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ABSTRACT 
 

Postcranial Morphology and the Locomotor Adaptations of Extant and Extinct Crocodylomorphs 

and Lepidosaurs  

by 

Laura Rooney  

I have collected a series of linear measurements of the postcranial skeletons of 43 extant 

crocodylian and lepidosaur taxa to determine if those engaging in similar locomotor behavior 

display similar morphology despite phylogenetic differences. Stepwise discriminant function 

analyses reveal reptile locomotor mode can be accurately predicted (over 80% correct) based 

on morphology. Semi-aquatic taxa are distinguished by a longer ischium relative to pubis 

length, a longer scapula relative to humerus length, and a broader acetabulum than terrestrial 

and arboreal taxa. Arboreal taxa display a more elongate, gracile humerus and a smaller 

acetabulum. This morphometric data can potentially be used to predict the locomotor behavior 

of a wide range of extinct reptile taxa. Within this study, Hyposaurus rogersii, Necrosuchus 

ionensis, Alligator sp. of the Gray Fossil Site, Crocodylus affinis, and Allognathosuchus mooki 

were examined and all were inferred to be semi-aquatic by the discriminant function analysis.  
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CHAPTER 1 

INTRODUCTION 
  

Studies have shown that the morphology of the postcranial skeleton can be correlated 

with the known locomotor behavior of extant taxa (e.g. Losos 1990; Wainwright 2007; Samuels 

and Van Valkenburgh 2008; Samuels et al. 2013; Chen and Wilson 2015). These data can then 

be used to infer the locomotor modes of extinct taxa based on their morphological similarity to 

extant groups. Such studies have been conducted on many groups of mammals, however 

studies on reptiles are less common.  Through linear morphometric analysis of extant 

crocodylian and lepidosaur postcrania, we can determine the presence or absence of 

convergent morphology in reptile taxa utilizing similar locomotor modes. 
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CHAPTER 2 

BACKGROUND 

Evolution of Crocodylomorph and Lepidosaur Locomotion 

Locomotor Diversity of Crocodylomorphs and Lepidosaurs 

Crocodylomorphs are a group of archosaurs that includes extant crocodylians and their 

extinct relatives. There are 23 known species of extant crocodylians which are placed in three 

families; Crocodylidae (true crocodiles), Alligatoridae (alligators and caimans), and Gavialidae 

(gharial and false gharial). All modern crocodylians are semi-aquatic and spend a majority of 

their life in the water, however they construct terrestrial nests and regularly come ashore to 

bask. Gavialis is considered to be the most aquatic of the extant taxa, while caimans occupy the 

broadest range of habitats (Vitt and Caldwell 2014). The Order Crocodylia has remained largely 

unchanged ecomorphologically since its origins approximately 83.5 million years ago with all 

members engaging in similarly semi-aquatic behavior. Early members of the broader 

superorder, Crocodylomorpha, originated in the Late Triassic and are considered to have 

occupied a much wider range of niches, including some fully terrestrial taxa (e.g. Postosuchus, 

Prestosuchus, Poposaurus) and fully aquatic taxa (e.g. Metriorhynchus) (Chatterjee 1985; 

Grange 1998; Gauthier et al. 2011; Irmis et al. 2013; Liparini and Schultz 2014).  

Lepidosauria, is a superorder of reptiles which includes lizards, snakes, amphisbaenians, 

and tuataras. With over 10,000 extant species, over 6,000 of which are lizards, Lepidosauria is 

highly diverse and includes many arboreal/scansorial, terrestrial, semi-aquatic, semi-fossorial, 

fossorial, and saltatorial species. Examples of these taxa include the arboreal chameleon 

Bradypodion, terrestrial agamid Trapelus, semi-aquatic varanid Varanus salvator, semi-fossorial 



8 
 

skink Liopholis, and saltatorial-fossorial lacertid Acanthodactylus cantoris (Vitt and Caldwell 

2014). Similar to crocodylomorphs, the earliest lizards are thought to have originated during 

the Late Triassic. Although the diversity of locomotor behavior of crocodylomorphs has greatly 

decreased since the Mesozoic, lepidosaurs have retained a high distribution of locomotor 

modes and thus represent potential modern analogs for extinct crocodylomorphs and other 

amniotes which appear to have engaged in higher degrees of terrestrial behavior.  

Several extant families of lepidosaurs display a wide array of locomotor specializations 

among their taxa. The family Iguanidae, for example, contains arboreal species (e.g. Iguana 

iguana), terrestrial species (e.g. Cyclura cornuta), and a semi-aquatic species (Amblyrhyncus 

cristatus) (Vitt and Caldwell 2014). A similar distribution of locomotor behaviors is seen among 

agamids with arboreal representatives (e.g. Japalura mitsukurii), terrestrial species (e.g. 

Trapelus sanguinolenta), and the semi-aquatic Hydrosaurus pustulatus and Physignathus 

cocincinus (Vitt and Caldwell 2014). Other lepidosaur families also display species with semi-

aquatic adaptations, like the Asian water monitor (Varanus salvator) of the family Varanidae, 

and the northern caiman lizard (Dracaena guianensis) of the family Teiidae. Morphometric 

measurements and comparisons of postcrania for representatives of these locomotor groups 

within Lepidosauria may reveal that morphology reflects locomotor behavior in reptiles, 

regardless of evolutionary relationships, and indicate convergence or parallel evolution of 

locomotor adaptations among clades. 

Past Studies Inferring Locomotion of Extinct Crocodylomorphs    
 

The locomotor behavior of crocodylomorphs has often been interpreted from crania 

based on the orientation of the nasals and orbitals, as well as from qualitative analyses of the 
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postcrania. It is only in recent years that researchers have begun more thorough examinations 

of crocodylomorph postcrania to interpret their adaptations for aquatic and terrestrial 

locomotion (Hua and Buffrenil 1996; Hua 2003; Stein et al. 2017). For example, Schachner 

(2011) reconstructed the muscles of the pelvis and hindlimbs of the extinct crocodylomorph 

Poposaurus gracilis based on the bone and muscle structure found in modern alligators and 

lepidosaurs. Molnar et al. (2015) examined the lumbar and thoracic vertebrae of modern 

crocodiles and several extinct crocodylomorphs to determine if variations in the range of 

motion and joint stiffness of the vertebrae could explain their varying locomotor capabilities. 

Morphological studies such as these are invaluable to understanding the development of 

locomotor capabilities through the course of crocodylian evolution. Detailed quantitative 

studies of extant reptiles can reveal aspects of their morphology that distinguish species with 

differing locomotor ecology, often based on limited material. The fossil material available for 

many species of extinct crocodylomorphs is limited, thus it is vital to determine reliable 

methods of inferring locomotion from whatever skeletal material is present.     

Skeletal Morphology Reflects Functional Performance 
 

Studies of a wide range of organisms have demonstrated the utility of skeletal morphology 

in reflecting functional capabilities. Often, patterns have demonstrated that organisms 

engaging in similar behaviors display similar morphologies (Wainwright 2007; Losos 2011). 

Cranial, postcranial, and dental morphologies have been used as signals for dietary preferences, 

locomotor capabilities, and even the evolutionary history of extant taxa (O’Keefe and Carrano 

2005; Stayton 2006; Wainwright 2007; Samuels and Van Valkenburgh 2008; Polly et al. 2011; Da 

Silva et al. 2018). This ability is of great value to paleontologists as, frequently, skeletons are the 
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only portion of organisms that become fossilized. Extant taxa provide us with the opportunity 

to examine the morphologies associated with particular ecologies, then quantitatively infer the 

habits of extinct groups based on their morphology. 

