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ABSTRACT 

A Role of Vitamin B2 in Reducing Amyloid-beta Toxicity in a Caenorhabditis elegans 

Alzheimer’s Disease Model 

by  

Muhammad T. Ameen 

Alzheimer’s disease (AD) is associated with amyloid-beta peptide deposition and loss of 

mitochondrial function. Using a transgenic C. elegans AD worm model expressing amyloid-

beta in body wall muscle, we determined that supplementation with either of the forms of 

vitamin B2, flavin mononucleotide (FMN) or flavin adenine dinucleotide 

(FAD) protected against amyloid-beta mediated paralysis.  FMN and FAD were then assayed 

to determine effects on ATP, oxygen consumption, and reactive oxygen species (ROS) with 

these compounds not significantly improving any of these mitochondrial bioenergetic 

functions. Knockdown of the daf-16/FOXO transcriptional regulator or the FAD synthase 

enzyme completely abrogated the protective effects of FMN and FAD, while knockdown of 

the mitochondrial unfolded protein response factors ubl-5 or atfs-1 also blocked the 

protective effects.  Therefore, vitamin B2 supplementation could lead to the activation of 

conserved signaling pathways in humans to delay the onset and progression of 

neurodegenerative diseases such as AD. 
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CHAPTER 1 

INTRODUCTION 

Alzheimer’s disease (AD) is a neurodegenerative disease associated with progressive 

memory impairment, cognitive deficits, difficulty with language, and problem-solving skills 

(Beitnere et al. 2014; Alzheimer’s Association 2017). This disease is irreversible and slowly 

destroys memory and thinking skills and later prevents an individual to carry-out simple daily 

activities (Rizzieri 2012). It is the most common cause of dementia among the older 

population. AD is known to be the 6th leading cause of death in the United States and about 

35 million people are affected worldwide (Prince et al. 2016). Despite years of funding for 

research for into the pathological cause of AD and therapeutic development, it remains a 

significant and unresolved physiological, financial, and social burden (Chen et al. 2015). 

Some of the common risk factors that have been associated with AD include old age, family 

history, lifestyle, gender, head injury, environmental toxins, and cardiovascular diseases such 

as hypertension. So far, there is no cure for AD, however, emerging evidence has suggested 

maintaining healthy aging and living style, such as healthy eating, engaging in social and 

physical activities, and avoiding excess alcohol and smoking, could help to protect an 

individual form developing AD. Also, much research has correlated brain health to heart 

health, so chances of developing AD or any form of dementia increases with increased risk 

for heart disease (Sandeep Kumar Singh et al. 2016). However, the  number of deaths from 

AD increased by 89 percent from 2000 to 2014 while deaths from heart disease decreased by 

14 percent (Alzheimer’s Association 2017). 

Despite numerous biomedical research discoveries suggesting therapeutic strategies 

for AD, many of them have failed clinical trials. Current drugs used for treating patients with 

AD include cholinesterase inhibitors and the NMDA receptor antagonist memantine that only 
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delay symptoms of the disease without any modification of its direct cause (Misra and Medhi 

2013). Therefore, the major problem for researchers and clinicians is identifying the etiology 

of the disease and developing therapies or drugs that could prevent its onset or delay its 

progression.  

 

Molecular Pathology of Alzheimer’s Disease 

The main pathological signatures of AD are the extracellular deposition of insoluble 

amyloid-beta plaques and intracellular formation of neurofibrillary tangles in the 

hippocampus region and cerebral cortex of the brain (Basurto-islas et al. 2010). These two 

pathologies in the brain are thought to disrupt normal memory and cognitive functions of the 

brain. Accumulation of these plaques and tangles later leads to common symptoms associated 

with AD such as memory impairment, cognitive decline, personality changes and ultimately 

death (Sandeep Kumar Singh et al. 2016). Since, 1906 when AD was first identified, and its 

symptoms described by Alois Alzheimer, there have been concerted efforts by generations of 

researchers and clinicians to identify direct pathological causes of the disease and develop 

effective therapies and therapeutics (Goedert and Spillantini 2006; Santos et al. 2010). These 

efforts have led to the development and testing of several hypotheses using different 

experimental models. Also, results from these experiments have facilitated the discovery and 

use of current drugs used for treating AD patients. 
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Proposed Mechanisms for AD Development 

Given the observations that multiple cellular mechanisms could be involved in the 

pathology of AD, there have been several hypotheses proposed for its cause. The oldest of 

these hypotheses is the cholinergic hypothesis, which postulates that reduced production of  

the acetylcholine neurotransmitter in neurons of the forebrain leads to loss of neuronal 

signaling and eventual loss of cognition and memory (Terry and Buccafusco 2003). However, 

this theory has not been widely accepted because medications developed to treat 

acetylcholine deficiency have not been effective. Other hypotheses proposed for AD include 

tau protein hyperphosphorylation and the amyloid and mitochondrial cascade hypotheses 

(Singh et al. 2016). 

 The current most widely established theory for AD is the “amyloid cascade 

hypothesis”. This theory stipulates that AD develops due to the gradual accumulation of toxic 

amyloid-beta peptide (AβP) in the medial temporal lobe of the brain due to proteolytic 

cleavage of amyloid-beta-precursor-protein (AβPP) by β-secretase and γ-secretase.  This 

hypothesis therefore asserts that deposition of this peptide forms insoluble plaques in the 

extracellular matrix of neurons thereby causing intracellular neurofibrillary tangles of tau 

protein, neuronal cell loss, and vascular damage (Hardy and Higgins 1992). This toxic protein 

accumulation has also shown to result in impaired brain cell energy metabolism, lower 

oxygen uptake, increased toxic reactive oxygen species (ROS) production, and neuronal cell 

death (Wang et al. 2015). Also, the familial form of AD, which arises due to mutations in the 

AβPP (amyloid-beta precursor protein) gene has been linked to amyloid-beta deposition 

(Owen et al. 1990). Unlike tau protein phosphorylation, which is also linked to other 

neurodegenerative diseases known as tauopathies, the amyloid-beta peptide deposition has 

only been linked to the onset of Alzheimer’s disease (Mudher and Lovestone 2002).   
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Notwithstanding a plethora of research evidence relating amyloid-beta protein toxicity 

to AD, there is lack of evidence as to what triggers the proteolytic production of amyloid-beta 

from its precursor AβPP.  A growing body of evidence now suggests that mitochondrial 

dysfunction caused by excessive oxidative damage by ROS production triggers increased 

production of the toxic amyloid-beta peptide, which later leads to a cascade of cellular 

physiological disruptions and eventually cell death (Thannickal and Fanburg 2000). This later 

assumption is known as the “mitochondrial cascade hypothesis”, which proposes the cause of 

the most common type of AD, the sporadic or late onset AD (Swerdlow and Khan 2004).  

Because of continuous shift in the understanding of the pathophysiological cause of 

AD, several other mechanisms, such as hormonal imbalance, neuroinflammation, calcium 

dysregulation, genetic defects, oxidative stress, autophagy and neuronal dysfunction, have 

been proposed as upstream regulators for AD progression and that amyloid-beta plaque 

formation and neurofibrillary tangles are downstream processes used by neuronal cells to 

adapt to the continuously changing cellular environment (Anand et al. 2014).  

 

Mitochondrial Biology of AD and Neurodegenerative Diseases 

The significance of mitochondrial functions for cell survival has necessitated an 

investigation into their role in the progression and onset of AD and other neurodegenerative 

diseases. Maintaining normal cellular mitochondrial distribution and functions have been 

reported to be challenging for aging cells, so dementia and other age-related neurological 

diseases are a common culprit of mitochondrial dysfunction (Santos et al. 2010). 

Mitochondria, the power-houses of cells, account for more than 90 percent of cellular 

energetic needs (Chance et al. 1979). Since neurons have limited glycolytic capacity to 

generate energy, they highly depend on energy derived from mitochondrial aerobic 
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respiration through oxidative phosphorylation (OXPHOS) for their extensive energy-

dependent functions (Moreira et al. 2010). Although, the mitochondrial energy production 

process generates toxic reactive oxygen species such as superoxide anions and downstream 

hydrogen peroxide and peroxynitrite, normal cellular function requires superoxide as a 

second messenger for cell signaling purposes (Shigenaga et al. 1994). However, 

mitochondrial exposure to toxins and the aging process leads to the accumulation of 

abnormally high ROS levels, which triggers abnormalities in mitochondrial function and 

homeostasis, a hallmark of neurodegenerative diseases (Valko et al. 2007). Thus, impaired 

mitochondrial function, homeostasis dysregulation, and abnormal mitochondrial dynamics 

have been implicated in the onset and progression of AD and other neurodegenerative 

diseases. 

 

AD and Impaired Mitochondrial Function 

One of the major functions of the mitochondria in cells is energy production though 

the TCA (tricarboxylic acid) cycle and oxidative phosphorylation.  Other than energy 

production, mitochondria also trigger cell death or apoptosis and regulate Ca2+ homeostasis 

(Moreira et al. 2006; Wang et al. 2017). A considerable number of studies with laboratory 

AD models, postmortem AD tissues, and AD patients have identified reduced mitochondrial 

respiration and ATP production and increased ROS production. Using a C. elegans AD 

model, Fong et al. 2016, reported that reduced ATP production and abnormalities in the 

electron transport chain (ETC) protein complexes precede global metabolic failure and 

pathology of AD. Also, Martire et al. 2016  have reported energetic decline in cell lines and 

brain tissue of mice producing human amyloid-beta peptide (Aβ1–42). They also reported 

that amyloid-beta peptide induced upregulation of PARP-1 (poly (ADP-ribose) polymerase), 
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an enzyme that catalyzes the ADP-ribosylation of proteins, leads to excessive degradation of 

NAD+ (nicotinamide adenine dinucleotide), an important cofactor required for mitochondrial 

energy production. Also, PARP-1 hyperactivation caused reduced mitochondrial cytochrome 

c oxidase protein levels, oxygen consumption, and mitochondrial membrane potential.  

