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ABSTRACT 

The Combined Neuropharmacology and Toxicology of Major ‘Bath Salts’ Constituents 
MDPV, Mephedrone, and Methylone 

by 

Serena Allen 

The synthetic cathinones, 3,4- methylenedioxypyrovalerone (MDPV), 4-

methylmethcathinone (mephedrone), and 3,4- methylenedioxymethcathinone 

(methylone), gained worldwide notoriety as the psychoactive components of ‘bath salts;’ 

a marketing term used to circumvent federal drug laws and permit their legal sale. 

Previous studies have shown that these drugs share pharmacological characteristics 

with cocaine and the amphetamines, however, descriptions of their neurotoxic 

properties are limited. Moreover, while forensic analysis has revealed that the most 

frequently abused bath salts ‘brands’ contain binary and ternary mixtures of  MDPV, 

mephedrone, and methylone, the majority of preclinical research has focused on 

explicating the individual effects of these drugs. Therefore, the present dissertation 

aimed to address this limitation and characterize the acute and chronic effects of 

combined synthetic cathinone exposure on dopaminergic tone in mesolimbic and 

nigrostriatal brain regions. To accomplish this, male Swiss-Webster mice were 

administered MDPV, mephedrone, and methylone, individually or concomitantly, 1 time 

or 7 times over the course of two weeks and the corresponding effects of each 

treatment on mesolimbic and nigrostriatal brain tissue levels of dopamine (DA) and DA 

metabolites were analyzed using a high performance liquid chromatography – 

electrochemical detection (HPLC-ECD) assay.  Additionally, motor-stimulant activity 

was evaluated after both dosing regimens using locomotor activity assays, while 
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immunoblot and immunostaining techniques were used to evaluate the chronic effects 

of co-synthetic cathinone exposure on tissue levels of tyrosine hydroxylase (TH), 

dopamine transporter (DAT), monoamine oxidase B (MAO-B), catechol-O-

methyltransferase (COMT), and glial fibrillary acidic protein (GFAP).  Results from these 

studies provide evidence of a significant pharmacological interaction among major bath 

salt constituents, MDPV, mephedrone, and methylone. This was observed acutely as 

enhanced DA responses and chronically as functional toxicity at the DA synapse. 

Furthermore, such interactions may contribute to the deleterious effects reported by 

bath salt users. Together, these findings have shown that the composition of bath salts 

preparations can significantly influence their psychostimulant and toxic effects, 

substantiating the importance of modeling bath salts as drug mixtures.  
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CHAPTER 1 

INTRODUCTION 

Defining ‘Bath Salts’ and Related Drugs 

The neuropharmacology and toxicology of synthetic compounds marketed as 

‘bath salts’ are primary topics of this dissertation. As ‘bath salts’ is a blanket term for 

designer drugs mixes containing one or various synthetic cathinones, it is important to 

define the synthetic cathinones most commonly found in bath salts as they have been 

investigated in this dissertation. 

Bath salts – Bath salts have no legitimate purpose as bath additives. This 

marketing term refers to designer drug products that are purchased as “legal high” 

alternatives to illicit psychostimulant compounds such as cocaine, methamphetamine, 

and 3,4- methylenedioxymethamphetamine (MDMA, ecstasy). Bath salts are primarily 

sold as powders or fine crystals and are given redolent names such as - “White 

Lightning,” “Bliss,” and “Cotton Cloud” – with labels stating “not for human consumption” 

or a variant in order to circumvent legislation banning the sale of these psychoactive 

substances (Shanks et al. 2012; Spiller et al. 2011). The main psychoactive 

components of bath salts are synthetic cathinones.  

Amphetamine and amphetamines – Given that the synthetic cathinones are 

novel, chemical derivatives of amphetamine, it is helpful to understand this group of 

drugs. The chemical structure of amphetamine is presented in Figure 1.1. Amphetamine 

(AMPH), or α-methyl-phenethylamine, is chemically defined by  Biel and Bopp as a 

compound consisting of: 1) an unsubstituted phenyl ring, 2) a two-carbon side chain (α 
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and β carbons) that connects the phenyl ring to nitrogen, 3) an α-methyl group, and 4) a 

primary amino group (Biel and Bopp 1978). Various chemical modifications and 

functional group substitutions to the amphetamine scaffold have yielded a large number 

of amphetamine derivatives. For example, methylation of the amino group and 3,4 

methylenedioxy ring substitution onto the phenyl group of amphetamine produce 

methamphetamine (METH) and MDMA, respectively (see Fig 1.1). Amphetamine 

derivatives have a common phenethylamine backbone and are collectively referred to 

as substituted amphetamines or simply amphetamines.  

Cathinone and synthetic cathinones – The word cathinone refers to the molecule 

referenced in Fig 1.1. Cathinone, the parent compound to synthetic cathinones, is a 

naturally occurring phenylalkylamine alkaloid found in the leaves of the khat plant 

(Catha edulis). The backbone of cathinone is phenethylamine with a ketone group 

substituted on the β carbon. Therefore, cathinones can be referred to as β-keto 

amphetamines. As with amphetamine, the amino group of the cathinone can be 

methylated (ie methcathinone, Fig 1.1), and functional groups can added to many 

locations on the ring and side chain of the molecule, producing various structural 

analogs called substituted, or synthetic, cathinones. The compounds mephedrone, 

methylone, and MDPV (3,4-methylenedioxypyrovalerone) are examples of such 

synthetic cathinones and will be discussed thoroughly. In this thesis, the terms 

cathinone(s), and synthetic cathinone(s) will refer to any specific cathinone or the entire 

group of cathinones.  
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Mephedrone – Mephedrone, 4-methylmethcathinone, consists of a methyl group 

attached to the amine, α carbon, and 4’ carbon on the phenyl ring of the β-keto 

amphetamine backbone, making it similar in structure to methamphetamine (Fig 1).  

Methylone – Methylone, 3,4-methylenedioxymethcathinone, is also methylated 

on the amine group and α carbon of the cathinone/β-keto amphetamine backbone, but 

differs from mephedrone as it has a 3,4-methylenedioxy ring added to the phenyl ring. 

Thus, methylone is structurally similar to MDMA (Fig 1.1).  

MDPV – MDPV, 3,4-methylenedioxypyrovalerone, has the largest structural 

divergence from cathinone when compared to mephedrone or methylone. MDPV has a 

3,4 methylenedioxy ring added to the phenyl ring of the β-keto amphetamine backbone 

and a pyrrolidinyl ring and propyl group attached to the α carbon (Fig 1.1), making it 

structurally similar to pyrovalerone.  
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Figure 1.1 Molecular structures of amphetamine, cathinone, and related compounds  

Synthetic Cathinones: History and Abuse 

Catha edulis (khat) and the Discovery of Cathinone 

While the first written reports of khat use date back to the 14th century, the khat 

shrub was not well known by Europeans until its discovery and cataloguing in the 18th 

century by botanist Peter Forskal (Karila et al. 2015). Later, advances in analytical 

chemistry allowed for the isolation of an active ingredient, identified as ‘katin’ ((+) 

norpseudo-ephedrine), from khat extracts in 1887 (Kelly 2011). However, in the 20th 

century the United Nations Narcotic Laboratory analyzed khat leaves and confirmed the 

presence of another active ingredient, cathinone (Patel 2000). A controlled study 
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confirmed that cathinone was the compound responsible for the amphetamine-like 

stimulatory effect that accompanied chewing khat leaves (Widler et al. 1994). To this 

day, khat shrubs continue to be cultivated in the Arabian Peninsula and specific regions 

of Eastern Africa where their leaves are still commonly chewed for their stimulant effects 

(De Felice et al. 2014). While the use of khat was localized to these regions in the past, 

it became a widespread problem in more recent history following advances in logistics 

and immigration as well as invention of the internet (Coppola and Mondola 2012b; Katz 

et al. 2014).  

Synthesis of Cathinone Analogues 

Like many designer drugs, synthetic/substituted cathinones were first 

synthesized by academic chemists or the pharmaceutical industry for research or 

medicinal purposes. Therefore, synthesis protocols and the associated effects of these 

compounds were available in the literature and often discovered and repurposed as 

drugs of abuse at later dates (German et al. 2014). The first synthetic cathinone 

developed was methcathinone, a methylated analogue of cathinone. It was reportedly 

synthesized as an antidepressant in the former Soviet Union in 1928 and separately in 

the western world for use as an appetite suppressant in the 1950s (Spiller et al. 2011). 

Despite never being marketed due its abuse potential, methcathinone was rediscovered 

and used as a drug of abuse in the 1990s.  Development of mephedrone, MDPV, and 

methylone were first described in 1929, 1967, and 1996 respectively, while their abuse 

was not reported until the early- to mid- 2000s and came immediately prior the 

classification of cathinone and methcathinone as a schedule I controlled substances 

(German et al. 2014).  
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Controlled Substance Legislation and the Development of Designer Drugs 

The term “designer drug” refers to the fact that these compounds are specifically 

designed to circumvent drug laws. The Controlled Substance Act (CSA) of 1970 

established a framework for substances of abuse in the United States (USA), classifying 

compounds on a scale from schedule I to V based on medical use and potential for 

abuse (Banks et al. 2014). The CSA also permitted federal regulation of the 

manufacture, importation, possession, use, and distribution of controlled substances. 

This included the psychostimulants, cocaine and amphetamine. However, under this 

legislation, the government could not prosecute for the production, possession, or 

consumption of controlled substance analogues until those specific compounds were 

scheduled. Thus, after the CSA was passed, numerous synthetic designer compounds 

surfaced on the drug market and were abused to mimic the effects of popular illicit 

drugs, while eluding federal regulation (Banks et al. 2014). The first designer 

compounds to emerge were synthetic opioids in 1979, followed by psychostimulant 

analogues including methamphetamine and MDMA (German et al. 2014). As the abuse 

of designer drugs grew, the CSA was amended in 1986 to include compounds intended 

for human consumption that were “substantially similar” to schedule I and II controlled 

substances to be treated as schedule I substances. However, to avoid prosecution 

under the 1986 Controlled Substance Analogue Enforcement Act, designer drug 

analogues that had yet to be specifically scheduled as controlled substances began to 

be marketed explicitly as products that were “not for human consumption”  (Seely et al. 

2013; Spiller et al. 2011; Valente et al. 2014). This tactic was used to launch the 



20 
 

manufacturing, widespread distribution, and global abuse of synthetic cathinones 

without legal consequence.  

Prevalence of Synthetic Cathinones and the New Designer Drug Market 

Due to structural substitutions to the cathinone (β-keto amphetamine) molecule, 

synthetic cathinones were previously not covered by existing drug laws and could 

therefore be legally distributed and sold as bath salt products that were “not for human 

consumption”  (Banks et al. 2014). MDPV, mephedrone, and methylone were the most 

commonly identified synthetic cathinones in the forensic analysis of confiscated bath 

salts products (DEA 2011; Shanks et al. 2012; Spiller et al. 2011). Given the reported 

ability of these compounds to cause similar physical and neuropsychiatric effects as 

cocaine, MDMA, and the amphetamines, the abuse of bath salts was popularized under 

the notion that they were cheap and ‘legal’ alternatives to these illicit drugs. As a result, 

the global abuse of synthetic cathinones dramatically increased within the past decade. 

In 2011, the NHS reported that mephedrone was the third most commonly abused drug 

in the UK (German et al. 2014), while at the same time the National Forensic Laboratory 

Information System (NFLIS) named MDPV and methylone the fifth and eleventh most 

common hallucinogens in the US (DEA 2014).  

This increase in bath salts popularity has precipitated a concerning rise in the 

number of individuals requiring emergency medical treatment after synthetic cathinone 

intoxication. Data compiled from the American association of Poison Control Centers 

show a dramatic spike in the reports of bath salts overdose from 2009-2012, with the 

number of cases exceeding 7000 (Wood 2013). Another retrospective review of poison 
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control centers across 9 states found that 16% of reported bath salt toxicities resulted in 

either major medical consequences or death (Warrick et al. 2013). Furthermore, the 

Substance Abuse and Mental Health Services Administration (SAMHSA) reported that 

bath salts were involved in over 22,000 drug-related emergency department visits in 

2011 alone. The alarming rise of bath salts abuse and toxicities cases led to the 

scheduling of the most commonly abused synthetic cathinones, MDPV, mephedrone, 

and methylone, as class I controlled substances in 2011(DEA 2011). However, despite 

this classification, international control laws remain lacking and synthetic cathinone 

abuse has continued to thrive due in large part to a vast online e-commerce-based 

market for these compounds (Karila et al. 2015; Power 2014). In this clandestine 

marketplace, bath salts are synthesized, primarily in China and surrounding South East 

Asian countries, packaged, distributed, and sold directly to consumers (Katz et al. 

2014). As such, it is reported that MDPV, mephedrone, and methylone remain available 

in the street drug marketplace where they continue to be abused under false notions 

that they are “legal” and “safe” alternatives to more regulated illicit psychostimulants 

such as methamphetamine, MDMA, and cocaine (DEA 2014; Seely et al. 2013). 

Additionally, as the phenol ring and side chain of these cathinone analogs offer many 

possibilities for substitutions, chemists continue to come up with new substituted 

cathinones and give them different names in order to replace the banned substances. 

Recent reports indicate that over 44 different types of synthetic cathinones have been 

encountered worldwide (UNODC, 2013).  
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Patterns of Abuse and Drug Combinations 

According to numerous drug survey reports, synthetic cathinones are most 

popular among youths in urban environments, with adolescent males abusing them 

more frequently than females (DEA 2011). There is also an emergence of mid-to-late 

adolescents and young adult men abusing bath salts while attending techo-alternative 

parties (Zawilska and Wojcieszak 2013). The most common route of synthetic cathinone 

administration is insufflation (snorting), but they may also be ingested in the form of 

capsules or tablets (DEA 2011; Katz et al. 2014). Less common modalities include 

inhalation, intravenous injection, intramuscular injection, and rectal administration (DEA 

2011; Zawilska and Wojcieszak 2013). The average amount of synthetic cathinones 

abused per session varies widely from 25 milligrams to 5 grams, usually achieved 

through repeated doses ranging from 25 to 250 milligrams (DEA 2011).   

According to DEA statistics, bath salt preparations are commonly composed of 

MDPV, mephedrone, and methylone in combination with each other or other stimulant 

compounds (DEA 2014). In support of this, SAMHSA reports that over half of the 

registered emergency room visits associated with bath salt intoxication in 2011 involved 

synthetic cathinone compounds in various drug combinations (The DAWN Report, 

2013). Additionally, analysis of popular ‘legal high’ or ‘bath salts’ brands, as determined 

by retrospective searches of records involving synthetic cathinone intoxication at poison 

control centers, revealed that many of the most popular bath salt ‘brands’ contained 

mixtures of MDPV, mephedrone, and methylone (Araujo et al. 2015; Spiller et al. 2011). 

Moreover, in an effort to keep production costs down, clandestine drug manufacturer’s 

use these compounds to dilute the purity of MDMA and other illicit drugs (Brandt et al. 
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2010; Brunt et al. 2011; Winstock et al. 2011b). Thus, evidence now indicates that these 

compounds are frequently co-abused with each other and various other drug 

compounds in order to enhance their desired effects, and it appears likely that 

combinations of MDPV, mephedrone, methylone, or their possible analogs will continue 

to be found in designer drug mixtures (Coppola and Mondola 2012b; Spiller et al. 2011; 

Zawilska and Wojcieszak 2013). 

Monoamine Neurotransmitter Systems 

The pharmacological actions of synthetic cathinones include modulation of 

monoamine neurotransmitters, namely dopamine (DA), norepinephrine (NE), and 

serotonin (5-HT). The structural similarities between monoamines and psychostimulant 

compounds, including the cathinones, enable these drugs to interact with monoamine 

regulatory proteins and dysregulate signaling. Therefore, a brief overview of the 

anatomy and functionality of these systems is given. 

Dopamine 

Dopamine cell bodies are primary found in the substantia nigra (SN) and ventral 

tegmental area (VTA) (Björklund and Dunnett 2007; Oades and Halliday 1987). 

Dopamine cell bodies in the SN send projections into the striatum (STR, caudate 

putamen) and globus pallidus, forming the nigrostriatal brain pathway. This pathway 

may also be termed the motor control pathway as it plays an important role in 

movement coordination and behavioral sensitization to psychostimulant drugs of abuse 

(Björklund and Dunnett 2007; Uhl et al. 2002). Dopamine cell bodies in the VTA send 

projections to the limbic system – amygdala, nucleus accumbens (NAc), hippocampus 
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(mesolimbic) – and to areas of the cerebral cortex (mesocortical). The mesolimbic 

projection pathway, also termed the reward pathway, plays a central role in the 

rewarding effects of naturally rewarding stimuli, such as food and sex, and reward-

motivated behavior (Wise and Rompre 1989). This pathway is also implicated in the 

stimulant and rewarding properties of psychostimulant drugs of abuse (Volkow and 

Morales 2015; Wise 1996). The NAc is the primary projection site associated with 

rewarding stimuli and reference to the mesolimbic(Kelly et al. 2008) system in this 

dissertation specifically refers to the VTA to NAc pathway. Dysregulation of DA in the 

nigrostriatal and mesolimbic pathways is implicated in psychostimulant drug addiction.  

In dopamine neurons, biosynthesis of DA begins with the cytosolic conversion of 

tyrosine to dihydroxyphenylalanine (L-DOPA) via the rate limiting enzyme, tyrosine 

hydroxylase (TH). L-DOPA is then converted to DA by aromatic L-amino acid 

decarboxylase (AADC). DA is sequestered from the cytosol into synaptic vesicles by 

vesicular monoamine transporter (VMAT) and stored in vesicles until stimulation. Firing 

of an action potential prompts vesicular docking and release of DA into the synaptic cleft 

via exocytosis. Released DA binds to and activates dopamine receptors (D1, D2, D3, 

D4, D5) on found both postsynaptic and presynaptic neurons (Missale et al. 1998). 

Activation of D1- like receptors (D1 and D5) generally produces an excitatory effect, 

increasing neurotransmission (Dearry et al. 1990). Moreover, enhanced D1 receptor 

activity in the mesolimbic and nigrostriatal pathways has been implicated in behavioral 

sensitization and the reinforcing and stimulant properties of psychostimulant drugs of 

abuse (Hu et al. 2002; Presti et al. 2003; Uhl et al. 2002). Activation of D2-like receptors 

(D2, D3, D4) by released DA reduces neuronal firing in the mesolimbic and nigrostriatal 
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brain pathways (Missale et al. 1998). Notably, presynaptic D2 receptors function as 

autoreceptors which negatively regulate DA signaling (Beaulieu and Gainetdinov 2011), 

and D2 antagonists reportedly decrease the ambulatory response but enhance the 

expression of sensitization of many psychostimulants (Mohd-Yusof et al. 2016). After 

receptor signaling, DA is taken back up into the presynaptic terminal by the dopamine 

transporter (DAT) where it is either recycled and repackaged into synaptic vesicles by 

VMAT or degraded by mitochondrial monoamine oxidase B (MAO-B) and catechol-O-

methyltransferase (COMT) to produce homovanillic acid (HVA) via the intermediate 

metabolites 3,4-dihydroxyphenylacetic acid (DOPAC) and 3-methoxytyramine (3-MT). 

Serotonin 

The cell bodies of serotonin neurons are concentrated in midline areas of the 

midbrain and brainstem termed the raphe nuclei (Steinbusch 1981). Axonal projections 

are sent upward from the raphe nuclei via the medial forebrain bundle where they form 

widespread connections with various targets including the frontal cortex, NAc, STR, and 

hippocampus (Baumgarten and Grozdanovic 2000). Serotonin modulates several brain 

functions such as satiety, anxiety, emotion, mood, and sleep (Jacobs and Azmitia 1992; 

Pum et al. 2009; Ursin 2002). Serotonin biosynthesis begins via the cytosolic 

conversion of L-tryptophan to 5-hydroxytryptophan (5-HTP) by the rate limiting enzyme 

tryptophan hydroxylase (TPH). 5-HTP is then converted to serotonin, or 5-

hydroxytryptamine (5-HT), by cytosolic AADC. Serotonin, 5-HT, is then packaged into 

vesicles by VMAT and subsequently released into the synapse via exocytosis after an 

action potential has fired. Once released serotonin binds to one of 14 serotonin receptor 

subtypes found widely expressed throughout the CNS with notable localizations of 5-
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HT1B,2A,2C,3 in dopaminergic regions (NAc, STR, SN, VTA) (Baumgarten and 

Grozdanovic 2000; Egerton et al. 2008). Notably, 5-HT2C receptors are expressed on 

inhibitory GABA (γ-aminobutyric acid) neurons in the SN and VTA (Berro et al. 2017; De 

Deurwaerdère et al. 2004). Thus, 5-HT activation of these receptors inhibits 

downstream DA neurotransmission (Olijslagers et al. 2006). Importantly, given that 5-

HT2C negatively regulate DA signaling, drugs which promote simultaneous increases in 

DA and 5-HT in the NAc (and STR) are subsequently predicted to have lower rewarding 

and stimulant properties (Alex and Pehek 2007; Berro et al. 2017). After receptor 

signaling, 5-HT is transported back into presynaptic nerve terminals via the serotonin 

transporter (SERT), where it is repacked into vesicles by VMAT or degraded by MAO-A 

to yield 5-hydroxyindolacetic acid (5-HIAA).  

