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ABSTRACT

Performance Comparison of Imputation Algorithms on Missing at Random

Data

by

Evans Dapaa Addo

Missing data continues to be an issue in any field that deals with data due to

the fact that almost all the widely accepted and standard statistical meth-

ods assume complete data for all variables included in the analysis. Hence,

in most studies statistical power is weakened and parameter estimates are

biased, leading to weak conclusions and generalizations.

Many studies have established that multiple imputation methods are effective

ways of handling missing data. This paper examines three different imputa-

tion methods (predictive mean matching; Bayesian linear regression; linear

regression, non Bayesian) in the MICE package in the statistical software,

R, to ascertain which of the three methods imputes data that yields param-

eter estimates closest to the parameter estimates of a complete data given

different percentages of missingness. The paper extends the analysis by gen-

erating a pseudo data of the original data to establish how the imputation

methods perform under varying conditions.
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1 INTRODUCTION

Missing data has been a serious problem in the field of statistics and

other related fields for a very long time. Analyzing a data set with miss-

ing data in the same manner compared to a data set that is complete can

lead to reduced power and biased results, which could potentially lead to

incorrect conclusions and weak generalization. For example, assume you are

conducting a research on economic growth for a certain period of time for a

specific country. More specifically, you are focused on economic indicators

like gross domestic product (GDP), inflation, and population but your data

is incomplete. Analyzing the incomplete data set means working with a re-

duced sample size, which reduces the statistical power of the results hence

producing biased parameter estimates. Using the results obtained can lead

to drawing false conclusions and giving inaccurate recommendations, thus,

affecting policy making.

Because of these problems, it is important to think about the reason

for the missingness and their impact on the analysis. Rubin provided three

types of missingness mechanisms [1]. They are missing completely at random

(MCAR), missing at random (MAR) and missing not at random (MNAR).

Although there are some traditional methods such as listwise deletion and

arithmetic mean imputation, that are widely use in analyzing missing data,

those methods does not provide accurate results. Some problems associated
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with these methods include reduction of sample size, hence reducing statis-

tical power and leading to biased parameter estimates. Also, the presence of

outliers can make the imputed values biased toward the outliers, hence lead-

ing to biased parameter estimates. Researchers recommend methods that

compute the missing data multiple times. One method is multiple imputa-

tion. Multiple imputation methods compute multiple values to fill-in each

missing value. Then each imputed data set is analyzed and the results are

pooled together.

The advantages of multiple imputation methods over single imputation

methods like listwise deletion and arithmetic mean imputation are (1) pre-

serving sample size and statistical power; (2) results in unbiased estimates;

and (3) may be used with standard statistical software that are user friendly.

The MICE package in R is designed to impute missing data using the

multiple imputation method. Some of the functions in the MICE package

for imputing missing data multiple times are the predictive mean match-

ing (PMM), Bayesian linear regression (norm) and linear regression, non

Bayesian (norm.nob).

This study will help researchers in the field of statistics and other related

fields such as economics to understand the use of MICE to impute missing

data values. Also, this study will guide researchers to known which MICE

procedure in R is appropriate for a given percentage of missing data. Lastly,
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the study will serve as a student’s contribution to already existing literature

on missing data analysis.

1.1 Proposed Work

The general purpose of this study is to examine the different multiple

imputation by chain equation (MICE) procedures in the R package, MICE,

for imputing data for different percentage of missing data.

Specifically, this study aims to find out which univariate method of impu-

tation is better for a certain percentage of missing data; examine and compare

data analysis results of the original data and the imputed data; simulate the

data to see if we get similar conclusions as the original data when compared

to the imputed data.

The basic assumption of this study is that the missing data are missing

at random. That is, the data are missing due to observed variables. The

assumption of the data missing at random implies that the missing data can

be imputed by the observed data.

However, it should be emphasized that, this assumption might not be

true for every data and in true situation. Missing data could be due to

factors outside the context of the data set. Some of these factors include

personal reasons, cultural believes, religion. Therefore, analyzing such data

the same as data missing at random may produce misleading results. Also,

this study focuses on analyzing data that have quantitative variables. Hence,
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the analysis in this study may not be applicable to studies involving quali-

tative variables or models with both types of variables.

1.2 Overview of the Thesis

The thesis is arranged as follows. Chapter 2 describes the missing data

handling techniques. It explains the mechanisms of missing data and the

problems associated with analyzing data with missing information. Chapter

3 presents and explains some of the widely recognized methods of handling

missing data. This chapter expounds on some of the disadvantages of us-

ing the traditional methods of analyzing missing data. Chapter 4 introduces

the efficient methods of handling missing data, including the advantages and

disadvantages. Chapter 5 discusses in detail the research methods followed

in this study. Chapter 6 provides and illustrates the results of the anal-

yses. Chapter 7 introduces the simulation study. Section 7.1 describes the

technique used in simulating the new data, and Section 7.2 provides the anal-

yses and results of the simulated data. Chapter 8 discusses the imputation

methods in reference to the analysis made and results in Chapters 6 and 7.

