial) in each assay temperature in which there was no time allowed to 

acclimate to the new temperature. Following the single measurement, a Daphnia were weighed 

as a group and no longer used in the experiment. Assay temperatures consisted of 10°C, 15°C, 

20°C, 25°C, 27.5°C, 30°C, 32.5°C, and 35°C, but these temperatures were not measured 
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sequentially. Alternating between high and low assay temperatures daily prevented an aging 

effect on assay temperature since the experiment required 16 days to complete. More resolution 

was sought between 25°C and 35°C because this was the flattest region in preliminary thermal 

performance curves generated from the shared history experiments. 3 experimental replicates (3 

Daphnia/replicate) per clone per acclimation temperature per measurement temperature were 

targeted, and this was achieved apart from a few cases in which 2 replicates were used in some 

combinations where counts of Daphnia were low.   

Recovery Experiment 

 Following the acclimation temperature experiment, 2 replicates from the 8 genotypes and 

from the same 25°C acclimated cohort were weighed then exposed to 35°C for 1 hour. 35°C is 

also within the temperature tolerance limit for all clones used, but a 1-hour exposure prevents 

high mortality in 25°C acclimated Daphnia. 10°C acclimated Daphnia were not used in this 

experiment because all 10°C replicates measured at 35°C during the acclimation temperature 

experiment were dead by the end of the measurement. After the 1-hour exposure, 1 replicate was 

placed back in 25°C for 24 hours while the other replicate was placed at 20°C. Daphnia were fed 

on their normal schedule and reweighed during the 24-hour recovery period. After 24 hours, both 

replicates were placed in 25°C and oxygen consumption was again measured for the normal 

duration. As a control for this experiment, Daphnia exposed to 35°C were compared to 4 

replicates of 25°C acclimated Daphnia from the same cohort, but without exposure to the lethal 

temperature.  
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Regressions and Statistical Analysis 

Using JMP statistical software (SAS Institute, Cary, North Carolina), dissolved oxygen 

content was plotted (mg/L) over time (seconds) for each replicate vial at the assay temperature in 

which it was measured. Once plots were finished, a default point was chosen to determine where 

to start using data for analysis. To avoid noise from equipment and to allow Daphnia adequate 

time to acclimate to vials, the first 960 seconds of each run were not included in analysis. The 

default cutoff of each run was 5,400 seconds. Each regression was manually inspected to ensure 

that data used in analysis was starting from the maximum point of oxygen content in the vial and 

that regressions were not influenced by nonlinear anomalies in the data. In cases where 

regressions were clearly not representative of oxygen consumption patterns, the start and end 

points for analysis of that replicate were manually adjusted. Manual adjustments were rare and 

did not influence the outcome of the following analyses. Slopes from each regression (mg/L/s) 

was normalized by wet weight (WW) of each replicate and then averaged for each assay 

temperature and treatment, a method used with other zooplankton (Gomez and Packard 2010). 

Final measurements were reported as μgO2/min/mgWW and was used as a response variable in 

all subsequent analyses. All subsequent regression terms and model effects were tested against 

an α of 0.05.  

 Shared history experiments were analyzed with a three-way analysis of variance 

(ANOVA) using assay temperature, its square (to test for nonlinearity), and acute thermal 

tolerance (Table 1) of the clones. Relevant interactions between acute thermal tolerance and 

linear and nonlinear assay temperature effects were also included. A repeated measures analysis 

was not incorporated despite using the same replicates throughout the experiments because their 

placement in vials was randomized for every measurement. An alternative model in which clones 
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were a random nested effect in acute thermal tolerance revealed a clone by assay temperature 

interaction, but this effect was not significant after Bonferroni multiple testing correction and 

was ultimately not included. To further emphasize the lack of respiratory differences among 

locally adapted clones in the same acclimation temperature, the 5°C and 15°C data were 

combined with experiment as a random blocking effect.  