 

Quantitative Methods of Utilizing Postcrania to Infer Locomotion 
 

Past Studies Inferring Locomotion in Mammals 
   

Researchers of mammalian locomotion have repeatedly displayed the utility of using 

linear morphological measurements of mammal postcrania to create osteological indices that 

can be used to identify locomotor modes (e.g. Van Valkenburgh 1987; Samuels and Van 

Valkenburgh 2008; Rose et al. 2014; Chen and Wilson 2015; Tulli et al. 2015). Based on the 

methodology applied to carnivore locomotion in Van Valkenburgh 1987, Samuels and Van 

Valkenburg (2008) took measurements of the limbs of a diverse sample of extant rodent taxa 

and found their locomotor mode closely reflected their postcranial morphology, despite 

belonging to evolutionarily distinct groups. Application to extinct rodent species allowed 

quantitative inference of their locomotor habits. Samuels et al. (2013) utilized the same 

methodology to interpret locomotor behavior in extant and extinct carnivorans. Both studies 

measured proportions of the limb bones and calculated a series of osteological indices, which 

were analyzed using analysis of variance (ANOVA) and stepwise discriminant function analysis 

(DFA). Chen and Wilson (2015) then displayed that these analyses can be applied on an even 

broader scale by collecting postcranial data from over 100 small-bodied mammal taxa that 

spanned 15 orders. With the use of ANOVA and canonical variate analyses (CVA), these 

researchers once again found that postcranial morphology reflects locomotion and that this 
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methodology could be applied to infer the locomotor modes of several Mesozoic mammal taxa. 

Each of these studies indicate that mammal taxa engaging in similar locomotor behavior tend to 

converge on particular morphologies, regardless of evolutionary relationships.  

Linking Postcranial Morphology to Locomotor Behavior in Reptiles  
 

 Given the diversity of ecology and morphology of extant reptiles, it would be expected 

that form would reflect function, as similar patterns were observed in studies of mammals. To 

date, there have been a number of quantitative ecomorphological studies of reptiles that have 

shown just that (Pianka 1969; Pounds et al. 1983; Garland and Losos 1994). Examinations of 

postcranial proportions have been applied when interpreting the locomotor systems and 

ecomorphologies of groups of reptiles such as plesiosaurs (O’Keefe and Carrano 2005) and 

Anolis lizards (Losos 1990); thus, there is potential for applying a similar methodology to other 

groups of reptiles. In the past, the skull and lower jaw morphology of extant squamates has 

been used to demonstrate convergence among species with similar diets (Stayton 2006; Klaczko 

2016). As crania of reptiles have indicated morphological and functional convergence based on 

diet, it is possible that reptilian postcrania exhibit similar convergence based on locomotor 

mode. A wide variety of locomotor specialists are seen in multiple families of extant reptiles, 

among both crocodylians and lepidosaurs, thus these groups provide the opportunity for 

examining potential convergent or parallel evolution within reptile clades.  

Complications When Examining Reptiles vs. Mammals 
 

While several of the simple linear measurements that have been collected from 

mammals for locomotor studies can easily be applied to reptile taxa, such as lengths of the limb 

bones and components of the pectoral and pelvic girdles, there are multiple anatomical 
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distinctions between the two classes that must be noted. For example, mammalian locomotor 

studies frequently measure the length of the olecranon process of the ulna (ex. Van 

Valkenburgh 1987; Samuels and Van Valkenburgh 2008; Chen and Wilson 2015), but this 

feature is not present in reptilian taxa (Romer 1997). In addition, the pectoral girdles of these 

groups are quite different in that reptiles possess a coracoid which forms the ventral portion of 

the shoulder girdle (Romer 1997). This feature is absent in all placental mammals, thus new 

measurements must be determined to accurately represent this feature.  

Consideration must also be taken when choosing which postcranial components are to 

be the primary focus of the study. Mammalian locomotor studies have primarily conducted 

analyses on the appendicular skeleton as locomotion of most mammals is primarily driven by 

the limbs, and thus the limbs and girdles display the primary muscle attachment sites for 

locomotion. However, in reptiles the axial skeleton frequently plays a much larger role in 

locomotor capabilities, especially for semi-aquatic taxa such as crocodylians. Semi-aquatic 

crocodylians and lepidosaurs rarely utilize their limbs for aquatic behavior, but rather propel 

themselves through the water by mediolateral undulation of their paddle-like tails (Hildebrand 

1985; Grenard 1991). Therefore, when conducting an ecomorphological analysis of reptilian 

taxa, the inclusion of measurements of the axial skeleton, particularly the caudal vertebrae, 

may be key to examining and interpreting locomotor behavior. 
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CHAPTER 3 

METHODS 
 

Crocodylian and Lepidosaur Taxa 
 

A total of 57 extant crocodylian and lepidosaur specimens from ten families (37 species) 

are represented within this study (Table 1). Families include Crocodylidae, Alligatoridae, 

Agamidae, Iguanidae, Varanidae, Teiidae, Dactyloidae, Hoplocercidae, Cordylidae, and 

Helodermatidae. The majority of species are represented by one specimen, however additional 

specimens were measured when available to better portray the morphology of the species.  

Table 1: List of extant species included in analysis  

Species # Family Species name     N Locomotor group 

1 Agamidae Hydrosaurus pustulatus 2 Semi-aquatic  
2 Agamidae Trapelus sanguinolentus 1 Terrestrial 
3 Agamidae Japalura mitsukurii 1 Arboreal 
4 Agamidae Stellagama stellio  1 Terrestrial 
5 Agamidae Phrynocephalus przewalski 1 Terrestrial 
6 Cordylidae Cordylus giganteus 1 Terrestrial 
7 Agamidae Bronchocela cristatella 1 Arboreal 
8  Agamidae Physignathus sp. 4 Semi-aquatic 
9 Agamidae Uromastyx sp. 3 Terrestrial 
10 Alligatoridae Paleosuchus trigonatus 2 Semi-aquatic 
11 Alligatoridae Alligator mississippiensis 3 Semi-aquatic 
12 Alligatoridae Alligator sinensis * 1 Semi-aquatic 
13 Alligatoridae Melanosuchus niger 1 Semi-aquatic 
14 Alligatoridae Caiman crocodilus 1 Semi-aquatic 
15  Crocodylidae Crocodylus acutus 1 Semi-aquatic 
16 Crocodylidae Crocodylus moreletti 1 Semi-aquatic 
17 Crocodylidae Crocodylus mindorensis 1 Semi-aquatic 
18 Crocodylidae Gavialis gangeticus 1 Semi-aquatic 
19 Crocodylidae Tomistoma schlegelli 1 Semi-aquatic 
20 Dactyloidae Anolis equestris  1 Arboreal 
21 Helodermatidae Heloderma suspectum 1 Terrestrial 
22 Hoplocercidae Enyalioides oshaughnessyi 3 Arboreal 
23 Iguanidae Amblyrhynchus cristatus 2 Semi-aquatic 
24 Iguanidae Cyclura cornuta 1 Terrestrial 
25 Iguanidae  Cyclura cychlura 1 Terrestrial 
26 Iguanidae Iguana iguana 1 Arboreal 
27 Iguanidae Dipsosaurus dorsalis 1 Terrestrial 
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28 Iguanidae Callisaurus draconoides 1 Terrestrial 
29 Iguanidae Conolophus subcristatus 1 Terrestrial 
30 Iguanidae Ctenosaura acanthura  1 Arboreal 
31 Iguanidae  Ctenosaura similis 2 Terrestrial 
32 Iguanidae Ctenosaura hemilopha 1 Terrestrial 
33 Teiidae Dracaena guianensis 1 Semi-aquatic 
34 Teiidae Tupinambus merianae 1 Terrestrial 
35 Teiidae Ameiva ameiva  1 Terrestrial 
36 Iguanidae Sauromalus ater 1 Terrestrial 
37 Varanidae Varanus bengalensis 1 Terrestrial 
38 Varanidae  Varanus griseus 1 Terrestrial 
39 Varanidae Varanus gouldi 1 Terrestrial 
40 Varanidae Varanus salvator 2 Semi-aquatic 
41 Varanidae Varanus komodoensis 1 Terrestrial 
42 Varanidae Varanus exanthematicus 1 Terrestrial 
43 Varanidae Varanus beccarii 1 Arboreal 

Captive specimens are indicated by *. 