Multiple studies have suggested that reduced brain glucose metabolism is a common 

hallmark of AD patients and that energy impairment precedes clinical diagnosis of AD 

symptoms. A study by Mosconi et al. (2011) reported glucose hypometabolism, increased 

amyloid-beta deposition, and reduced activity of mitochondrial cytochrome c oxidase (COX), 

in adult offspring of mothers with late-onset Alzheimer’s disease.  Based on the 

mitochondrial cascade hypothesis of AD proposed by Swerdlow and Khan (2004), 

mitochondrial dysfunction due to oxidative damage is a potential target for AD therapeutics 

development.  

 

AD and Abnormal Mitochondrial Dynamics  

Due to the significance of mitochondria in eukaryotic cells, abnormal modifications in 

mitochondrial morphology and distribution can result in significant changes in cellular 

functions and development of mitochondrial related diseases. Fan et al. (2010) have reported 

that excessive mitochondrial oxidative damage causes increased mitochondrial fragmentation 

or fission. A proper balance between mitochondrial fission (fragmentation) and fusion is 

required for mitochondrial maintenance. Proteins located on mitochondrial outer and inner 

membranes are responsible for regulating mitochondrial dynamics. Proteins required for 

mitochondrial fission include the cytosolic GTPase Drp1 (dynamin-related-protein-1), Fis1 

(fission 1), and mitochondrial fission factor (Mff). Drp1 is recruited to specific sites on the 

mitochondrial outer membrane to initiate fission. Large GTPases such as mitofusins 1 (Mfn1) 
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and 2 (Mfn2) located on the mitochondrial outer membrane and optic atrophy 1 (OPA1) 

located in the inner mitochondrial membrane regulate mitochondrial fusion (Yoon et al. 

2003; Gandre-Babbe and van der Bliek 2008; Onoue et al. 2013).  

Disruption of Drp1 activity is increased due to increased mitochondrial oxidative 

damage causing frequent mitochondrial fission and abnormal cellular distribution of 

mitochondrial populations and morphology. Barsoum et al. (2006) have reported increased 

expression of Drp1 in cortical neuronal cultures treated with amyloid-beta peptide and nitric 

oxide. They also reported reduced ATP production, mitochondrial ultrastructural damage, 

and increased autophagy and generation of free radicals as possible consequences of the Drp1 

induced excessive mitochondrial fission. Cho et al. (2009) have reported increased 

mitochondrial fission in the brains of AD patients due to increased formation of SNO-Drp1 

intermediates (S-nitrosylation of Drp1). Cho et al. also reported that amyloid-beta peptide 

induced nitric oxide generation leading to increased synaptic loss and neuronal damage, 

which are hallmarks of AD and neurodegenerative diseases. Interestingly, using a transgenic 

mouse model of FAD (familial AD), Trushina et al. (2012) reported that alterations in 

mitochondrial dynamics and morphology precedes neurological phenotypes and amyloid-beta 

deposition. They also reported that altered mitochondrial energy metabolism and increased 

mitochondrial stress accompany the altered mitochondrial dynamics. Therefore, regulation of 

mitochondrial dynamics through the fission and fusion processes could also be a potential 

therapeutic strategy for AD. 

 

 

 

 



16 
 

AD and Dysregulation of Mitochondrial Proteostasis 

Targeting mitochondrial proteostasis regulation is an emerging trend in the prospect 

for therapeutics for AD. Mitochondria possess mechanisms that regulate the expression of 

proteins from mtDNA, the import of proteins from the cytoplasm and the transport of ions 

across the inner mitochondrial membrane. These mitochondrial protein quality control 

processes are often referred to as mitochondrial proteostasis. Inhibition of these processes by 

amyloid-beta  has been reported to result in inhibition of mitochondrial protein import, 

OXPHOS impairment, and increased numbers of misfolded mitochondrial proteins (Devi et 

al. 2006; Sorrentino et al. 2017). Also, evidence for the presence of amyloid-beta, functional 

γ-secretase, and AβPP in mitochondria is an indication that mitochondria could either be a 

production or storage site for amyloid-beta peptide. Amyloid-beta peptide inside the 

mitochondrion has been shown to compromise cytochrome c oxidase (COX) activity and 

increase mitochondrial ROS production. Also, the peptide induces cytochrome c dependent 

caspase 3 activation, and decreased ATP production (Anandatheerthavarada et al. 2003; 

Atamna and Frey 2004; Rhein et al. 2009). Thus, the loss of mitochondrial proteostasis could 

also be involved in AD. 

 

Mitochondrial Unfolded Protein Response Pathway 

One important mechanism that is conserved in living cells from single celled 

organisms to higher animals is the activation of conserved stress response pathways when 

exposed to stressors such as toxins, starvation, misfolded proteins, or inhibition of normal 

cellular function. However, the activation of some of these mechanisms has been reported to 

decline with aging. Vital cell organelles such as endoplasmic reticulum and mitochondria 

have evolved mechanisms that act as defense systems during cellular stress to protect the cell 
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from damage. Specifically, mitochondria have evolved a mechanism to regulate their folded 

protein content (and proteostasis) during mitochondrial stress conditions such as during times 

of limited mitochondrial protein import and accumulation of misfolded and unassembled 

mitochondrial proteins (Jovaisaite et al. 2014). The most common defense mechanism 

involved in this task is called the mitochondrial unfolded protein response (UPRmt).  It 

evolved to protect mitochondria from overwhelmed chaperones and to boost the activities of 

proteasomal enzymes and mitochondrial proteases that degrade misfolded proteins. The 

normal mitochondrial chaperone systems found in the matrix space (mtHSP70 and 

HSP60/HSP10) and intermembrane compartments (protein quality control (PQC) proteases) 

are overwhelmed during disease conditions associated with misfolded proteins. As a result, 

the mitochondria sense the increased unfolded protein burden and induce the UPRmt to 

improve protein quality control mechanisms through activation of ATFs (activating 

transcription factors). Several of these factors have been identified in humans such ATF4 and 

ATF5. However, this mechanism has been best studied in C. elegans models and is known to 

require a master transcriptional regulator in this species called ATFS-1 (Activating 

transcription factor associated with stress).  ATFS-1 functions in conjunction with UBL-5 

(ubiquitin-like protein-5) and DEV-1 (a homeodomain-containing transcription factor) 

(Jovaisaite et al. 2014; Pickles et al. 2018).  

 Under normal conditions, ATFS-1, which has both a nuclear localization sequence 

(NLS) and a mitochondrial targeting sequence, is imported into the mitochondria and 

degraded by the LonP protease (Melber and Haynes 2018; Pickles et al. 2018). However, 

during misfolded protein stress in mitochondria, ATFS-1 is translocated into the nucleus 

together with DEV-1 to upregulate the transcription of a network of genes such as 

chaperones, proteases and proteins required for mitochondrial import, metabolism and 
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biogenesis.  In this way mitochondria become protected and can once again resume optimal 

function. 

Activation of the mitochondrial unfolded protein response pathway has been reported 

to decrease with aging suggesting this inability may participate in the onset and development 

of many age-related diseases associated with misfolded proteins. For instance, Ruan et al. 

2017, reported that defective cytosolic heat shock protein, Hsp70s, in yeast cells leads to an 

increased entry of misfolded proteins into mitochondria. They also reported that blocking 

mitochondrial protein import caused a decrease in proteasomal degradation with an increase 

in mitochondrial stress. More so, in a study conducted by Sorrentino et al. 2017 to study the 

role of mitochondrial proteostasis in worms, mice, and cell lines containing high levels of 

amyloid-beta peptide (Aβ1-42), there was reduced mitochondrial respiration and an 

upregulation of mitochondrial stress response pathways, mainly the mitochondrial unfolded 

protein response pathway and mitophagy. Activation of these mitochondrial stress response 

pathways was shown to improve health and lifespan of the  C. elegans AD model studied and 

also reduce amyloid-beta peptide deposition.  Therefore, results from these and other studies 

are indicators of the role of mitochondria in the onset and progression of AD and many other 

neurodegenerative diseases caused by misfolded proteins. 

 

Alzheimer’s Disease Drug Discovery Research 

 Alzheimer’s disease drug discovery research over the last three decades has only 

yielded two types of drugs currently approved by the FDA for the treatment and management 

of AD patients. These two types, acetylcholinesterase inhibitors and NMDA (N-methyl-D-

aspartate) receptor antagonists, only ameliorate the disease symptoms but have little to no 

effect on the pathological process (Anand et al. 2014).  Attempts by researchers to develop 
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effective therapies and therapeutics for AD have led to findings revealing more information 

about the level of cellular complexities involved in the pathological progression of the 

disease. Promising studies have found several natural compounds and genetic approaches to 

modifying some of the currently known pathological causes of AD. Some of the strategies 

used in Alzheimer’s disease drug discovery research include modulation of 

neurotransmission, tau pathology inhibition, amyloid-beta based therapies, modulation of 

intracellular signaling cascades, oxidative stress reduction, mitochondrial based therapies, 

regulation of cellular calcium homeostasis, neuroinflammation based therapies, and other 

emerging therapeutic strategies  (Citron 2010; Grill and Cummings 2010; Anand et al. 2014).  