 For the differential acclimation temperature experiment, each acclimation temperature 

was analyzed as a mixed effects model with a 2nd degree polynomial regression. Assay 

temperature and its square were fixed effects, while clones were considered random.  

 For the recovery experiment, a two-way ANOVA was performed. Treatment was a fixed 

effect and included 35°C, recovery at 20°C or 25°C (R20 and R25), and unexposed controls from 

25°C (C25). Clones grouped by acute temperature tolerance were again included as a fixed effect 

and an interaction between treatment and acute temperature tolerance is included in the model. 
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CHAPTER 3 

RESULTS 

Shared History Experiments 

 Daphnia reared at 20°C then acclimated to 5°C for a short 2-day span before temperature 

ramping show significant differences in oxygen consumption both between assay temperatures 

(p = 2.43E-07, Table 2A), and response to those temperatures was significantly nonlinear (p = 

5.73E-03, Table 2A). With clones classified by acute temperature tolerance as a fixed effect, 

neither the individual effect nor its interactions suggesting either a local adaptation by assay 

temperature effect or differential nonlinearity by local adaptation effect were significant in this 

experiment (Table 2A). As mentioned in methods, an alternative approach considered clones as a 

random effect nested within acute thermal tolerance classification, and for this experiment there 

was a clone by temperature interaction, but it is not significant after Bonferroni adjustment for 

multiple testing. 

 Again, for Daphnia fully acclimated to 15°C before temperature ramping from 15°C to 

37°C, there was significant effect of assay temperature and nonlinearity (p = 3.05E-09, p = 

1.24E-06, Table 2B). There was also no significant effect of acute thermal tolerance or its 

interactions in this experiment. The alternative nested approach showed no significant clonal 

effects.  
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Table 2. Shared History ANOVA Models. T denotes assay temperature, T2 is nonlinear response 
to assay temperature, Ttolerance_acute is characterized acute temperature tolerance (high or 
low). Bold F and p values indicate significance at an α = 0.05 confidence interval. Random 
Variation associated with clones is not different from zero.a. Individual F-test for the experiment 
starting at 5˚C. b. Individual F-test for the experiment with 15˚C-acclimation. c. Both shared 
history experiment data combined with experiment as a random block (and insignificant) effect. 

 

 

 Since measurements between the two experiments were close, and the same effects were 

significant in both (Table 2), data from the two experiments were combined. This manipulation 

did not change the outcome of the experiment as assay temperature and nonlinearity were both 

significant effects (Figure 2, Table 2). The random block effect representing the experiments was 

not significantly different (Table 2).  

  

5˚C to 30˚C Assay 
Temperature Ramping 

Model F test 

15˚C to 37˚C Assay 
Temperature 

Ramping Model F 
test 

 
Combined  

Temperature  
5˚C to 37˚C Assay 

Temperature Ramping 
Model F test 
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F 
Ratio p MS 

F 
Ratio p MS  

F 
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T 
0.001
68 

32.61
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2.4E-
07 

0.001
3 

48.57
47 

3E-
09 

0.0024
2 54.81 

1.30
E-11 

T2 
0.000
42 

8.118
4 

0.005
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0.000
8 

29.17
33 

1.2
E-
06 

0.0007
2 16.35 

8.79
E-05 

Ttolerance_acute 7E-05 1.364 0.25 
1E-
05 

0.385
9 0.54 

0.0000
2 0.43 0.51 

Ttolerance_acute
*T 

8.6E-
08 

0.001
7 0.97 

1E-
05 0.362 0.55 

5.47E-
08 

0.001
2 0.97 

Ttolerance_acute
*T2 

6.1E-
05 

1.180
3 0.28 

1E-
07 0.005 0.94 

1.32E-
06 0.03 0.863 

Experiment 
(Block effect)             

6.43E-
06 

0.145
9 0.70 

Error 
5.1E-
05     

3E-
05     

0.0059
52     

A B C 
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Figure 2. Oxygen consumption during a gradual temperature ramp-up with 8-hr acclimation to 
assay temperatures. Blue squares represent mean oxygen consumption (μO2/min/mgWW) at 
each assay temperature for clones characterized with low acute thermal tolerance. Red squares 
represent mean oxygen consumption in clones with high acute tolerance. The respectively 
colored trendlines represent the nonlinear, 2nd degree polynomial relationship of oxygen 
consumption and assay temperature for each set of clones. Vertical bars represent standard error 
of the means.  