Each species studied was categorized into one of three locomotor modes (Table 2) 

based on published descriptions of their behavior (Vitt and Caldwell 2014, IUCN). Some taxa are 

characterized by multiple behaviors and categorizations were made based on the 

predominance of evidence. Thus, these categories are a simplification of a complex continuum 

of locomotor behaviors. Lepidosaur families that include members with a variety of locomotor 

modes were preferentially selected to allow comparisons of closely related taxa with disparate 

ecology. Specimens were also chosen based on completeness of available postcrania, and the 

sample includes both male and female individuals. Most of the specimens examined are wild-

caught adults; however, occasional juveniles have been used where adult specimens were 

unavailable. Data for extant specimens were gathered from the reptile collections of the 

Smithsonian Institution National Museum of Natural History (NMNH), Washington, D.C.; the 

East Tennessee State University Museum of Natural History (ETMNH), Gray, TN; and the East 

Tennessee State University modern osteology collections (ETMNH), Johnson City, TN.  
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Table 2: Locomotor categories used in the analyses and their definitions 

Locomotor Mode Definition 

Terrestrial (T) Primarily displays quadrupedal behavior on land, potentially with slight 
burrowing behavior. Rarely if ever swims or climbs.  

Semi-aquatic (Sa) Regularly swims for dispersal, escape, or foraging.  
Arboreal (A) Displays frequent climbing behavior for escape, shelter, or foraging. 

Includes scansorial species.  

Table 1 includes a complete list of the included extant species and their designated locomotor 
modes. Species were assigned to locomotor groups based on descriptions of their behavior 
found in Vitt and Caldwell, 2014 and IUCN.org.  
 

Nineteen specimens of extinct crocodylomorph taxa (Table 3) spanning ten families were 

included in the analysis as well to infer their primary locomotor behaviors. Fossil specimens 

were examined from the vertebrate paleontology collections of the American Museum of 

Natural History (AMNH), New York, NY and the New Jersey State Museum (NJSM), Trenton, NJ.  

Table 3: Extinct crocodylomorph taxa 

Family Species name     N 

Alligatoridae Alligator sp. (Gray Fossil Site) 4 
Alligatoridae Allognathosuchus mooki 1 
Alligatoridae Necrosuchus ionensis 1 
Crocodylidae Bottasaurus harleni 1 
Crocodylidae Crocodylus affinis  1 
Crocodylidae Holops obscurus 1 
Dyrosauridae Hyposaurus rogersii 1 
Gavialoidea Thoracosaurus sp.  3 
Goniopholidae Goniopholis sp. 1 
Stem crocodylian Hesperosuchus agilis 1 
Pholidosauridae  Teleorhinus robustus 1 
Prestosuchidae Prestosuchus chiniquensis 1 
Pristichampsidae Pristichampsus vorax 1 
Rauisuchidae Protosuchus sp.  1 

 

Postcranial Measurements 
 

I used digital calipers to measure a total of 40 linear measurements of the postcranial 

skeleton (Table 4) using digital calipers to measure to the nearest 0.01 mm. Measurements 

primarily consisted of total lengths of limb bones as well as proximal, distal, and midshaft 
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widths of these elements. The bones of the pectoral and pelvic girdles were also measured, 

along with three caudal vertebrae from each specimen, acting as representatives for three 

designated segments of the tail (anterior, midway, and posterior). Due to the broad variation in 

tail lengths and caudal vertebra number across taxa, the caudal vertebrae selected to represent 

the midway and posterior sections were chosen based on the overall length of the individual’s 

tail.  

Table 4: Postcranial measurements used in the analyses 

Measurement Abbreviation 

Humerus proximal breadth HPB 
Humerus proximal width  HPW 
Humerus distal breadth HDB 
Humerus distal width HDW 
Humerus length HL 
Humerus mid-shaft diameter HMSD 
Deltopectoral ridge length DPRL 
Deltopectoral ridge height DPRH 
Radius length RL 
Ulna length UL 
Femur length FL 
Femoral mid-shaft diameter FMSD 
Femur proximal length FPL 
Femur proximal width FPW 
Femur distal length FDL 
Femur distal width  FDW 
Linea aspera LA 
Tibia length TL 
Tibia mid-shaft diameter TMSD 
Fibula length FibL 
Fibula mid-shaft diameter FibMSD 
Centrum height of anterior caudal vertebra  CH-ACV 
Centrum length of anterior caudal vertebra  CL-ACV 
Transverse processes of anterior caudal vertebra  TP-ACV 
Neural spine of anterior caudal vertebra NS-ACV 
Centrum height of midway caudal vertebra CH-MCV 
Neural spine of midway caudal vertebra NS-MCV 
Hemal spine height HSH 
Sacrum length SacL 
Acetabulum diameter AcetD 
Ilium length IlL 
Ilium width IlW 
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Ischium length IschL 
Ischium width IschW 
Pubis length PubL 
Pubis width PubW 
Scapula length ScapL 
Scapula width ScapW 
Coracoid length CorL 
Coracoid width  CorW 

Measurements are illustrated in Figure 1. 

 

Figure 1: Measurements of the axial and appendicular skeleton used in this study 

Images modified from Romer 1997. 
 

Since this study covers a wide distribution of taxa across Reptilia, significant size 

differences between specimens are present. Linear measurements were used to calculate a set 

of 22 osteological indices (Table 5), which reflect relative proportions and help to account for 

variations in size between species. These indices allow us to visualize overall limb and tail 

proportions and interpret variations in velocity ratio and mechanical advantage along these 

appendages that can reflect particular locomotor adaptations.  
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Table 5: Osteological indices used in the Indices DFA 

Index Definition 

Proximal forelimb index (PFI) Scapula length divided by humerus length (ScapL/HL). 
Indicates speed of movement via relative proportions of 
components of the proximal forelimb.  

Humeral robustness index (HRI) Mid-shaft diameter of humerus divided by humerus 
length (MSDH/HL). Indicates humeral robustness and 
resistance to bending and shearing.  

Humeral proximal robustness index (HPRI) Humerus proximal breadth divided by humerus length. 
Indicates robustness and strength of proximal humerus.  

Humeral distal robustness index (HDRI) Humerus distal breadth divided by humerus length. 
Indicates robustness and strength of distal humerus. 

Shoulder moment index (SMI) Deltopectoral crest length divided by humerus length 
(DPCL/HL). Displays mechanical advantage of deltoid and 
pectoral muscles at the shoulder joint.  

 Brachial index (BI) Ulna length divided by humerus length (UL/HL). Indicates 
relative proportions of proximal and distal elements of 
the forelimb. 

Brachial index 2 (BI2) Radius length divided by humerus length (RL/HL). 
Indicates relative proportions of proximal and distal 
elements of the forelimb.  

Middle forelimb index (MFI) Radius length divided by ulna length (RL/UL). Indicates 
relative size of musculature controlling extension of 
distal forelimb.  

Crural index (CI) Tibia length divided by femur length (TL/FL). Indicates 
relative proportions of proximal and distal elements of 
the hindlimb.   

Femoral robustness index (FRI) Midshaft diameter of femur divided by femur length 
(MSDF/FL). Indicates robustness of femur and its 
resistance to bending and shearing.  