Due to the complexities involved in AD pathological processes and the need for 

studying therapeutic effects of multiple compounds, researchers have developed several 

laboratory models based on amyloid-beta and tau production for high-throughput drug 

screening of potential pharmacological and natural drug candidates for AD. Some of the most 

commonly used laboratory models for studying AD pathology and therapeutics development 

include transgenic mice, worms, flies, and mammalian cell lines expressing amyloid-beta 

peptide (β1-42), mutant APP, or mutant tau protein (Sandeep Kumar Singh et al. 2016). 

 

Amyloid-beta Based Strategies 

 Based on the understanding of the role of amyloid-beta peptide in AD pathology, 

researchers have developed strategies to reduce amyloid-beta peptide production, modify its 

cellular transport, prevent oligomerization, promote cellular clearance, or delay proteotoxicty. 

One of the top strategies is an immunization-based approach (Anand et al. 2014). However, 

amyloid-beta peptide likely plays some minor role in normal cellular physiological functions 

such as in neurite outgrowth, synaptogenesis, cell adhesion, calcium metabolism, axonal 
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protein trafficking, and others. Amyloid-beta peptide is produced through the β-secretase and 

-secretase (not α-secretase) cleavage of AβPP and the intracellular and extracellular 

oligomerization of the peptide leads to the formation of Aβ fibrils and plaques. So, inhibiting 

β-secretase or -secretase activity has been a potential strategy to prevent the production of 

toxic Aβ-peptide species (Zheng and Koo 2006). But this strategy has largely failed in 

clinical trials. 

Treatments targeting amyloid-beta cellular transport are also being developed. The 

apolipoprotein E (ApoE) and RAGE (Receptor for advanced glycation end products) 

receptor-mediated transport of Aβ-peptide into and out of the brain are targets for AD drug 

development (Anand et al. 2014). The ability of amyloid-beta peptide to oligomerize and 

aggregate to form amyloid fibrils in the hippocampus and frontal brain region has been 

shown to be a key factor in promoting its neurotoxicity. Drugs and plant extracts such as 

tramiprosate (homotaurine), scyllo-inositol, the hormone melatonin, caffeine, NAD+ 

precursors, Gingko biloba, and others have been shown to possess anti-oligomerization 

properties by interacting with the monomeric Aβ species and preventing their interaction to 

form fibrils (Wu et al. 2006; Olcese et al. 2009; Dostal et al. 2010; Sorrentino et al. 2017). In 

addition, genetic  manipulations and immunotherapies are also being developed to delay Aβ 

proteotoxicty and enhance Aβ clearance (Singh et al. 2016). 

 

Mitochondrial Targeted Strategies 

 Mitochondrial dysfunction has also been shown to be involved in AD pathology 

through the generation of excessive ROS leading to cellular oxidative damage and neuronal 

cell death (Anand et al. 2014). Therapeutics targeted to mitochondria attempt to reduce 

mitochondrial ROS production and improve activity and availability of enzymes and proteins 
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involved in mitochondrial energy production pathways such as the citric acid cycle, ETC, and 

OXPHOS. Also, nutritional therapy for regulating mitochondrial dynamics and homeostasis 

have been developed. Dietary supplementation of CoQ, a coenzyme required for electron 

shuttling in the mitochondrial ETC, or MitoQ, a mitochondrial targeted derivative, have been 

shown to possess neuroprotective effects by suppressing ROS production and improving 

mitochondrial function (Wadsworth et al. 2008). Methylene blue has also been shown to have 

neuroprotective effects to improve mitochondrial function by serving as an alternative 

electron carrier of the ETC (Wen et al. 2011) to decrease ROS production. Other drugs 

targeting mitochondrial ROS production and ETC have been proposed such as N-acetyl-L-

carnitine and R--lipoic acid, vitamins C and E, and Szeto-Schiller peptide-31 (SS-31) 

(Anand et al. 2014). 

 Mitochondrial based therapies have also been developed to modify mitochondrial 

dynamics (fission and fusion) and improve mitochondrial proteostasis. However, several of 

these drugs have failed clinical trials and have been shown to affect normal cellular functions 

and trigger inflammatory reactions in patients (Anand et al. 2014). Therefore, there is a need 

to develop mitochondrial targeted treatments that solely target damaged mitochondria and 

have minimal negative side effects on healthy mitochondria. 
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Transcriptional Regulator DAF-16/FOXO 

 DAF-16 (Abnormal Dauer formation 16) is the C. elegans homolog of mammalian 

FOXO transcription factors, which are induced in different cellular stress conditions. The 

ability to activate DAF-16 declines with aging. FOXO transcription factors are involved in 

cell cycle arrest, tumor suppression, protection against oxidative stress, and promotion of 

longevity. They also upregulate genes involved in the innate immune response, DNA repair, 

insulin sensitivity, and activation of gluconeogenesis.  Four FOXO genes are present in 

humans (FOXO1, FOXO3, FOXO4, and FOXO6), while only one is present in C. elegans 

and Drosophila melanogaster, but multiple proteins are synthesized from the one gene in 

these organisms.  One of the key roles of FOXO proteins is to recruit chromatin modifying 

enzymes to DNA to regulate target gene expression (Tia et al. 2018). 

DAF-16/FOXO transcriptional activity is regulated by different proteins in response 

to extracellular signals.  The activity of the DAF-16/FOXO transcription factor can be 

regulated through phosphorylation by Akt/ PKB, JNK (c-Jun N-terminal kinase), MST1 

(mammalian ste20- like kinase 1), ERKs (extracellular signals regulated kinases), p38 MAPK 

(mitogen-activated protein kinase), and AMPK (AAK-2 in C. elegans).  Phosphorylation by 

Akt in the cytoplasm prevents nuclear localization in response to insulin signaling, while 

phosphorylation by the other kinases stimulates translocation form the cytoplasm to the 

nucleus to modulate gene expression (Brunet et al. 2004). Some of the genes induced by 

FOXO proteins include SOD2 and catalase (for ROS detoxification), PTEN (tumor 

suppressor), P21CIP1 and P27KIP1 (cell cycle arrest), and PEPCK and G6Pase (during 

starvation). Also, DAF-16/FOXO transcriptional activity is modulated by acetylation (by 

HATs (Histone acetyltransferases)) , methylation (by PRMT1 and PRMT2  (protein arginine 

N-methyltransferases 1 and 2)), and ubiquitin-dependent proteolysis (by SKP2 (S-phase 
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kinase-associated protein 2)) (Yamagata et al. 2008; Tia et al. 2018). All four human FOXO 

proteins are expressed in the brain.   

FOXO transcriptional regulators have been shown to be activated through 

pharmacological agents and genetic manipulations in C. elegans AD models. For instance, 

Chondrogianni et al. (2014) reported that DAF-16 is required for enhanced proteasomal 

degradation and reduced Aβ proteotoxicity in a C. elegans AD model overexpressing the β5 

proteasome subunit. Several other studies have also reported DAF-16 to be required for the 

protective effect of added compounds against amyloid-beta toxicity. Studies by Zhi et al. 

(2017) and Wang et al. (2016) are examples of cases where compounds such as Dianxianning 

(DXN) (a traditional Chinese formula) and royal jelly alleviate Aβ toxicity and improve AD 

symptoms through DAF-16 activation. Thus, FOXO protein activation could be a target for 

improving health and lifespan of AD patients. 

 

A Caenorhabditis elegans AD Model 

 As the cost of maintaining a research laboratory is on the rise, biotechnology 

companies and biomedical researchers have sought to develop quick and inexpensive 

laboratory models with little maintenance cost, efficient handling, short reproduction time, 

high level of gene and pathway conservation with vertebrates, and high amenability to 

genetic manipulation.  The worm C. elegans has now been extensively used as a laboratory 

model to study developmental biology, embryology, disease mechanisms, and high 

throughput drug screening for neurodegenerative disease (Teschendorf and Link 2009). 

 C. elegans is a free-living, transparent, and non-parasitic nematode with a short life 

cycle of 3 days from egg to adult at 25°C (Brenner 1974). The mean lifespan of a worm 

population is between two to three weeks and thus allows for a timely study of its biology 
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and therapeutic effects of drugs candidates for neurodegenerative diseases. In 1998 the 

genome sequence of C. elegans was published.  It shows 38 percent gene conservation with 

humans (C. elegans Sequencing Consortium 1998). Although, C. elegans do not naturally 

produce amyloid-beta peptide or show other AD-like memory phenotypes, orthologs of genes 

mutated in familial AD such as APP, tau, and presenilin are present.  Also, since C. elegans 

neuronal connectivity has been established, worms have been very useful in studying the 

pathology and drug interventions for AD (Alexander et al. 2014). One of the most prominent 

genetic manipulations of C. elegans is RNAi interference (RNAi)-based gene knockdown. 

This method has allowed for unbiased insights into C. elegans physiology (Teschendorf and 

Link 2009). 