Norepinephrine 

Noradrenergic neurons, which synthesize norepinephrine (NE), are most notably 

found in the locus coeruleus of the brainstem (von Bohlen und Halbach and Dermietzel 

2006). These cells send projections that extend upward via the medial forebrain bundle 

where they form a broad range of synaptic contacts with targets in the cerebellum, 

cerebral cortex, and thalamic nuclei. Due to the wide distribution of projection sites, NE 

cells of the locus coeruleus modulate various behavioral and physiological processes 

including altertness, overall arousal, wakefulness and mood (Berridge and Waterhouse 

2003). As NE and DA are both catecholamines, their biosynthesis occurs via the same 

pathway. Thus, tyrosine is converted to L-DOPA and then to DA by TH and AADC, 

respectively. In noradrenergic neurons DA is transported by VMAT into vesicles 

containing dopamine-β-hydroxylase (DBH), which subsequently converts DA to NE. 
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Following stimulation and exocytosis, NE is released into the synaptic cleft were it 

activates adrenergic receptors, which also serve as targets for adrenaline. Two 

subtypes of adrenergic receptors have been described: alpha (α1, α2) and beta (β1, β2, 

and β3) which are found throughout the CNS and on peripheral targets (Insel 1996). NE 

neurotransmitters are taken back up into presynaptic neurons by the norepinephrine 

transporter (NET) and is either recycled into synaptic vesicles by VMAT or degraded by 

MAO and COMT to yield 3-methoxy-4-hydroxyphenylglycol (MHPG) and 

vanillymandelic acid (VMA), respectively.  

Monoamine Transporters: DAT, NET, SERT 

Dopamine (DAT), norepinephrine (NET), and serotonin (SERT) transporters 

terminate DA, NE, and 5-HT neurotransmitter signaling, respectively, via active 

reuptake into the presynaptic neuron (Robertson et al. 2009). As monoamine 

transporters are members of the solute carrier-6 (SLC6) family of secondary active 

transporters, the inward transport of released neurotransmitters (NTs) is driven by the 

sequential binding and co-transport of Na+ and Cl- down their electrochemical gradients 

(Reith 2002; Torres et al. 2003). The binding of substrate, two Na+ ions, and one Cl- ion 

triggers a conformational change in the transporter, shifting it from an “outward-facing” 

to an “inward-facing” conformation where the substrate, Na+, and Cl- are released into to 

the cytosol (Forrest et al. 2008; German et al. 2015). The release of the 

neurotransmitter substrate shifts the transporter from its inward-facing conformation to 

its outward-facing conformation. These plasmalemma transporters consist of 12 

transmembrane domains and intracellular loop domains containing phosphorylation and 

other biding sides that are essential for their regulation and function (Torres et al. 2003). 
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Since monoamine transporters regulate the strength and duration of neurotransmitter 

signaling many pharmacological agents often target these molecules in order to 

manipulate DA, NE, and 5-HT neurotransmission and the biological processes they 

modulate (Robertson et al. 2009). Moreover, given the structural similarities of DAT, 

NET, and SERT, it is important to note that drug compounds developed to target one of 

these transporters may also act on any or all of the other monoamine transporters, 

albeit with varying affinity and potency. However, in regards to psychostimulant drugs of 

abuse, DAT is a major target and will thus be discussed more thoroughly in this thesis. 

Neuropharmacology of Drug Abuse: DAT-Targeting Compounds  

The processing of reward-related stimuli, including those affiliated with drugs of 

abuse, is primarily mediated by mesolimbic neuronal projections from the VTA to the 

NAc (Volkow and Morales 2015; Wise 1996). Amphetamine-derived drugs of abuse 

target DAT in the dopaminergic nerve terminal regions, NAc and STR, and produce 

characteristic increases in extracellular DA within these regions (Carboni et al. 1989; 

Jones et al. 1998; Sitte and Freissmuth 2015). Drug-induced increases in accumbal DA 

release mimics phasic firing of VTA neurons and provokes rapid increases in DA 

necessary to stimulate D1 receptors (enhanced DA neurotransmission), which 

corresponds to the mechanism by which reward is signaled in the brain (Fleckenstein et 

al. 2007; Sitte and Freissmuth 2015; Wise 1996). Thus, these drugs are said to have 

rewarding properties. Additionally, as the mesolimbic pathway modulates reward 

motivated behavior to natural reward stimuli, such as food, this also applies to 

rewarding stimuli from drugs of abuse and corresponds to their reinforcing properties 

(Koob 1992; Wise 1996). This has been directly shown by studies using the neurotoxin 
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6-hydroxydopamine (6-OHDA), whereby 6-OHDA-induced lesions of the NAc resulted in 

prolonged, significant decreases in the reinforcing effects of cocaine (self-

administration) (Roberts and Koob 1982).  

In addition, amphetamine-like stimulants of abuse increase locomotor activity. A 

specific role for extracellular DA and DAT in this behavioral response has come from 

studies using DAT knockout mice, whereby DAT deficient animals were unresponsive to 

the stimulant effects of cocaine and amphetamine and did not show DA elevations 

following administration of these psychostimulants (Giros et al. 1996; Tilley et al. 2009). 

Also, neurotoxin-induced lesions of the NAc in rats abolished the psychostimulant-

induced locomotor activity of amphetamine and cocaine, specifically implicating a role 

for mesolimbic DA in these responses (Kelly and Iversen 1976; Kelly et al. 1975). 

Moreover, investigations using microdialysis have shown that the extent of drug-induced 

DA elevations in the NAc positively correlate with the motor-stimulant effect of abused 

psychostimulant compounds (Benwell and Balfour 1992; Bradberry 2002; Bradberry et 

al. 1991; Pierce and Kalivas 1995).  

Repeated, intermittent exposure to stimulant drugs of abuse often enhances the 

motor-stimulant response over time, a phenomenon termed behavioral sensitization 

(Pierce and Kalivas 1997). This process involves activation of the mesolimbic and 

nigrostriatal DA systems and can be manifested as increased locomotor activity or 

increased stereotyped behavior (repetitive or patterned movement) (Budygin et al. 

2000; Robinson and Becker 1986; Steketee and Kalivas 2011; Vanderschuren and 

Kalivas 2000).  Amphetamine-like stimulants often display a biphasic pattern of activity, 

whereby these drugs produce sensitized hyperactivity at lower doses, while sensitized 
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stereotyped activity is reported with very high doses (Kuczenski and Segal 1997; Pierce 

and Kalivas 1995). It is now accepted that mesolimbic DA plays a key role in the 

development of behavioral sensitization. Initial evidence for this came from studies 

showing that the expression of behavioral sensitization could be induced by intracranial 

injections of amphetamine into the VTA and NAc (Carr and White 1987). Moreover, 

striatal DA has been primarily implicated in the induction of stereotypic activity. A 

specific role for the nigrostriatal system in the induction of stereotypic activity was 

deduced from the observations that intrastriatal injections of amphetamine and DA 

produced stereotypy in rodents (Kelley et al. 1988; Presti et al. 2003), while 6-OHDA- 

induced lesions of the substantia nigra and striatum prevented amphetamine-induced 

stereotypy (Joyce and Iversen 1984; Price and Fibiger 1974).   

Mechanism of Transporter Interaction: Monoamine Releasers and Reuptake Inhibitors 

Monoamine transporters serve as primary biological targets for many drugs of 

abuse and pharmaceuticals (Amara and Sonders 1998). Pharmacological agents that 

interact with monoamine transporters can be divided into two functionally distinct 

classes: 1) pure monoamine reuptake inhibitors and 2) monoamine releasers or 

substrates (Baumann et al. 2014; Rothman and Baumann 2003). In addition, a 

distinguishing property of a given monoamine reuptake inhibitor or releaser compound 

is its relative potency at DAT, NET, and SERT or transporter selectivity profile. 

Monoamine reuptake inhibitors act as competitive blockers that bind monoamine 

transporters and prevent transporter-mediated reuptake of synaptic DA, NE, and/or 5-

HT into presynaptic terminals following their action potential –dependent release 

(Rothman and Baumann 2003). Cocaine is an example of a widely abused reuptake 
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inhibitor and its action to selectively bind DAT and block the DAT-mediated reuptake of 

DA from the synaptic cleft is well-documented (Boja and Kuhar 1989; Johanson and 

Fischman 1989; Jones 1984; Ritz et al. 1990). In contrast, monoamine releasers 

behave as substrates at monoamine transporters, competing with endogenous NTs for 

transporter-mediate uptake into the presynaptic neurons (Fleckenstein et al. 2007; Sitte 

et al. 1998). Once actively transported into neurons, these compounds promote the 

release of DA, NE, and/or 5-HT back into the synapse via reversal of monoamine 

transporter flux (Jones et al. 1999; Rothman and Baumann 2003). Most amphetamines, 

including METH and MDMA, are substrate-type releasers. Specifically, METH is a 

selective substrate for DAT-mediated transport into presynaptic neurons and 

subsequently induces DAT-mediated reverse transport of DA into the synaptic cleft 

(Calipari and Ferris 2013; Fleckenstein et al. 2007; Jones et al. 1999). MDMA (ecstasy) 

is also a transporter substrate, however, the methylenedioxy ring on MDMA results in a 

compound with a nearly 10-fold greater affinity for SERT as compared to METH 

(Eshleman et al. 2013; Rudnick and Wall 1992), while its effects at DAT are significantly 

weaker. Thus, MDMA is a non-selective transporter substrate and promotes the release 

of both 5-HT and DA, albeit with 5-HT release exceeding that of DA (Gudelsky and 

Nash 1996).  

The mechanism by which amphetamine-like compounds promote transporter-

mediated efflux involves a concerted action of these drugs to inhibit MAO and disrupt 

VMAT function upon neuronal entry (Schmitz et al. 2001; Sitte and Freissmuth 2015). 

Amphetamines are also exogenous substrates of VMAT, and thus, accumulate in 

synaptic vesicles (Sulzer et al. 1995). Therein, the amphetamines act as weak bases in 
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the acidic luminal environment of synaptic vesicles and dissipate the proton gradient. 

This prevents the inward transport of monoamines by VMAT and results in an elevation 

of monoamines in the cytosol (Gulaboski et al. 2007; Sulzer and Rayport 1990), which 

is further exacerbated by MAO inhibition (Sitte and Freissmuth 2015; Thomas et al. 

2008). Thus, the amphetamines increase cytosolic monoamine concentrations to levels 

that allow for occupation of their internal binding site on plasmalemma transporters and 

subsequently their outward transport (Sulzer et al. 1993). Notably, elevations in 

cytosolic DA levels have been attributed to the neurotoxicity of METH and other 

amphetamine-related drugs.   

Neurotoxicology of Amphetamine-Related Drugs 

Dopaminergic brain regions are the primary targets of neurotoxicity induced by 

amphetamine-related drugs (Yamamoto et al. 2010). Neurochemical markers of this 

toxicity include decreased DA and DA metabolite tissue content and decreased 

expression levels of TH and DAT, all of which have been observed in the striatum (STR) 

and frontal cortex with very high single doses or repeated doses of METH and AMPH 

administration (Halpin et al. 2014; Moratalla et al. 2017; Wagner et al. 1980). Most 

importantly, METH and AMPH produce long term damage to dopamine axon terminals 

in the STR (Ares-Santos et al. 2014; Granado et al. 2011; Ricaurte et al. 1982), while 

reducing the number of TH-positive nissl stained neurons in the substantia nigra pars 

compacta (SNpc) (Ares-Santos et al. 2014). Additionally, the amphetamines trigger 

neuroinflammatory responses in the brain areas most affected by their toxicity (Thomas 

et al. 2004).   
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Biochemical Mechanisms of Neurotoxicity: Oxidative Stress and Excitotoxicity 

The mechanisms underlying METH and AMPH-mediated neurotoxicity are 

complex and may involve several different processes. In this regard, oxidative stress is 

thought to be a key mechanism, given that METH and AMPH increase the production of 

reactive oxygen species (ROS), such as hydroxyl radicals and superoxides, and 

reactive nitrogen species (RNS), such as nitric oxide (NO) and peroxynitrite (Cadet and 

Brannock 1998; Cubells et al. 1994; Hansen et al. 2002). ROS and RNS can damage 

membranes, inhibit protein function, and damage DNA (Cadet and Brannock 1998). 

Further support for the involvement of oxidative stress in amph-induced DA toxicity was 

provided by studies showing that meth and MDMA-induced DA depletions were 

attenuated by antioxidant treatment (N-acetyl-cysteine, ascorbic acid, and vitamin E) 

(De Vito and Wagner 1989; Fukami et al. 2004; Wagner et al. 1986) and exacerbated 

following glutathione depletion and inhibition of both superoxide dismutase and nitric 

oxide synthase (NOS) (Brown and Yamamoto 2003; Jayanthi et al. 1998). Several 

mechanisms contribute to the formation of ROS and RNS following exposure to 

amphetamine-related dugs via several mechanisms.   

Reactive metabolites of DA degradation are considered a primary source of ROS 

in amphetamine-induced oxidative stress (Delcambre et al. 2016; Fleckenstein et al. 

2007; Schmidt et al. 1985; Yamamoto and Bankson 2005). Amphetamine-related drugs 

increase the cytosolic pool of DA available for 1) metabolism by MAO to yield DOPAC 

and hydrogen peroxide and 2) direct oxidation to form DA semiquinones and superoxide 

radicals. Hydrogen peroxide and superoxide anions can generate highly reactive 

hydroxyl radicals via fenton reactions (Kuhn et al. 2006; LaVoie and Hastings 1999).  
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Hydroxy radicals damage various cellular components and initiate lipid peroxidation, 

leading to membrane damage (necrosis), and eventually activate proteases, initiating 

the cell death cascade (Cadet et al. 2005). Support for the involvement of DA in METH 

and AMPH-induced toxicity comes from studies showing that inhibition of DA synthesis 

afforded neuroprotection (Ares-Santos et al. 2012; Larsen et al. 2002; Schmidt et al. 

1985), while increasing cytosolic DA levels with DA precursor, l-dopa, exacerbated 

these toxic effects (Gibb and Kogan 1979; Schmidt et al. 1985).   

Additionally, METH and AMPH induce oxidative stress by enhancing glutamate 

release (Mark et al. 2004; Nash and Yamamoto 1992). This process, termed 

excitotoxicity, culminates in increased cytosolic Ca2+ and leads to the formation of RNS 

and ROS (Forder and Tymianski 2009).  Specifically, NO, which is produced 

subsequent activation of the Ca2+-dependent nNOS, readily reacts with superoxide 

anions to form highly reactive peroxynitrite compounds that produce toxicity via the 

nitrosylation of proteins (Bruno et al. 1993). Evidence for the involvement of this process 

in METH and AMPH neurotoxicity has been provided by several studies demonstrating 

that blockade of nNOS and glutamate receptor activity provides full protection against 

AMPH-induced DA depletion (Chipana et al. 2008; Itzhak et al. 2000; Mark et al. 2004), 

and others showing that co-administration of METH with peroxynitrite scavengers 

partially prevented this toxic effect (Imam et al. 2000). Moreover, robust elevations in 

extracellular DA produced by binge doses of METH have been directly implicated in the 

development of excitotoxicity, whereby excessive DA release activates the nigrostriatal 

pathway and causes increased striatal glutamate release (Brown et al. 2005; Halpin et 

al. 2014; Mark et al. 2004). Another consequence of excitotoxicity is inhibition of 
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complex II of the mitochondrial electron transport chain by peroxynitrite, resulting in 

excessive leakage of ROS in addition to altered energy metabolism (Heales et al. 

1999). Indeed, METH-induced striatal DA depletions were accompanied by decreased 

complex II activity and exacerbated by the complex II inhibitor, malonate (Brown et al. 

2005). Also, inhibition of complex II activity was shown to be dependent on glutamate 

receptor activation and peroxynitrite formation (Brown et al. 2005).  Moreover, METH-

induced mitochondrial dysfunction is suggested to mediate the long-term deficits in DA 

and DA regulating proteins produced by the amphetamines (Yamamoto et al. 2010).  

Neuroinflammation 

Glial cells (astroglia and microglia) modulate the neuroinflammatory response in 

the CNS by releasing pro-inflammatory cytokines following brain insult (Lucas et al. 

2006). Over activation of this response, as observed with various neurodegenerative 

conditions, causes persistent neuroinflammation and eventually contributes to the loss 

of neurons (Lucas et al. 2006). Thus, reactive gliosis is considered a universal reaction 

to injury in the CNS and is often used as a marker of neuronal damage (O’Callaghan 

and Sriram 2005). Biochemical markers of gliosis include the increased expression of 

glial fibrillary acidic protein (GFAP) and the ionized calcium-binding adaptor protein-1 

(Iba1), which is indicative of astroglia and microglia activation, respectively.  Notably, 

several studies have shown that AMPH-related compounds increase GFAP and Iba1 

immunoreactivity in the STR, cortex, and SNpc; areas that are most affected by METH 

and AMPH-mediated neurotoxicity (Ares-Santos et al. 2013; Granado et al. 2011; 

Guilarte et al. 2003; Thomas et al. 2004). While the mechanism behind this response is 
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not well elucidated, DA quinones and glutamate receptor activation have also been 

shown to stimulate microglia activation (Kuhn et al. 2006). 

Determining the Pharmacology of Novel Drugs 

As monoamine transporters are symporter proteins, they express the 

electrogenic properties of ion channels (Alexander et al. 2011). Thus, molecules that 

interact with these proteins, including their endogenous substrates DA, NE, and 5-HT, 

induce transporter-mediated ionic currents that can be measured using voltage clamp 

techniques in cells stably expressing human monoamine transporters (Torres et al. 

2003). Specifically, compounds that are translocated through transporters into neuronal 

cells along with sodium ions produce transporter-mediated inward (depolarizing) 

currents, while compounds that bind to transporters but are not translocated into cells 

produce outward currents (due to blockade of an endogenous leak current) (Alexander 

et al. 2011). Therefore, the action of a drug at monoamine transporter proteins can be 

determined by measuring these ionic currents in cells before and after drug exposure.  

For novel drug compounds, the nature and selectivity of their interactions with 

monoamine transporter can be evaluated using in vitro radioligand uptake and release 

assays. In these assays, drugs are analyzed for their potencies and efficacies to (a) 

block the uptake of radio-labeled monoamines dispensed in the external solution (IC50 

values)  or (b) promote release of preloaded radiolabeled monoamine tracers (EC50 

values) at specific monoamine transporters (Rothman and Baumann 2003). Pure 

reuptake inhibiting compounds block the uptake of radio-labeled monoamines without 

evoking full release of preloaded substrates. Monoamine releasing or substrate 
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compounds block the reuptake radiolabeled monoamines while also stimulating the full, 

efficacious release of preloaded substrates (Baumann et al. 2012; Rothman and 

Baumann 2003). Measured IC50 and/or EC50 values reflect the relative potency and 

selectivity of a given drug at DAT, NET, and SERT. However, given the complexity of 

biological matrices, in vitro analyses do not always accurately represent the in vivo 

effects of a drug (De Felice et al. 2014). Thus, in order to characterize the in vivo 

neurochemical profiles of a CNS-active drug, high performance liquid chromatography 

equipped with electrochemical detection (HPLC-ECD) assays are utilized to measure 

the impact of a given drug on endogenous monoamine levels in discrete brain tissue 

and cerebral spinal fluid.  

The transporter selectivity profile and neurochemical effects of a given 

psychostimulant can be used to predict its behavioral effects and abuse potential 

(Baumann et al. 2014). For example, as the dopaminergic system is widely accepted to 

play a critical role in abuse-related effects, the potency and efficacy of a drug at DAT to 

enhance DA signaling, is often associated with its potential for abuse. Drug-induced 

elevations in mesolimbic DA are also correlated with elevations in locomotor activity 

responses in addition to rewarding properties. Furthermore, given that serotonin 

signaling can negatively regulate the release of DA, relative activity of a drug at SERT 

can also serve as an indicator of low abuse liability (Howell and Cunningham 2015; 

Howell and Kimmel 2008; Rothman and Baumann 2003).   
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Abuse Liability Testing for Novel Drugs 

Abuse liability testing utilizes behavioral assays to investigate whether a novel 

drug has stimulatory, rewarding, and/or reinforcing properties that are characteristic of 

addictive drugs (Balster and Bigelow 2003; FDA 2016). The motor-stimulant effect of a 

drug is an indicator of abuse lability and is commonly assessed by monitoring for a 

drug’s ability to induce locomotor activity and express behavioral sensitization. 

Additionally, a test drug may be assessed for its ability to cross-sensitize with known 

drugs of abuse, whereby animals repeatedly administered the novel drug display 

enhanced locomotor responses to a challenge dose of cocaine, METH, or MDMA. 

Cross-sensitization is thought to occur when two drugs have overlapping mechanisms 

that underlie the development of sensitization, despite having distinct transporter 

interactions (Steketee and Kalivas 2011). Direct abuse liability studies evaluate whether 

a drug has rewarding and/or reinforcing properties using the following behavioral 

paradigms: conditioned place preference (CPP), intracranial self-stimulation (ICSS), and 

self-administration (Ator and Griffiths 2003). In these assays, the degree of reward 

and/or reinforcement of a test drug corresponds to its efficacy and potency to produce 

drug side preference, facilitate low rates of self-stimulation, and induce self-

administration in trained animals.  

Another approach is to characterize the behavioral effects of a novel drug in 

comparison to those of a well-known drug of abuse (Balster and Bigelow 2003; FDA 

2016). To this end, drug discrimination assays are used to determine if a test drug 

produces descriptive stimulus effects that are similar to those produced by established 

drugs of abuse (Ator and Griffiths 2003). In these tests, novel drugs are assessed for 
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their ability to produce appropriate responses (full substitution/generalization) in animals 

trained to discriminate a known drug of abuse (Berquist and Fantegrossi 2017). 

Moreover, compounds that can fully substitute for a specific drug of abuse are thought 

to have similar pharmacological activity, subjective effects, and addictive properties as 

the comparator drug (Balster and Bigelow 2003; Berquist and Fantegrossi 2017). In 

addition, specific behavioral responses elicited by a test drug (e.g. degree of motor 

activity and rate of self-administration) can be directly compared to those observed with 

known drugs of abuse. Thus, the abuse potential of a novel drug may also be defined in 

terms of the likeness or unlikeness of their behavioral responses relative to known 

drugs of abuse. 