Intermembral index (IMI) Humerus length and radius length divided by femur 
length and tibia length [(HL+RL)/(FL+TL)]. Indicates 
relative lengths of forelimb and hindlimb.  

Tibial robustness index (TRI) Midshaft diameter of tibia divided by tibia length 
(MSDT/TL). Indicates resistance of tibia to bending and 
shearing.  

Body length index (BLI) Total length of trunk vertebrae (thoracic and lumbar if 
applicable) divided by total length of caudal vertebrae. 
Indicates relative proportion of trunk length to tail 
length.  

Neural spine index for anterior  
caudal vertebra (NSI-ACV) 

Height of neural spine divided by centrum height for 
anterior caudal vertebra. Anterior caudal vertebrae were 
considered to span first through fourth caudals. First 
caudal vertebra was measured when available. When 
unavailable, anterior-most available vertebra was used. 
Indicates potential dorsal lengthening of anterior portion 
of tail.  
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Neural spine index for midway  
caudal vertebra (NSI-MCV) 

Height of neural spine divided by centrum height for 
midway caudal vertebra. Midway caudal vertebrae were 
selected from the halfway point of the total tail length 
for each specimen. Indicates potential dorsal lengthening 
of midway portion of tail.  

Transverse process index for  
anterior caudal vertebra (TPI-ACV) 

Total length of transverse processes divided by centrum 
length for anterior caudal vertebra. Anterior caudal 
vertebrae were considered to span first through fourth 
caudals. First caudal vertebra was measured when 
available. When unavailable, anterior-most available 
vertebra was used. Indicates presence of mediolateral 
compression.  

Ilium index (IlI) Ilium length divided by ilium width (IlL/IW). Indicator of 
relative width of ilium available for muscle attachment.  

Pubis index (PubI) Pubis length divided by pubis width (PubL/PubW). 
Indicator of relative width of pubis available for muscle 
attachment.  

Ischium index (IschI) Ischium length divided by ischium width (IschL/IschW). 
Indicator of relative width of ischium available for muscle 
attachment.  

Ilium-Ischium Index (Il-Isch) Ilium length divided by ischium length (IlL/IschL). Displays 
relative areas of attachment for various hindlimb, trunk, 
and tail muscles such as the caudofemoralis, iliocostalis, 
and ilio-ischio-caudalis.  

Ilium-Pubis Index (Il-Pub) Ilium length divided by pubis length (IlL/PubL). Displays 
relative areas of attachment for various muscles such as 
the ischiopubis and iliocostalis. 

Ischium-Pubis Index (Isch-Pub) Ischium length divided by pubis length (IschL/PubL). 
Detects presence of posterior expansion of the pelvis for 
attachment of tail muscles.  

Measurements indicated above are described in Table 1 and illustrated in Figure 1. Definitions 
and hypothesized functional meaning of indices are included. Several indices are based on those 
described in Samuels and Van Valkenburg 2008.  
 

As an alternative method to correct for body size and account for the influence of 

allometry, geometric mean (GM), calculated as the nth root of the product of n measurements, 

was computed for each specimen as a proxy for body size (Mossiman and James 1979). The 

resulting GM score was then used to calculate a set of GM transformed variables (variable/GM 

= transformed) from each of the linear measurements, which yield variables corrected for 

individual body size (Mossiman and James 1979). Additionally, the GM score itself can be used 
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to study allometry, by regressing other variables (log transformed linear measurements and 

indices) against log GM score and examining whether slopes are significantly different from 

isometry (z test). 

Statistical Analyses 
    

Univariate Analysis of Variance (ANOVA) and boxplots were used to assess whether 

there are significant differences in the osteological indices between locomotor groups and to 

visualize these differences. I also conducted a stepwise discriminant function analysis (DFA) 

using the osteological indices to identify which variables can be used to best distinguish 

between terrestrial, semi-aquatic, and arboreal reptiles. An additional DFA was conducted using 

GM transformed variables. The DFA based on GM scores is expected to highlight aspects of 

morphology that best separate groups, while correcting for body size.  

The discriminant functions derived from the analysis using osteological indices were 

then used to infer the locomotor mode of extinct crocodylomorph taxa, which were included as 

unknowns in the classification phase of the analysis. As osteological indices are easily 

calculated, even from fragmentary specimens, that analysis has the greatest potential to 

include and classify the locomotion of extinct species. Ideally, the DFA based on GM scores 

would also be used to classify the locomotor habits of extinct species, but that would require 

particularly complete specimens, as all variables are needed to calculate the GM score. 

Linear regressions and bivariate plots were also performed on log GM scores versus log 

transformed linear measurements and osteological indices that displayed significance within 

the DFAs. Deviations of slopes from expectations (allometry) were tested using a z-test. Z-

scores were calculated by subtracting the expected slope from the observed slope produced by 
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the least squares linear regressions and dividing this by the standard error of the slope. These 

analyses allowed examination of interspecific allometry and how body size may have an impact 

on morphological features that distinguish locomotor groups. All statistical analyses were done 

in IBM SPSS Statistics 24. 
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CHAPTER 4 

RESULTS 

ANOVA Results 

The univariate ANOVA (Table 6) aided in identifying several indices that help to 

distinguish between our locomotor groups. Select indices have been highlighted via the 

boxplots in Figure 2. The semi-aquatic reptile taxa display a more elongate ischium (high Isch-

Pub, low Il-Isch), a short and broad ilium and pubis (IlI and PubI) and a more elongate scapula 

(high PFI) relative to the other two groups. Arboreal taxa generally showed more slender, 

gracile limbs (low HPRI, HDRI, FRI, and TRI).  

Table 6: Mean values and standard deviations of indices for each locomotor group 

 Terrestrial Semi-aquatic Arboreal 

PFI 0.396 (0.057) Sa 0.578 (0.175) T, A 0.374 (0.091) Sa 

HRI 0.091 (0.0242) 0.098 (0.020) A 0.069 (0.017) Sa 

HPRI 0.274 (0.046) A 0.256 (0.035)  0.213 (0.041) T 

HDRI 0.305 (0.068) A 0.273 (0.052) 0.226 (0.067) T 

SMI 0.286 (0.059) 0.295 (0.069) 0.239 (0.076) 
BI 0.837 (0.078) Sa 0.783 (0.070) T 0.824 (0.058) 
BI2 0.743 (0.067) Sa 0.694 (0.069) T 0.739 (0.057) 
MFI 0.890 (0.053)  0.886 (0.031) 0.897 (0.019) 
CI 0.810 (0.096) 0.764 (0.058) 0.797 (0.074) 
FRI 0.088 (0.022) A 0.090 (0.020) A 0.064 (0.021) T, Sa 

IMI 0.812 (0.082) 0.775 (0.083) 0.795 (0.131) 
TRI 0.091 (0.023) A 0.095 (0.023) A 0.065 (0.026) T, Sa 

BLI 0.464 (0.212)  0.410 (0.169) 0.283 (0.071) 
NSI-ACV 1.937 (0.619) 2.356 (1.074) 2.451 (0.985) 
NSI-MCV 2.032 (1.417) 2.878 (1.326) 1.613 (1.041) 
TPI-ACV 3.415 (0.623) 3.121 (0.447) 3.028 (0.378) 
IlI 2.679 (0.476) Sa 2.201 (0.669) T, A 2.939 (0.303) Sa 

PubI 5.539 (2.157) Sa 3.383 (2.282) T, A 6.131 (1.114) Sa 

IschI 1.671 (1.183) 2.034 (1.363) 1.308 (0.168) 
Il-Isch 1.516 (0.277) Sa 1.260 (0.324) T, A 1.687 (0.272) Sa 

Il-Pub 1.230 (0.212) 1.266 (0.234) 1.199 (0.248) 
Isch-Pub 0.822 (0.124) Sa 1.036 (0.187) T, A 0.712 (0.112) Sa 

Indices are defined in Table 4. Significant differences (p<0.05) between groups in univariate 
ANOVA tests using Scheffe’s F post hoc procedure are indicated by superscripts (T = terrestrial, 
Sa = semi-aquatic, A = arboreal). 
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Figure 2: Boxplots of functional indices 

The bar displays the median, boxes represent upper and lower quartiles, and whiskers show 
extreme values for each group. Outliers are represented by individual circles with species 
numbers (Table 1).  