 

 

Acclimation Temperature Experiment 

 Unsurprisingly, the oxygen consumption of Daphnia acclimated for 2 generations to 
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acclimation temperature (Table 3). While the linear term fully describes the relationship between 

temperature and respiration in 10°C-acclimated Daphnia, a nonzero, nonlinear parameter is 

significant in describing the same relationship for 25°C-acclimated Daphnia (p = 4.00E-04, 

Table 3, Figure 3). Clone type was included as a random effect in the model for either 

acclimation temperature but had no significant effect on the regressions. All 10°C-acclimated 

clones were killed during or dead shortly after exposure to 35°C. To be conservative, weights 

were measured immediately after the respiration measurement only in Daphnia still moving or 

dead, but not already decaying/bloating.   

 

 

Table 3. Fixed Effects for Polynomial Regressions at 2 Acclimation Temperatures. AssayT is the 
fixed linear parameter for assay temperature, while assayT*assayT represents a nonlinear 
parameter. Bolded F and p terms indicate significance at an α = 0.05 confidence interval. 
Random Variation associated with clones is not different from zero. 

 

 

 

 

 

 

  10˚C Acclimation  25˚C Acclimation 
Source Parameters F Ratio p Parameters F Ratio p 
assayT 1 54.9913 1.00E-04 1 42.0613 1.00E-04 
assayT*assayT 1 0.2076 6.49E-01 1 12.8884 4.00E-04 
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Figure 3. Oxygen consumption during acute exposure to assay temperatures by acclimation 
temperature. Blue squares represent mean oxygen consumption (μO2/min/mgWW) at each assay 
temperature for clones acclimated to 10°C. Red squares represent mean oxygen consumption in 
clones with high acute tolerance. The respectively colored trendlines represent the near-linear 
relationship between temperature and respiration for 10°C acclimation while the 2nd degree 
polynomial line represents the nonlinear relationship temperature and respiration for 25°C 
acclimation. The insert shows that the estimated quadratic coefficient is no different from 0 for 
10°C acclimation but is nonzero for 25°C acclimation. Vertical bars represent standard error of 
the means. 
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Recovery Experiment 

 Recovery conditions (treatment) were a significant effect on oxygen consumption (p = 

1.30E-03, Table 4) while, again, there was no effect of clones grouped by acute temperature 

tolerance. Daphnia reared at 25°C and exposed to 35°C for 1 hour exhibited lower respiration at 

35°C than compared to unexposed Daphnia from 25°C or those allowed to recover for 24 hours 

at 25°C (p = 6.00E-04, Figure 4). Those allowed 24-hour recovery at 20°C exhibit an 

intermediate respiratory rate while, importantly, there was no difference between those allowed 

to recover at 25°C and those raised at 25°C without lethal temperature exposure (Figure 4).  

 

 

Table 4. Two-way ANOVA Model for Recovery of Respiratory Rates After Exposure to 35°C. 
Treatment represents recovery conditions for 25°C-acclimated Daphnia following exposure to 
35°C or normal conditions without exposure to 35°C. Ttolerance_acute is characterized acute 
temperature tolerance (high or low). Bold F and p values indicate significance at an α = 0.05 
confidence interval. Random Variation associated with clones is not different from zero. 