Neuropharmacology of the Synthetic Cathinones 

Prior to the emergence of ‘bath salts’ abuse in 2010-2011, scientific literature 

regarding the pharmacology of synthetic cathinones was extremely limited. Thus, the 

growing prevalence of their abuse in recent years has prompted a number of preclinical 

investigations. Specific emphasis has been placed on elucidating the neurochemical, 

behavioral, and potential toxic effects of the three most commonly abused synthetic 

cathinones, MDPV, mephedrone, and methylone. Therefore, the terms ‘synthetic 

cathinone(s),’  ‘cathinone derivative(s),’ and ‘cathinone(s)’ used in the remainder of this 

dissertation refer to these three compounds unless otherwise noted.   

Initial preclinical investigations of synthetic cathinones evaluated the in vitro 

mechanism of action and relative potency of these drugs at monoamine transporters 

(Baumann et al. 2012; Eshleman et al. 2013; Simmler et al. 2013). Given the novelty of 
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these compounds, many studies have included cocaine and various amphetamine 

derivatives as comparator compounds and describe the actions of the synthetic 

cathinones in regards to their likeness or unlikeness to these comparator drugs 

(Baumann et al. 2012; Baumann et al. 2013).  Moreover, as discussed above, 

behavioral assays are also used to characterize the subjective stimulus and reinforcing 

properties of the synthetic cathinones in comparison to established drugs of abuse 

(Gregg and Rawls 2014). Therefore, the use of known comparator compounds 

enhances the translation of preclinical data on synthetic cathinones into clinically useful 

information.  

MDPV 

Initial preclinical investigations utilized various in vitro assays to determine the 

mechanism of action of MDPV at monoamine transporters. In these studies, MDPV 

displayed high affinity binding at DAT and NET, potently blocking the uptake of [3H]-DA 

and [3H]-NE, and evoking partial, low efficacy release of preloaded DAT and NET 

substrates, while producing only weak effects at SERT (100-fold greater potency at DAT 

and NET vs SERT) (Baumann et al. 2013; Eshleman et al. 2013). Additional in vitro 

studies reported no significant affinity of MDPV for non-transporter sites of action 

(Eshleman et al. 2013; Simmler et al. 2013). Thus, the action of MDPV to selectively 

block DAT and NET reuptake, without inducing the transporter-mediated release of DA 

and NE suggested that this compound was a cocaine-like, catecholamine reuptake 

inhibitor rather than a transporter substrate. Electrophysiology studies showing that 

MDPV produces outward, hyperpolarizing currents at hDAT, as seen with cocaine, 

confirmed this notion (Cameron et al. 2013a). However, direct comparisons with 
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cocaine revealed significant differences in regard to potency and selectivity for 

catecholamine transporters. Specifically, MDPV was 50-times more potent at the DAT 

and 10-times more potent at the NET than cocaine (Baumann et al. 2013). Taken 

together, these studies indicate that MDPV is potent and selective inhibitor of DAT and 

NET, and it does not significantly interact with SERT nor does it have non-transporter 

sites of action.   

In vivo pharmacology of MDPV. In agreement with in vitro findings, MDPV 

produced significant dopaminergic effects in vivo. MDPV administration resulted in a 

dose-dependent increase in extracellular DA and not 5-HT in both rats (Baumann et al. 

2013) and mice (Fantegrossi et al. 2013) in various brain regions as determined by 

HPLC-ECD, consistent with its selective inhibition of DA uptake. Moreover, MDPV-

induced elevations in dialysate DA in the NAc were 10-fold greater than those found 

with cocaine and found to be positively correlated with the extent of locomotor activation 

(Aarde et al. 2013c; Baumann et al. 2013). Several studies have reported simulation of 

locomotor activity and stereotypy following MDPV treatment (Aarde et al. 2013b; 

Fantegrossi et al. 2013; Glennon and Young 2016; Marusich et al. 2012), and some 

reported that MDPV-induced increases in ambulation and stereotypic movements were 

at least 10 fold greater than cocaine. Interestingly these locomotor effects and could be 

attenuated following pretreatment (Baumann et al. 2013; Marusich et al. 2012) with D1 

receptor antagonists (Marusich et al. 2014). The psychostimulant effect of MDPV has 

been assessed across a range of doses (0.3 – 40 mg/kg), and the dose-response 

relationship for ambulatory activity is that of an inverted U-shape curve, with 

sensitization of ambulatory activity at lower does (1-10 mg/kg) (Baumann et al. 2016; 
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Gregg and Rawls 2014) and significantly reduced ambulation at higher doses of MDPV 

(15-30 mg/kg) (Baumann et al. 2016; Fantegrossi et al. 2013). The high dose effect 

appears to be due to the manifestation of focused stereotyped behavior (Fantegrossi et 

al. 2013; Marusich et al. 2012). Overall, these data indicate that MDPV-mediated 

inhibition of DAT increases extracellular DA in mesolimbic brain regions, and that this 

enhanced DA neurotransmission is responsible for the stimulant effects of MDPV.   

Abuse liability: MDPV. In drug discrimination studies, MDPV fully substituted for 

cocaine (Gatch et al. 2013), METH (Fantegrossi et al. 2013), and AMPH (Harvey et al. 

2017), but only partially for MDMA (Harvey and Baker 2016), indicating that this 

compound produces subjective effects similar to established DA-selective drugs of 

abuse. Various studies have demonstrated that MDPV elicits conditioned place 

preference (Iversen et al. 2014; Karlsson et al. 2014; King et al. 2015), resulting in a 

greater preference score than amphetamine (Karlsson et al. 2014), lowers ICSS 

thresholds (Bonano et al. 2014), and is readily self-administered (Aarde et al. 2013b; 

Marusich et al. 2012; Schindler et al. 2016b). Based on these data, MDPV may have 

greater abuse potential than METH or cocaine.  

Mephedrone and Methylone 

In contrast to MDPV, mephedrone and methylone appear to be substrates at 

monoamine transporters. Several groups have reported that mephedrone and 

methylone inhibit the uptake of [3H]-DA and [3H]-NE and [3H]-5-HT (Baumann et al. 

2012; Eshleman et al. 2013; Simmler et al. 2013) and stimulate full, efficacious release 

of preloaded substrates of DAT, NET, and SERT (Baumann et al. 2012; Eshleman et al. 
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2013), with a potency rank of NET>DAT>SERT for mephedrone and NET>SERT>DAT 

for methylone. Notably, methylone was found to be half as potent as mephedrone at all 

transporters (Baumann et al. 2012). These findings indicate that mephedrone and 

methylone induce non-selective substrate activity at all plasmalemma monoamine 

transporters, similar to MDMA and AMPH (Cadet et al. 2007; Kalant 2001). Definitive 

confirmation of their substrate activity came from studies demonstrating that 

mephedrone and methylone produced inward, depolarizing currents at hDAT that are 

indicative of a transportable substrate similar to those observed with the amphetamines 

(Cameron et al. 2013a; Solis 2016). In comparison studies, mephedrone’s values for 

binding affinity, inhibition of uptake, and drug-induced release of preloaded substrates 

at DAT and SERT were similar to METH and MDMA values, respectively (Baumann et 

al. 2012; Simmler et al. 2013), while methylone displayed weaker DA effects than 

METH but promoted 5-HT release similar to MDMA (Baumann et al. 2012). One point of 

divergence from METH and MDMA was that both substrate cathinones were less potent 

at inhibiting uptake and inducing release of radio-labeled substrates via VMAT2 

(Eshleman et al. 2013). Overall, these findings show that mephedrone and methylone 

are substrates for all monoamine transporters with non-selective releasing actions that 

are similar to MDMA and the amphetamines.  

In vivo pharmacology of mephedrone and methylone. The in vivo neurochemical 

profiles of mephedrone and methylone are consistent with in vitro findings. Through 

microdialysis studies, investigators have determined that mephedrone and methylone 

produced dose-related concurrent increases in extracellular DA and 5-HT levels in the 

NAc (Aarde et al. 2013a; Baumann et al. 2012; Kehr et al. 2011; Schindler et al. 2016b), 
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and mephedrone was more potent than methylone (Baumann et al. 2012; López‐Arnau 

et al. 2012). Consistent with the neurochemical effects of MDMA, the majority of HPLC 

analyses with mephedrone and methylone have found that the 5-HT increases are 

greater in magnitude than the accompanying DA increases (Baumann et al. 2012; Kehr 

et al. 2011; López‐Arnau et al. 2012). However, while the ratio of DA: 5-HT release 

mimics that of MDMA, the substrate cathinones appear to have greater dopaminergic 

effects with potencies resembling AMPH (Kehr et al. 2011). For example, mephedrone 

increased dialysate DA in the NAc to levels that were significantly greater than those 

produced by MDMA and comparable to amphetamine DA levels (Hadlock et al. 2011; 

Kehr et al. 2011). A few studies have reported that mephedrone and methylone produce 

dose-dependent increases in locomotor activity (Baumann et al. 2012; Lisek et al. 2012; 

Shortall et al. 2013), with mephedrone being the more potent compound (Baumann et 

al. 2012; Gregg and Rawls 2014), further implicating enhanced DA neurotransmission 

as an effect of these drugs. Like MDPV, sensitization to high doses of mephedrone (15-

30 mg/kg) is expressed as increased stereotypy (Gregg et al. 2013a), while this effect 

was not observed with methylone. Moreover, mephedrone-induced hyperactivity is 

attributed to increased striatal levels of DA and 5-HT and appears to be regulated by DA 

receptor signaling (Lisek et al. 2012), given that it was attenuated by D1R antagonists 

and enhanced by D2R antagonists. Additionally, at least one group has shown that 

mephedrone pretreatment cross-sensitizes with motor-stimulant effect of cocaine 

(Gregg et al. 2013b).  However, the psychostimulant effects of mephedrone and 

methylone are more rapid in onset, shorter in duration, and considerably weaker than 

those of cocaine, MDPV, or METH (Gatch et al. 2013; Green et al. 2014; Marusich et al. 
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2012; Nguyen et al. 2016). Given the significant serotonergic effects of the substrate 

cathinones, this is most likely due to 5-HT modulation of dopaminergic effects.  

Abuse liability: mephedrone and methylone. In drug discrimination studies, 

mephedrone and methylone fully substituted for MDMA, METH, and cocaine (Bonano et 

al. 2014; Gatch et al. 2013; Gregg and Rawls 2014), suggesting that these compounds 

produce similar subjective effects as these popular drugs of abuse and thus pose a high 

potential for abuse. Mephedrone and methylone induced conditioned place preference 

and lowered ICSS thresholds, with an ordered potency for both assays reported as 

MDPV > mephedrone > methylone (Bonano et al. 2014; Gregg and Rawls 2014; 

Karlsson et al. 2014). Moreover, mephedrone and methylone are self-administered by 

rodents across multiple doses (Aarde et al. 2013a; Creehan et al. 2015); however, self-

administration of these substrate cathinones took longer to develop than MDPV self-

administration (Schindler et al. 2016b). Overall, mephedrone and methylone produce 

rewarding and reinforcing effects in animals that clearly indicate their abuse potential in 

humans.  

Neurotoxicity of Substrate Cathinones 

AMPH and METH have been established to induce neurotoxic damage to DA 

neurons in rats and mice (Yamamoto et al. 2010). Given the close structural similarities 

and mechanistic overlap of mephedrone and methylone with METH, preclinical research 

hypothesized that these compounds may also be neurotoxic to DA nerve endings. In 

vitro cytotoxicity assays supported this notion, demonstrating that mephedrone 

increases the release of lactate dehydrogenase (associated with disruption of cellular 
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membranes) (den Hollander et al. 2014), decreases mitochondrial respiration (den 

Hollander et al. 2015), and dose-dependently decreases cell viability superior to that of 

MDMA in neuroblastoma cell lines and primary cultures of cortical neurons (Martinez-

Clemente et al. 2014). However, a number of studies have established that neither 

mephedrone nor methylone induced blatant toxicity to DA nerve endings (Angoa-Perez 

et al. 2012; Angoa-Pérez et al. 2016), as indicated by a lack of persistent decreases in 

DA, TH expression, or DAT protein levels. Additionally, no signs of microglial or 

astrogilal activation were observed in the striatum 2 or 7 days following binge dosing of 

either mephedrone or methylone (Angoa-Perez et al. 2012; Anneken et al. 2015). While 

one group has reported prolonged decreases in TH and DAT expression in the frontal 

cortex and reduced striatal D2R with repeated mephedrone treatment, doses used in 

this study were extremely high (50 mg/kg), and repeated daily doses of this magnitude 

would likely result in cardiovascular toxicity that would outweigh neurotoxic effects 

(Lopez-Arnau et al. 2015). Moreover, while a few studies have reported mild 

serotonergic toxicity with the substrate cathinones when administered at elevated 

ambient temperatures (López-Arnau et al. 2014; Martinez-Clemente et al. 2014), follow-

up studies have been conflicting with many groups unable to reproduce this toxicity 

(Angoa-Pérez et al. 2014; Miner et al. 2017).  

Significant Combined Effects 

Interestingly, while mephedrone or methylone do not appear to induce DA toxicity 

on their own, they exacerbate the neurotoxic effects of METH and MDMA. When co-

administered with neurotoxic doses of METH or MDMA, mephedrone and methylone 

significantly decreased striatal DA, DAT, and TH levels and increased GFAP expression 
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beyond the effects of METH or MDMA alone (Angoa‐Pérez et al. 2013; Anneken et al. 

2015). In contrast, MDPV provided complete protection against the toxic effects of 

METH on DA nerve ending markers and GFAP, most likely via its potent and 

competitive blockade of DAT-mediated transport (Anneken et al. 2015). While this 

neuroprotective effect could be predicted to extend to other DAT substrate drugs, this 

does not appear to be the case. Recent studies have reported that self-administration of 

binary mixtures of MDPV and methylone resulted in a high incident of lethality (50%) 

(Gannon et al. 2018), which was not observed with self-administration of either drug 

alone at identical doses. While the pharmacology underlying this combined toxicity has 

not been thoroughly investigated, drug-drug interactions at the DAT may be a 

contributing factor. A study utilizing in vitro electrophysiology techniques found that 

when MDPV and mephedrone were simultaneously applied to the DAT, the substrate 

activity of mephedrone (inward current) occurred more quickly than the blocking action 

of MDPV (outward current) (Cameron et al. 2013b). This suggests that co-

administration of MDPV and mephedrone would first produce DA release via 

mephedrone and that DA reuptake would be subsequently prevented due to DAT 

blockade via MDPV. Another study demonstrated locomotor sensitization to mixtures of 

MDPV and mephedrone and found that rats pretreated with MDPV and mephedrone 

displayed cross-sensitization to the locomotor stimulant effects of cocaine, with activity 

counts greater than controls and the saline-cocaine group (Berquist et al. 2016).  

Additionally, prior exposure to mephedrone increased the stimulant effects of cocaine 

(Gregg et al. 2013b). Given the involvement of midbrain dopaminergic circuits in the 
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development of sensitization, these studies provide further evidence for augmented DA 

neurotransmission by drug combinations containing synthetic cathinones.  

Summary and Rationale for the Present Study 

The synthetic cathinones, MDPV, mephedrone, and methylone gained worldwide 

notoriety as the psychoactive components of ‘bath salts;’ a marketing term used to 

circumvent federal drug laws and permit their legal sale. To date, the majority of 

preclinical investigations on MDPV, mephedrone, and methylone have primarily focused 

on the individual pharmacology and abuse-related effects of these drugs. However, 

DEA statistics and forensic reports indicate that bath salt products generally contain 

various mixtures of synthetic cathinones (DEA 2011; Spiller et al. 2011). Moreover, a 

retrospective search of records involving synthetic cathinones at poison control centers 

revealed the most frequently abused bath salt ‘brands,’ identified by patient history 

reports, contained binary and ternary mixtures of MDPV, mephedrone, and methylone 

(Spiller et al. 2011; Warrick et al. 2013). Therefore, the primary aim of this dissertation 

was to address this limitation and provide acuity into the pharmacological interactions 

that may occur when these compounds are abused in combination. Our central 

hypothesis was that pharmacological interactions at the DAT following co-exposure to 

MDPV, mephedrone, and methylone will produce significant short- and long-term effects 

on dopaminergic tone. This hypothesis was tested in Chapters 3 and 4, which utilized a 

novel HPLC-ECD assay developed in our laboratory for sensitive detection of 

monoamines and respective metabolites in the small DA nuclei (VTA and SNpc), in 

addition to the larger nerve terminal areas (NAc and STR). The development and 

validation of this method is discussed in Chapter 2.  
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The individual pharmacological mechanisms of MDPV, mephedrone, and 

methylone have been largely determined and suggest opportunities for significant 

pharmacological interactions at the DAT. Similar to cocaine, MDPV acts as a highly 

selective reuptake inhibitor at DAT and promotes dose-dependent increases in 

extracellular DA levels (Baumann et al. 2013; Coppola and Mondola 2012a). 

Mephedrone and methylone possess similar pharmacology to METH and MDMA, acting 

as non-selective substrates at the DAT, inducing the transporter-mediated release of 

DA (Baumann et al. 2012; Simmler et al. 2013). Investigations using in-vivo 

microdialysis have indicated that these substrate-type synthetic cathinones precipitate 

rapid and marked elevations in dialysate DA levels that are greater than MDMA and 

comparable to those observed with METH (Kehr et al. 2011). Given that synergistic 

drug-drug interactions are often more profound when the drugs administered produce 

qualitatively similar effects via distinct pharmacological mechanisms (Tallarida 2011), 

the dichotomy of DAT interactions by MDPV (blocker) and the substrate cathinones to 

increase extracellular DA levels provides an avenue for accentuated dopaminergic 

effects when these drugs are co-abused.  

Chapter 3 of this dissertation has explored the acute effect of co-synthetic 

cathinone exposure on DA neurotransmission in mice. This was accomplished using our 

novel and validated HPLC-ECD assay (Allen et al. 2017) to measure DA and DA 

metabolite levels in discrete brain regions of mice treated with MDPV, mephedrone, and 

methylone alone and in combination. In addition, locomotor activity was assessed in 

mice treated with the synthetic cathinones individually and in combination to determine 

if any combined effects extended to DA-mediated behavioral processes. We 
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hypothesized that the co-administration of MDPV, mephedrone, and methylone would 

enhance the dopaminergic effects of the individual drugs. From this study, we found a 

significant combined effect on both DA levels and locomotor activity that appeared to be 

a result of synergistic pharmacological activity. Moreover, this study was the first to 

report an in vivo synergistic effect with ternary synthetic cathinone mixtures and 

emphasized the importance of using drug mixtures to model bath salts in abuse in 

behavioral and neurotoxicity studies.  

While interactions between the synthetic cathinones themselves are not well 

documented, evidence of a combined pharmacological effect between the substrate 

cathinones and neurotoxic DAT-targeting drugs has been reported (Angoa-Pérez et al. 

2016). Despite structural and mechanistic similarities to well-known agents of 

neurotoxicity, neither mephedrone nor methylone have been shown damage DA nerve 

endings; however, both compounds exert the deleterious effect of enhancing METH and 

AMPH toxicity when co-administered with these drugs (Angoa-Perez et al. 2012; 

Anneken et al. 2015). Given the involvement of elevated DA levels in METH-induced 

neurotoxicity via degradation to reactive metabolites and enhancement of glutamate-

mediated excitotoxicity, the authors of these papers proposed that the substrate 

cathinones exacerbated METH toxicity by increasing DA to levels that were greater than 

those achieved by each drug alone (Anneken et al. 2015). As noted above, in Chapter 

3, we present our data which demonstrates enhanced dopaminergic activity with co-

administration of MDPV, mephedrone, and methylone; thus we hypothesized that the 

combination of these cathinones may promote damage to DA nerve endings. Therefore, 

in Chapter 4 of this dissertation, we present data from studies aimed to determine if 
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chronic co-synthetic cathinone exposure produced significant effects on dopamine 

toxicity. This was accomplished using HPLC and immunoblot assays to assess the 

levels of DA, TH, DAT, and GFAP in mesolimbic and nigrostriatal brain tissue, and 

immunostaining for stereological analysis of DA neurons in the SNpc of mice chronically 

treated with the cathinone cocktail. We hypothesized that pharmacological interactions 

between MDPV, mephedrone, and methylone following repeated co-exposure would 

significantly alter the toxic properties of these drugs in dopaminergic brain regions. 

Results from this study showed a unique combined effect that was described as a 

‘functional lesion,’ whereby repeated co-synthetic cathinone exposure downregulated 

DA, TH and DAT and other key players of the dopaminergic synapse without inducing 

blatant reductions in neuronal numbers.  

Taken together, these studies have shown that the composition of bath salts 

mixtures significantly influences the dopaminergic and toxic effects of these drugs. 

These interactions may contribute to the deleterious effects reported by users. Thus, a 

deepened knowledge of possible pharmacological interactions resulting from bath salts 

abuse will provide a platform for improved overdose and addiction treatment regimens. 
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Abstract 

A rapid, sensitive, and reproducible assay is described for the quantitative determination 

of the monoamine neurotransmitters dopamine, norepinephrine, and serotonin, their 

metabolites, and the internal standard 3,4- dihydroxybenzlyamine hydro-bromide 

(DHBA) in mouse brain homogenate using high performance liquid chromatography 

with electrochemical detection. The method was validated in the following brain areas: 

frontal cortex, striatum, nucleus accumbens, hippocampus, substantia nigra pars 

compacta, and ventral tegmental area. Biogenic amines and relevant metabolites were 

extracted from discrete brain regions using a simple protein precipitation procedure, and 

the chromatography was achieved using a C18 column. The method was accurate over 

the linear range of 0.300 – 30 ng/mL (r = 0.999) for dopamine and 0.300 – 15 ng/mL (r = 

0.999) for norepinephrine, 3,4-dihydroxyphenylacetic acid, homovanillic acid, and 5-

hydroxyindolacetic acid, with detection limits of approximately 0.125 ng/mL (5 pg on 

column) for each of these analytes. Accuracy and linearity for serotonin was observed 

throughout the concentration range of 0.625 – 30 ng/mL (r= 0.998) with an analytical 

detection limit of approximately 0.300 ng/mL (12 pg on column). Relative recoveries for 

all analytes were approximately ≥ 90% and the analytical run time was less than 10 min. 