 C. elegans AD models have been developed based on amyloid-beta peptide and tau 

pathology, the major correlates for AD progression. The most popular C. elegans AD model 

expresses amyloid-beta peptide (β1-42) in the muscle leading to the formation of amyloid-

immunoreactive inclusions and fibrils and paralysis (Lublin and Link 2014). Also, a 

tauopathy worm model expressing either wild-type or mutated human tau protein has been 

developed. Marked phenotypic consequences of Aβ or tau expression has allowed for easy 

tracking and direct observation of Aβ and tau proteotoxicity (Singh et al. 2016). 

 One of the major limitations of using C. elegans as a neurodegeneration model is the 

lack of evidence that the observed pathology in the worm is relevant for human disease. Also, 

amyloid-beta needs to be overexpressed in worms at higher levels to induce the same level of 

toxicity observed in human brains or mammalian cell lines (Teschendorf and Link 2009). 

Other experimental limitations of C. elegans disease models is the absence of the immune 

system and the relative ineffectiveness of the RNAi technique in neurons, although this 

second limitation can be overcome by genetic manipulation (Firnhaber and Hammarlund 

2013). Also, some challenges of using C. elegans for drug screening is the inability of some 
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compounds to penetrate the thick worm cuticle and false positive or negative results from 

compounds that are metabolized by the bacteria that the worms are co-cultured with to 

consume as a food source. However, these can mostly be overcome by using worm strains 

engineered to have a more permeable cuticle (Partridge et al. 2008) or increasing drug dosage 

or time of supplementation (Alexander et al. 2014).  

 

Neurological Importance of B Vitamins 

 B vitamins are a class of water-soluble vitamins that play key roles in brain energy 

metabolism. B vitamins serve as precursors for coenzymes involved in cellular metabolism, 

most prominently in mitochondrial energy production. For instance, vitamin B2 (riboflavin) is 

a precursor for FAD (flavin adenine dinucleotide) and FMN (flavin mononucleotide), while 

vitamin B3 (niacin) is a precursor for NAD (nicotinamide adenine dinucleotide), all three of 

which serve as electron carriers for mitochondrial energy production. Other types of B 

vitamins such as B1 (thiamine), B5 (pantothenic acid), B6 (pyridoxine), B7 (biotin), B9 (folate), 

and B12 (cobalamin) play key roles as cofactors and molecules mediating multiple brain 

functions (Kennedy and Haskell 2011).  

B vitamins cannot be synthesized in the human body, except for niacin (vitamin B3) 

which can be synthesized to a limited extent from the essential amino acid tryptophan, and 

must be regularly obtained from the diet (Sechi et al. 2016). Natural sources of vitamin B1 

include brown rice, fruits, vegetables, and seafoods, while vitamin B2 is naturally present in 

dark green vegetables, meat (liver), dairy products, and whole grains. However, 

epidemiological studies have shown that B vitamin deficiency is on the rise in both developed 

and developing countries, especially among the older population, vegetarians, patients with 

heart failure, and postoperative bariatric surgery. Vitamin B1 and B2 deficiency is more 
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prevalent among the elderly (Sechi et al. 2016). Due to interactions between B vitamin 

functions, specifically the role of active forms of riboflavin (FMN and FAD) as an enzyme 

cofactor involved in the synthesis of other classes of B vitamins, B2 deficiency has been 

shown to limit folate, pyridoxine, and cobalamin availability (McCormick 1989; Sechi et al. 

2016).  

 

Vitamin B Deficiency and Neurodegenerative Diseases 

 Due to lack of robust tissue storage of B vitamins, cells depend on a regular supply of 

B vitamins for vital functions and to prevent disease-symptoms associated with their 

deficiency. The physiological importance of B vitamins, such as for energy production, 

amino acid metabolism, synthesis of proteins and neurotransmitters, and synthesis of 

cholesterol and nucleotides bases, have made their cellular deficiencies a leading cause of 

many neurological and cardiovascular diseases. Specifically, active forms of vitamin B2 and 

B6 have roles as antioxidants in cellular processes (Powers 2003).  

 Several lines of evidence have suggested vitamin B supplementation as a strategy to 

improve brain function and reduce incidence of neurological diseases. For instance, vitamin 

B1 (thiamine) deficiency has been associated with neurological problems such as cognitive 

deficits and encephalopathy. Thiamine-dependent enzymes perform critical roles in brain 

glucose metabolism. As a result, reduced levels of these enzymes have been reported in 

brains of AD patients. In contrast, excess levels of thiamine have been shown to diminish 

AD-like pathologies (Gibson et al. 2016). 
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Vitamin B2 Synthesis and Metabolism 

Vitamin B2 (also known as riboflavin) is not synthesized by humans and must be 

obtained from the diet. Vitamin B2 is present abundantly in a wide variety of animal and plant 

foods such as in legumes, meat ,and dairy products, etc. (Udhayabanu et al. 2017). The 

chemical structure of riboflavin consists of an isoalloxazine ring and a ribityl side chain. 

Riboflavin obtained from the diet is enzymatically converted to FMN by riboflavin kinase by 

the addition of a phosphate group to its ribityl side chain. FMN may then be converted to 

FAD by the FAD synthase enzyme by the addition of an adenine monophosphate group 

(AMP). FAD can be converted back to riboflavin by FAD pyrophosphatase (This process is 

called the Rf-FAD cycle.).  Riboflavin has a half-life of approximately one hour and is 

mainly stored in the liver, spleen, kidney and cardiac muscle in the form of FAD. Thus, its 

deficiency could impair essential functions of these vital organs (Saedisomeolia and Ashoori 

2018). FMN and FAD are the main active forms of vitamin B2 and perform active roles as 

coenzymes of enzymes and proteins called flavoproteins, mostly involved in mitochondrial 

metabolic processes.  

Mutations in riboflavin transporters and riboflavin-dependent enzymes can limit 

absorption, transport, or conversion of riboflavin to its different active forms leading to 

disease. Specifically, mutation in FAD synthase (FLAD1) causes FAD deficiency in patients 

diagnosed with multiple acyl-CoA dehydrogenase deficiency (MADD) (Auranen et al. 

2017a). Also, mutations in riboflavin plasma membrane and mitochondrial transporters have 

been shown to contribute to the development of MADD, with riboflavin supplementation 

decreasing disease symptoms and improving mitochondrial flavoprotein activities. Other 

symptoms of riboflavin deficiency have been reported in rat studies to include demyelination 

in the cerebrum and cerebellum and delay and impairment in brain development and  

maturation (Udhayabanu et al. 2017).  
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Riboflavin also plays a key role as an antioxidant in the glutathione redox cycle. FAD 

is involved in the activation of the glutathione reductase (GR) enzyme through its reduction 

by reduced nicotinamide adenine dinucleotide phosphate (NADPH). This crucial step is 

required for the continuous activity of the glutathione redox cycle (Saedisomeolia and 

Ashoori 2018). As a result, cellular riboflavin status is commonly obtained through 

measurement of GR activity. Riboflavin deficiency could therefore potentially play a role in 

the development and treatment of neurodegenerative diseases where oxidative stress is 

increased. 

 Due to a dearth of effective and readily available disease modifying therapeutics for 

AD treatment and due to the failure of multiple clinical trials of already proposed drugs, there 

is a need to develop new strategies that could address the complex multifactorial causes of 

AD onset and progression. Because of this necessity, this study was conceived to study the 

role of vitamin B2 in delaying amyloid-beta induced proteotoxicity using both mitochondrial 

and amyloid-beta cascade hypotheses as rationale. Therefore, our initial hypothesis was that 

vitamin B2 supplementation would improve mitochondrial bioenergetic function, which 

would in turn improve amyloid-beta clearance to delay amyloid-beta induced proteotoxicty in 

a C. elegans amyloid beta-expressing AD model. 
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CHAPTER 2 

MATERIALS AND METHODS 

 

Caenorhabditis elegans Strain Maintenance 

C. elegans AD model strain CL4176 (smg-1(cc546)+ [myo-3p::A-Beta (1-42)::let-

851 3'UTR) + rol-6(su1006)]) expressing Aβ1-42   peptide specifically in body wall muscle at 

25°C, but not 15°C, through the use of a  temperature-inducible expression system and wild-

type N2 strain were obtained from the Caenorhabditis Genetics Center (CGC, University of 

Minnesota). The CL4176 worm strain was maintained at the permissive temperature of 15°C 

on Nematode Growth Media (NGM) agar 10 cm plates and fed with the OP50-1 (or 

HT115(DE3) for RNAi experiments) Escherichia coli bacterial strain, while wild type N2 

worms were cultured similarly as a control. 

 

Chemicals 

 Nicotinic acid (RPI), nicotinamide adenine dinucleotide (NAD+) (Alfa Aesar), 

nicotinamide adenine dinucleotide phosphate (NADP+) disodium salt (Alfa Aesar), flavin 

adenine dinucleotide (FAD) disodium salt (TCI), riboflavin-5’-phosphate (FMN) (Alfa 

Aesar), Carbenicillin disodium salt (RPI corporation), IPTG (Fisher scientific), (adenosine-5-

triphosphate (ATP) disodium salt hydrate (MP Biomedicals) and Nystatin (RPI corporation). 