 

 

 

 

 

 

Source SS F Ratio p 

Treatment 0.000161 6.4992 1.30E-03 
Ttolerance_acute 1.24E-06 0.1495 0.70 
Treatment*Ttolerance_acute 4.07E-06 0.1638 0.92 
Error 0.000298     
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Figure 4. Full oxygen consumption rate recovery following exposure to 35°C. From left to right 
the columns represent oxygen consumption of 25°C -acclimated Daphnia at 35°C, 25°C 
following recovery from 35°C at 20°C, no exposure, or recovery at 25°C. Vertical bars represent 
standard error. Letters over the columns represent significant differences (at α=0.05) among 
treatment effects based on Tukey-Kramer HSD.  
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CHAPTER 4 

DISCUSSION 

Potential Evidence of Metabolic Compensation 

 In all but lifetime low temperature acclimation (10°C), Daphnia exhibit thermal 

performance curves indicative of metabolic compensation (Figures 2 and 3). As predicted for 

metabolic compensation, individuals acclimated to high vs. low temperature show different 

shape of and metabolic rate relationship with current assay temperatures across the thermal 

range. We see no evidence for different critical temperatures between 10°C- vs. 25°C-acclimated 

Daphnia (Figure 1 A, B, C). We do, however, observe a stronger curvilinearity of the reaction 

norm in the 25°C-acclimated individuals (Table 3, Figure 3), indicating a sustained metabolic 

rate over the 25-30°C subcritical range, over which the 10°C-acclimated Daphnia continue to 

increase their respiration rate with temperature. While the difference in curvilinearity between 

acclimation temperatures is not fully conclusive evidence for compensation, the high mortality of 

10°C-acclimated Daphnia at 35°C and the high mortality in the 5°C shared history experiment at 

even lower temperatures suggests a benefit of 25°C-acclimation.  

 More characterization of routine metabolic rates (RMR) across temperatures in 

Daphnia will be needed to determine the exact aerobic scope of the organism (Schulte 2015). 

RMR alongside maximum metabolic rate data can be used to determine not only aerobic scope 

but whether maximum rates are oxygen-limited at higher temperatures and whether resting 

metabolic rates and maximal rates are under the same constraints (Schulte 2015). While it’s 

likely that physiological processes of arthropods are more oxygen-limited at lethal temperatures 

(Giomi and Portner 2013; Verberk et al. 2016) even with the minor drop of oxygen saturation 
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experienced at 35°C, which could account for a drop in respiration at 35°C, 10°C-acclimated 

Daphnia had some of the highest respiratory rates in the experiment and those rates increase 

linearly with temperature (Figure 3). Daphnia raised at intermediate temperatures (15°C and 

20°C) also show the same nonlinear response to gradual increasing temperature (Table 2, Figure 

2). Given this result, timing of acclimation likely only influences the breadth of aerobic scope 

rather than shifting it toward a certain temperature range. Interestingly, respiration rates were 

around twice as high at all comparable measurement temperatures in the acclimation temperature 

than in the shared history experiments. Both shared history experiments were indeed separate 

experiments, yet both have respiratory rates in the same range. Perhaps acclimation to 10°C 

pushes for higher metabolic rates overall, while acclimation to 25°C primes metabolic rates to 

quickly adjust to changes in temperature.  

 Surprisingly, given the linear nature of their respiratory response, 10°C-acclimated 

Daphnia do not appear to compensate in the same way but in the opposite direction to 25°C-

acclimated Daphnia (Figure 3). There is the possibility that if measurement range extended to 

lower than 10°C and that more resolution was available in the colder temperature range, a 

nonlinear response to cold temperature may have been found. However, measurement times for 

adequate resolution would require too much time within the range of temperatures tested already 

as the Daphnia would have died from aging before every temperature could be tested. Metabolic 

cold adaptation predicts higher respiration in organisms from cold climates and this is often the 

case (White et al. 2012).  In fact, 10°C-acclimated Daphnia appear to have higher oxygen 

consumption rates in temperatures below 20°C than their high temperature-acclimated 

counterparts (Figure 3). Perhaps gene regulation differences in clones locally adapted to cold 

environments account for this difference (Yampolsky 2014). However, acclimation was a 
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stronger effect because there were no significant effects of clones in the model, regardless of 

habitat, suggesting that adjustment of respiratory rates to temperature is not experiencing 

selective pressure.  