DFA Using Osteological Indices (Indices DFA) 

The stepwise DFA using osteological indices (Indices DFA) included four of the total 22 

indices and showed significant separation of locomotor groups based on their morphology 

(Wilks’ lambda = 0.279) (Table 7). The analysis yielded two discriminant functions, the first of 

which (DF1) accounted for 81.9% of variance and largely separated the terrestrial and semi-

aquatic groups. DF1 showed strong negative correlation with PFI (Scapula length to humerus 
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length) and Isch-Pub (Ischium length to pubis length), but slight positive correlation with Crural 

Index (Tibia length to femur length) and HPRI (Humerus proximal breadth to humerus length) 

(Table 7). Terrestrial taxa tended toward more positive scores while semi-aquatic taxa tended 

toward more negative scores. This indicates the tendency for semi-aquatic reptile species to 

have a shorter proximal forelimb relative to scapula length, a shorter distal hindlimb, a longer 

ischium, and a more narrow proximal humerus.  

  The second discriminant function (DF2) accounted for 18.1% of variance and primarily 

distinguished arboreal taxa from the terrestrial and semi-aquatic groups. DF2 showed a highly 

positive correlation with HPRI as well as a somewhat positive correlation with CI and Isch-Pub 

(Table 7, Figure 3). Arboreal taxa tended toward slightly more negative scores than either 

terrestrial or semi-aquatic taxa, indicating the tendency for arboreal taxa to have a more 

narrow proximal humerus relative to a longer overall humerus, a shorter distal hindlimb, and a 

shorter ischium relative to pubis length.  

Table 7: Indices DFA structure matrix and summary statistics 

 Function 

 1 2 

PFI -.643 .375 
HPRI .117 .820 
CI .218 -.051 
Isch-Pub -.631 .626 
Eigenvalue 1.636 .361 
% Variance 81.9 18.1 
Wilks’ lambda .279 .735 
p <0.001 0.002 

All indices are defined in Table 5 (PFI, proximal forelimb index; HPRI, humeral proximal 
robustness index; CI, crural index; Isch-Pub, ischium-pubis index). 
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Figure 3: Plot of DF1 and DF2 scores for extant reptile taxa analyzed in the Indices DFA 

 

DFA Using Geometric Mean Transformed Variables (GM DFA) 

A stepwise DFA using the GM transformed variables (GM DFA) included only two of the 

38 total transformed variables, but showed a significant separation of locomotor groups based 

on their morphology (Wilks’ lambda = 0.540) (Table 8, Figure 4). This analysis produced two 

discriminant functions (GM DF1 and GM DF2). 

GM DF1 accounts for 90.7% of variance and primarily separates semi-aquatic taxa from 

terrestrial and arboreal taxa. GM DF1 displays a strong positive correlation with acetabulum 
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diameter and a negative correlation with humerus proximal breadth (Table 8). Semi-aquatic 

taxa tend to have more positive scores than terrestrial and arboreal taxa.   

GM DF2 accounts for 9.3% of variance and appears to do play little role in distinguishing 

between the locomotor groups. GMDF2 is strongly positively correlated with both humerus 

proximal breadth and acetabulum diameter (Table 8). Semi-aquatic taxa tend to have more 

negative scores than the other two locomotor groups  

Table 8: GM DFA structure matrix and summary statistics 

 Function 

 1 2 

Trans_HPB -.330 .944 
Trans_AcetD .795 .606 
Eigenvalue .723 .074 
% Variance 90.7 9.3 
Wilks’ lambda .540 .931 
p <0.001 0.068 

Definitions and illustrations of measurements are shown in Table 4 and Figure 1 (HPB, humeral 
proximal breadth; AcetD, acetabulum diameter). 
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Figure 4: Plot of DF1 and DF2 scores for extant reptile taxa analyzed in the GM DFA 

Inferred Locomotor Modes of Extant Lepidosaur and Crocodylian Taxa 
 

The discriminant models’ ability to sort the taxa by locomotor group was indicated by 

the classification matrices in which each specimen was grouped based on the models created 

using all other specimens.   

The classification phase of the Indices DFA correctly classified 81.5% of the extant 

specimens into their a priori locomotor groups. When cross-validated, 75.9% of the specimens 

were correctly classified (Table 9). The terrestrial group displayed the highest level of correct 
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classification at 95%, while the semi-aquatic group was somewhat lower (74% correct), and the 

arboreal group had much poorer performance (only 57% correct). 

 A total of 10 out of the 54 specimens were misclassified (Table 10). One taxon, 

Physignathus sp., only partially misclassified with one specimen misclassifying as terrestrial, one 

misclassifying as arboreal, and the remaining two correctly classifying as semi-aquatic. Both 

specimens for the semi-aquatic Amblyrhyncus cristatus and Varanus salvator misclassified as 

terrestrial. Three arboreal taxa misclassified as terrestrial including Iguana iguana, Enyalioides 

oshaughnessyi, and Ctenosaurua acanthura. One terrestrial taxon, Uromastyx aegypticus, 

misclassified as semi-aquatic.  

Table 9: Indices DFA classification matrix 

   Predicted group membership  

 Observed 
group 

% correct Terrestrial Semi-

aquatic 

Arboreal 

 

Total 

     
Original Terrestrial 95.8 23 1 0 24 

Semi-

aquatic 

73.9 5 17 1 23 

Arboreal 57.1 3 0 4 7 

Cross-validated Terrestrial 87.5 21 1 2 24 

Semi-

aquatic 

69.6 5 16 2 23 

Arboreal 57.1 3 0 4 7 
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Table 10: Indices DFA misclassified cases 

 n misclassified Actual Group Predicted Group 

Amblyrhyncus cristatus  2 of 2 Semi-aquatic Terrestrial 
Iguana iguana 1 of 1 Arboreal Terrestrial 
Enyalioides oshaughnessyi 1 of 1 Arboreal Terrestrial 
Ctenosaura acanthura  1 of 1 Arboreal Terrestrial 
Varanus salvator  2 of 2 Semi-aquatic Terrestrial 
Uromastyx aegypticus 1 of 1 Terrestrial Semi-aquatic 
Physignathus sp. 2 of 4 Semi-aquatic 1 Terrestrial, 1 Arboreal 

 
 

The classification phase of the GM DFA correctly classified 78.0% of the extant 

specimens into their a priori locomotor groups (Table 11). When cross-validated, 72.0% of the 

specimens were correctly classified. The terrestrial and semi-aquatic groups showed 

particularly high rates of correct classification (over 80%), while the arboreal group had much 

poorer performance (only 57% correct). 

  Eleven of the 50 total taxa included within the GMDFA were misclassified (Table 12). 