The described method utilized minimal sample preparation procedures and was 

optimized to provide the sensitivity limits required for simultaneous monoamine and 

metabolite analysis in small, discrete brain tissue samples.  
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1. Introduction 

Biogenic amines (e.g. dopamine, norepinephrine, and serotonin (5-

hydroxytryptamine)) serve as major neurotransmitters in the central nervous system 

(CNS) and function to mediate various neurophysiological processes, including 

motivation, reward/ addiction, movement, attention, cognition, wakefulness, mood, 

hunger, temperature regulation, and hormone release (Adinoff, 2004; Carlsson, 1987; 

Commissiong, 1985; Cox, 1977; Jouvet, 1972; Leibowitz, 1986; Vitale & Chiocchio, 

1993). Disruption of dopamine (DA), norepinephrine (NE), and serotonin (5-HT) 

homeostasis is associated with many neuropsychiatric disorders including attention 

deficit hyperactivity disorder (ADHD), schizophrenia, anxiety, depression, and 

Parkinson’s disease (Delgado, 2000; Huot, Fox, & Brotchie, 2015; Rubia, 2002). Thus, 

given the multitude of physiological processes effectuated by these neurotransmitters 

and the various neurological conditions associated with their dysregulation, a large 

number of pharmacological agents influence the synthesis, storage, release, uptake, 

and metabolism of biogenic amines. While DA, NE, and 5-HT play essential roles as 

signaling molecules, each regulating a distinct set of CNS functions, they all share the 

same major mechanism of inactivation. Of note, all of the monoaminergic 

neurotransmitters are regulated in a similar manner, as they are stored in vesicles via 

the vesicular monoamine transporter (VMAT), released from synaptic vesicles into the 

synaptic cleft, and their action is primarily terminated via reuptake into the presynaptic 

neuron.  Each monoamine has a specific transporter that allows for its reuptake; for DA, 

it is the dopamine transporter (DAT), for NE, the norepinephrine transporter (NET), and 

for 5-HT, the serotonin transporter (SERT); however, given structural similarities of 
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these transporters, many pharmacological agents that target one of these transporters 

have at least some affinity for the other transporters.  Additionally, all of the biogenic 

amines (DA, NE, and 5-HT) are metabolized by the monoamine oxidase enzyme, and 

the catecholamines (DA and NE) are metabolized by catechol-O-methyl transferase 

(COMT). Given the large number of pharmaceutical agents and drugs of abuse that 

affect monoaminergic systems and their tendency to affect more than one of the 

monoamines, there is a need for accurate methods that allow for fast, sensitive, and 

simultaneous determination of monoamines and their respective metabolite 

concentrations within specific brain regions known to send or receive monoaminergic 

input. 

Numerous analytical methods employing high performance liquid 

chromatography (HPLC) coupled to a variety of detectors including ultra-violet (UV), 

fluorescence, electrochemical (ECD), and mass spectrometry (MS), have been 

developed to determine monoamine neurotransmitters and relevant metabolite 

concentrations in biological samples. HPLC-ECD remains the most commonly used 

system for these analyses due to its higher sensitivity compared to other detection 

methods (Tsunoda, 2006). Although fast (< 9 min), some previously developed HPLC-

ECD assays utilized for the detection and quantification of DA, NE, 5-HT, and their 

metabolites in brain tissue are restricted by their limited sensitivity in this matrix; the 

reported lower limits of quantification (LLOQ) for all analytes of interest are insufficient 

for analysis of monoamines and their metabolites in discrete brain regions, in particular 

within two major dopaminergic nuclei, the substantia nigra pars compacta (SNpc) and 

ventral tegmental area (VTA) (Bicker, Fortuna, Alves, & Falcão, 2013; Farthing, 
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Halquist, & Sweet, 2015; Parrot, Neuzeret, & Denoroy, 2011). A recent HPLC-ECD 

methodology has reported quantification limits adequate for discrete brain region 

analysis of DA, DOPAC, and 5-HIAA levels, however, determination of DA turnover 

([DOPAC+HVA]/[DA]) within the SNpc and VTA regions would be problematic given the 

reported calibration range and LLOQ for HVA (approx. 2.8 ng/mL after 5 µL sample 

volume injection) (A. T. Nguyen, Aerts, Van Dam, & De Deyn, 2010). Moreover, 

methods which report very sensitive limits of detection (fmol-pmol range) are often 

found accompanied by the use of damaging high electrode potentials (> 700 mV) (Bidel 

et al., 2016; Parrot et al., 2011; Vaarmann, Kask, & Mäeorg, 2002), the inability to 

measure all monoamines and metabolites simultaneously (Heidbreder et al., 2001; 

Hubbard et al., 2010), or long analytical run times (> 25 min) (Kumarathasan & Vincent, 

2003; A. T. Nguyen et al., 2010; Unceta et al., 2001; Van Dam, Vermeiren, Aerts, & De 

Deyn, 2014).  Shorter length columns and ultra-high pressure liquid chromatography 

(UHPLC) systems are commonly employed to decrease analysis time (Farthing et al., 

2015; Parrot et al., 2011; Reinhoud, Brouwer, van Heerwaarden, & Korte-Bouws, 2013), 

however it has been reported that chromatographic efficiency in complex matrices, 

particularly during isocratic elution using electrochemical detection, is often reduced as 

column length decreases (Bicker et al., 2013; Mutton, 1998; D. T. Nguyen, Guillarme, 

Rudaz, & Veuthey, 2006). Moreover, while HPLC –ECD methods allowing for rapid, 

simultaneous, and sensitive detection of monoamine and metabolites have been 

developed and validated for use in brain dialysates using classical HPLC (Duine, Floch, 

Cann-Moisan, Mialon, & Caroff, 1998; Ferry, Gifu, Sandu, Denoroy, & Parrot, 2014; 

Reinhoud et al., 2013; Sarre et al., 1992), high background noise due to matrix effects 
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and loss of resolution is often observed when applied to brain tissue samples. Thus, 

very few methods exist for the rapid and sensitive measurement of monoamine and 

metabolites within distinct brain regions. Of these previously developed HPLC-ECD 

methodologies, measurements were achieved in larger brain regions, including the 

frontal cortex (FCtx), hippocampus (HIP), striatum (STR), and nucleus accumbens 

(NAc) but were not assessed in smaller regions, such as the dopaminergic SNpc and 

VTA, and LLOQs (S/N ratio ≥ 10) were not reported for these assays. In addition, these 

methodologies require ultrafiltration of prepared samples prior to analysis and are thus 

susceptible to analyte recovery issues (Bidel et al., 2016; Donzanti & Yamamoto, 1988; 

Saito, Murai, Abe, Masuda, & Itoh, 1992).  

Therefore, to address the stated limitations, this article reports the development 

of a simple and reproducible HPLC-ECD assay for rapid, sensitive, and simultaneous 

determination of DA and its metabolites, 3,4-dihydroxyphenylacetic acid (DOPAC) and 

homovanillic acid (HVA), 5-HT and its metabolite 5-hydroxyindolacetic acid (5-HIAA), 

and NE concentrations in the following mouse brain regions: FCtx, HIP, STR, NAc, 

SNpc, and VTA. The proposed methodology has several advantages over earlier 

methods including a simple sample preparation procedure that does not require 

ultrafiltration of prepared extracts and highly sensitive limits of detection for all six 

endogenous compounds that were achieved within an analytical run time of about 9 min 

without the use of a UHPLC system.   
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2. Experimental  

2.1 Chemicals and Reagents 

Analytical grade DA, DOPAC, HVA, NE, 5-HIAA, and the internal standard, 3,4- 

dihydroxybenzlyamine hydro-bromide (DHBA) were purchased from Sigma-Aldrich (St. 

Louis, MO, USA). For preparation of the mobile phase, certified ACS reagent grade 

sodium acetate, citric acid (anhydrous), ethylenediamine tetraacetic acid, disodium salt 

(EDTA), glacial acetic acid, and HPLC grade acetonitrile, methanol and polished water 

were purchased from Thermo Fisher Scientific (Fair Lawn, NJ, USA). The ion pairing 

agent, sodium octyl sulfate (SOS), was purchased from Acros organics (Geel, Belgium) 

while 2.0 N perchloric acid was purchased from RICCA chemical (Arlington, TX, USA).  

2.2 Apparatus and Operating Conditions 

The chromatography was achieved using C18 MD- 150 mm x 3.2 mm, 3 µm column 

(Thermo Fisher Scientific). The mobile phase, which consisted of 100 mM sodium 

acetate, 20 mM citric acid, 0.38 mM SOS, 0.15 mM EDTA dissolved in 950 mL polished 

water and 50 mL acetonitrile, was adjusted to pH 3.3 using glacial acetic acid and 

filtered through a 0.22 µm filter (Supelco, Bellefonte, PA, USA). Mobile phase was 

delivered to the HPLC system at a flow rate of 0.6 mL/min using an ESA Model 584 

pump (ESA Laboratories, Inc., Chelmsford, MA, USA) and prominence degasser (model 

DGU-20A5). Electrochemical detection was achieved using a Coulochem® III detector 

(ESA Laboratories, Inc.) equipped with 5100A dual electrode. Working potentials of -

220 mV and +375 mV were set E1 and E2, respectively. Prepared samples were 

injected into the system in 40 µL aliquots using an ESA model 542 autosampler and all 
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analytes were collected in E2 in isocratic elution mode. Data were collected on-line and 

exported to an Agilent EZChrome Elite software system (Santa Clara, CA, USA) for 

peak area integration and analysis. 

2.3 Tissue Collection and Extraction Procedure 

Brain tissue used for method validation was obtained from 54 day-old male Swiss-

Webster mice. Mice were sacrificed via decapitation and brains were collected and 

placed in ice cold saline for five minutes. After cooling, microdissections were performed 

using a mouse brain matrix (30 g Coronal, ASI Instruments, Warren, MI, USA). Brain 

sections containing the FCtx, NAc, STR, HIP, and SNpc were collected, halved, and 

corresponding brain regions were dissected and weighed from both left and right 

halves. The VTA was also collected and weighed from relevant brain slices. Extraction 

of monoamines and respective metabolites was performed via optimization of a 

previously described protein precipitation method (Wei et al., 2014). Brain tissue 

samples were homogenized on ice in five-fold excess volume of methanol for FCtx, 

NAc, STR, and HIP regions [volume of MeOH added (µL) = brain weight (mg) x 5], 20 

µL methanol for SNpc and VTA samples, and homogenates were centrifuged in 4 °C at 

14,000 X g for 20 mins. After, either 40 µl (FCtx, NAc, STR, and HIP) or 10 µl of the 

supernatants (SNpc and VTA) were transferred to 1.7 mL microcentrifuge tubes 

containing 10 µl of internal standard solution (DHBA, 500 ng/mL prepared in methanol) 

and 10 µl polished water. Samples were then vortexed for five minutes and centrifuged 

at 3,000 X g for 10 minutes. Supernatants were quantitatively transferred to fresh 5 ml 

glass vials and evaporated to dryness under nitrogen gas at room temperature for 

approximately 15-20 minutes. Dried samples were reconstituted in 1000 µl (NAc, STR, 
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and HIP) or 500 µl (FCtx, SNpc and VTA) of 0.2 N perchloric acid, sonicated for 20 

minutes, and stored at -70°C. 

2.4 Standard Solutions and Calibration 

Standard stock solutions (1.000 mg/mL) of DA, DOPAC, HVA, NE, 5-HT, 5-HIAA, and 

the internal standard (IS) DHBA were prepared separately by dissolving the appropriate 

amount of the chemical reference in methanol and stored at -70 °C. On the day of 

analysis, standard stock solutions were diluted with methanol to achieve a final 

concentration of 1.000 µg/mL for each analyte. Working standard solutions were freshly 

prepared by further diluting the 1.000 µg/mL stock solutions of DA DOPAC, HVA, NE, 5-

HT and 5-HIAA with 0.2 N perchloric acid to obtain final concentrations of 0.300, 0.625, 

1.250, 2.500, 5.000, 10.000, 15.000, and 30.000 ng/mL for all analytes. DHBA was 

spiked into each working standard solution to achieve a final concentration of 5.000 

ng/mL (NAc, STR, and HIP calibrations) or 10.000 ng/mL (FCtx, SNpc, and VTA 

calibrations), to compensate for variability associated with analyte extraction and 

sample injection. For quantitative analyses, standard curves were generated for each 

analyte by plotting the peak area ratio (analyte peak area / DHBA (IS) peak area) 

versus concentration. The least-squares linear regression method was utilized to 

calculate regression equations. 

2.5 Linearity, Limit of Detection, and Limit of Quantification 

Linearity and analytical limits of the method were evaluated over a wide range of 

concentrations. Using individual stock solutions, calibration solutions containing DA, 

DOPAC, HVA, NE, 5-HT, and 5-HIAA were prepared in 0.2 N perchloric acid at 10 
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concentration levels (range 0.125 ng/mL to 40 ng/mL). Calibration curves were 

generated via the internal standardization method and regression equations were 

calculated using the least-squares linear regression method. The limit of detection 

(LOD) was determined as the analyte concentration which gave a peak area 

corresponding to a signal-to-noise (s/n) ratio of 3, while the lower limit of quantification 

(LLOQ) was calculated as the analyte concentration that provided a peak area with an 

s/n ratio of 10.  

2.6 Precision, Accuracy, and Recovery 

Instrumental precision (percentage of the relative standard deviation, % RSD) of the 

HPLC-ECD system was determined in both nonmatrix (standard solutions in 0.2 N 

perchloric acid) and matrix (brain tissue samples) conditions. Accuracy (error 

percentage of the determined concentration relative to the nominal concentration, % 

Error) of the method was calculated from the analysis of tissue samples fortified with 

known quantities of standard. In non-matrix conditions, intra- and Inter- day repeatability 

was assessed over three days at the following calibration points: 0.300, 0.625, 1.250, 

2.500, 5.000, 10.000, 15.000, and 30.000 ng/mL, using four replicates per concentration 

per day (n=12 at each concentration level, see Table 2.2). For method validation in 

matrix conditions, brain tissue homogenates were divided into two aliquots. The first 

was treated as a ‘blank’ while the second was spiked with a lower (0.800 ng/mL), 

medium (2.000 ng/mL and 5.000 ng/mL) and higher (10.000 ng/mL) concentration of 

DA, DOPAC HVA, NE, 5-HT, and 5-HIAA prior to extraction. The blank aliquot was 

subtracted from spiked samples to normalize for endogenous levels. Intra- and Inter- 

day precision and accuracy were assessed in brain matrix over three days at each 
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concentration level, using three replicates per concentration per day (n=9 at each 

concentration level, see Table 2.3). For both nonmatrix and matrix analyses, five point 

internal standard calibration curves were generated for DA, DOPAC, HVA, NE, 5-HT, 5-

HIAA on the day of analysis. Peak area ratios were utilized for computations and 

analyte concentrations were calculated using interpolation of their respective standard 

curves. Precision was calculated at each calibration level as %RSD= [(Apa / SD) x 100], 

where Apa represents the average peak area ratio measured by the HPLC system and 

SD represents the standard deviation.  Accuracy was calculated at each calibration 

level as % Error = [(|Ca – Cn| / Cn) x 100], where Ca = average concentration of the 

analyte as determined by the HPLC-ECD system and Cn= nominal concentration. For 

matrix conditions, Apa and Ca values were determined by subtracting analyte peak area 

ratios and concentration values measured in ‘blank’ homogenate samples from those 

measured in their respective spiked homogenate samples.  

3. Results and Discussion 

3.1 Method Development 

The major analytical difficulty was to determine chromatographic conditions 

which provided the desired sensitivity to simultaneously detect monoamines and their 

respective metabolites within small, discrete brain tissue samples. The complex matrix 

and varied chemistry between the monoamines and their respective metabolites also 

contributed to the challenge of optimizing chromatographic conditions. Many HPLC-

ECD methods utilized for monoamine and metabolite analysis in brain tissue report 

LLOQs of 5 ng/mL and higher (Farthing et al., 2015; Karimi, Carl, Loftin, & Perlmutter, 
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2006), however a more sensitive range is required for accurate analysis in smaller brain 

regions such as the SNpc and VTA (0.2 – 1.5 mg tissue weights). Initially, the 

commercially available MD-TM mobile phase (Thermo Fisher) was utilized; however, 

sensitivity for discrete tissue analysis was insufficient. The final mobile phase 

composition was optimized from a method used for the quantitative measurement of 

monoamines and corresponding metabolites in rat brain dialysates (Duine et al., 1998). 

Sufficient separation of basic and acidic analytes was achieved by modifying both the 

pH (3.0-3.6) and the concentration the ion-pairing agent, SOS (0.33-0.45 mM). These 

optimization parameters have also been considered in previous analytical HPLC 

methodologies to improve both separation and sensitivity of analytes (Brodnik & Jaskiw, 

2015; A. T. Nguyen et al., 2010). Increasing the pH decreased retention times of the 

acid metabolites; however, this resulted in an overlap of DA and 5-HIAA retention times. 

Moreover, increasing SOS concentration increased retention times for monoamines and 

also resulted in DA and 5-HIAA peak overlap, while lower SOS concentrations 

decreased the retention time of biogenic amines and resulted in DA and DHBA overlap. 

Ultimately, the best separation of all analytes was achieved at pH 3.3 and an SOS 

concentration of 0.38 mM (Fig. 1A). Utilization of a 3.2 mm I.D., 3 µm particle containing 

column as compared to conventional HPLC methods (4.6 mm I.D., 5 µm), allowed 

chromatographic separation and quantification of all analytes to occur more rapidly, 

resulting in an analytical run time of less than 10 min while also maintaining maximum 

system pressure below 170 bar.  
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Fig. 2.1. Representative chromatograms showing separation of biogenic amines (NE, 
DA, and 5-HT), their respective metabolites (DOPAC, HVA, and 5-HIAA), and the 
internal standard DHBA in standard solution at a concentration of 2.5 ng/mL (A) and in 
brain homogenate (B). 
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3.2 Linearity and Limits of Detection and Quantification  

Data for linearity assays is summarized in Table 2.1. The calibration curve was linear for 

DA and 5-HT throughout the concentration range of 0.300 – 30.000 ng/mL and 0.625 -

30.000 ng/mL, respectively, with a mean correlation coefficient of ≥ 0.999 (normal linear 

regression, n=10 runs). The calibration curve ranging from 0.300 – 15.000 ng/mL was 

linear for NE, DOPAC, HVA, and 5-HIAA (mean correlation coefficient of ≥ 0.998). The 

analytical limits of detection and quantification for DA, DOPAC, HVA, 5-HIAA, and NE 

were approximately 0.125 ng/mL (5 pg on column) and 0.300 ng/mL (12 pg on column), 

respectively.  While LOD and LLOQ values for 5-HT were approximately 0.300 ng/mL 

(12 pg on column) and 0.625 ng/mL (25 pg on column), respectively. The stated LOD 

and LLOQ values were suitable for the quantitative determination of endogenous 

monoamine and metabolite levels in the VTA and in halved microdissections of the 

FCtx, STR, NAc, HIP, and SNpc (Fig. 2.2, A-F). 

Table 2.1. Linearity results of the HPLC-ECD method for the quantification of 
monoamines (DA, NE, 5-HT) and various metabolites (DOPAC, HVA, 5-HIAA) in 
standard solution  

 DA DOPAC HVA NE 5-HT 5-HIAA 
Calibration 
range 
(ng/mL) 

0.300 – 
30.000 

0.300 – 
15.000 

0.300 – 
15.000 

0.300 – 
15.000 

0.625 – 
30.000 

0.300 – 
15.000 

Correlation 
coefficient 
(r2) 

0.999 0.998 0.999 0.999 0.998 0.998 

Limit of detection 
(ng/mL) 0.125 0.125 0.125 0.125 0.300 0.125 

Limit of 
quantification 
(ng/mL) 

0.300 0.300 0.300 0.300 0.625 0.300 

 



66 
 

 

Fig. 2.2. Representative chromatograms demonstrating detection and separation of DA, 
DOPAC, HVA, NE, 5-HT, and 5-HIAA in the following brain regions (A) Frontal cortex; 
(B) Hippocampus; (C) Striatum; (D) Nucleus accumbens; (E) Substantia nigra pars 
compacta; (F) Ventral tegmental area. 
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3.3 Accuracy, Precision, and Recovery 

Accuracy and precision of the assay were within the Food and Drug 

Administration’s (FDA) requirements for bioanalytical method validation. Combined 

inter- and intra-day precision for DA, DOPAC, HVA, NE, 5-HIAA, and 5-HT in non-

matrix conditions was within 12% RSD at each calibration point. These data are 

summarized in Table 2.2. Combined intra- and inter- day precision and accuracy for 

brain matrix conditions were < 12% RSD and < 10% error for all analytes, respectively 

(Table 2.3). Thus, the method demonstrated sufficient precision and accuracy for 

monoamines and respective metabolites using the aforementioned chromatographic 

conditions and sample preparation procedure. Moreover, the described method 

achieved chromatographic selectivity without interference from other endogenous brain 

matrix constituents at the retention times of each analyte of interest (Fig. 2.1B).   

Table 2.2 Inter- day accuracy (% Error) and precision (%RSD) of the HPLC- ECD assay 
for quantification of DA, DOPAC, HVA, NE, 5-HT, and 5-HIAA in 0.2 N perchloric acid 
(n= 12 for each concentration) 

 DA DOPAC HVA 
[C] 

ng/ml Mean % RSD Mean % RSD Mean % RSD 

0.300 0.330 5.925 0.329 8.575 0.291 4.214 
0.625 0.559 11.681 0.736 6.665 0.573 9.839 
1.250 1.220 1.739 1.232 4.064 1.192 2.219 
2.500 2.496 1.117 2.333 2.407 2.432 1.588 
5.000 5.018 1.224 4.884 0.940 4.872 1.093 

10.000 9.364 6.114 9.562 3.639 9.335 6.327 
15.000 14.734 3.916 14.942 2.778 14.749 3.985 
30.000 29.694 2.333 - - - - 

 NE 5-HT 5-HIAA 
[C] 

ng/ml Mean % RSD Mean % RSD Mean % RSD 

0.300 0.288 5.345 - - 0.325 4.310 
0.625 0.594 12.305 0.661 10.643 0.583 13.344 
1.250 1.265 4.056 1.163 4.075 1.226 3.072 
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2.500 2.543 2.336 2.514 1.735 2.603 2.274 
5.000 5.048 1.569 5.068 1.565 5.236 1.814 

10.000 9.762 11.567 8.823 7.155 10.917 9.139 
15.000 15.011 4.065 14.321 4.221 17.017 5.300 
30.000 - - 30.078 2.153 - - 

 

Table 2.3: Inter-day and accuracy and precision of the HPLC-ECD assay for 
quantification of all analytes in brain tissue homogenate (n= 9 for each concentration).  