 

Drugs Preparation and Concentrations 

The water-soluble vitamins B2 and B3 were dissolved in either double deionized water 

or M9 buffer. The active forms of vitamin B2 (riboflavin), FMN and FAD, were used at 

varying concentrations until a protective concentration was obtained. FMN was used at final 

concentrations of 0.07 mM, 0.37 mM, 0.74 mM and 1.48 mM. FAD was used at final 
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concentrations of 0.2 µM, 0.37 µM, 0.74 µM, 2.2 µM, 3.7 µM, and 37 µM. Vitamin B3 

(niacin) was used in both the precursor (nicotinic acid) and active forms, NAD and NADP. 

Nicotinic acid was used at final concentrations of 0.07 mM, 0.37 mM, 0.74 mM, and 1.11 

mM.  NAD was used at final concentrations of 1.48 µM, 1.85 µM, 2.22 µM, 3.70 µM, 7.40 

µM, and 14.80 µM. Lastly, NADP was used at final concentrations of 0.37 µM, 1.48 µM, 

2.96 µM, and 7.40 µM. 

 

Amyloid-beta Peptide Mediated Paralysis Assays 

To test for a protective effects against amyloid-beta peptide induced paralysis, worms 

were assayed to determine any delay in paralysis after administration of different 

concentrations of vitamin B2 or B3 using methods described by Dostal and Link 2010. 

Briefly, age synchronized worm populations were obtained by picking 30 gravid adult worms 

onto several freshly prepared drug-free (no vitamins added) NGM agar plates using a 

dissecting stereo microscope with a worm picker. Worms were allowed to lay eggs for 2-3 

hours at 15°C and gravid adult worms were picked off.  Eggs were then allowed to hatch and 

grow on NGM (0.01 mg/ml streptomycin (an antibiotic) and (0.01 mg/ml nystatin or 0.01 

mg/ml fluconazole (antifungals)) plates at 15°C for 7 days. On the 7th day, 10-12 gravid adult 

worms were picked onto freshly prepared NGM plates containing appropriate drug (B 

vitamin) concentrations or controls. After 3-4 hours of egg laying on the drug-containing or 

control NGM plates, gravid adult worms were picked off while eggs were allowed to hatch 

and grow at 15°C for 48 hours. After 48 hours of growth at 15°C, all plates were upshifted to 

a 25°C incubator for 30 hours. After 30 hours of incubation and growth at 25°C, worms were 

assayed for paralysis at 2 hours intervals for 20-30 hours or until all worms on the plates had 

paralyzed. Paralyzed worms were detected by prodding worms with a worm picker (platinum 

wire) under a dissecting microscope. Paralyzed worms cannot translocate across the plate, 
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will cease to move after 2-3 proddings, or cannot form bacterial halos around their moving 

heads without whole body movement. At least 65 worms were used in triplicate for each 

treatment group. 

 

Obtaining Worm Samples for ATP, Oxygen Consumption, and Reactive Oxygen Species 

(ROS) Assays 

 Confluent gravid adult worms growing on 3-5 drug-free NGM plates at 15°C for 7 days were 

bleach synchronized to obtain eggs of approximately equal age. Equal numbers of hatched eggs were 

grown on 12-well plates containing liquid S-media, 0.01 mg/ml fluconazole, and the appropriate drug 

concentration together with 1 x 1010 CFU OP50-1 E. coli per ml. Worms were grown at 15°C with 

shaking for 48 hours. Plates were then upshifted to 25°C to induce Aβ-peptide expression with 

shaking for 36 hours. After 36 hours of incubation at 25°C, the 800-1000 worms in each well were 

washed thoroughly with ice-cold 0.1 M NaCl solution in a 15 ml centrifuge tube 4 times at 2500 rpm 

for 2 minutes to remove bacteria. 1 ml of worm pellets were then transferred to 1.5 ml centrifuge 

tubes and spun down at 5,000 rpm for 5 minutes. 500 µl of sample suspension was then divided into 3 

taking 350 µl worms for the oxygen consumption assay, 50 µl of worms for the ROS assay, and 100 

µl of worms for the ATP and BCA protein quantification assays. 100 µl of worm samples for ATP 

and BCA assays were snap frozen in liquid nitrogen and stored at -80°C for later use. 

 

ATP assays 

Worms treated with the protective FMN (0.74 mM) and FAD (0.74 µM) 

concentrations were assayed for changes in ATP level using the CellTiter-Glo (Promega, 

Madison, WI) firefly luciferase system as described by Edwards et al. 2013. As described 

above, 100 L of worm samples were pelleted, snap frozen to disrupt membranes and release 
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ATP, and stored at -80°C.  For analysis, the samples were thawed on ice and divided into 

equal halves.  50 µl of the worm sample was used for BCA protein quantification assay while 

50 µl was used for the ATP assay. 50 µl of each sample was added into a well of a 96-well 

plate with 50 µl of CellTiter-Glo reagent. The plate was then shaken for 2 minutes at room 

temperature and incubated for 10 minutes at room temperature in a Biotek Synergy 2 

microplate reader after which the luminescence of the samples was measured. ATP 

concentrations in the samples were calculated using a standard curve of known ATP 

concentrations. 

 

Oxygen Consumption Assays 

Worms were assayed for basal oxygen consumption using methods described by 

Edwards et al. 2013 using a  Clark oxygen electrode (MT200A chamber, Strathkelvin 

Instruments). 350 µl of worm sample containing approximately 700 worms was added to the 

electrode chamber and respiration was monitored for 5 minutes for each sample. Basal worm 

oxygen consumption was normalized to protein concentration. 

 

ROS Assays 

 Worms were assayed for ROS levels using the method described by Delic et al. 

(2017).  Briefly, 50 µl of live worms containing approximately 100 worms were added into 

each well of a 96-well plate with 50 µl of the dye 5’-dichlorodihydrofluorescein diacetates 

(DCFH2-DA). The plate was shaken in the dark for 2 minutes and then incubated in the dark 

for 30 minutes to allow for the dye penetration into the worms. The plate was then read for 

ROS-induced DCF fluorescence using a Biotek Synergy 2 microplate reader for 4 hours at 10 

minutes intervals. Worm ROS levels were calculated using the slope of the fluorescence 

curve and normalized to protein concentration.  
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BCA Protein Quantification Assay for ATP, Oxygen Consumption, and Reactive Oxygen 

Species (ROS) Assays 

 Measurements from ATP, oxygen consumption, and ROS assays were standardized to 

protein content. Protein quantification was performed  using the method described by 

Edwards et al. (2013) with slight modification. Flash frozen worm samples were thawed on 

ice and vacuum dried to remove excess washing buffer using a speed vacuum SC110A 

(Savant) for 1 hr. Worm pellets were then dissolved in 20 µl of 1 M NaOH solution heated at 

70°C for 25 minutes. Worm samples were cooled on ice and vortexed. 200 µl of deionized 

water was added to each sample to give a concentration of 0.1 M NaOH. Samples were 

centrifuged at 14, 000 rpm for 5 minutes. 25 µl of each sample was used for protein 

quantification using a BCA assay kit (Pierce) according to the manufacturer’s instruction.  

 

RNAi Feeding Experiments 

 E. coli daf-16, ubl-5, and flad-1 RNAi clones were obtained from the Ahringer C. 

elegans RNAi library (Source BioScience Life Sciences).  The atfs-1 E. coli RNAi clone 

from the Vidal RNAi library was purchased from Dharmacon. Using methods described by 

Edwards et al. (2015) and the Ahringer group who synthesized the E. coli RNAi library 

(Kamath et al. 2000), clones were grown in LB liquid media with 50 M ampicillin  at 37°C 

with shaking at 220 rpm for 18 hours. Bacteria cultures were pelleted and resuspended in 

sterile double deionized water at a concentration of 100 mg/ml and stored at 4°C until further 

use. NGM plates for RNAi experiments contained appropriate vehicle controls or 

concentrations of FMN or FAD at 0.74 mM and 0.74 µM respectively. Also, the plates 

contained final concentrations of 25 g/ml carbenicillin and where appropriate 1 mM IPTG 

(to induce dsRNA production). Synchronized worm populations feeding on the appropriate E. 
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coli RNAi clone (daf-16, ubl-5, flad-1, or atfs-1) were then grown on these plates and 

assayed for Aβ-mediated paralysis. 

 

Statistical Analysis 

 Statistical analysis for the paralysis curves was performed with Kaplan-Meier survival 

analysis and the Log-Rank test using Sigma plot version 11.0 software. Each replicate 

experiment of the paralysis assays was done in triplicates. Statistical analysis for bioenergetic 

assays was performed using One-way ANOVA repeated measures with GraphPad Prism 

version 7.04. Bioenergetic assays experiments were repeated four times in triplicates. All data 

were analyzed to check for outliers. 
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CHAPTER 3 

RESULTS 

 

Protective Effects of B Vitamins on Amyloid-beta Mediated Paralysis 

This study investigated the protective effects of B vitamins, specifically vitamins B2 

and B3, on the toxicity of amyloid-beta peptide using a C. elegans AD model. In this model, 

temperature upshift induces amyloid-beta expression in body wall muscle leading to a 

paralysis in some worms beginning at 30 hours following upshift with greater than 90% of 

worms paralyzing by 40 hours after upshift.  Paralysis assays using different concentrations 

of active forms and precursors of these two B vitamins were performed.  