No Evidence for Genetic Variation or Local Adaptation 

 All experiments in this study show a curvilinear response to increasing temperature 

depending on acclimation history. This response is indicative, but not unequivocal proof of 

metabolic compensation. The study also finds that, at least for metabolic compensation of 

respiratory rates, there is no effect of genotype grouped by acute temperature tolerance (Table 2). 

Metabolic compensation of respiratory rates appears to be plastic, i.e., not canalized and not 

under the influence of selection. This is surprising, given the continuous focus on temperature 

adaptation in freshwater poikilotherms. There is of course strong evidence for adaptation to 

thermal environments. (Johnston & Walesby 1977; White et al. 2012; Geerts et al. 2015). As 

already noted, locally adapted genotypes of Daphnia have differing acute thermal tolerance and 

highly differential gene expression during exposure to stressful temperatures (Yampolsky 2014), 

yet, metabolic compensation effect appears to be constrained. One may hypothesize that there 

are multiple pathways involved in response to thermal stress and some pathways for at least 

some organisms will not be found by testing for selection because they are not adaptive as there 

is nothing for selection to act on yet.  

 Perhaps studies that see a lack of adaptation to thermal environment are either 

byproducts of much larger system-wide physiological shifts which are adaptive, or perhaps the 

trait of interest is integral but not under selection, as is evidenced by this study. One study 

suggests that some bivalves do not exhibit metabolic compensation because the benefits simply 

do not outweigh the costs of thermal compensation of biological rates (Lurman et al. 2014). 
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Given the findings presented here, however, evidence needs to be produced that there is indeed a 

fitness cost associated with metabolic compensation and that there is something for selection to 

act upon, which is sometimes the case (Williams et al. 2016).   

 Understanding how overall metabolic systems react to temperature changes is likely 

necessary to understand the scope of metabolic compensation (Ruoff et al. 2007). Understanding 

the system can help link adaptive responses to fully plastic ones. In fact, selection for a 

seemingly metabolically costly trait, like antibiotic resistance, can mobilize and restructure entire 

metabolic networks in unexpected ways (Handel et al. 2013). There is also evidence that 

metabolic rate robustness to fluctuation is important for adaptive circadian systems (Johnson & 

Egli 2014). Since the potential metabolic compensation reported here appears to be genetically 

constrained, it is possible that the mechanism relies on highly conserved, important pathways 

that are essentially fixed.  

 Alternatively, the patterns of plasticity reported here are not beneficial at all and a 

really only signs of physiological dysfunction with increasing temperature. This alternative 

would easily explain the lack of an effect by local adaptation because respiratory dysfunction 

would simply not be adaptive. More work is needed to determine whether the response to 

ambient temperature seen here is truly metabolic compensation, so alternative plastic pathways 

that could additionally explain the lack of genetic variation in oxygen consumption with 

increasing temperature are discussed later. 

Mitochondria and Membrane Regulation 

 Mechanistically, metabolic compensation in Daphnia makes sense when coupled 

with information and evidence of membrane restructuring with temperature changes. Membrane 
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restructuring and fluidity adjustment occurs during temperature acclimation in Daphnia, and a 

diet high in PUFAs reduces their thermal tolerance (Coggins et al. 2017; Martin-Creuzburg et al. 

unpublished data). While no explicit respiratory damage is shown here (Figure 4), and lipid 

peroxidation is not predictive of thermal tolerance in Daphnia, lipids are major signalers 

involved in heat stress management and heat shock response (Balogh et al. 2013; Torok et al. 