 

3.4 Measurement of Monoamine and Metabolites in Discrete Brain Tissue Samples 

The relative concentration levels of monoamines and metabolites measured in the FCtx, 

STR, NAC, HIP, SNpc, and VTA brain regions are presented in Table 2.4. These values 

accurately represent the degree of monoaminergic input within each brain region and 

are in agreement with the values previously reported for mice brain tissue (Donzanti & 

Yamamoto, 1988; Saito et al., 1992). Specifically, within the brain regions comprising 

the dopaminergic brain reward (NAc and VTA) and motor control (STR and SNpc) 

 DA DOPAC HVA 
Spiked 

[C] 
(ng/mL) 

Mean 
[C] 

found 
%Error %RSD 

Mean 
[C] 

found  
%Error %RSD 

Mean 
[C] 

found 
%Error %RSD 

0.80 0.83 4.53 2.24 0.82 6.38 3.16 0.78 4.26 1.41 
2.00 1.96 4.11 5.68 2.02 2.84 11.87 2.10 4.76 5.99 
5.00 4.84 3.22 3.10 4.90 7.52 4.94 5.19 9.62 4.39 
10.00 9.55 4.51 4.37 10.00 0.53 2.07 10.16 9.10 4.18 

 NE 5-HT 5-HIAA 
Spiked 

[C] 
(ng/mL) 

Mean 
[C] 

found 
%Error %RSD 

Mean 
[C] 

found 
%Error %RSD 

Mean 
[C] 

found 
%Error %RSD 

0.80 0.88 10.27 2.41 0.78 5.62 6.02 0.86 7.06 3.49 
2.00 1.92 8.99 8.54 2.19 9.68 3.68 2.13 6.31 6.53 
5.00 5.36 7.12 6.28 5.28 8.58 8.65 5.52 10.38 4.51 
10.00 9.68 4.81 4.88 10.45 4.60 4.63 10.73 7.27 4.34 
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pathways, tissue levels of DA and respective metabolites were determined to be 

significantly higher than those of the FCtx and HIP; with the major DA projection sites, 

NAc and STR, containing the highest levels of DA (ng/mg) as compared to all other 

brain regions analyzed by this method. Moreover, while the FCtx and HIP brain regions 

are described to be diffusely innervated by DA neurons, neuronal input from 

noradrenergic (NE) and serotonergic systems is more abundant. Thus, the present data 

showing greater concentrations of NE and 5-HT as compared to DA within in these 

brain areas is expected. 

Table 2.4. Relative concentration levels of biogenic amines and metabolites in discrete 
brain regions 

 Analyte concentration levels (ng/mg wet tissue) 
Brain  

Region DA DOPAC HVA NE 5-HT 5-HIAA 

FCtx (Fig. 2A) 0.18 0.24 0.11 0.51 0.26 0.27 
HIP (Fig. 2B) 0.19 0.15 0.09 0.43 0.23 0.25 
NAc (Fig. 2C) 3.33 0.54 0.47 0.45 - - 
STR (Fig. 2D) 3.55 0.71 0.53 0.32 - - 
SNpc (Fig. 2E) 1.56 1.09 0.51 1.61 0.18 0.31 
VTA (Fig. 2F) 1.49 0.70 0.44 2.37 0.22 0.33 

 

4. Conclusions 

DA, NE, and 5-HT are widely distributed throughout the CNS, serving as 

neurotransmitters and regulating a number of physiological and behavioral processes 

including cognitive and mnemonic processes (FCtx, HIP), reward and addiction (VTA, 

NAc), and movement (SNpc, STR). As dysregulation of these neurotransmitter systems 

is associated with numerous neuropsychiatric disorders, a growing number of 

pharmacological agents are utilized to either increase or reduce monoamine levels. In 
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order to assess the effectiveness of such agents, a sensitive analytical assay allowing 

for simultaneous detection of monoamine neurotransmitters and relevant metabolites 

within these discrete brain regions is required. This paper reports a rapid, sensitive, and 

reproducible HPLC-ECD method for the separation and quantification of DA, DOPAC, 

HVA, NE, 5-HT, and 5-HIAA in mouse brain tissue homogenate using DHBA as the 

internal standard. The proposed analytical method utilizes a simple sample preparation 

procedure that does not require the ultrafiltration of prepared tissue extracts and results 

in recoveries ≥ 90% for all analytes. Optimization of mobile phase pH and SOS 

concentration resulted in effective separation of monoamines and respective 

metabolites on a C18 150 mm, 3 µm column, within an analytical run time of 

approximately 9 min.  Therefore, the present method circumvents the need for 

dedicated UHPLC systems for rapid analysis (< 10 min) of brain tissue monoamines 

and relevant metabolites and is desirable for high-throughput approaches. Moreover, 

given the highly sensitive quantification limits reported for all analytes (0.300 - 0.625 

ng/mL), this HPLC-ECD assay is suitable for quantitative analysis of these endogenous 

compounds within multiple areas of the brain, including the small nuclei of the SNpc and 

VTA (0.2 – 1.5 mg tissue weights), in mice. Thus, the proposed analytical method 

provides a fast, sensitive, and reliable means by which to evaluate the pre-clinical 

effects of pharmaceutical agents on monoaminergic tone within distinct brain regions 

and pathways.  
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Introduction 

The synthetic cathinones include a class of designer β-ketone amphetamine 

compounds that are chemically related to the plant-derived stimulant, cathinone. The 

three most commonly abused synthetic cathinones, MDPV, 4-methylmethcathinone 

(mephedrone), and 3, 4-methylenedioxymethcathinone (methylone), received 

international popularity as psychoactive components in ‘bath salts,’ a marketing term 

used in conjunction with labels stating “not for human consumption” as a way to 

circumvent existing drug laws and allow for their legal distribution (DEA, 2014; Spiller et 

al., 2011). In recent years, the extensive abuse of bath salts as cheap and ‘legal’ 

alternatives to illicit psychostimulant compounds precipitated an alarming rise in the 

number of individuals requiring emergency medical treatment after synthetic cathinone 

intoxication (CDC, 2011; Deluca et al., 2012; SAMHSA) and led to the DEA 

classification of bath salt constituents, MDPV, mephedrone, and methylone as schedule 

I controlled substances in 2011(DEA, 2011). However, synthetic cathinone abuse 

appears unabated (Mounteney et al., 2016; Palamar et al., 2015) due in large part to the 

internet serving as clandestine marketplace for these drugs (Karila et al., 2015; Power, 

2014). The growing prevalence of MDPV, mephedrone, and methylone has prompted a 

number of preclinical investigations on the effects of these drugs on the central nervous 

system (CNS).   

Pharmacokinetic studies have shown these synthetic cathinones readily cross 

the blood brain barrier and accumulate in rodent brain tissue, reaching peak 

concentrations within 15-30 min (Novellas et al., 2015; Peters et al., 2016; Štefková et 

al., 2017; Šíchová et al., 2017). In vitro transporter and electrophysiology assays have 
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revealed the individual pharmacological mechanisms of MDPV, mephedrone, and 

methylone. MDPV functions as a selective inhibitor of dopamine transporter (DAT) 

activity by blocking the reuptake of dopamine, similar to cocaine but more potent 

(Baumann et al., 2013; Cameron et al., 2013a).  In contrast, mephedrone and 

methylone behave as non-selective substrates for monoamine transporters, thereby 

inducing transporter-mediated release of dopamine (DA), norepinephrine (NE), and 

serotonin (5-HT), similar to the actions of 3,4-methylenedioxymethamphetamine 

(MDMA, ecstasy) and other amphetamines (Baumann et al., 2012; Solis, 2016). Despite 

pharmacological and DAT selectivity differences, all three synthetic cathinones were 

found to precipitate rapid and marked elevations in extracellular DA (Baumann et al., 

2012; Baumann et al., 2013; Shortall et al., 2013) and increase locomotor activity in 

rodents (Gregg and Rawls, 2014; Marusich et al., 2012). Moreover, the ability of MDPV 

and mephedrone to progressively increase locomotor activity and stereotypy, a 

phenomenon termed behavioral sensitization, has been demonstrated in several studies 

(Fantegrossi et al., 2013; Gregg et al., 2013a; Marusich et al., 2012).  

While there is now a sizable body of evidence on the individual effects of MDPV, 

mephedrone, and methylone, forensic analysis has shown that bath salts formulations 

often contain various concoctions of these synthetic cathinones, with both binary and 

ternary mixtures of MDPV, mephedrone, and methylone detected in many of the most 

frequently abused bath salt ‘brands ‘ (Spiller et al., 2011; Warrick et al., 2013) . 

Therefore, it is important to also evaluate the neurochemical and behavioral effects of 

these drugs when administered in various combinations to more accurately model bath 

salts abuse.  
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Additive, or synergistic, interactions are often more profound when drug cocktails 

are composed of compounds which individually produce qualitatively similar effects via 

distinct pharmacological mechanisms (Tallarida, 2011). Therefore, because both non-

substrate (MDPV) and substrate synthetic cathinones (mephedrone and methylone) 

exert their psychostimulant effects by increasing synaptic DA levels, the dichotomy of 

their interaction with the DAT suggests an avenue for enhanced dopaminergic effects 

when these drugs are co-abused. While a few studies have analyzed the reinforcing 

(Gannon et al., 2018) and stimulant (Berquist et al., 2016) properties of different binary 

mixtures of the synthetic cathinones, the current study represents the first known 

attempt to characterize the effects of ternary mixtures of MDPV, mephedrone, and 

methylone on tissue DA levels and locomotor activation in comparison to each 

compound alone. The results presented here suggest that the dopaminergic effects of 

MDPV, mephedrone, and methylone are significantly enhanced when they are co-

administered as a cocktail.  

Materials and Methods 

Animals 

The experiments utilized adolescent male Swiss-Webster mice (Harlan Inc., 

Indianapolis, IN) weighing 20-30 g. Male adolescent mice were chosen for this study as 

drug survey reports suggest the main abusers of synthetic cathinones are young male 

adults (Karila et al., 2015; Vardakou et al., 2011). The experimental protocol was 

approved by the ETSU University Committee on Animal Care (UCAC) and followed the 

National Institute of Health Guidelines for the Care and Use of Laboratory Animals. All 
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drugs were dissolved in saline and injected at a volume of 0.01 mL/g body weight. 

Control animals were injected with equal volumes of sterile saline.  

Drugs and Reagents 

Analytical grade MDPV ((±) 3, 4-methylenedioxypyrovalerone HCl), mephedrone ((±) 4-

methylmethcathinone HCl), and methylone ((±)3, 4-methylenedioxymethcathinone HCl) 

were purchased from Sigma-Aldrich (St. Louis, MO, USA). Certified reference standard 

grade DA, 3,4-dihydroxyphenylacetic acid (DOPAC), homovanillic acid (HVA), and 3,4- 

dihydroxybenzlyamine hydro-bromide (DHBA) were also purchased from Sigma-Aldrich. 

The ion pairing agent, sodium octyl sulfate (SOS), was purchased from Acros organics 

(Geel, Belgium) and 2.0 N perchloric acid was purchased from RICCA chemical 

(Arlington, TX, USA).  All other certified ACS chemicals and reagents used in this study 

were purchased from Thermo Fisher Scientific (Fair Lawn, NJ, USA). 

Determination of Monoamine Levels 

Animal dosing.  Mice were separated into the following cohorts (n= 4-6 per 

group): 1) saline 2) 1 mg kg-1 MDPV 3) 10 mg kg-1 MDPV, 4) 1 mg kg-1 mephedrone, 5) 

10 mg kg-1 mephedrone, 6) 1 mg kg-1 methylone, 7) 10 mg kg-1 methylone, 8) 1 mg kg-1 

cathinone cocktail, 9) 3.33 mg kg-1 cathinone cocktail,  10) 10 mg kg-1 cathinone 

cocktail, and appropriately dosed with a single intraperitoneal (IP) injection of saline or 

corresponding drug. All doses were chosen in accordance to DEA statistical reports 

indicating the average range of bath salt abuse per session varies widely from 25 mg- 5 

g (DEA, 2011). As insufflation is the predominate modality utilized by bath salt abusers, 

IP injections were chosen for this study based on their analogous pharmacokinetic 
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profile to snorting (Bradberry, 2002).  Fifteen minutes after injection, animals were 

deeply anesthetized with isofluorane, sacrificed by decapitiation, and brains were 

collected immediately and placed in ice-cold saline for 5 min. This time frame was 

chosen based on a previous pharmacokinetic study from our laboratory indicating that 

peak brain concentrations of MDPV, mephedrone, and methylone following IP injections 

are achieved at 15 minutes (Peters et al., 2016). Brains were sliced in 2 mm sections 

using a chilled stainless steel 30 g coronal mouse brain matrix (MSI) and 

microdissections of the nucleus accumbens (NAc), striatum (STR), substantia nigra 

pars compacta (SNpc), and ventral tegmental area (VTA) were performed in accord to 

the mouse brain atlas (Paxinos and Watson). Collected tissue was flash-frozen in liquid 

nitrogen and stored at -70°C until further analysis.  

  HPLC-ECD. DA, DOPAC, and HVA were extracted and quantified from collected 

brain tissue using a previously described HPLC-ECD method (Allen et al., 2017). 

Briefly, collected tissue samples were thawed, weighed, homogenized in methanol, 

spiked with the internal standard 3,4-dihydroxybenzylamine (DHBA), and centrifuged at 

13,000 g. Supernatants were collected, dried under nitrogen gas, and reconstituted in 

0.2 N perchloric acid. DA, DOPAC, and HVA were separated using a C18 MD- 150mm x 

3.2mm, 3µm column (Thermo Fisher Scientific) and detected at a potential of + 375 mV 

by a Coulochem® III coulometric detector (ESA Laboratories). The mobile phase, which 

consisted of 0.22 µm filtered 100 mM sodium acetate, 20 mM citric acid, 0.38 mM SOS, 

0.15 mM EDTA and 5% v/v acetonitrile adjusted to pH 3.3 with glacial acetic acid, was 

delivered at 0.6 mL/min by an isocratic pump. Quantification was achieved using the 
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Agilent EZChrome Elite software system (Agilent Technologies). DA turnover was 

calculated as [DOPAC+HVA]/[DA].  

Locomotor Activity 

Animal dosing. Mice were randomly separated into four groups (n=6-8): 1) saline, 

2) 10 mg kg-1 MDPV (uptake inhibitor), 3) 10 mg kg-1 mephedrone (substrate), and 4) 10 

mg kg-1 MDPV + 10 mg kg-1 mephedrone + 10 mg kg-1 methylone. In order to reduce 

animal numbers, only the high dose of each drug was utilized and only the highest 

potency substrate drug (mephedrone) was utilized. 

Apparatus. Behavioral experiments were carried out using a locomotor arena that 

consisted of a square wooden box measuring 40 x 40 cm painted black. AnyMaze 

tracking software (ANYmaze, Stoelting Co., Wood Dale, IL) was used to superimpose 

grid lines on the locomotor arena and measure locomotor activity. A computer interface 

was used to automatically tabulate total distance traveled (m) or stereotypy (counts). 

Immobility episodes lasting longer than 3 s were considered as stereotypy.  

Procedure. Animals were habituated to the locomotor arena for three consecutive 

days before drug dosing. For each habituation, mice were given IP injections of 0.9% 

saline 15 min prior to being placed in the locomotor area. Following habituation, mice 

were randomly separated into the four treatment groups listed above and 

correspondingly dosed in their home cages with drug or saline every other day for 14 

days, a total of 7 injections. Animals were placed in the locomotor arena 15 min after 

each drug administration and behavior was recorded and tracked for 10 min using 

AnyMaze. Locomotor activity was recorded on test days 1 and 7, and testing sessions 
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for both habituation and treatment runs were 10 min.  This seven-day dosing schedule 

is similar to the paradigm used by Berquist et al. (2016), with 48 h drug intervals chosen 

in accordance with Watterson et al. (2016).  

Statistics  

All statistical analyses were performed using GraphPad Prism version 5.0 for Windows 

(GraphPad Software, San Diego, CA, USA). Neurochemical data from HPLC-ECD 

analysis were evaluated using two-way analysis of variance (drug treatment x dose) 

followed by Bonferroni’s post hoc test. For locomotor activity experiments, total 

distanced traveled (m) and the number of immobility or stereotypic episoides were 

summed over the course of the 10 min testing period on day 1 and day 7 and evaluated 

using two-way analysis of variance (drug treatment x testing day) followed by Newman-

Keuls post hoc test. The minimum criterion for statistical significance was P < 0.05. The 

use of high and low drug doses, drug combinations, and analysis of multiple analytes in 

various different brain regions resulted in a very large number of planned comparisons. 

Thus, the outcomes from statistical tests for DA, DOPAC, HVA, and DA turnover are 

described minimally in Results, and full descriptions of all neurochemical statistical 

outcomes are presented in Tables S1-S4. 

Results 

Individual Effects of MDPV, Mephedrone, and Methylone on Brain Tissue Dopamine 

Concentration and Turnover Rate in Acutely Exposed Mice 

Mice were acutely treated with MDPV, mephedrone, and methylone at either a 

low (1 mg kg-1) or high (10 mg kg-1) dose of each drug alone. Figure 3.1 shows the 
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results of these treatments on DA within the mesolimbic and nigrostriatal brain 

pathways 15 min post drug exposure. The main effects of dose and drug treatment as 

well as their interactions on DA concentration and turnover were statistically significant 

(p < 0.05 – p < 0.0001) in each brain region analyzed (Table S1). At the high dose (10 

mg kg-1), MDPV and mephedrone produced significant increases in DA over control 

values in all brain areas including the DA nuclei of the midbrain (SNpc and VTA) and 

their corresponding major projection sites (STR and NAc). Methylone (10 mg kg-1) 

caused significant, selective increases in mesolimbic DA (NAc and VTA) in comparison 

to controls. Conversely, no change in DA tissue content was observed following acute, 

low dose (1 mg kg-1) administration of MDPV, mephedrone, or methylone.  

Figure 3.1 The acute effects of MDPV, mephedrone, and methylone on DA levels in the 
NAc (A), STR (B), VTA (C), and SNpc (F). Numerals below each indicate the treatment 
dose in mg kg-1. DA levels are reported as % of control. Data are expressed as mean ± 
SEM, n = 4-6 mice per treatment group; * p < 0.05, ** p < 0.01, *** p < 0.001 vs. control.  
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The effect of each drug on DA metabolite levels (HVA and DOPAC) was also 

assessed using HPLC analysis, and results are presented in Table 3.1. Significantly 

increased levels of HVA (NAc, STR, SN, and VTA) and decreased levels of DOPAC 

(SNpc and VTA) were measured in mice that received a single injection of MDPV at the 

high dose (10 mg kg-1). The low dose of MDPV (1 mg kg-1) significantly increased tissue 

HVA levels in the SNpc and VTA, but did not cause any significant alterations in 

DOPAC levels. At both treatment doses, mephedrone caused a marked increase in 

HVA in four brain regions. Methylone also produced region-wide significant increases in 

HVA tissue levels at the higher dose, but these effects were not observed at the lower 

dose. Both of the substrate cathinones decreased DOPAC (NAc, STR, and SN) levels 

following high dose administration, while low dose exposure to neither mephedrone nor 

methylone caused significant alterations in DOPAC levels. DA metabolite 

concentrations and their summed ratios to DA were used to evaluate the acute effect of 

each synthetic cathinone on DA transmitter utilization and metabolism (Fig 3.2); 

apparent DA turnover was evaluated in each brain region by calculating the ratio of the 

total concentrations of DA metabolites (HVA + DOPAC) to DA. At the high dose, MDPV, 

mephedrone, and methylone each produced a marked reduction in DA turnover values 

as compared to control in all brain regions analyzed, while at the lower dose, each drug 

decreased DA turnover in the VTA only.  
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Figure 3.2 The acute effects of MDPV, mephedrone, and methylone on DA turnover in 
the NAc (A), STR (B), VTA (C), and SNpc (F). Numerals below each indicate the 
treatment dose in mg kg-1. DA levels are reported as % of control. DA turnover is 
reported as % of control. Data are expressed as mean ± SEM, n = 4-6 mice per 
treatment group; * p < 0.05, ** p < 0.01, *** p < 0.001 vs. control.  