Once again, both specimens of Amblyrhyncus cristatus misclassified as terrestrial and the 

arboreal taxa Iguana iguana, Enyalioides oshaughnessyi, and Ctenosaurua acanthura 

misclassified as terrestrial. Physignathus sp. again displayed 50% correct classification with two 

specimens misclassifying as terrestrial, however the specimen that previously misclassified as 

arboreal within DFA 1 correctly classified as semi-aquatic. Additionally, the terrestrial taxa 

Cordylus giganteus and Dipsosaurus dorsalis both misclassified as semi-aquatic while the 

arboreal Varanus beccarii misclassified as terrestrial.  
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Table 11: GM DFA classification matrix 

   Predicted group membership  

 Observed 
group 

% correct Terrestrial Semi-

aquatic 

Arboreal 

 

Total 

     
Original Terrestrial 87.0 20 2 1 23 

Semi-

aquatic 

80.0 4 16 0 20 

Arboreal 57.1 4 0 3 7 

Cross-validated Terrestrial 78.3 18 3 2 23 

Semi-

aquatic 

80.0 4 16 0 20 

Arboreal 28.6 5 0 2 7 

 
Table 12: GM DFA misclassified cases 

Species n misclassified  Actual Group Predicted Group 

Cordylus giganteus 1 of 1 Terrestrial Semi-aquatic 
Amblyrhyncus cristatus  2 of 2 Semi-aquatic Terrestrial 
Iguana iguana 1 of 1 Arboreal Terrestrial 
Dipsosaurus dorsalis 1 of 1 Terrestrial Semi-aquatic 
Enyalioides oshaughnessyi 1 of 1 Arboreal Terrestrial 
Callisaurus draconoides 1 of 1 Terrestrial Arboreal 
Ctenosaura acanthura 1 of 1 Arboreal Terrestrial 
Physignathus sp.  2 of 4 Semi-aquatic Terrestrial 
Varanus beccarii 1 of 1 Arboreal Terrestrial 

 
 

Linear Regressions and Interspecific Allometry 

The indices and GM transformed variables that were included in the DFAs have been 

further analyzed through bivariate plots and linear regressions to better visualize the 

differences in these variables across the locomotor groups.  The linear regressions revealed the 

presence of positive allometry in acetabulum diameter, proximal forelimb index (PFI), humeral 

proximal robustness index (HPRI), and ischium-pubis index (Isch-Pub) (Figure 5). The plots 
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shown in Figure 6 have been used to examine how each variable is contributing to the indices 

identified within the Indices DFA. These plots revealed that PFI appears to largely be driven by 

differences in scapula length, with a generally longer scapula present in semi-aquatic taxa 

relative to the other two groups (Figure 6h) while humerus length relative to body size is fairly 

uniform across groups (Figure 6g). Similarly, low HPRI values seen in semi-aquatic taxa seem to 

be the result of more slender proximal humerus compared to other taxa (Figure 6a), whereas 

the arboreal group’s low values for HPRI appear to primarily be the result of a more elongate 

humerus (Figure 6g). Differences in femur length and tibia length appear to be minimal across 

the groups, indicating a low level of importance of the crural index in distinguishing locomotor 

preferences, although semi-aquatic taxa seem to trend toward slightly higher values for both 

(Figures 6e and 6f). The ischium-pubis index seems to be impacted by both variables with a 

generally longer ischium and shorter pubis in semi-aquatic taxa and a shorter ischium with a 

longer pubis in arboreal taxa (Figures 6c and 6d). Figure 7 then displays plots of each individual 

index, allowing for visual comparisons of additional fossil taxa that could not be incorporated in 

the original discriminant function analysis due to lack of material.  
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a              b 
 

 
c       d 
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e         f 

Figure 5: Plots of selected functional indices and GM transformed variables versus the log 
geometric mean (a proxy for body size). 

a: Humerus proximal breadth. Total fit line: y=1+3.17E-3*x. b: Acetabulum diameter. Total fit 
line: y=0.82+0.13*x. c: Proximal forelimb index. Total fit line: y=0.21+0.23*x. d: Humeral 
proximal robustness index. Total fit line: y=0.18+0.08*x. e: Crural index. Total fit line: y=0.93-
0.13*x. f: Ischium pubis index. Total fit line (solid): y=0.49+0.37*x. Semi-aquatic fit line (dashed): 
y=0.47+0.45*x.  

Table 13: Z-scores displaying the influence of allometry on variables identified by the DFAs 

Variable Observed Slope Std. Error of Slope Z-Score 

PFI 0.006416 0.001203 5.33 
HPRI 0.001542 0.000400 3.86 
CI -0.002167 0.000810 -2.68 
Isch-Pub 0.010159 0.001513 6.71 
Trans_HPB -0.000205 0.000695 -0.29 
Trans_AcetD 0.002703 0.000618 4.37 

Z-scores were calculated by subtracting the expected slope (0) from the observed slope 
produced by the least squares linear regressions and dividing this by the standard error of the 
slope. Z-scores greater than 2 indicate positive allometry, while scores less than -2 indicate 
negative allometry.  
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     a                  b 
 

  
     c        d 
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     e        f 
 

  
     g        h 
  
Figure 6: Log/log plots of variable components that displayed significance within the Indices DFA 
and the GM DFA 

Individual points represent individual specimens included in the analysis. a: Humerus proximal 
breadth. Regression line: y = 9.54E-3+0.88*x. Standard error of the estimate = 0.056. Correlation 
coefficient r = 0.987. b: Acetabulum diameter. Regression line: y = -0.13+1.1*x. Standard error of 
the estimate = 0.043. Correlation coefficient r = 0.994. c: Ischium length. Regression line: y = 
0.15+1.09*x. Standard error of the estimate = 0.044. Correlation coefficient r = 0.993. d: Pubis 
length. Regression line: y = 0.4+0.92*x. Standard error of the estimate = 0.050. Correlation 
coefficient r = 0.988. e: Femur length. Regression line: y = 0.89+0.81*x. Standard error of the 
estimate = 0.044. Correlation coefficient r = 0.988. f: Tibia length. Regression line: y = 
0.86+0.74*x. Standard error of the estimate = 0.061. Correlation coefficient r = 0.973. g: 
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Humerus length. Regression line: y = 0.75+0.85*x. Standard error of the estimate = 0.037. 
Correlation coefficient r = 0.993. h: Scapula length. Regression line: y = 0.19+1.05*x. Standard 
error of the estimate = 0.103. Correlation coefficient r = 0.964.  

 
     a            b 
 

 
      c            d 
Figure 7: Log/log plots of indices components 

The y-axis represents the numerator and the x-axis represents the denominator. Units are in log 
(mm). a: Proximal forelimb index (PFI). Regression line: y = -0.78+1.26*x. Standard error of the 
estimate = 0.038. Correlation coefficient r = 0.983. b: Ischium Pubis Index (Isch-Pub). Regression 
line: y = 0.31+1.19*x. Standard error of the estimate = 0.027. Correlation coefficient r = 0.984. c: 
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Crural index (CI). Regression line: y = 0.01+0.94*x. Standard error of the estimate = 0.015. 
Correlation coefficient r = 0.992. d: Humeral proximal robustness index (HPRI). Regression line: y 
= 0.77+1.1*x. Standard error of the estimate = 0.026. Correlation coefficient r = 0.983.  

Inferred Locomotor Modes of Extinct Crocodylians 
 

Five of the 18 examined fossil crocodylomorph taxa were classified into a locomotor 

group by the Indices DFA. All other fossil specimens lacked sufficient fossil material to be 

grouped. The five taxa presented include Hyposaurus rogersii, Necrosuchus ionensis, Alligator 

sp. of the Gray Fossil Site, Crocodylus affinis, and Allognathosuchus mooki. All five were inferred 

to be semi-aquatic based on their negative values for DF1 within the Indices DFA (Figure 8). 

These taxa also displayed high probabilities (> 0.9) of belonging to the semi-aquatic group 

(Table 14).  