 

              

Figure 1 Effect of FMN Treatment on Amyloid-beta Mediated Paralysis 
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The active forms of B2 (FMN and FAD) protected the worms against amyloid-beta 

toxicity depending upon the concentration added. FMN addition significantly delayed 

paralysis at the three highest concentrations tested with increased mean worm survival 

ranging from 13 % to 22 % (Figure 1, Table 1) when compared with the control group, while 

the lowest concentration slightly increased the rate of paralysis. Only one of the two FAD 

concentrations tested (0.74 µM) significantly protected against amyloid-beta toxicity and this 

concentration delayed mean paralysis time by 13 % (Figure 2, Table 1).  The 3.7 M 

concentration had no significant effect on the mean time to paralysis. 

 

 

Figure 2 Effect of FAD Treatment on Amyloid-beta Mediated Paralysis 
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Nicotinic acid (a vitamin B3 precursor) supplementation moderately protected the 

worms against amyloid-beta toxicity at one of the three concentrations tested (0.74 mM) 

(Figure 3) and at this concentration increased mean time to paralysis by 10 % (Table 1) 

compared to the control group.  Two other lower NA concentrations used decreased mean 

time to paralysis by 13 % and 14 %. 

 

Active forms of vitamin B3 (NAD and NADP) were also assayed to determine if they 

could provide protection against amyloid-beta-mediated toxicity. NAD addition delayed 

mean time to paralysis by 15 % at a concentration of 1.85 µM and by 3 % at a concentration 

of 7.40 µM (Figure 4), while two concentrations added did not lead to protection with one 

concentration even facilitating paralysis.  NADP addition failed to protect against amyloid-

beta toxicity at either of the two limited concentrations tested with one concentration 

decreasing time to paralysis (Figure 5, Table 1).  

 

Figure 3 Effect of Nicotinic Acid (NA) Treatment on Amyloid-beta Mediated Paralysis. 



38 
 

 

 

 

 

  

 

 

 

 

 

 

 

 

 

 

 

Figure 4 Effect of NAD Treatment on Amyloid-beta Mediated Paralysis 

 

 

Figure 5 Effect of NADP Treatment on Amyloid-beta Mediated Paralysis. 
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Table 1 The Effects of B Vitamins on Aβ-peptide Mediated Paralysis in a C. elegans AD 

Model 

Treatment 

                                                            
                                                                    

Concentration 

 

% change in 

mean paralysis 
time 

p-value 

 

# of worms 

 

Replicates 

 

FMN 

(flavin 

mononucleotide) 

 

 

 

FAD 

(flavin adenine 

dinucleotide) 

 

 

NA 

(nicotinic acid) 

 

 

 

NAD 

(nicotinamide 

adenine 

dinucleotide) 

 

 

NADP 

(nicotinamide 

adenine 

dinucleotide 

phosphate) 

0.07 mM 

0.37 mM 

0.74 mM 

1.48 mM 

 

 

0.74 µM 

3.7 µM 

 

 

 

0.07 mM 

0.37 mM 

0.74 mM 

 

 

1.85 µM 

2.22 µM 

3.7 µM 

7.40 µM 

 

 

 

1.48 µM 

2.96 µM 

 

-6 

+13 

+13 

+22 

 

 

+13 

+2 

 

 

 

-14 

-13 

+10 

 

 

+15 

0 

-9 

+3 

 

 

 

0 

-4 

 

<0.001 

<0.001 

<0.001 

<0.001 

 

 

<0.001 

0.055 

 

 

 

<0.001 

<0.001 

<0.001 

 

 

<0.001 

0.915 

<0.001 

0.003 

 

 

 

0.854 

<0.001 

 

342 

148 

325 

156 

 

 

385 

191 

 

 

 

271 

163 

1060 

 

 

232 

202 

205 

595 

 

 

 

446 

403 

 

2 

3 

3 

2 

 

 

5 

2 

 

 

 

2 

2 

8 

 

 

1 

3 

2 

6 

 

 

 

4 

2 
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Effects of Vitamin B2 on Mitochondrial Bioenergetic Function and Cellular Energy 

Metabolism 

 Since vitamin B2 is an essential cofactor for several mitochondrial enzymatic 

reactions, the concentrations of FMN (0.74 mM) and FAD (0.74 µM) that protected against 

amyloid-beta toxicity by 13% were assayed for changes in measures of mitochondrial 

bioenergetic function and cellular energy metabolism including ATP level, oxygen 

consumption, and reactive oxygen species (ROS) production. Figure 6 shows ATP levels of 

untreated, FMN treated, or FAD treated Aβ-expressing worms (strain CL4176) and untreated 

wild-type N2 worms. FMN or FAD treatment did not show a significant effect on ATP 

levels.  

 

Figure 6 Effect of FMN and FAD Treatment on ATP Level  
 

 
 

The data indicate the mean and standard error of the mean (SEM) of four 

independent triplicate trials.  The p values compared to untreated amyloid-beta 

expressing worms are 0.40, 0.59, and 0.64 for FMN treated, FAD treated, and 

untreated wild type N2 worms respectively. 
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The basal oxygen consumption rate of FMN or FAD treated, and untreated CL4176 

worms was also measured as well as that of wild type N2 worms (Figure 7). FMN or FAD 

treatment or A expression did not significantly alter the rate of oxygen consumption. 

 

 

The effect of FMN or FAD supplementation on reactive oxygen species (ROS) 

production in the amyloid-beta expressing CL4176 worms was also determined and 

compared to untreated wild-type N2 worms (Figure 8).  Although there were trends for 

increased ROS levels in CL4176 worms and decreased ROS levels following FMN or FAD 

treatment these values were not significantly different than the control. For consistency 

among assays, ROS levels were measured from the same cohort of worms used for the ATP 

and oxygen consumption measurements. 

 

Figure 7 Effect of FMN and FAD Treatment on the Basal Oxygen Consumption Rate 
 

The data indicate the mean of four independent triplicate trials with error bars representing 

the SEM.  The p values compared to untreated amyloid-beta expressing worms are 0.63, 

0.72, and 0.99 for FMN treated, FAD treated, and untreated wild type N2 worms 

respectively. 
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Effects of DAF-16/FOXO or FAD Synthase Knockdown on Vitamin B2 Protection 

 To identify molecular mechanisms through which vitamin B2 functions to protect 

from amyloid-beta peptide toxicity, the stress response transcriptional regulator DAF-

16/FOXO was knocked down by RNA interference (RNAi) and the worms were assayed for 

FMN or FAD-mediated protection from amyloid-beta mediated paralysis. All RNAi 

knockdown experiments were repeated three times in triplicate with each point on the graphs 

representing the mean of all worms for all groups.  For RNAi knockdown experiments worms 

were fed the HT115(DE3) strain of E. coli used for making the whole genome knockdown 

library instead of the standard OP50-1 strain. This change caused an increase in the mean 

paralysis time of control worms from approximately 35 hours to 45 hours.  Concentrations of 

FMN or FAD that increased the mean paralysis time by 13% when using OP50-1 bacteria 

were used. 

 

Figure 8 Effect of FMN and FAD Treatment on Reactive Oxygen Species (ROS) Production 
 

The means and SEMs shown are from four repeated triplicate trials. The p values compared 

to untreated amyloid-beta expressing worms are 0.32, 0.33, and 0.30 for FMN treated, FAD 

treated, and untreated wild type N2 worms respectively. 
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 Figure 9 shows results of FMN treatment of worms feeding on daf-16 RNAi 

knockdown E. coli and assayed for amyloid-beta peptide mediated paralysis. Untreated 

control groups were also fed daf-16 RNAi knockdown bacteria or empty vector (ev) bacteria 

as controls. Knockdown of daf-16 did not significantly alter the rate of paralysis in untreated 

worms.  FMN treatment of empty vector fed worms increased mean paralysis time by 14 % 

compared with the empty vector control fed worms, while FMN treatment of daf-16 

knockdown worms decreased mean paralysis time by 7 % (Table 2) when compared to the 

empty vector control fed worms (Table 2). Therefore DAF-16 is required for the protective 

effects of FMN treatment on amyloid-beta toxicity. 

 

Figure 9 DAF-16 is Required for the Protective Effect of FMN on Amyloid-beta 

Mediated Paralysis 

 



44 
 

Figure 10 shows the effects of FAD supplementation on amyloid-beta mediated 

paralysis in the presence of daf-16 knockdown. FAD treated empty vector fed worms showed 

a 21 % increase in mean paralysis time, while FAD treatment of daf-16 knockdown worms 

did not significantly alter their rate of paralysis (Table 2). Therefore, DAF-16 is required for 

FAD mediated protection from amyloid-beta toxicity. 

 

 

 

 

 

 

 

Figure 10 DAF-16 is Required for the Protective Effects of FAD on Amyloid-beta 

Mediated Paralysis 
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 The C. elegans flad-1 gene is homologous to the human FAD synthase gene whose 

protein product converts FMN to FAD.  In attempt to determine the most protective active 

form of vitamin B2, worms were subjected to flad-1 RNAi feeding and treated with either 

FMN or FAD.  As shown in Figure 11, knockdown of flad-1 in untreated worms decreased 

mean paralysis time by 12 % indicating that decreased FAD levels likely sensitize the worms 

to amyloid-beta toxicity.  FMN treatment of empty vector fed worms increased paralysis time 

by 14 %, while FMN treatment of flad-1 RNAi knockdown did not alter the mean time to 

paralysis compared to untreated flad-1 knockdown worms (Table 2).  Therefore, FLAD-1 is 

required for FMN-mediated protection from amyloid-beta toxicity. 