 

Table 3.1 DA metabolite levels following individual and combined exposure to MDPV, 
mephedrone, and methylone. Data shows the average content (ng/mg wet tissue) of 
DOPAC and HVA in the NAc, STR, VTA, and SNpc 15 min post injection of drug or 
saline. Data are expressed as mean ± SD, n = 4-6 per group. Significance is 
indicated in Table S1-S2. 
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VTA DOPAC 0.6 ± 
0.1 

0.5 ± 
0.2 

0.3 ±  
0.1 

0.8 ± 
0.2 

0.3 ± 
0.1 

0.6 ± 
0.1 

0.5 ± 
0.1 

1.0 ± 
0.1 

0.7 ± 
0.1 

 HVA 0.3 ± 
0.1 

0.7 ± 
0.1 

0.6 ±  
0.1  

0.7 ± 
0.1 

0.5 ± 
0.1 

0.5 ± 
0.1 

0.5 ± 
0.1 

0.5 ± 
0.1 

0.5 ± 
0.2 

SNpc DOPAC 0.6 ± 
0.1 

0.5 ± 
0.1 

0.3 ±  
0.1  

0.6 ± 
0.2 

0.3 ± 
0.1 

0.3 ± 
0.1 

0.2 ± 
0.0 

0.5 ± 
0.1 

0.3 ± 
0.1 

 HVA 0.2 ± 
0.0 

0.4 ± 
0.1 

0.3 ±  
0.1 

0.4 ± 
0.1 

0.5 ± 
0.1 

0.3 ± 
0.1 

0.5 ± 
0.1 

0.4 ± 
0.1 

0.3 ± 
0.0 

 

Synergistic Effects of Combined Synthetic Cathinone Exposure on Mesolimbic and 

Nigrostriatal DA Content 

‘Bath salts’ products often contain various mixtures of MDPV, mephedrone, 

and/or methylone. Given the fact that pharmacological data presented here (Fig 3.1) 

and elsewhere (De Felice et al., 2014) suggest that these drugs individually function to 

modulate DA release to an extent; we also evaluated the acute, combined effect of 

MDPV, mephedrone, and methylone on brain tissue DA concentration and turnover. For 

combined treatment, mice received a single injection of a cathinone cocktail composed 

of MDPV, mephedrone, and methylone, each at a dose of 10 mg kg-1 (30 mg kg-1 

cathinones in total), 3.3 mg kg-1 (~ 10 mg/kg cathinones in total), or 1 mg kg-1 (3 mg kg-1 

cathinone total). The overall effect of each combo dose on regional specific DA levels is 

presented in Fig 3.3. The results of combined treatments as compared to those of both 

control and dose matched individual cathinone treatment are presented in Fig 3.4 (DA 

levels) and Fig 3.5 (DA turnover). 
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Figure 3.3 Tissue DA content corresponding to increasing doses of the cathinone 
cocktail. Data are expressed as % of control values. Significant increases are observed 
from 1 mg kg-1 to 3.3 mg kg-1 in all brain regions, except the VTA. Comparisons and 
levels of significance are reported in Tables S3-S4. DA levels appear to plateau 
following a single 3.3 mg kg-1 combined cathinone exposure as no significant 
differences were observed in any brain area when compared to the 10 mg kg-1 cocktail. 

 

DA was significantly increased in all brain areas following acute exposure to the 

cathinone cocktail at all doses (Fig 3.3 and Table S1-S2). The DA response following 

co-administration of MDPV, mephedrone, and methylone appears to be due to 

synergistic interactions between the drugs as evidenced by two different statistical 

comparisons (Fig 3.4). First, while none of the synthetic cathinones significantly affected 

tissue DA levels over control values when individually administered at a dose of 1 mg 

kg-1, co-administration of 1 mg kg-1 MDPV + 1 mg kg-1 mephedrone + 1 mg kg-1 

methylone resulted in DA elevations that were statistically significant across all brain 

regions analyzed. Second, mesolimbic and nigrostriatal DA levels were significantly 

greater in mice treated with the high dose cathinone cocktail (3.3 mg kg-1 MDPV + 3.3 
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mg kg-1 mephedrone + 3.3 mg kg-1  methylone) as compared to mice treated with 10 mg 

kg-1 of MDPV, mephedrone, or methylone, individually. Thus, combined 3.3 mg kg-1 

doses of the three drugs resulted in increased tissue DA to levels that were significantly 

greater than those produced by any of the individual drugs at 10 mg kg-1 doses (Fig 

3.4).  

Figure 3.4 The effects of combined exposure to MDPV, mephedrone, and methylone 
on DA levels in the NAc (A), STR (B), VTA (C), and SNpc (D) of mice following acute 
dosing. Low dose values include 1 mg kg-1 individual and combined drug treatments. 
High dose values include 10 mg kg-1 individual drug treatments and 3.3 mg kg-1 

cathinone cocktail. Data are expressed as mean % of control ± SEM (n = 4-6 mice per 
group); * p < 0.05, ** p < 0.01, *** p < 0.001 vs. control (c) in both the low and high dose 
treatment groups, while # = p < 0.05 vs. the corresponding cathinone cocktail.  

 

However, DA metabolites were not as profoundly affected by the cocktail as 

compared to the individual drugs (see Table 3.1). DA turnover values for the 1 mg/kg 

cathione cocktail were significantly reduced from those of control and the individual low 
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dose drug treatments in all brain areas except the VTA. While the 3.3 mg/kg cocktail 

significantly reduced DA turnover as compared to control and methylone (10 mg kg-1) in 

all brain regions, these reductions were statistically different from MDPV (10 mg kg-1) 

individual drug treatment in the NAc only (Fig 3.5).  

 

 

Figure 3.5 The effects of combined exposure to MDPV, mephedrone, and methylone 
on DA turnover in the NAc (A), STR (B), VTA (C), and SNpc (D) of mice following acute 
dosing. Low dose values include 1 mg kg-1 individual and combined drug treatments. 
High dose values include 10 mg kg-1 individual drug treatments and 3.3 mg kg-1 

cathinone cocktail. Data are expressed as mean % of control ± SEM (n = 4-6 mice per 
group); * p < 0.05, ** p < 0.01, *** p < 0.001 vs. control (c) in both the low and high dose 
treatment groups, while # = p < 0.05 vs. the corresponding cathinone cocktail.  
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Effect of Individual and Combined Synthetic Cathinone Exposure on Locomotor Activity 

and Immobility Counts in Mice 

The acute (day 1) and subchronic (day 7) effects of MDPV and mephedrone, 

individually and in combination with methylone, on locomotor activity are presented in 

Fig 3.6. Animals were administered intermittent doses of appropriate drug or saline and 

activity testing began 15 min after treatment. Immobility episodes of 3 s or longer were 

counted and used as an index of stereotypy, as animals tracked as immobile were 

observed to be exhibiting stereotypic behavior (Fig 3.6B). A two-way ANOVA revealed 

highly significant main effects of drug treatment and testing day (p < 0.0001). No 

significant changes in motor activity were observed in the mephedrone group on either 

the first or last day of drug treatment. However, locomotion was significantly decreased 

over the course of treatment in both the MDPV and combined cathinone groups, while 

the acute effects of these treatments differed. MDPV treatment significantly enhanced 

forward locomotion on day 1 (observed as a significant increase in distance traveled) 

and had no effect on immobility or stereotypic episoides. In contrast, the combo 

treatment significantly reduced motor activity and increased stereotypic counts on day 

1. On the final treatment day, both drugs induced hypolocomotion and significantly 

increased immobility counts, with motor activity in the combo group significantly less 

than that observed on day 1.   
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Figure 3.6 Locomotor activity levels (A) and immobility counts (B) in mice repeatedly 
administered 10 mg kg-1 doses of MDPV, mephedrone, or the cathinone cocktail 
(combo). Animals were placed in the locomotor arena 15 min post-injection and 
locomotor activity was measured on day 1 (acute) and day 7 (subchronic) as total 
distance traveled or cumulative immobility episodes over a 10 min testing period. Data 
are expressed as group means (n = 6-8 per group) ± SEM, * p < 0.05 vs. saline.   
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The primary aim of the present study was to evaluate and compare how major 

bath salt constituents MDPV, mephedrone, and methylone acutely influence mesolimbic 

and nigrostriatal DA levels and locomotor activity when administered individually and in 

combination. Neurochemical and behavioral assays were performed 15 min post 

exposure, a time point in which all three compounds are reported to reach peak 

concentrations in the mouse brain (Peters et al., 2016). Given that MDPV, mephedrone, 

and methylone primarily produce their abuse-related effects by enhancing DA signaling 

(Gatch et al., 2013; Karlsson et al., 2014) and that popular bath salt ‘brands’ generally 

contain various mixtures of these compounds (Warrick et al., 2013), investigations into 

their combined effects on DA neurotransmission and motor activity are clearly 
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In the present study, we found that all three synthetic cathinones produced 

significant, dose-related increases in mesolimbic DA levels, with MDPV and 

mephedrone also producing dose-related increases in striatal and nigral DA content. 

Moreover, DA elevations detected in the NAc and STR of mice treated with MDPV were 

significantly greater than those found in mephedrone and methylone-treated mice, 

suggesting that MDPV is more potent than the substrate cathinones at increasing tissue 

DA levels in DAT-rich brain regions. These findings are in agreement with several 

microdialysis studies reporting rapidly elevated dialysate DA levels following synthetic 

cathinone administration, with the greatest increases reported with MDPV (Baumann et 

al., 2013; German et al., 2014; Schindler et al., 2016). The overall effect of each drug 

treatment on DA metabolism was similar, with all three compounds significantly 

reducing DA turnover to values that were comparable between the individual drug 

treatment groups.  

These effects can be attributed to increased synaptic DA levels and blockade of 

intraneuronal DA metabolism. Notably, DA elevations were accompanied by significant 

increases in HVA by all three cathinones, while DOPAC was either decreased or 

unaltered. Similar effects on DA metabolites have been described in freely moving 

rodents acutely treated with the synthetic cathinones at comparable doses (López-

Arnau et al., 2018; López-Arnau et al., 2017). Given that the conversion of DA to HVA 

involves catechol-O-methyltransferase (COMT), an enzyme that is notably absent from 

dopaminergic terminals (Kastner et al., 1994), while the conversion of DA to DOPAC is 

mediated by monoamine oxidase (MAO), an enzyme found within presynaptic nerve 

terminals (Graves et al., 2017), these data likely reflect the DA reuptake-inhibiting 
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actions of the synthetic cathinones. Thus, the blockade of DA re-entry into the 

intracellular substrate pool prevents MAO degradation and leads to an increase in the 

synaptic pool of DA available for extraneuronal metabolism by COMT in glial cells 

(Gulley and Zahniser, 2003). Additionally, tissue levels of HVA appeared to positively 

correlate to DA elevations, with MDPV also producing the greatest elevations in HVA in 

the neuron terminal regions (NAc and STR).  Interestingly, the substrate cathinones 

produced significantly greater reductions in accumbal and striatal DOPAC levels when 

compared to controls and MDPV. Given the fact that other amphetamine-like 

compounds have been shown to inhibit MAO (Sitte and Freissmuth, 2015), these data 

may reflect a similar action of mephedrone and methylone.    

The combined delivery of the synthetic cathinones resulted in acute elevations in 

DA that were significantly greater than those observed with MDPV, mephedrone, or 

methylone alone in all collected brain regions. This was observed at all doses of the 

cathinone cocktail analyzed (1 mg kg-1, 3.3 mg kg-1, and 10 mg kg-1).  As none of the 

drugs significantly changed DA over control levels when individually administered at the 

1 mg kg-1 dose, the 1 mg kg-1 cathinone cocktail was utilized to determine if any 

significantly altered effects are achieved following co-administration of the synthetic 

cathinones at doses that were pharmacologically insignificant when individually 

administered. As such, we found that DA was significantly increased in all brain regions 

of mice treated with the 1 mg kg-1 cocktail as compared to both control and 1 mg kg-1 

individual drug treatments. In order to determine if this enhanced response was a result 

of synergistic drug interactions or an additive effect due to an increase in total synthetic 

cathinone load (e.g. 3 mg kg-1 total cathinones in cocktail vs. 1 mg/kg individual 
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synthetic cathinones), we utilized the cocktail composed of 3.3 mg kg-1 MDPV + 3.3 mg 

kg-1 mephedrone + 3.3 mg kg-1 methylone (10 mg kg-1 total cathinone exposure) and 

directly compared results of this treatment group with those obtained in both control and 

10 mg kg-1 individual cathinone groups. From these analyses, we found that 1) the 3.3 

mg kg-1 combo treatment significantly increased DA levels over control values and 2) 

DA elevations were significantly greater than those achieved by any of the synthetic 

cathinones when individually administered at 10 mg kg-1. Thus, a significantly greater 

DA response was achieved by the drug combination, despite a 3 fold decrease in the 

dose of each individual cathinone, suggesting that this effect is product of drug 

synergism and not simply due to addition or increased total cathinone load (Tallarida, 

2011). Taken together, these data show that the individual abilities of MDPV, 

mephedrone, and methylone, to increase mesolimbic and nigrostriatal DA levels are 

enhanced when they are given in conjunction one another. This, enhanced effect may 

be attributed to the synergistic pharmacokinetic effect demonstrated by Cameron and 

colleagues (2013b), whereby the substrate and DA-releasing activity of mephedrone 

and methylone precedes the blocking actions of MDPV, and is supported by studies 

demonstrating that mephedrone and binary mixtures of MDPV + mephedrone enhance 

the stimulant effect of DAT-blocker cocaine (Berquist et al., 2016). 

Given that midbrain dopamine circuits are primarily implicated in the activation 

and sensitization of locomotor responses (Uhl et al., 2002), it is interesting to evaluate 

these effects in mice treated with the synthetic cathinones individually and in 

combination. Thus, to determine whether the enhanced DA response following co-

administration of MDPV, mephedrone, and methylone had any measurable effects on 
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the psychostimulant properties of the individual drugs, locomotor activity experiments 

were conducted in mice treated with intermittent 10 mg kg-1 doses of MDPV, 

mephedrone, or the cathinone cocktail. Mephedrone was chosen as the representative 

substrate cathinone for individual analysis as it is reported to be more potent than 

methylone at inducing DAT-mediated DA release and producing hyperactivity in rodents  

(Baumann et al., 2012; Bonano et al., 2014). In agreement with several studies 

(Baumann et al., 2013; Fantegrossi et al., 2013; Marusich et al., 2012), we found that 

MDPV induced profound forward locomotion after a single 10 mg kg-1 treatment, while 

repeated exposure at this dose appeared to induce focused stereotypy, evidenced by a 

trending increase in immobility episodes. Observed stereotypies included self-licking 

and repetitive hindlimb jumping, which have been previously reported with MDPV 

(Fantegrossi et al., 2013). In the present study, mephedrone (10 mg kg-1) did not 

influence the locomotor or stereotypic responses of mice on either treatment day, 

despite findings of significant dopaminergic effects. These results are in agreement with 

some studies (Budzynska et al., 2015; Motbey et al., 2012), but are different than others 

(Baumann et al., 2012; Lisek et al., 2012; Shortall et al., 2013). However, given the fact 

that activity testing began 15 min post injection, it is conceivable that the stimulant 

effects of mephedrone had already peaked and returned to near baseline by the time 

testing began. Although this would not be predicted from pharmacokinetic data in our 

lab, it is consistent with the various reports that mephedrone produces transient 

stimulant effects that are rapid in onset (within 10 min) and short in duration (Aarde et 

al., 2013; Kehr et al., 2011; Marusich et al., 2012; Šíchová et al., 2017) and coincides 

with the described short-lasting effects of this drug by recreational users (Dargan et al., 
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2011; Winstock et al., 2011). Additionally, given the potent serotonergic effects of 

mephedrone (Baumann et al., 2012; Kehr et al., 2011), locomotor activation may have 

been dampened due to enhanced 5-HT neurotransmission in the STR and NAc.  

Combined 10 mg kg-1 administration of MDPV, mephedrone, and methylone 

induced profound evidence of stereotypic activity (high immobility counts) that was 

accompanied by significantly depressed forward locomotion after both acute and 

repeated dosing. Observed stereotypies included head bobbing and self-injurious chest 

biting, often resulting in skin wounding and bleeding. Similar effects have been reported 

following  a single high dose treatment of methamphetamine (Gentry et al., 2004; 

Kuczenski and Segal, 1997; Segal and Kuczenski, 1987) and MDPV (30 mg kg-1) 

(Fantegrossi et al., 2013); however, none of the individual cathinones were shown by 

this study or others (Gregg and Rawls, 2014; Gregg et al., 2013b; López‐Arnau et al., 

2012; Shortall et al., 2013) to produce acute stereotyped motor deficits at 10 mg kg-1  

doses. Thus, the motor-stimulant responses of the individual drugs are significantly 

altered when they are co-administered as a cocktail. As drug-induced increases in 

extracellular DA in the accumbens and, in particular, the striatum have been positively 

correlated to stereotypic responses (Budygin et al., 2000; Carr and White, 1987; Presti 

et al., 2003), these data support our neurochemical findings. Additionally, motor deficits 

in mice were exaggerated over time, with a greater degree of hypolocomotion on day 7 

compared to day 1, while stereotypic activity was similar for both treatment days. 

However, because stereotypy counts corresponded to immobility episodes lasting more 

than 3 seconds, it is likely that these animals did, in fact, exhibit intensified stereotypic 

activity by remaining in each stereotypic episode for longer periods of time, resulting in 
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less ambulatory activity between episodes and the observed enhancement of 

hypolocomotion on day 7.  While more precise testing parameters should be used to 

define this behavior, these data suggest that locomotor activity decreases with the 

cathinone cocktail due to an increase in stereotypic behavior.  

In sum, we have shown that acute MDPV, mephedrone, and methylone induce 

large DA elevations within the NAc, STR, SNpc, and VTA, which are accentuated when 

the drugs are given in combination with one another. This effect appears to result from 

synergistic drug interactions, as combined 3.3 mg kg-1 doses of MDPV, mephedrone, 

and methylone increase mesolimbic and nigrostriatal DA to levels that were significantly 

greater than those achieved by any of the drugs alone at 10 mg kg-1 doses. In support 

of this, we also found that acute dosing of the cathinone cocktail induced robust 

stereotypic behavior and hypolocomotion that was exacerbated after repeated dosing, 

an effect that was not observed with the individual drugs and is consistent with 

enhanced DA neurotransmission. Given that excessive DA release has been implicated 

in methamphetamine neurotoxicity (Halpin et al., 2014) and is associated with its 

significant reinforcing effects (Volkow and Morales, 2015), these findings raise concerns 

about possible dopaminergic toxicity and addictive potential when MDPV, mephedrone, 

and methylone are co-abused in bath salt mixtures.  
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Supplementary Data 

Table S1. Two-way ANOVAs for dose and treatment effects of MDPV, mephedrone, 
and methylone and their combination on DA, DOPAC, HVA, and DA turnover 

Brain 
region 

Dependent 
variable 

Main effect 
treatment 

Main effect 
dose Interaction 

NAc 

DA F(4,44) = 24.97 
P < 0.0001 

F(1,44) = 38.76 
P < 0.0001 

F(4,44) = 5.27 
P < 0.0015 

DOPAC F(4,43) = 7.09 P 
< 0.0002 

F (1,43) = 0.09 
P > 0.05 (ns) 

F(4,43) = 3.54 
P < 0.0146 

HVA F(4,43) = 19.19 
P < 0.0001 

F(1,43) = 30.30 
P < 0.0001 

F(4,43) = 8.97 
P < 0.0001 

DA  
turnover 

F(4,43) = 19.70 
P < 0.0001 

F(1,43) = 36.80  
P < 0.0001 

F(4,43) = 2.60 
P < 0.05 

STR 

DA F(4,43) = 42.76 
P < 0.0001 

F(1,43) = 101.5  
P < 0.0001 

F(4,43) = 18.20 
P < 0.0001 

DOPAC F(4,43) = 5.83 P 
< 0.0008 

F (1,43) = 2.39 
P > 0.05 (ns) 

F(4,43) = 8.86 
P < 0.0001 

HVA F(4,44) = 54.87 
P < 0.0001 

F (1,44) = 16.71 
P < 0.0001 

F(4,44) = 11.86 
P < 0.0001 

DA  
turnover 

F(4,43) = 22.63 
P < 0.0001 

F(1,43) = 42.85 
P < 0.0001 

F(4,43) = 3.05 
P <0.0261 

VTA  

DA F(4,42) = 45.44 
P< 0.0001 

F(1,42) = 37.71 
P < 0.0001 

F(4,42) = 4.27 
P < 0.0055 

DOPAC F(4,42) = 12.14 
P < 0.0001 

F(1,42) = 36.38 
P < 0.0001 

F(4,42) = 4.46 
P < 0.0044 

HVA F(4,42) = 19.77 
P < 0.0001 

F(1,42) = 3.12 
P > 0.05 (ns) 

F(4,42) = 5.18 
P < 0.0017 

DA 
 turnover 

F(4,42) = 30.20 
P < 0.0001 

F(1,42) = 23.26 
P < 0.0001 

F(4,42) = 2.90 
P < 0.0331 

SNpc  

DA F(4,42) = 23.74 
P< 0.0001 

F(1,42) = 15.10 
P < 0.0004 

F(4,42) = 3.55 
P < 0.0138 

DOPAC F(4,42) = 9.87 P 
< 0.0001 

F(1,42) = 29.97 
P < 0.0001 

F(4,42) = 3.08 
P < 0.0259 

HVA F(4,42) = 10.64 
P < 0.0001 

F(1,42) = 2.68 
P > 0.05 (ns) 

F(4,42) = 5.49 
P < 0.0012 

DA 
turnover 

F(4,42) = 36.33 
P < 0.0001 

F(1,42) = 50.93 
P < 0.0001 

F(4,42) = 8.60 
P < 0.0001 
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Table S2. Post-hoc statistical comparisons (Bonferroni test for multiple comparisons) for 
mice treated with MDPV, mephedrone, methylone, and the cathinone cocktail 

Comparison DA DOPAC HVA DA turnover 
NAc 

MDPV 1 vs control ns ns * ns 
MDPV 10 vs control *** ns *** ** 
Meph 1 vs control ns ns ns ns 
Meph 10 vs control * * *** ** 
Methy 1 vs control ns ns ns ns 
Methy 10 vs control * ** ** *** 
Combo 1  vs control *** ns *** ** 
Combo 3.3 vs control *** ns ** *** 
MDPV 1 vs Combo 1 ** ns ns * 
Meph 1 vs Combo 1 ** ns * * 
Methy 1 vs Combo 1 ** ns ** ns 
MDPV 10 vs Combo 3.3 * ns *** *** 
Meph 10 vs Combo 3.3 *** * ns *** 
Methy 10 vs Combo 3.3 *** ** ns ns 
Meph 1 vs MDPV 1 ns ns ns ns 
Methy 1 vs MDPV 1 ns ns ns ns 
Meph 10 vs MDPV 10 *** *** *** ns 
Methy 10 vs MDPV 10 ** *** *** ns 