2013). Modification of membrane lipids is likely a major induction pathway for generalized 

temperature responses, and membrane lipids significantly influence transient receptor potential 

channels (Balogh et al. 2013; Torok et al. 2013).  Similar modulation probably occurs across the 

mitochondrial membrane, directly influencing energetic output, but not by means of explicit 

mitochondrial damage. Mitochondrial proton leaks which alter membrane potential and energetic 

output can in fact be adjusted by temperature response (Guderley & St-Pierre 2002). 

 A seminal study by Labbadia et al. shows that the repression of heat shock response 

is a programmed event in aging that can be prevented by mild mitochondrial perturbation which 

drastically improves acute heat and stress response even in old age (2017). Furthermore, 

mitochondrial membrane function has a direct relationship with HSF-1, so perhaps thermal 

plasticity arises from induction of HSF-1 and downstream perturbance of mitochondrial potential 

such as deliberate proton leaks to uncouple oxidative phosphorylation in stressful temperatures. 

Better understanding of this pathway will likely lead to a better understanding of plastic 

metabolic compensation to temperature.   

Alternative Plastic Responses to Temperature 

 While all experiments conducted in this study show a reduction in respiration at the onset 

of high temperatures without a loss of respiratory control, the mechanisms at play are poorly 

understood. Metabolic compensation suggests that a reduction in oxygen consumption with 
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increasing temperatures will be caused by beneficial physiological changes in the organism. 

However, as suggestive for compensation as these data are, this study was not a mechanistic 

investigation, so compensation is not yet a forgone conclusion. Below two alternative, but not 

mutually exclusive, mechanisms are discussed that may generate the same effect on oxygen 

consumption with increasing temperature in a passively plastic and not necessarily beneficial 

manner. 

Changes in membrane structure and fluidity happen in concurrence with changing 

temperature, and these changes also differ by acclimation temperature (Coggins et al. 2017; 

Martin-Creuzburg et al. unpublished data). Furthermore, oversaturation of PUFAs in acclimated 

Daphnia reduces survival in lethal temperatures. Time to immobilization (Timm), or the time in 

which Daphnia can no longer swim, decreases with a diet supplemented with high levels of the 

essential fatty acid eicosapentaenoic acid (Figure 5; Martin-Creuzburg et al. unpublished data). 

Perhaps any metabolic regulation Daphnia is capable of is explained by the membrane 

pacemaker theory of metabolism (Hulbert & Else 2005) in which membrane potential and 

subsequent metabolic rates are directly dictated by membrane structure, which also changes with 

temperature. Lethal temperature thresholds may coincide with irreparably damaged membranes.  
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Figure 5. Effects of acclimation temperature and dietary EPA supply on acute high temperature 
tolerance. The x-axis is the dietary ratio of EPA-containing liposomes. Temperature tolerance is 
represented as time to immobilization at 37°C (log-transformed Timm). Vertical bars represent 
standard error. 

 

 

Hypoxia, like membrane fluidity and structure, is innately tied to the aquatic thermal 

environment because dissolved oxygen content in water is dependent on temperature. Hypoxic 

responses often include downregulation of cellular respiration to meet energy demands (Michiels 

2004). Hypoxia inducible factor (HIF) levels increase in the absence of its antagonist which 

requires molecular oxygen to activate, so perhaps mitochondrial activity is sensitive to even 

small changes in HIF, in which case increasing temperature could result in downregulation of 

metabolism. It is possible that even the relatively minor drop in dissolved oxygen saturation at 

37°C is enough to limit full aerobic scope of an organism as predicted by the oxygen and 

capacity limitation of thermal tolerance (Verbec et al. 2016). However, short term exposure (90 

minutes) to hypoxia (>50% DO) increases Timm only in 28°C acclimated Daphnia (Figure 6; 
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Coggins et al. 2017), so perhaps HIF-induced cascades and potential subsequent metabolic 

regulation are more prominent in heat-acclimated Daphnia.  