 

 

 

Figure 11 FLAD-1 is Required for FMN Mediated Protection Against Amyloid-

beta Toxicity 
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Similarly, flad-1 RNAi knockdown experiments were performed with FAD 

supplementation as shown in Figure 12. FAD supplementation of empty vector fed worms 

increased mean paralysis time by 21 %.  FAD supplemented, flad-1 knockdown worms had a 

mean paralysis time roughly equal to untreated flad-1 knockdown worms. Surprisingly, 

FLAD-1 appears to be equally important for the protective effects of FAD supplementation 

as it is for FMN supplementation. 

 

 

 

 

 

 

 

 

 

Figure 12 FLAD-1 is Required for FAD Mediated Protection Against Amyloid-beta 

Toxicity 
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Table 2 Vitamin B2 Requires DAF-16 and FAD Synthase for Protection Against Aβ-peptide 

Toxicity in a C. elegans AD Model 

RNAi 

treatment 
                                                                                                      

Treatment 

 

% change 

from control 
mean paralysis 

time 

% change from 

empty vector, 
control mean 

paralysis time 

p-value 

 

# of 

worms 
 

Replicates 

 

empty 

vector 

(ev) 

 

 

daf-16 

 

 

 

flad-1 

 

Control 

0.74 mM FMN 

0.74 µM FAD 

 

Control 

0.74 mM FMN 

0.74 µ FAD 

 

Control 

0.74 mM FMN 

0.74 µM FAD 

 

+14 

+21 

 

 

-4 

+4 

 

 

0 

-1 

0 

 

 

 

-3 

 

 

 

-12 

 

 

<0.001 

<0.001 

 

0.200 

0.064 

0.206 

 

<0.001 

0.908 

0.325 

384 

336 

291 

 

175 

279 

156 

 

255 

338 

336 

3 

3 

3 

 

3 

3 

3 

 

3 

3 

3 

 

 

 

Effect of Vitamin B2 Supplementation on Worms Where Mitochondrial Unfolded Protein 

Response (UPRmt) Pathway Genes are Knocked Down 

 FMN or FAD supplementation was further tested for the ability to delay amyloid-beta 

mediated paralysis in worms where mitochondrial unfolded protein response pathway genes 

ubl-5 or atfs-1 were knocked down. Knockdown of ubl-5 or atfs-1 did not alter the rate of 

paralysis in untreated worms.  FMN was slightly more effective in these experiments than in 

previous experiments increasing the time to paralysis by 27 % in empty vector fed worms.  

Worms treated with FMN and ubl-5 RNAi bacteria feeding did not have a significantly 

different mean time to paralysis than untreated ubl-5 RNAi worms or untreated, empty vector 

control worms (Table 3 and Figure 13). Therefore, UBL-5 is required for the protective 

effects of FMN on amyloid-beta mediated toxicity. 
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Similar experiments were performed with FAD supplementation as shown in Figure 

14 and Table 3.  In these experiments FAD supplementation to empty vector fed worms was 

slightly less protective than in previous experiments increasing mean time to paralysis by 

only 7%. However, ubl-5 knockdown of FAD treated worms completely prevented the FAD-

mediated increase in mean time to paralysis.  Therefore, UBL-5 is required for FAD-

mediated protection from amyloid-beta toxicity.  

 

 

Figure 13 The Mitochondrial Unfolded Protein Response Factor UBL-5 is Required for 

FMN Mediated Protection Against Amyloid-beta Toxicity 
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To verify the effects of ubl-5 knockdown, a transcriptional regulator of the UPRmt, 

atfs-1, was knocked down.  FMN treatment increased mean time to paralysis by 27% in the 

empty vector treated worms.  FMN treatment of atfs-1 knockdown worms led to a 11 % 

increase in time to paralysis (Figure 15 and Table 3). This indicates either a partial 

requirement of atfs-1 for FMN-mediated protection or possibly incomplete knockdown of 

atfs-1 by the RNAi clone used.  Either way the data support a role for the UPRmt in the 

protective effects of FMN on amyloid-beta mediated toxicity. 

 

Figure 14 The Mitochondrial Unfolded Protein Response Factor UBL-5 is Required for FAD 

Mediated Protection Against Amyloid-beta Toxicity 
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 Similar experiments were also performed with atfs-1 knockdown and FAD 

supplementation.  Once again FAD supplementation was slightly less effective in these 

experiments only increasing the mean time to paralysis by 7% in the empty vector fed worms.  

However, atfs-1 knockdown prevented the increase in mean time to paralysis in the FAD 

treated worms as shown in Figure 16 and Table 3.  Therefore, UPRmt is required for the FAD 

mediated protection from amyloid-beta toxicity. 

 

  

 

 

Figure 15 The Mitochondrial Unfolded Protein Response Factor ATFS-1 is Partially 

Required for FMN Mediated Protection Against Amyloid-beta Toxicity 

 



51 
 

 

 

Table 3 The Mitochondrial Unfolded Protein Response Factors UBL-5 and ATFS-1 are 

Required for FMN and FAD Mediated Protection Against Aβ-peptide Toxicity in a C. 

elegans AD Model. 

RNAi 
 

                                                                                                      

Treatment 
 

% change from 
control 

mean paralysis 

time 

% change from 
empty vector, 

control mean 

paralysis time 

p-value 
 

# of 
worms 

 

Replicates 
 

empty 

vector 

(ev) 

 

ubl-5 

 

 

 

 

atfs-1 

 

Control 

0.74 mM FMN 

0.74 µM FAD 

 

Control 

0.74 mM FMN 

0.74 µM FAD 

 

Control 

0.74 mM FMN 

0.74 µM FAD 

 

+27 

+7 

 

 

-1 

-3 

 

 

+11 

+3 

0 

 

 

 

+1 

 

 

 

0 

 

 

<0.001 

<0.001 

 

0.979 

0.701 

0.032 

 

0.734 

<0.001 

0.336 

410 

244 

203 

 

532 

340 

350 

 

396 

392 

309 

3 

3 

3 

 

3 

3 

3 

 

3 

3 

3 

 

Figure 16 The Mitochondrial Unfolded Protein Response Factor ATFS-1 is Partially 

Required for FAD Mediated Protection Against Amyloid-beta Toxicity 
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CHAPTER 4 

 

DISCUSSION 

 

B vitamin deficiency has been linked to the development and onset of several diseases 

such as cancers, heart disease, and neurodegenerative diseases (Saedisomeolia and Ashoori 

2018). This class of vitamins is water soluble and is most abundantly found in plant and 

animal human food sources such as legumes, milk, organ meats, sea foods, etc. B vitamins 

are also essential nutrients that must be consumed as part of the human diet (although vitamin 

B3, niacin, can be synthesized at a low level in the body from the amino acid tryptophan) 

(Sechi et al. 2016). Due to evidence linking B vitamin deficiencies, specifically B2 deficiency, 

to the development of AD and other neurological diseases (Udhayabanu et al. 2017), this 

study was initiated to investigate a possible protective role of vitamin B2 supplementation on 

amyloid-beta toxicity, a pathological hallmark of AD, in a C. elegans AD model. 

 

A Protective Role of Vitamins B2 and B3 Against Amyloid-beta Mediated Paralysis 

Data from our experiments suggest a protective function of the active forms of 

vitamin B2 (FMN and FAD) against amyloid-beta toxicity. FMN or FAD supplementation 

resulted in a delay in amyloid-beta mediated paralysis by 22 % and 13 % respectively at 

optimal concentrations (Figure 1-2, Table 1). Although, there has been no study testing for a 

protective role of FMN or FAD in any C. elegans neurodegenerative disease models, several 

human clinical trials and molecular studies using high dose  riboflavin supplementation have 

reported improved symptoms and improvement in biomarkers of disease such as improved 

cognitive function (Bell et al. 1992), improved muscular function (Anand et al. 2012; Foley 

et al. 2014), or increased flavoenzyme activities such as glutathione reductase antioxidant 

activity (riboflavin-dependent) (Hoey et al. 2009).  
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Given the importance of the active forms of vitamin B3, NAD(H) and NADP(H), in 

hundreds of cellular redox and biosynthetic reactions, including their role as cofactors for 

metabolic and antioxidant enzymes, it was not unexpected that supplementation with an NAD 

precursor, nicotinic acid (0.74 mM), at an optimal concentration delayed amyloid-beta 

mediated paralysis (Figure 3, Table 1). This result is consistent with studies reported by 

Sorrentino et al. (2017) using an alternative NAD precursor, nicotinamide riboside, which 

was protective when supplemented to the GMC101 C. elegans strain (an alternative AD 

worm model constitutively expressing amyloid-beta in body wall muscle). This is also 

consistent with our finding that an optimal supplemented concentration of NAD (1.85 µM) 

protected against amyloid-beta mediated paralysis (Figure 4, Table 1). However, NADP 

supplementation failed to protect against amyloid-beta mediated paralysis even at a higher 

concentration of 7.4 µM (Figure 5, Table 1). This could be due to either a low absorption rate 

of NADP by the worms (due to the negative charge of the phosphate group) or due to  us not 

finding the optimal dose (Chen et al. 2015), as NADP(H) levels are roughly 10 fold lower 

than NAD(H) levels in the cell. NADPH serves as a cofactor for the reduction of glutathione 

reductase in the glutathione redox cycle. NADPH is 20-100 fold more abundant than its 

oxidized form NADP  and controls the rate limiting step of the glutathione cycle 

(Saedisomeolia and Ashoori 2018). Thus, the failure of NADP (oxidized) supplementation to 

protect against amyloid-beta toxicity could be due to its excessive accumulation and 

alteration of the physiological NADP/NADPH ratio.  NADPH is oxidized to NADP in 

solution fairly rapidly, so NADPH supplementation to the worms would almost undoubtedly 

lead to similar results as NADP supplementation. 
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Vitamin B2 Supplementation and Mitochondrial Bioenergetic Function 

Our data shows no significant difference in ATP levels, oxygen consumption, or 

reactive oxygen species (ROS) production between FMN or FAD treated CL4176 worms and 

untreated controls. There was also no significant difference in the mitochondrial bioenerget ic 

function between treated or untreated CL4176 AD worms and wild-type N2 worms. In the 

AD worm model we used, amyloid-beta is only expressed in body wall muscle.  Although 

amyloid-beta is known to inhibit complex IV of the electron transport chain, this is likely not 

measurable in this worm strain where over 80% of the cells do not express amyloid-beta. 