STR 
MDPV 1 vs control ns ns ns ns 
MDPV 10 vs control *** ns *** *** 
Meph 1 vs control ns ns * ns 
Meph 10 vs control * * *** *** 
Methy 1 vs control ns ns ns ns 
Methy 10 vs control ns ** *** ** 
Combo 1  vs control ** ns ns *** 
Combo 3.3 vs control *** * *** *** 
MDPV 1 vs Combo 1 * ns ns *** 
Meph 1 vs Combo 1 * ns ns ** 
Methy 1 vs Combo 1 ** ns ns *** 
MDPV 10 vs Combo 3.3 *** ns *** ns 
Meph 10 vs Combo 3.3 *** *** ns ** 
Methy 10 vs Combo 3.3 *** *** ns *** 
Meph 1 vs MDPV 1 ns ns ns ns 
Methy 1 vs MDPV 1 ns ns ns ns 
Meph 10 vs MDPV 10 *** *** *** ns 
Methy 10 vs MDPV 10 *** *** *** ns 

VTA 
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MDPV 1 vs control ns ** *** ** 
MDPV 10 vs control *** * ** *** 
Meph 1 vs control ns ns * *** 
Meph 10 vs control *** ns ** *** 
Methy 1 vs control ns *** * * 
Methy 10 vs control ** ns ** *** 
Combo 1  vs control *** ns *** *** 
Combo 3.3 vs control *** ** *** *** 
MDPV 1 vs Combo 1 *** *** ns ns 
Meph 1 vs Combo 1 *** ns *** ns 
Methy 1 vs Combo 1 *** *** *** * 
MDPV 10 vs Combo 3.3 *** ns ns ns 
Meph 10 vs Combo 3.3 *** ns ns ns 
Methy 10 vs Combo 3.3 *** *** ns * 
Meph 1 vs MDPV 1 ns * *** ns 
Methy 1 vs MDPV 1 ns ns *** ns 
Meph 10 vs MDPV 10 ns ** ns ns 
Methy 10 vs MDPV 10 ns ns ns ns 

SNpc 
MDPV 1 vs control *** ns *** ** 
MDPV 10 vs control ns *** *** *** 
Meph 1 vs control ** ** ns ns 
Meph 10 vs control ns *** *** *** 
Methy 1 vs control ns ns *** ns 
Methy 10 vs control ns *** * * 
Combo 1  vs control *** ns ** *** 
Combo 3.3 vs control *** ** ns *** 
MDPV 1 vs Combo 1 * ns ns ** 
Meph 1 vs Combo 1 *** ** ns *** 
Methy 1 vs Combo 1 * ns ns *** 
MDPV 10 vs Combo 3.3 *** ns * ns 
Meph 10 vs Combo 3.3 *** ns ** ns 
Methy 10 vs Combo 3.3 *** ns ns *** 
Meph 1 vs MDPV 1 * ns ns ** 
Methy 1 vs MDPV 1 ns *** ** ns 
Meph 10 vs MDPV 10 ns ns ns * 
Methy 10 vs MDPV 10 * ns ns *** 

 

Mice were treated with MDPV, mephedrone, methylone, or their combination at varied 
doses (represented by the numerals after each drug). Drug treatment induced changes 
in DA and HVA were increases by comparison to control. Treatment induced changes in 
DOPAC and DA turnover were decreases by comparison to control. Significance levels 
for the comparisons are indicated by * p < 0.05, ** p < 0.01, and *** p < 0.001.    
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Table S3. One-way ANOVAs for the treatment effects of the cathinone cocktail at 1 mg 
kg-1, 3.3 mg kg-1, and 10 mg kg-1 

Brain region Main effect of treatment on DA  
NAc F(4) = 50.27 P < 0.0001 
STR F(4) = 42.92 P < 0.0001 

VTA F(4) = 17.84 P < 0.0001 
SNpc F(4)= 26.95 P < 0.0001 

 

Table S4. Post-hoc statistical comparisons (Tukey’s multiple comparisons) for mice 
treated with the cathinone cocktail at 1 mg kg-1, 3.3 mg kg-1, and 10 mg kg-1.  

Comparison NAc (DA 
levels) 

STR (DA 
levels) 

VTA (DA 
levels) 

SNpc (DA 
levels) 

Combo 10 vs Combo 1 *** *** ns * 
Combo 10 vs Combo 3 ns ns ns ns 
Combo 10 vs control *** *** *** *** 
Combo 3 vs Combo 1 *** *** ns * 

 

The effects of the cathinone cocktail at three different doses on tissue DA are presented 
in Fig 3.3, and levels of significance are indicated as * p < 0.05, ** p < 0.01, and *** p < 
0.001 by each treatment comparison. The effects of 1 mg kg-1 and 3.3 mg kg-1 combo 
by comparison to controls are listed in Table S2 and have not been included here. 
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Introduction 

The synthetic cathinones, 3, 4-methylenedioxypyrovalerone (MDPV), 4-

methylmethcathinone (mephedrone), and 3, 4-methylenedioxymethcathinone 

(methylone), are major constituents of bath salt mixtures and continue to be one of the 

most prevalent classes of designer drug compounds. Despite DEA classification of 

MDPV, mephedrone, and methylone as schedule I controlled substances in 2011(DEA, 

2011), international control laws remain lacking and abuse continues to thrive with the 

internet serving as a clandestine marketplace for these drugs (Coppola and Mondola, 

2012; Dybdal-Hargreaves et al., 2013; Karila et al., 2015). Bath salts are described by 

users to precipitate desirable psychostimulant and hallucinogenic effects; however, 

violent behavior, tachycardia, respiratory distress, seizures, and even death have also 

been reported with their abuse (DEA, 2011; Karch, 2015; Prosser and Nelson, 2012).  

In recent years, great strides have been made in our understanding of the 

pharmacology and abuse liability of synthetic cathinones; however, descriptions of their 

neurotoxic properties remain limited. Moreover, while much of the preclinical data on 

synthetic cathinones explicates the individual effects of MDPV, mephedrone, and 

methylone, forensic analysis and DEA case reports have indicated that bath salt 

products contain various mixtures of MDPV, mephedrone, and methylone with each 

other or other stimulant substances (Araujo et al., 2015; DEA, 2011; Spiller et al., 2011). 

Also, a retrospective search of records involving synthetic cathinones at two poison 

control centers revealed that many of most frequently abused bath salt ‘brands,’ 

identified by patient history reports, contained mixtures of MDPV, mephedrone, and 
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methylone (Spiller et al., 2011; Warrick et al., 2013). Thus, to better model bath salt 

abuse, the effects of synthetic cathinone mixtures should be assessed.  

MDPV is a catecholamine selective monoamine transporter blocker that was 

found to be significantly more potent than cocaine at inhibiting synaptic clearance of 

dopamine (DA), increasing extracellular DA, and stimulating locomotor activity 

(Baumann et al., 2013). Mephedrone and methylone behave as substrates at 

monoamine transporters and exhibit transporter-mediated DA and serotonin (5-HT)-

releasing effects similar to their non-beta keto analogs, methamphetamine (METH) and 

3,4 methylenedioxymethamphetamine (MDMA) (Baumann et al., 2012; López‐Arnau et 

al., 2012). Additionally, mephedrone and methylone induce locomotion and fully 

substitute for METH and MDMA in drug discrimination studies (Bonano et al., 2014; 

Gatch et al., 2013; Harvey and Baker, 2016), further suggesting shared 

pharmacological activity between these drugs. However, the substrate synthetic 

cathinones produce unique effects with regards to DA neurotoxicity. While neither 

mephedrone nor methylone induce damage to DA nerve endings (Angoa-Perez et al., 

2016; Angoa-Perez et al., 2012), they accentuate the neurotoxic effects of METH, 

amphetamine (AMPH), and MDMA when co-administered with these drugs (Angoa-

Pérez et al., 2014; Angoa‐Pérez et al., 2013; Anneken et al., 2015). While the 

underlying mechanism of the effect has not been determined, these findings suggest 

that the neurotoxic properties of the synthetic cathinones are enhanced when they are 

combined with other drugs that target the dopamine transporter (DAT). However, 

preclinical investigations of the combined effects of MDPV, mephedrone, and methylone 

on measures of neurotoxicity are extremely limited. To address this lack of experimental 



111 
 

data, the present study evaluated the effects of ternary mixtures of MDPV, mephedrone, 

and methylone on DA and major proteins of the dopaminergic synapse in mice. The 

effect of these drug cocktails on neuroinflammatory markers and DA neuron counts was 

also assessed.  

Materials and Methods 

Drugs and Reagents 

MDPV ((±) 3, 4-methylenedioxypyrovalerone HCl), mephedrone ((±) 4-

methylmethcathinone HCl), and methylone ((±)3, 4-methylenedioxymethcathinone HCl) 

were purchased from Sigma-Aldrich (St. Louis, MO, USA). Certified reference standard 

grade dopamine (DA), 3,4-dihydroxyphenylacetic acid (DOPAC), homovanillic acid 

(HVA) , and 3,4- dihydroxybenzlyamine hydro-bromide (DHBA) were also purchased 

from Sigma-Aldrich. The ion pairing agent, sodium octyl sulfate (SOS), was purchased 

from Acros organics (Geel, Belgium) and 2.0 N perchloric acid was purchased from 

RICCA chemical (Arlington, TX, USA).  All other certified ACS chemicals and buffer 

reagents used in this study were purchased from Thermo Fisher Scientific (Fair Lawn, 

NJ, USA).   

Animals 

The experiments utilized adolescent male Swiss-Webster mice (Harlan Inc., 

Indianapolis, IN) weighing 20-30 g. Male adolescent mice were chosen for this study as 

drug survey reports suggest the main abusers of synthetic cathinones are young male 

adults (Karila et al., 2015; Vardakou et al., 2011; Winstock et al., 2011).  The animals 

were housed in a full AAALAC-accredited facility under standard laboratory conditions 
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(22 ± 1°C, 12 h light/dark cycle) with food and water freely available. The experimental 

protocol was approved by the ETSU University Committee on Animal Care (UCAC), 

following the National Institutes of Health Guidelines for the Care and Use of Laboratory 

Animals. 

Animal Treatment  

Mice (age 40 days) were weighed and separated into the following treatment groups: 1) 

saline (controls), 2) MDPV (10 mg kg-1), 3) mephedrone (10 mg kg-1), 4) methylone (10 

mg kg-1), and 5) cathinone cocktail (10 mg kg-1MDPV + 10 mg kg-1 mephedrone + 10 

mg kg-1 methylone). The total cathinone dose used in the cocktail (30 mg kg-1 total 

cathinones) was chosen based on previous experiments reporting that 30 mg kg-1 

injections of synthetic cathinones produced physiological responses commonly 

associated with psychostimulant neurotoxicity (den Hollander et al., 2013). All treatment 

groups were utilized for neurochemical analysis. In protein expression assays, 

mephedrone was chosen over methylone as the representative substrate cathinone due 

to its increased potency and DA-releasing capabilities at the DAT (Baumann et al., 

2012; Simmler et al., 2013); thus, all treatment groups except methylone were analyzed. 

For chronic dosing, each animal received intraperitoneal (IP) injections according to 

their treatment group every other day for 14 days (7 injections total). All drugs were 

dissolved in saline and injected at a volume of 0.01 ml/g body weight; equal volumes of 

saline were used to treat control animals. This every other day dosing schedule follows 

the paradigm described by Pierce and Kalivas (1997), by which 48 h drug dosing allows 

for complete drug wash out prior to each injection, and has been traditionally used with 

psychostimulant studies.  
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Tissue Collection 

For neurochemical and protein expression assays, mice were anesthetized with 

isoflurane and euthanized by decapitation 2 days after drug treatment. This point was 

chosen based on previous studies indicating that amphetamine-associated neurotoxicity 

reaches maximum at 2 days (Angoa‐Pérez et al., 2013). Brains were collected 

immediately and placed in ice cold saline for 5 min. The nucleus accumbens (NAc), 

striatum (STR), substantia nigra pars compacta (SNpc), and ventral tegmental area 

(VTA) were dissected from each brain based upon coordinates in the mouse brain atlas 

(Paxinos and Watson) using a 30g Coronal mouse brain matrix (ASI Instruments), flash 

frozen, and stored at -70°C until further analysis. For immunohistochemistry, mice were 

deeply anesthetized with Avertin (2.5% tribromoethyl alcohol in 0.9% saline), identified 

via the loss of deep tendon and corneal reflexes, and transcardially perfused with ice 

cold 3 % paraformaldehyde. Fixed brains were then dehydrated in ethanol, incubated in 

xylene, and embedded in paraffin (Paraplast-X-tra™, Fisher Scientific). Brains were 

blocked, sectioned on the microtome at 10 µM thickness, and mounted onto Superfrost-

plus slides (Fisher Scientific). Every section from the rostral hippocampus to the anterior 

cerebellar-midbrain junction (Bregma: -2.70 to -3.70, Paxinos and Watson) was serially-

collected and mounted at five sections per slide. 

Neurochemical Analysis 

Concentrations of DA and relevant metabolites, DOPAC and homovanillic acid (HVA), 

were measured in discrete brain tissue extracts using a previously described method 

employing HPLC with electrochemical detection (Allen et al., 2017). Briefly, samples 
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were homogenized in methanol, spiked with the internal standard (3,4-

Dihydroxybenzylamine (DHBA)), and centrifuged at 14,000 x g. Collected supernatants 

were dried under nitrogen gas, and reconstituted in 0.2 N perchloric acid. 

Chromatographic separations were achieved using a C18 MD- 150 mm x 3.2 mm, 3 µm 

column (Thermo Fisher Scientific, Sunnyvale, CA, USA), with a mobile phase consisting 

of 95% 50 mM sodium acetate, 10 mM citric acid, 0.38 mM SOS, 0.15 mM EDTA, and 

5% acetonitrile. Electrochemical detection was performed using a Coulochem® III 

detector (ESA Laboratories, Inc.) equipped with 5100A dual electrode. Data were 

collected on-line and exported to an Agilent EZChrome Elite software system (Santa 

Clara, CA, USA) for peak integration and analysis. On the day of analysis, standard 

calibration solutions containing 0.125 - 30 ng/mL were prepared in 0.2 N perchloric acid 

and used to generate five-point internal standard calibration curves for each analyte. 

Peak area ratios were used for computations, and analyte concentrations were 

calculated using interpolation of their respective standard curves.  

Protein Expression Assays 

Tissue lysate preparation. Collected brain tissue regions were suspended in 

appropriate amounts of ice cold isolation buffer consisting of RIPA lysis buffer and MS-

SAFE protease and phosphatase inhibitor cocktail (1:10, Sigma Aldrich). Cells in tissue 

samples were lysed by 30 seconds of sonication with an ultrasonic processor, and 

cellular debris were removed via centrifugation at 4°C at 14,000 X g for 15 min. 

Supernatant concentration was measured on an Epoch 2  microplate reader (BioTek, 

Winooski, VT, USA) using the Pierce Bradford Protein assay kit (Thermo Scientific). 
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Simple Western analysis. Expression levels of the dopamine transporter (DAT-1), 

tyrosine hydroxylase (TH), monoamine oxidase B (MAO-B), catechol-O-

methyltransferase (COMT), vesicular monoamine transporter (VMAT2), glial fibrillary 

acidic protein (GFAP) and loading control glyceraldehyde 3-phosphate dehydrogenase 

(GAPDH)  were measured in lysates using the capillary-based, automated Western 

blotting system, ‘Wes’ from ProteinSimple (Santa Clara, CA, USA). The primary 

antibodies and dilutions used for these analyses were Rabbit anti-DAT 1 (1:25, Abcam), 

Rabbit anti-TH (1:1000, Novus Biologicals), Rabbit anti- MAO-B (1:10, Novus 

Biologicals), Rabbit anti- COMT (1:10, Novus Biologicals), Rabbit biotin conjugated anti-

VMAT2 (1:1000, Novus Biologicals), Rabbit anti-GFAP (1:100, Dako) and Rabbit anti- 

GAPDH (1:1000, Novus Biologicals). Size-based assays were performed using Wes 12-

230 kDa rabbit master kit reagents according to the user manual (PS-MK14, 

ProteinSimple). Briefly, samples were diluted with 0.1 X sample buffer (ProteinSimple) 

to achieve a final concentration of 100 µg/mL (DAT-1) or 250 µg/mL (TH, MAO-B, 

COMT, VMAT2, GFAP), (amount of total protein content determined from Bradford 

assay (ug/mL)). Diluted samples were then mixed with a master mix (ProteinSimple) 

containing fluorescent molecular weight markers and 40 mM dithiothreitol (DTT), and 

heated at 95°C for 5 min. Denatured samples, blocking reagent, primary antibodies, 

HRP-conjugated anti-rabbit secondary antibodies (streptavidin-HRP for VMAT2), and 

chemiluminescent substrate were dispensed into designated wells of a manufacturer 

supplied microplate, pre-loaded with separation and stacking matrices. Prepared assay 

plates were then loaded into Wes and analyzed at room temperature using the 

instrument default settings. Chemiluminescent protein bands were captured by a 
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charge-coupled device (CCD), and the digital image was analyzed using inline 

Compass software (ProteinSimple). Relative band densities of all proteins were 

normalized to the GAPDH level for each lane. 

Cell Culture and Cytotoxicity Assay 

The SH-SY5Y cell line was obtained from the ATCC. Cells were grown in Dulbecco’s 

modified Eagle’s medium (DMEM) supplemented with 10% fetal bovine serum and 1% 

penicillin-streptomycin. Cells were maintained at 37°C, saturated humidity, and 5% 

CO2. Cells were plated onto 24-well culture plates at a density of 1 × 105 cells/well and 

differentiated in reduced serum media (3% FBS) supplemented with 10µM retinoic acid 

for six days prior to experimentation. SH-SY5Y cells were treated with vehicle, 1 mM 

MDPV, 1 mM mephedrone, 3 mM mephedrone, 1 mM methylone, or the cathinone 

cocktail (1 mM MDPV + 1 mM mephedrone + 1 mM metylone) and cytotoxicity was 

determined at 6, 12, 24, and 48 h after drug application by measuring the activity of the 

lactate dehydrogenase released into the culture media according to the manufacturer’s 

protocol (BioVision, K311-400). Treatment doses were similar to those previously 

utilized with the synthetic cathinones in SH-SY5Y cells (den Hollander et al., 2014; 

Rosas-Hernandez et al., 2016; Valente et al., 2017).  Samples were done in triplicate 

and assessed in reference to a 1% Triton-X treated control.  

Immunohistochemistry 

Deparaffinized sections were incubated with rabbit polyclonal anti-TH (Pel-Freeze 

Biologicals; 1:250) overnight for identification of TH positive dopamine neurons. TH 

positive cells were visualized using the avidin biotin complex (ABC) reaction and 
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diaminobenzindine (DAB) substrate solution kits (Vector laboratories). All sections were 

counterstained with the nissl stain Neutral Red (Sadasivan et al., 2012).  

Quantification of TH-positive neurons. A model-based stereological method was 

used to estimate the total number of DA neurons within the SNpc sections (Baquet et 

al., 2009). Briefly, TH-positive and TH-negative cells of the DA phenotype were counted 

from both the right and left sides of one SNpc section per slide using a 40x objective. 

The same section was counted on each slide, and the Abercrombie correction factor 

(Abercrombie, 1946) was used to correct for split nuclei.  

Data Analysis  

All statistical analyses were performed using GraphPad Prism version 5.0 for Windows 

(GraphPad Software, San Diego, CA, USA). LDH data were analyzed using a two-way 

ANOVA followed by Bonferroni’s post-hoc test. The effect of each drug treatment on 

tissue DA, DOPAC, HVA, levels and relative expression levels of DAT, TH, MAO-B, 

COMT, VMAT2, and GFAP were tested for significance using one-way ANOVA, 

followed by Tukey’s post-hoc test. DA turnover values were calculated as 

[DOPAC+HVA]/[DA], and the effect of treatments on DA turnover were evaluated by 

one-way ANOVA followed by Tukey’s post-hoc test. The effect of combined cathinone 

treatment on DA neuron number was compared to saline by an unpaired t-test. The 

minimum criterion for statistical significance was P < 0.05. 
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Results 

Effects of Chronic Individual and Combined Synthetic Cathinone Exposure on 

Mesolimbic and Nigrostriatal DA Concentration and Turnover 

Dopamine concentration and turnover rates within discrete brain regions of mice 

chronically treated with the synthetic cathinones, alone and in combination, are 

presented in Figure 4.1 and 4.2, respectively. The main effect of treatment on DA and 

DA turnover values was highly significant (p < 0.001- < 0.0001). Statistical analyses 

revealed significant increases in DA levels above control within all brain areas 2 days 

after repeated individual exposure to MDPV and mephedrone, with methylone, 

significantly increasing NAc and VTA DA levels.  Moreover, MDPV produced the 

greatest elevation of DA levels in the nerve terminal regions when compared to 

mephedrone (p < 0.001) and methylone (p < 0.001) (Fig 4.1A). Conversely, DA levels 

were significantly reduced in the NAc, STR, SNpc, and VTA brain regions of mice 2 

days after chronic treatment with cathinone cocktail, as compared to saline control 

animals (Fig 4.1A). The cathinone cocktail significantly increased DA turnover in all 

brain areas. The individual cathinones induced similar significant increases in accumal 

and striatal DA turnover, with MDPV additionally increasing DA turnover in the VTA (Fig 

4.1B).   
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Figure 4.1 DA concentration (A) and turnover (B) in the NAc, VTA, STR, and SNpc 
following chronic dosing of MDPV, mephedrone, and methylone individually and in 
combination. Monoamine and metabolite levels were determined using HPLC analysis 
and are reported as % of control. Data are expressed as means for n = 4 - 6 mice per 
group ± SEM (< 5% of means). * p < 0.05, ** p < 0.01, *** p < 0.001 vs control (saline).  