 

 

Figure 6. Effects of acclimation temperature and exposure to hypoxia on time to immobilization 
at 37°C. Acclimation temperatures are 18°C (blue) and 28°C (red). Exposure to hypoxia 
(<50%DO) occurred for 90 minutes in the checked blue and red bars. Time to immobilization 
was natural log-transformed. Vertical bars represent standard error. 

 

 

Membrane fluidity mechanics and sensitive responses to oxygen content in habitats could 

potentially generate the same respiratory responses evident for metabolic compensation, but a 

key distinction is determining how much respiratory damage is occurring with exposure to high 

temperatures. If membrane fluidity regulation is the sole mechanic of respiratory response to 

high temperature, there will be a point in which membranes simply irreparably melt. Likewise, 

hypoxic responses can only be sustained for so long before irreparable oxidative stress is 

incurred, perhaps by the onset and buildup of anaerobic products.  
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Suggested Future Work 

 An immediate follow-up to this study should simply investigate at respiration in 

samples throughout the process of acclimation. To show more evidence of metabolic 

compensation in the case of high temperature acclimation, Daphnia acclimated over their 

lifetime to 20°C then placed in higher temperature (25°C-30°C) should initially have higher 

respiratory rates that will decelerate with acclimation to the new temperature. Cold acclimation 

(5C-10C) should initially show lower respiratory rates that increase with acclimation.  

 The recovery experiment should be repeated but with a focus on ATP and lactate 

production during and after exposure. This will give more insight into whether respiratory 

compensation is occurring by uncoupling activity in mitochondria. A potential way to investigate 

the relationship between degrees of lipid unsaturation, mitochondrial function, and metabolic 

compensation would be to again link a respiratory rate recovery experiment to mitochondrial 

output, but with the additional treatment of a diet high in PUFAs. If the addition of PUFAs 

prevents recovery, more evidence exists regarding the importance of membrane regulation and 

its role in both thermal tolerance and modulation of mitochondrial function.  Testing the effect of 

direct perturbance of mitochondrial membrane potential on temperature tolerance will also be 

useful. Mild mitochondrial toxins may yet be another useful treatment in a future respiratory rate 

recovery experiment. Manipulation of HSF pathways directly by RNAi or indirectly by induction 

of other pathways (like hypoxic response) will be useful to determine if metabolic compensation 

occurs within conserved pathways. 

Finally, characterization of aerobic scope is promising find further evidence for metabolic 

compensation. Different physiological traits may have different thermal optima and critical 

temperatures (Clarke et al. 2013;Jayasudara and Somero 2013). Characterizing thermal 
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performance of antennae beats and heart rates in addition to respiration can help further show 

potential compensatory responses. Daphnia are known to exhibit temporary antennae paralysis to 

urethane, so basal respiratory rates in the absence of locomotion can also be investigated. 

Characterization of lactate production in different assay temperatures after different acclimation 

regiments or as a recovery experiment will be useful because Daphnia show increased lactate 

production just before reaching their critical temperature (Verberk et al. 2016). 

Conclusion 

 This study demonstrates that metabolic compensation of respiratory rates at high 

temperature potentially occurs in Daphnia acclimated to high, but not low temperature. 

Reduction of metabolic rate at the critical (35C) temperature is recoverable, possibly indicating 

that it represents adaptive plasticity and not higher thermal damage. Despite sampling from 

geographically distinct habitats and including genotypes known to be different in their 

temperature tolerance, the observed metabolic compensation seems to be genetically constrained, 

indicating that it may play a role in plastic response, but not in local adaptation to high 

temperature. Alternately, this study outlined how acclimation can shape the onset of 

physiological dysfunction in Daphnia as temperatures increase. More work will be needed to 

further characterize this potentially acclimation-dependent compensatory response to high 

temperatures, but a foundation for such work has been established here. 
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