Table 14: Indices DFA classification of extinct species 

Taxa Predicted Group P (D|G) P (G|D) 

    
Hyposaurus rogersii Semi-aquatic 0.717 0.99294 

Crocodylus affinis Semi-aquatic 0.343 0.99736 

Allognathosuchus mooki Semi-aquatic 0.225 0.98436 

Necrosuchus ionensis Semi-aquatic 0.490 0.91964 

Alligator sp.  Semi-aquatic 0.390 0.99769 

P(D|G) represents the conditional probability of the observed canonical score, given 
membership in the most likely group. P (G|D) represents the posterior probability that a case 
belongs in the predicted group, given the sample used to create the discriminant model 
(Samuels et al., 2013).  
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Figure 8: Plot of DF1 and DF2 discriminant scores for the Indices DFA including extinct taxa 
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CHAPTER 5 

DISCUSSION 
 

While many modern reptiles are locomotor generalists and display a combination of 

climbing, swimming, and terrestrial capabilities, there are several examples of species that have 

developed locomotor specializations. These specializations have evolved independently several 

times across multiple reptile lineages. Within this study, I found that convergent morphologies 

are present across reptile taxa utilizing similar locomotor modes, regardless of the distance in 

their evolutionary relationships. The locomotor groups each display significant morphological 

differences that allow these groups to be distinguished from one another. These distinctions 

also allowed for a high rate of success in correctly classifying members belonging to each of 

these groups.  

Correlation of Postcranial Morphology with Locomotor Mode in Extant Crocodylians and 
Lepidosaurs 

 
The statistical analyses conducted within this study revealed multiple features of the 

postcrania that enable us to differentiate between reptiles engaging in different locomotor 

behavior. The ANOVA and boxplots (Table 6, Figure 2) emphasize the utility of several of the 

indices in distinguishing between locomotor groups. The semi-aquatic group appeared to 

display the most deviations from both of the other two groups, potentially suggesting that 

semi-aquatic behavior requires more significant morphological adaptations. 

Both discriminant function analyses had high degrees of success in distinguishing semi-

aquatic taxa from terrestrial and arboreal taxa, however grouping arboreal individuals proved 

to be more challenging. This may be the result of a limited sample size of arboreal lepidosaurs. 

In addition, many lepidosaurs are small-bodied generalists and thus are capable of a 
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combination of scansorial and terrestrial locomotor behaviors without the need for extensive 

morphological adaptations, which may help to explain the overlap between these groups in 

morphospace. A more extensive examination of lepidosaur taxa that engage in higher degrees 

of arboreal behavior, such as chameleons and geckos, may aid in identifying morphological 

features indicative of this type of locomotion. Future analyses may also incorporate fossorial, 

saltatorial, and cursorial lepidosaurs to encompass an even broader range of morphological 

specializations (Vanhooydonck and van Damme 1999; Toro et al. 2004; Verwaijen and van 

Damme 2007).  

The Indices DFA identified a variety of features as potential indicators of semi-aquatic 

behavior including longer scapulae (indicated by low values for PFI), a more slender proximal 

humerus (indicated by high values for HPRI) a slightly low crural index, and an elongated 

ischium (high values for ischium length to pubis length index). 

  The reduction of the proximal end of the humerus as well as the shortening of the distal 

hindlimb can aid these animals in holding their limbs close to the body to maintain a more 

streamlined body shape and thus reduce drag during aquatic locomotion (Stein 1988; Fish 

1996; Gingerich 2003; O’Keefe and Carrano 2005). Unlike many aquatic mammals that utilize 

their limbs as the primary propulsive forces during swimming, reptiles instead tend to use their 

tails to generate thrust (Webb and Blake 1985). As a result, while several aspects of the limbs of 

semi-aquatic reptiles tend to be reduced as they do not require a high mechanical advantage, 

the tails require substantial muscle to drive their locomotion. 

  One of the muscles that forms the ventral wall of the tails in reptiles is the ilio-ischio-

caudalis muscle (Mallison et al. 2015). A large portion of this muscle originates from the distal-
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most extent of the ischium and has been found to insert at the transverse processes and hemal 

spines of the caudal vertebra in several crocodylians (Persons and Currie 2013; Mallison et al. 

2015). The larger length of the ischium encountered in semi-aquatic reptiles may be the result 

of increasing surface area for the attachment of this muscle to produce more powerful 

mediolateral undulations of the tail while in the water. 

While the number of arboreal taxa included within the analysis was limited, certain 

morphological trends did appear to aid in characterizing the group. Arboreal specimens trended 

toward a longer, more slender humerus (low value for HPRI), a longer proximal hindlimb (low 

crural index), and a longer pubis (low value for Isch-Pub). The extended length of the proximal 

forelimb and hindlimb in arboreal taxa can allow for a longer reach while moving through 

branches of trees, while the more narrow proximal end of the humerus may indicate an overall 

thinner bone to promote speed and flexibility rather than supporting heavy muscle mass. A 

longer pubis relative to ischium length may be a manner of repositioning the center of gravity 

toward the center of the body to maintain better stability while climbing. It is important to note 

that while both semi-aquatic and arboreal taxa exhibit proximal reduction of the humerus, this 

adaptation is serving very different purposes in their locomotor behavior and thus should be 

examined with caution when inferring locomotor behaviors.  

The GM DFA also identified semi-aquatic taxa as having a more gracile proximal 

humerus as well as a larger acetabulum diameter in comparison to terrestrial and arboreal 

reptiles. The broad acetabulum diameter encountered in semi-aquatic taxa may serve as an 

adaptation to improve terrestrial locomotion despite the group’s many adaptations to 

movement in the water. This larger acetabulum may accommodate a larger femoral head that 
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provides semi-aquatic taxa with more structural stability when carrying the weight of their 

heavily muscled tails during movement on land. Willey et al. (2003) found that the center of 

gravity of an alligator is focused closer to the hip than the shoulder joint. This may explain why 

we encounter proximal shortening in the forelimbs of semi-aquatic taxa, but relative distal 

shortening in the hindlimbs. The femur likely needs to remain a relatively significant size to be 

able to support the weight of a heavy, muscularized tail when on land compared to terrestrial 

taxa that have less musculature in that area.  

Assessment of Convergence in Lepidosaurs and Crocodylians 
 

  
   a               b 
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    c            d 

 
   e 
 

Figure 9: Plots of DF1 and DF2 scores for extant reptile taxa analyzed in the Indices DFA  

Plots used to highlight divergence of semi-aquatic lepidosaur taxa from their terrestrial 
relatives. Within each plot, members belonging to the same family are represented by filled-in 
symbols. Arrows display the general direction of divergence in morphospace of semi-aquatic 
taxa from their closest terrestrial relative examined within the analysis. Relationships between 
taxa can be viewed in the phylogenies displayed in Figure 10. a: Teiidae; b. Agamidae, 
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Hydrosaurus pustulatus; c. Agamidae, Physignathus sp.; d. Varanidae; e. Iguanidae 
 

Several semi-aquatic lepidosaur taxa examined within this analysis appear to display 

convergence of morphological features with similarly semi-aquatic crocodylians. Members of 

Agamidae, Iguanidae, Teiidae, and Varanidae diverge in a similar direction from their terrestrial 

relatives.  