 

Effects of Chronic Synthetic Cathinone Exposure on DA Degradation and Biochemical 

Markers of Neurotoxicity 

MAO-B and COMT. Given the ability of amphetamine-like compounds to inhibit 

DA degradative enzymes, synthetic cathinones were evaluated for their individual and 

combined ability to dysregulate MAO-B and COMT expression levels (Fig 4.2).  MDPV 

alone did not change the levels of MAO-B and COMT in any of the studied brain 

regions. Mephedrone treatment had no significant effects on MAO-B, but produced 

significant decreases in COMT in all regions examined (Fig. 4.2B). In contrast, 

significant reductions in both MAO-B and COMT levels were observed in all brain 

regions of mice treated with the cathinone cocktail (Fig 4.2A,B).  

NAc VTA STR SNpc
0

200

400

600

*

***

* *

*

***
***

***
***

*

*

*

***

A Control
Cathinone cocktail
MDPV
Mephedrone
Methylone

DA levels
D

A 
(%

 c
on

tr
ol

)

NAc VTA STR SNpc
0

50

100

150

200

250

***
*

*
**

** * *
*** *** ***

B

* *

DA turnover

D
A 

tu
rn

ov
er

(%
 c

on
tr

ol
)



120 
 

 

 

Figure 4.2 Relative expression levels of MAO-B and COMT in the mesolimbic and 
nigrostriatal brain pathways following repeated dosing of MDPV, mephedrone, and the 
cathinone cocktail (MDPV + mephedrone + methylone). Relative pixel densities were 
quantified using ProteinSimple compass software and were normalized to GAPDH. 
Data are means for n = 4 - 6 mice per group, ± SEM. * p < 0.05, ** p < 0.01, *** p < 
0.001 vs. saline.  

 

VMAT2. To assess the effects of repeated synthetic cathinone exposure on 

intracellular DA storage mechanisms, a target of METH and other amphetamines, 

protein expression levels of VMAT2 were determined in mice chronically treated with 

the synthetic cathinones. As shown in Figure 4.3, enhanced striatal VMAT2 expression 

was observed following exposure to the cathinone cocktail and MDPV, while 

mephedrone and MDPV treatment reduced expression in the VTA.  
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Figure 4.3 Relative expression level of VMAT2 in the NAc, VTA, STR, and SNpc of 
mice repeatedly administered MDPV, mephedrone, or the cathinone cocktail. Data are 
expressed as group means ± SEM, n = 4 – 6 per group.  * p < 0.05, ** p < 0.01, *** p < 
0.001 vs. saline.  
 

DAT-1 and TH. To further investigate if chronic bath salt exposure affects the 

integrity of dopaminergic nerve terminals,  expression of DAT-1 and TH, two major 

dopaminergic neuronal markers, were analyzed by ProteinSimple western blot analysis 

following repeated synthetic cathinone exposure (Figure 4.4). Statistical analysis 

showed significant reductions in mesolimbic and nigrostriatal DAT-1 levels following 

treatment with the cathinone cocktail, while only striatal reductions of DAT -1 were 

observed following individual exposure to MDPV and mephedrone (Fig 4.4A). Moreover, 

TH levels were significantly decreased in all brain regions of mice treated with the 

cathinone cocktail, as well as mephedrone alone (Fig 4.4B). Conversely, individual 

MDPV treatment significantly increased TH in all brain regions (Fig 4.4B). 
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Figure 4.4 Effects of chronic exposure to MDPV, mephedrone, and the cathinone 
cocktail (10 mg kg-1) on the relative expression levels of DAT-1 (A) and TH (B) in mice 
48 h after dosing.  Protein levels were normalized to GAPDH and are expressed at 
group means (n = 4 – 6) ± SEM. * p < 0.05, ** p < 0.01, *** p < 0.001 vs. saline.  
 

Cytotoxic Effects of Synthetic Cathinones 

The effects of the synthetic cathinones alone and in combination on LDH release over a 

48 h time course are shown in Figure 4.5. The main effects of synthetic cathinone 

treatment, time after application, and their interaction were all highly significant (p < 

0.0001). Post-hoc analysis revealed that all treatment groups increased LDH release 

over time (Fig 4.5A). Mephedrone (1 mM and 3 mM) and the cathinone cocktail 

significantly increased LDH release at all studied time points (6, 12, 24, and 48 h), while 

MDPV and methylone treatment significantly increased LDH release at 12, 24, and 48 h 

after exposure. Moreover, treatments including mephedrone trended significantly higher 

than either MDPV or methylone treatments, while LDH release due to 1 mM MDPV + 1 

mM mephedrone + 1 mM methylone treatment was significantly greater than those 

observed with any of the individual drug treatments at 24 h and 48 h (Fig 4.5B).  
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Figure 4.5 LDH leakage induced by MDPV, mephedrone, and methylone individually 
and in combination in dopaminergic SH-SY5Y cells 6, 12, 24, and 48 h after drug 
exposure (A). Experiments were performed in triplicate and the mean effects were 
normalized to Triton-X positive controls and untreated negative controls at each time 
point. (B) Represents all drug treatments at 48 h.  *** p < 0.001 vs. control values, # p < 
0.05 vs. combo (B).  

 

Effects of Chronic Combined Administration of MDPV, Mephedrone, and Methylone on 

Neuroinflammation and Nigral DA Neuron Number  

Glial reactivity. GFAP levels were measured in the striatum of mice chronically 

administered MDPV, mephedrone, methylone, or the cathinone cocktail to determine if 
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the synthetic cathinones induce neuroinflammatory responses at DA nerve terminals 

similar to other neurotoxic amphetamine derivatives. Data are presented in Fig 5 A. 

Treatment with MDPV, methylone, or the cathinone cocktail did not alter GFAP 

expression in regards to control, while striatal GFAP was significantly increased in the 

mephedrone treatment group.  

DA neuron counts. To definitively assess the toxicity of drug mixtures containing 

MDPV, mephedrone, and methylone on DA neurons, systematic stereological analysis 

of TH-positive cells in the SNpc of mice treated with either saline or the cathinone 

cocktail was performed.  As shown in Fig 5B, chronic exposure to the cathinone cocktail 

did not affect the number of TH-positive DA neurons in the SNpc.  

 

Figure 4.6 The effects of combined synthetic cathinone exposure on nigrostriatal 
toxicity. Mice were chronically treated with MDPV, mephedrone, or the cathinone 
cocktail and striatal levels of GFAP were determined 2 days later (A). GFAP levels were 
normalized to GAPDH and data are means for n = 4 – 6 mice per group (± SEM). 
Additionally, TH+ neurons were stained and counted in serial sections of the SNpc of 
mice repeatedly dosed with the MDPV + mephedrone + methylone cocktail (B). A nissl 
counter stain was used for landmark identification and data are expressed at group 
means ± SEM (control n = 2, combo n = 6).  
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Discussion 

The primary aim of the present study was to investigate the chronic effects of 

ternary mixtures of MDPV, mephedrone, and methylone on dopaminergic tone. While 

DEA statistics and numerous case reports indicate that many of the most commonly 

abused bath salt ‘brands’ contain various mixtures of these compounds (Araujo et al., 

2015; Spiller et al., 2011), the majority of pre-clinical investigations on bath salts have 

focused on characterizing the effects of the individual constitutes. Therefore, the 

rationale for analyzing the combined action of MDPV, mephedrone, and methylone on 

monoaminergic systems is compelling. Here, we have shown that chronic dosing of 

MDPV, mephedrone, or methylone alone induces prolonged DA elevations throughout 

the reward and motor control brain pathways. These data are supported by previous 

studies demonstrating that binge dosing regimens of cathinone, mephedrone, and 

methylone produce long-lasting elevations in extracellular DA levels (Angoa-Perez et 

al., 2012; Banjaw et al., 2003; López‐Arnau et al., 2012), as well as studies reporting 

that MDPV administration precipitates persistent rises in extracellular DA and stimulates 

locomotor responses that persist for extended periods of time (Baumann et al., 2013; 

Schindler et al., 2016; Simmler et al., 2013).  

Additionally, these persistent DA elevations appear to be associated with 

dysregulated expression of major DA regulatory proteins. Notably, repeated dosing of 

MDPV was accompanied by increased expression levels of the DA synthesis enzyme, 

tyrosine hydroxylase (TH), in all four brain regions. Given the potent blockade of DA 

reuptake by MDPV this is not surprising; cytosolic DA levels are depleted and increased 

TH densities may represent a compensatory mechanism for this effect (Vrana et al., 
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1993). In contrast, decreased TH expression was observed in the DA nerve terminal 

regions of mice treated with mephedrone; however, the DA degradative enzyme COMT 

was also downregulated. These data are in support of previous findings indicating that 

mephedrone downregulates striatal TH levels (Lopez-Arnau et al., 2015) and causes 

long-term depletions in the COMT metabolite, homovanillic acid (HVA) (den Hollander 

et al., 2013). While COMT primarily functions to degrade DA and DOPAC, it can also 

degrade the DA precursor molecule, L-DOPA (Jones et al., 1998); thus, suppressed 

expression of COMT may contribute to the observed elevations in DA after repeated 

exposure to mephedrone by inhibiting degradation of both DA and the DA biosynthetic 

precursor molecule L-DOPA. Additionally, while mephedrone-induced reductions in TH 

have previously been suggested as evidence of its toxicity (Lopez-Arnau et al., 2015), 

we have shown here that this substrate cathinone can decrease TH without 

concurrently reducing DA and DAT. Thus, reduced TH expression may not be indicative 

of mephedrone toxicity.  

Notably, repeated co-exposure to MDPV, mephedrone, and methylone 

significantly reduced mesolimbic and nigrostriatal tissue levels of DA, TH, and DAT 

following a 48 h drug wash-out period. In addition, expression levels of MAO-B and 

COMT were also significantly reduced. These results are in contrast with the individual 

effects of MDPV and mephedrone and indicate a major dysregulation of the 

dopaminergic system when these compounds are co-abused in bath salt mixtures. As 

persistent depletions in DA and decreased expression of TH and DAT are well accepted 

gauges of neurotoxicity associated with chronic METH abuse (Cadet et al., 2007; Halpin 

et al., 2014), these data suggest that repeated co-abuse of bath salt constituents 
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MDPV, mephedrone, and methylone, effectuates damage to dopaminergic nerve 

terminals. Therefore, it may be the case that while these compounds do not induce 

blatant DA toxicity individually, their co-abuse in bath salt mixtures produces potentially 

damaging interactions at dopaminergic terminals. This is supported by recent 

investigations that have described enhanced neurotoxicity when the synthetic 

cathinones were combined with other DAT-targeting drugs (Angoa‐Pérez et al., 2013; 

Anneken et al., 2015). Additionally, recent studies have reported that self-administration 

of binary mixtures of MDPV and methylone resulted in a high incidence of mortality (50 

%), which was not observed with self-administration of either drug alone (Gannon et al., 

2018).   

To further assess if combined exposure to synthetic cathinone compounds 

enhances the toxic properties of individual drugs, LDH release assays were performed 

using dopaminergic SH-SY5Y cells treated with MDPV, mephedrone, and methylone 

alone and in combination. All three compounds significantly increased LDH release over 

a 48 h time period. Notably, co-administration of MDPV, mephedrone, and methylone 

exacerbated the cytotoxic effects of the individual drugs at both 24 and 48 h, suggesting 

that the toxic properties of these drugs at DA nerve terminals are enhanced when they 

are co-abused. To determine if this result was due to increased total synthetic cathinone 

exposure in the cocktail, which contained 1 mM doses of each individual drug (3 mM in 

total), a 3 mM dose of mephedrone was included in this study. Mephedrone dose-

dependently increases LDH release (den Hollander et al., 2014) and has been shown 

by this study and others (den Hollander et al., 2014; Pantano et al., 2017; Valente et al., 

2017) to be more cytotoxic that both MDPV and methylone. Thus, the present finding 
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that the cathinone cocktail (1 mM) produced a cytotoxic response that was significantly 

greater than observed with 3 mM mephedrone at 24 and 48 h, supports the notion that 

the synthetic cathinones are more toxic at DAT-expressing terminals when co-

administered in a cocktail.   

However, in contrast to neurochemical and cytotoxicity findings, we found that 

chronic administration of the cathinone cocktail did not induce the loss of DA neurons in 

the SNpc, an area susceptible to METH and MPTP-induced toxicity (Ares-Santos et al., 

2014; Thomas et al., 2004). While combined treatment may indeed promote 

degeneration of DA nerve terminals, DA nuclei counts were not reduced. Additionally, 

striatal levels of GFAP were not changed from control values in mice treated with the 

cathinone cocktail. This lack of blatant neurotoxicity may be due to the weak effects of 

mephedrone and methylone to increase cytosolic DA from vesicles in a VMAT2-

dependent manner (Eshleman et al., 2013; Green et al., 2014), or of full drug wash out 

between doses, as METH toxicity is most notably observed following repeated, binge 

dosing (Halpin et al., 2014). However, in light of these findings and the enhanced DA 

responses with acute cocktail administration (Allen et al., in preparation), we suggest 

that initial exposures to the cathinone cocktail produced large, prolonged increases in 

DA that triggered a functional lesion in dopaminergic brain regions following later 

exposures and drug-wash out. More specifically, the excessive accumulation of DA in 

the synaptic cleft and enhanced DA receptor signaling triggers the downregulation of 

DAT, TH, MAO, and COMT, and results in decreased DA levels.  However, a more 

detailed investigation regarding the downstream consequences of combined synthetic 

cathinone exposure on DA signaling cascades would be required to confirm this notion.  
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In summary, this study highlights the chronic neurochemical and biochemical 

consequences of individual versus combined synthetic cathinone abuse. We have 

shown that chronic individual exposure of MDPV, mephedrone, or methylone produced 

long-term elevations in DA that were accompanied by either increased TH levels or 

decreased COMT levels. In contrast, co-exposure of MDPV, mephedrone, and 

methylone resulted in depleted brain tissue DA levels 48 h following repeated dosing. 

We have also shown that these depletions are accompanied by decreased expression 

of TH, DAT, MAO-B, and COMT. These data together with findings of enhanced 

cytotoxicity with the cathinone cocktail, suggested a potential combined ability of MDPV, 

mephedrone, and methylone to induce DA toxicity. However, because combined 

treatment did not result in the loss of DA neurons in the SNpc or alter striatal GFAP 

expression, this does not appear to be the case. Thus, it appears that the cathinone 

cocktail may produce a “functional lesion,” downregulating many of the key players at 

the dopaminergic synapse while not inducing blatant neurotoxicity. Most significantly, 

this study has shown that the composition of bath salt mixtures can significantly 

influence the dopaminergic and toxic effects of the individual constituents.   
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CHAPTER 5 

SUMMARY AND CONCLUSIONS 

In recent years, the abuse of synthetic cathinone derivatives, popularized as 

‘bath salts’ has become a public health threat. Despite the designation of the three most 

prevalent synthetic cathinones, MDPV, mephedrone and methylone, as schedule I 

controlled substances in 2011, abuse continues, with the internet serving as a central 

marketplace for these compounds (DEA 2014; Karila et al. 2015). Forensic analysis of 

bath salt products has revealed that many of the most popular bath salt ‘brands’ contain 

binary and ternary mixtures of   MDPV, mephedrone, and methylone; however, the 

majority of preclinical investigations on these designer drug mixtures has focused on 

elucidating the neurochemical and behavioral effects of each individual constituents 

(Spiller et al. 2011). Thus, to better model bath salt abuse, the effect of synthetic 

cathinone mixtures on the CNS should be assessed.  

MDPV, mephedrone, and methylone possess similar chemical and 

pharmacological characteristics to cocaine, methamphetamine, and MDMA. Namely, 

MDPV inhibits DA reuptake through direct binding at DAT, similar to cocaine but with 

greater potency (Baumann et al. 2013). Mephedrone and methylone behave as DAT 

substrates and induce non-vesicular release of DA by reversing transporter flux, 

resembling the actions of both METH and MDMA (Baumann et al. 2012). Given that 

significant pharmacological interactions often occur following co-administration of drug 

compounds that share a primary biological target, their individual mechanisms offer 

opportunities for such interactions at monoamine transporters when taken together 

(Tallarida 2011). Specifically, while both non-substrate (MDPV) and substrate 
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(mephedrone and methylone) cathinones increase extracellular DA levels, the 

dichotomy of their interaction at the DAT provides an avenue by which these drugs may 

alter one another’s dopaminergic effect when co-abused.  

While interactions between the synthetic cathinones themselves are not well 

documented, evidence of enhanced neurotoxicity following co-exposure of the synthetic 

cathinones with other amphetamine derivatives has recently been described (Angoa-

Pérez et al. 2016). In this case, while neither mephedrone nor methylone damage DA 

nerve endings, they accentuate the neurotoxic effects of METH, AMPH, and MDMA 

when co-administered (Angoa‐Pérez et al. 2013; Anneken et al. 2015). While it could be 

predicted that these non-toxic substrates would compete for DAT-mediated uptake and 

thus weaken the toxic response of METH, AMPH, or MDMA, the findings in these 

studies did not indicate that effect. Therefore, it may be the case that while these 

compounds do not induce blatant DA toxicity individually, their co-abuse in bath salt 

mixtures produces potentially damaging interactions at dopaminergic terminals. 

Additionally, while the potent DAT-blocking action of MDPV has been shown to be 

neuroprotective against various amphetamine toxicities (Anneken et al. 2015), in vitro 

analyses suggest a synergistic interaction between mephedrone and MDPV at the DAT. 

Moreover, mephedrone enhances the locomotor stimulant effects of the DAT blocker, 

cocaine (Gregg et al. 2013b), and locomotor responses sensitize to drug mixtures of 

MDPV and mephedrone (Berquist et al. 2016). Overall, these preclinical findings 

demonstrate that the synthetic cathinones can significantly alter the DA effects of other 

DAT targeting drugs when they are co-administered.  Therefore, considering the 

frequency of synthetic cathinone co-abuse in bath salts products, investigations into the 
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combined action of these drugs on dopaminergic systems are a necessary step in 

determining the pharmacology, abuse-related, and toxic effects of bath salts. The 

current work has addressed the lack of experimental data regarding the combined 

effects of MDPV, mephedrone, and methylone on dopaminergic tone. Moreover, the 

studies described in this dissertation provide evidence of a significant pharmacological 

interaction between major bath salt constituents, MDPV, mephedrone, and methylone.  

The studies presented in Chapters 3 and 4 utilized a novel HPLC-ECD assay 

that was optimized for fast, sensitive, and simultaneous quantitative analysis of DA and 

its major metabolites in discrete DA nuclei including the substantia nigra pars compacta 

(SNpc) and the ventral tegmental area (VTA) (Allen et al. 2017). This method was also 

used to determine monoamine tissue content in the nucleus accumbens (NAc) and 

striatum (STR). Due to very sensitive limits of quantification for all monoamines and 

respective metabolites, right or left halves of discrete regions could be used for HPLC 

analysis while the other half could be used for protein expression or other various 

assays. Development and validation of this method in six discrete brain regions is 

described in chapter 2.  

The study presented in Chapter 3 of this dissertation was the first to demonstrate 

a synergistic pharmacological effect of MDPV, mephedrone, and methylone on DA 

levels throughout major dopaminergic brain pathways. These findings were extended to 

DA-mediated behavioral responses, as illustrated by the acute onset of robust 

stereotypic behavior and motor deficits with the cathinone cocktail. Such effects are 

primarily reported with very high doses of potent DAT- targeting drugs and have not 

been observed with any of the individual cathinones at the doses used in this study. 
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These findings shed light on two major issues: 1) bath salt formulations can have 

variable abuse liabilities based on their drug composition, and 2) chronic exposure to 

combined synthetic cathinones may be neurotoxic, given that excessive DA elevations 

have been attributed to meth-induced toxicity. The study detailed in Chapter 4 of this 

dissertation addresses the latter. 

Chapter 4 evaluated the neurochemical and biochemical consequences of 

chronic co-exposure to MDPV, mephedrone, and methylone. Chronic dosing consisted 

of repeated drug injections, given every other day for 14 days (7 total injections) and 

analyses were conducted 48 h after the final exposure. In this study, chronic dosing of 

the individual synthetic cathinones induced persistent increases in DA that were 

accompanied by increased expression levels of the DA synthesis enzyme, tyrosine 

hydroxylase (TH), and decreased levels of DA degradative enzyme catechol-O-

methyltransferase (COMT). However, when MDPV, mephedrone, and methylone were 

combined and chronically administered as a drug cocktail, DA, TH, DAT, MAO-B, and 

COMT levels were significantly reduced. Given that many of these effects are frequently 

used as neurochemical gauges of METH toxicity (Moratalla et al. 2017), we initially 

hypothesized that this indicated a potentially toxic interaction between these drugs at 

DA terminals. Furthermore, LDH release assays demonstrating that the individual 

cytotoxic effects of MDPV, mephedrone, and methylone are exacerbated when they are 

applied in conjunction with one another supported this notion. As such, further toxicity 

analyses were performed in the nigrostriatal brain regions, as these are especially 

susceptible to METH neurotoxicity (Ares-Santos et al. 2014).  Surprisingly, we found 

that chronic dosing with the cathinone cocktail did not increase striatal levels of the 
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neuroinflammatory marker, GFAP, nor did it promote a loss of DA neuronal nuclei in the 

SNpc. Thus, it appears that DA, TH, and DAT levels are decreased without nerve 

terminal or nuclei toxicity. From these data, we proposed combined synthetic 

cathinones induce a “functional lesion,” whereby excessive increases in DA levels 

immediately following each injection of the cathinone cocktail results in a 

downregulation of many key players within the DA synapse after repeated dosing. This 

lack of blatant neurotoxicity may be due to the weak effects of mephedrone and 

methylone to increase cytosolic DA from vesicles in a VMAT2-dependent manner 

(Eshleman et al. 2013; Green et al. 2014), or of full drug wash out between doses, as 

METH toxicity is most notably observed following repeated, binge dosing (Halpin et al. 

2014). Taken together, these data demonstrate that chronic abuse of synthetic 

cathinone mixtures produces a major dysregulation of the DA system and suggest that 

the toxicity of bath salts is largely dependent on the composition drugs within the 

mixture.  
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