Both FMN and FAD serve as important coenzymes for several essential mitochondrial 

enzymes functioning in energy production or apoptosis. The simplest explanation for the lack 

of effect of FMN or FAD on mitochondrial bioenergetics function is that FMN and FAD are 

endogenously present at high enough levels that exogenous supplementation does not further 

increase mitochondrial enzyme activities. Results from supplementation with these two 

compounds (Figures 6-8) on mitochondrial bioenergetic function in this C. elegans model 

should not be extrapolated to suggest that vitamin B2 does not play a protective role on 

mitochondrial bioenergetics in other human diseases.   

Studies conducted by Karakoyun et al. (2017) reported riboflavin supplementation to 

reduce reactive oxygen species generation in acetic-acid induced colonic injured rats. Also, 

Peluchetti et al. (1991) reported riboflavin supplementation to increase the maximal oxygen 

consumption rate of a muscle biopsy in a small clinical trial of four patients with multiple 

acyl-coenzyme A dehydrogenase deficiency (MADD). Riboflavin supplementation also 

improved mitochondrial function or disease state in disease models resulting from a 

deficiency in mitochondrial enzymes such as those required for the assembly of 

mitochondrial complex I  in a complex I-mutant C. elegans strain or in cells deficient in 

complex IV activity (Grad and Lemire 2006). Another possible reason for no significant 
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effect of FMN or FAD supplementation on mitochondrial bioenergetic function might be due 

to the low supplementation dose when compared to other studies where riboflavin was 

supplemented at much higher doses. For example, high dose supplementation showed 

significant delay in disease progression in clinical studies of Brown-Vialetto-Van Laere 

syndrome (a disease associated with respiratory insufficiency in children) (Anand et al. 

2012). 

 

Vitamin B2 May Activate Transcriptional Regulators of Stress Response Pathways 

 We further investigated a role of the stress response transcriptional regulator DAF-16 

in the protective effects of FMN and FAD to delay amyloid-beta toxicity. RNAi knockdown 

of daf-16 significantly blocked the protective effect of FMN or FAD supplementation on 

amyloid-beta mediated paralysis (Figure 9 & 10, Table 2).  This data suggests that FMN and 

FAD protect through activation of DAF-16. This discovery may provide a possible answer to 

a question posed by many biomedical researchers and clinicians for the main molecular 

mechanism through which riboflavin supplementation is protective.  Since humans have 4 

homologs of DAF-16 (FOXO1, FOXO3, FOXO4, and FOXO6), which can induce protective 

gene expression programs such as stimulation of antioxidant genes and autophagy genes, 

induction of one or more of these FOXO genes may be responsible for the protective effects 

reported in published animal and clinical riboflavin supplementation studies, such as those 

reported by Shukitt-Hale (2012) and Saedisomeolia and Ashoori (2018). Our results on the 

dependency of DAF-16 for protection by FMN or FAD are different from the results of the 

study reported by Sorrentino et al. (2017) where nicotinamide riboside (NR) supplementation 

protected GMC101 AD worms. NR supplementation significantly delayed amyloid-beta 
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mediated paralysis like we found for FMN or FAD supplementation. However, the protective 

effects of NR did not rely upon DAF-16 activation. 

 Knockdown of flad-1 (an ortholog of human FLAD1) completely prevented the 

protective effects of added FMN or FAD on amyloid-beta toxicity (Figure 11 & 12, Table 2). 

This suggests a key role for FLAD-1 in maintaining a balanced FMN/FAD ratio for the 

protective effects observed. In line with our findings of the significance of FLAD-1 function 

during FMN or FAD supplementation, Auranen et al. (2017) reported that riboflavin 

supplementation ameliorated disease symptoms in patients suffering from partial loss of 

function of the FLAD1 enzyme resulting in multiple acyl-CoA dehydrogenase deficiency 

(MADD). Given the fact that deficiency of normal endogenous FLAD1 activity levels lead to 

abnormal flavin metabolism and cause disease and that flad-1 knockdown sensitizes worms 

to amyloid-beta toxicity, our findings suggest an important role of increased levels of FAD in 

activating DAF-16 and UPRmt to protect against amyloid-beta toxicity.  In addition, since 

flad-1 knockdown prevents the protective effects of FAD supplementation, added FAD may 

get catabolized to riboflavin and then resynthesized to FMN and FAD to exert its protective 

effects. 

 

Vitamin B2 Activation of the Mitochondrial Unfolded Protein Response Pathways 

 In addition to activation of the DAF-16 stress response pathway by FMN or FAD 

supplementation, the essential factors of the UPRmt ubl-5 (ubiquitin-like protein, UBL5) and 

atfs-1 (Activating transcription factor associated with stress) were also required for the 

protective effects. UBL-5 is required for normal mitochondrial morphology, assembly of 

mitochondrial multi-protein complexes, and induction of the UPRmt (Benedetti et al. 2006).  

In contrast to the results presented here where no effect was shown on CL4176 worms, ubl-5 
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or atfs-1 knockdown facilitated paralysis in untreated GMC101 amyloid-beta expressing 

worms.  

 ATFS-1 shares sequence homology with several proteins in the ATF transcription 

factor family in mammals. Mammalian ATF4 or ATF5 are activated during mitochondrial 

dysfunction and translocate to the nucleus to activate networks of mitochondrial stress 

response genes required for the UPRmt and mitochondrial proteostasis (Melber and Haynes 

2018). Thus, results from ubl-5 and atfs-1 RNAi knockdown experiments suggest a role for 

high levels of vitamin B2 in upregulating genes required for mitochondrial protein refolding 

(Grad and Lemire 2006) and protein import. The UPRmt was shown to be activated in 

GMC101 worms by the  mitochondrial dysfunction caused by amyloid-beta peptide 

deposition (Sorrentino et al. 2017), while it may not have been activated in the untreated 

CL4176 strain of worms that we used, as we did not find that knockdown of UPRmt factors 

hastened the rate of paralysis. 

 

Conclusions 

 This study has established that supplementation with the appropriate concentrations of 

the active forms of vitamin B2 (FMN or FAD) can protect against amyloid-beta peptide 

toxicity through activation of the DAF-16/FOXO stress response pathway and the 

mitochondrial unfolded protein response (UPRmt) pathway. Although, our initial hypothesis 

was that vitamin B2 supplementation would improve mitochondrial bioenergetic function, 

results from our findings have suggested otherwise. Thus, it can be concluded from this study 

that vitamin B2 supplementation might serve a limited role in improving cellular metabolic 

function such as improving mitochondrial bioenergetic function, but instead protect through 

inducing the transcription of genes associated with cellular stress response pathways. 
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Future Studies and Study Limitations 

 To further confirm the protective roles of FMN or FAD supplementation through the 

activation of conserved stress response signaling pathways, the following future experiments 

could be conducted in C. elegans: 

 Perform RNAi knockdown of the riboflavin kinase gene (R10H10.6) to confirm if 

inhibition of endogenous FMN synthesis can prevent the protective effects of added 

FMN or FAD. 

 Treat SOD-3::GFP expressing DAF-16 reporter worms with FMN or FAD to check 

for the transcriptional activation of the SOD-3 promoter by the DAF-16/FOXO 

transcription regulator. 

 Perform lifespan assays of FMN or FAD supplementation and check for genes 

required for lifespan extension. 

 Treat HSP-6::GFP or HSP-60::GFP expressing UPRmt reporter worms with either 

FMN or FAD to check for upregulation of GFP expression through mitochondrial 

unfolded protein response activation. 

The study has the following limitations.  The C. elegans AD model used for 

this study only expresses the amyloid-beta peptide, Aβ1-42, and not full-length APP 

since C. elegans apparently lack the  and  secretases involved in the processing of 

APP to toxic amyloid-beta peptide. Amyloid-beta is expressed in body wall muscle 

instead of neurons as only a much delayed, mild phenotype was observed when the 

peptide was expressed in neurons.  Also, the peptide must be overexpressed in the 

worms at a higher level to induce the same level of toxicity observed as when 

expressing it in mammalian brains or cell lines. Therefore, similar experiments with 

FMN or FAD treatment should be performed in mammalian models of amyloid-beta 

toxicity to confirm the findings presented here. 
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