Dracaena guianensis, the northern caiman lizard (Teiidae), was correctly classified as 

semi-aquatic, displaying a clear divergence in morphology from its terrestrial relatives (Figure 

9a). Two specimens of Hydrosaurus pustulatus, the Phillipine sailfin lizard (Agamidae), were also 

correctly classified as semi-aquatic (Figure 9b). Out of four total Physignathus specimens, two 

properly classified as semi-aquatic while one misclassified as terrestrial and the other as 

arboreal. Specimens that were incorrectly classified, such as these two Physignathus, still 

displayed a divergence from the centroid in the same direction as other semi-aquatic taxa 

(Figure 9c). Both specimens of Amblyrhynchus cristatus and Varanus salvator were also 

misclassified as terrestrial; however, these specimens had relatively low discriminant scores for 

function one, trending closer toward the more negative scores characteristic of other semi-

aquatic taxa (Figures 9d and 9e). Within the Indices DFA, one example of Uromastyx sp. is the 

only specimen to have misclassified as semi-aquatic. This taxon displays burrowing behavior 

(Nemtzov 2005) and suggests the future incorporation of a separate locomotor group for 

fossorial taxa could aid in discrimination of similar taxa.  

The misclassification of several semi-aquatic lepidosaurs may be explained by an 

influence of allometry on semi-aquatic taxa. Figure 10 displays a plot of the specimens’ 

discriminant function scores relative to their body size measured by the geometric mean. Both 
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the terrestrial and arboreal groups have only slightly sloping lines and their z-scores are not 

significant (Table 15), indicating overall isometric growth. The semi-aquatic group, however, 

displays a clear negative slope and a z-score lower than -2 (Table 15) which indicates a 

significant deviation from isometry. With increases in body size come lower discriminant 

function scores as semi-aquatic adaptations appear to become more pronounced. Within the 

group of sampled Physignathus specimens, the two smaller individuals are those that 

misclassified while the larger specimens correctly classified as semi-aquatic. This may be related 

to larger individuals requiring more well-developed semi-aquatic adaptations.   

 
Figure 10: Plot of geometric mean versus DF1 scores of the Indices DFA 
 
Terrestrial fit line (red dashed): y=1.25+5.14E-3*x. Semi-aquatic fit line (blue dashed): y=-0.1-
0.05*x. Arboreal fit line (green dashed): y=0.26+0.02*x. 
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Table 15: Z-scores displaying the influence of allometry on different locomotor groups 

Locomotor 
Group 

Observed Slope Std. Error of Slope Z-Score 

Terrestrial 0.005144 0.016955 0.303 
Semi-aquatic -0.051461 0.013197 -3.899 
Arboreal 0.024289 0.036333 0.669 

Z-scores were calculated by subtracting the expected slope (0) from the observed slope 
produced by the least squares linear regressions and dividing this by the standard error of the 
slope. Z-scores greater than 2 indicate positive allometry, while scores less than -2 indicate 
negative allometry.  
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A) 

 

B) 

  
Figure 11: Composite phylogenetic tree of reptile species included within the study 
 
Based on molecular and morphological analyses (Nesbitt, 2011; Bronzati et al., 2012; Pyron et 
al, 2013; Tucker et al., 2017). Branch colors represent discriminant function scores. a: Indices 
DF1 scores; b: Indices DF2 scores 
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Applications for Analyzing Locomotor Diversity of Extinct Reptiles 
 
 

Although several past studies have qualitatively examined the morphologies of extinct 

crocodylomorphs in order to determine their primary locomotor capabilities (Clark et al. 2004; 

Kellner et al. 2014; Blanco et al. 2015), this study has provided a unique quantitative 

assessment of morphological variation in extant reptile groups that can aid in more accurately 

interpreting the behavior and ecologies of fossil taxa. Fossil crocodylomorphs with 

morphologies that fall within the range of modern semi-aquatic taxa determined by these 

analyses were likely engaging in a very similar form of semi-aquatic behavior. There is no ideal 

modern analog for extinct crocodylomorph taxa, which are interpreted as engaging in higher 

degrees of terrestrial behavior as indicated by the presence of a more upright posture with legs 

oriented underneath the body versus the sprawled posture of extant terrestrial lepidosaurs. 

Despite this, the current ecomorphological framework would enable me to more easily 

determine if particular extinct species were utilizing a different form of locomotion, based on 

how similar they are to the morphospace ranges of modern groups. 

The primary limitations of this study lie in a frequent lack of postcranial material for 

extinct specimens. Access to more complete specimens of extinct species and expansion into 

other groups of pseudosuchians, such as aetosaurs, would aid in inferring their locomotor 

modes and developing a more complete understanding of locomotor transitions in archosaurs 

through time.  

All of the fossil crocodylomorphs included within this analysis classified as semi-aquatic 

and fall relatively closely within the range of modern semi-aquatic reptiles (Figure 8). Alligator 

sp. of the Gray Fossil Site, Allognathosuchus mooki, and Necrosuchus ionensis all group within 
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Alligatoridae and Crocodylus affinis belongs to Crocodylidae (Simpson 1930; Brochu 2011; 

Puértolas et al. 2011). These two families both span over 50 million years and still have living 

members today. My results indicate that even early members of these families, such as 

Allognathosuchus mooki and Necrosuchus ionensis from the Paleocene and Crocodylus affinis of 

the Eocene, were doing similar semi-aquatic behavior to more recent extinct taxa such as the 

Mio-Pliocene Alligator from the Gray Fossil Site and even modern crocodylian species.  

 Of the five fossil taxa that were classified, Hyposaurus rogersii (Family Dyrosauridae) 

displayed the highest value for P (D|G) (Table 14), indicating it falls close to the centroid of the 

modern semi-aquatic group. Initial studies of Hyposaurus rogersii suggested that the species 

was largely marine, likely coming on land only to reproduce (Troxell 1925). More recent studies, 

however, have drawn attention to the well-developed limb morphology present in this species 

which potentially indicates terrestrial ancestry or a higher degree of terrestrial behavior than 

previously hypothesized (Denton Jr. et al., 1997). Specimens of this species have also been 

found in both marine and shallow subtidal environments. My results indicate that Hyposaurus 

rogersii displays distinct morphological similarities to extant semi-aquatic taxa, thus supporting 

more recent analyses that this species was engaging in a combination of both aquatic and 

terrestrial behavior similar to modern semi-aquatic reptiles.  

While this study focused on examining extinct crocodylomorph taxa, these results have 

much broader potential applications. Phytosaurs, for example, display highly convergent 

morphologies with crocodylians and thus may have similarly identifiable aquatic or terrestrial 

adaptations. Examination of early archosaurs like Euparkeria could also help reveal the 

ancestral condition for that clade. Fossils of lepidosaurs may be examined as well to interpret 
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their primary locomotor modes and gain a better understanding of the evolution of the wide 

diversity of locomotor behavior that we see within the clade today. Today’s reptiles also bear 

distinct similarities to early amniotes; therefore, they may be able to act as a modern analog for 

early amniotes and reptiles, including well-known species like Seymouria, Hylonomus, and 

Petrolacosaurus, and also the early synapsids like pelycosaurs. Through the use of broader 

taxonomic sampling across groups such as chameleons, geckos, and phrynostomatids, we can 

span an even wider range of locomotor modes (fossorial, saltatorial, cursorial) and potentially 

identify shifts in predominant locomotor adaptations in these groups through time that could 

be the result of ecological shifts connected to the first transitions from life in water to life on 

land.  
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CHAPTER 6 

CONCLUSIONS  
 

Through the use of simple linear morphometric analysis, I have determined that several 

features of the axial and appendicular skeleton reflect the locomotor modes of extant reptiles. 

Semi-aquatic species across both Crocodylia and Lepidosauria display convergent morphologies 

that reflect their similar locomotor adaptations despite significant phylogenetic separation 

between the groups. These methods may then be applied to extinct reptile groups to make 

more objective inferences of their past locomotor behavior based on quantitative analyses. 

Future expansion of this study into additional locomotor groups and reptile taxa may reveal 

other postcranial adaptations to these behaviors that will allow us to better understand the 

evolution of locomotion in this clade and examine the shifts in ecosystems through time that 

likely drove these changes.  
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