Chapter 9 concludes the thesis.
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2 MISSING DATA HANDLING TECHNIQUES

Missing data is the situation where by there is partial response or no

response for one or more variables in a given data set. Missing data are values

that are lost and that the availability of these values would have made the

result of the analysis more meaningful [2]. Allison (2009) defines missing data

as “data that are missing for some (but not all) variables and for some (but

not all) cases” [3]. He noted that, if all the data of a particular variable are

missing, that variable is known as a latent or unobserved variable. However,

in a situation where all the data on a given observation is missing for all

variables, we have what is known as unit non-response. Table 2.1 shows the

various forms of missing data as described by Allison (2009). In Table 2.1,

X1, X2, X3 and X4 are the variables contain in the data set and x11, x12,

x13, x21, x23, x32, x41, x42 are the observed data while x14, x22, x24, x31, x33,

x34, x43, x44, x51, x52, x53, x54 are the missing/unobserved data. Here X4

is known as the latent variable and observation 5 is the unit non-response

variable.

22



Table 2.1: An illustration of a missing data set.

Observation X1 X2 X3
X4

1 x11 x12 x13
2 x21 x23
3 x32
4 x41 x42
5

2.1 Missing Data Mechanisms

There are three mechanisms for the missingness of a data: They are miss-

ing completely at random (MCAR), missing at random (MAR) and missing

not at random (MNAR) [1, 4]. In almost all statistical analysis, two main

groups of data are encountered: observed and unobserved data.

2.1.1 Conceptual Overview of Missing Data Mechanism

Data is missing completely at random if the missingness is not due to

the observed data or the unobserved data. The MCAR mechanism occurs

when the probability of the missing data is independent of the observed and

the unobserved data [24]. In other words, MCAR is the mechanism where

the probability of missingness is unrelated to observed data and unobserved

data [6]. For example, a person leaves a study because he or she relocates or

an individual in a study passes away before the study is completed. Using

data which is MCAR yields unbiased parameter estimates but leads to loss
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of statistical power.

Data is missing at random if the missingness is due to observed data but

not unobserved data [1, 7]. That is, the likelihood of missingness is associated

with observed data but not unobserved data or the missingness of the data

is conditional on an observed variable. Since MAR is conditional on the

observed variable, MAR should be called conditionally missing at random

[8]. An example is when the income variable is not answered but can be

predicted by the sector, status, and/or education level variables. MAR is

not a serious problem because there are meaningful ways to analyze the data

to obtain relatively unbiased parameter estimates.

If the probability of missingness depends on unobserved data but not

observed data, the data is missing not a random (MNAR). Data is missing

not a random (MNAR) when the probability of missingness is related to

the missing values itself [6], such as, when big firms are more inclined not

to reveal their marketing strategies. Unlike MCAR and MAR, MNAR may

produces biased parameter estimates, however, the bias may be small.

2.1.2 Rubin’s (1976) Theoretical Overview of Missing Data Mechanisms

Rubin (1976) defines the missingness of data in terms of a probability

model. To understand Rubin’s (1976) missing data mechanisms, some basic

notation must be defined. Let us denote the data set by Y . The observed

portion of Y is denoted by Yobs and the missing/unobserved portion of Y be

24



denoted by Ymis. Also, Rubin (1976) defines a binary variable R to be an n

× p matrix of indicator variables whose elements denotes whether data on

a particular variable is observed or missing. That is, R = 1 if the data is

observed and R = 0 if the data is missing.

Rubin (1976) viewed every case as having a pair of observations on each

variable. The first portion is the data may be observed (Yobs) or may be

missing (Ymis). The second portion is a corresponding code on the missing

data indicator. Table 2.2 shows an example of a missing data set including

the corresponding missing data indicator. One can see that x11 and x41 are

the observed observations, and their corresponding missing data indicator

value is 1 while x21, x31, x51 are the unobserved observations with their

corresponding missing data indicator value is 0.

Table 2.2: An illustration of a missing data set including the missing data
indicator.

Observation X1
Indicator

1 x11 1
2 0
3 0
4 x41 1
5 0

Rubin defines the probability model for the MNAR mechanism as

P (R|Y, ξ) = P (R|Yobs, Ymis, ξ) (2.1)

25



where ξ is a unknown parameter describing the relationship between R and

the data [24]. Equation 2.1 shows that the probability of R being either 1

or zero depends on Y = (Yobs, Ymis). That is, the probability of the missing-

ness on Y depends on other variables in the data set (Yobs) as well as other

underlying variables of Y itself (Ymis).

Also, Rubin defined the MAR mechanism as the probability of missing-

ness on Y depending on other variables in the analysis model (Yobs) but not

on the underlying variables of Y itself [1, 24]. Consequently, Rubin defines

the probability distribution of MAR as

P (R|Y, ξ) = P (R|Yobs, ξ). (2.2)

Equation 2.2 shows that the probability of missingness on Y is related to the

observed portion of data set via some parameter ξ that relates (Yobs) to R.

Finally, Rubin defined the MCAR mechanism as the probability of miss-

ingness on Y that is not related to the observed variables or on the underlying

variables of Y itself. For the MCAR mechanism, the missingness is com-

pletely unrelated to the data [24]. Rubin defines the probability distribution

as

P (R|ξ). (2.3)

Equation 2.3 depicts that both (Yobs) and (Ymis) are unrelated to R.
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2.2 The Problem of Missing Data

The problem of missing data has always existed [8]. Although the problem

of missing data may arise due to item non-response, it also may be as a result

of the design of the study. [9]. Graham argues that the challenges of missing

data is mostly minimal for longitudinal research [8]. The major problem of

missing data is the outdated statistical procedures used in studies that have

missing data.

The problem of missing data may not only be as a result of the statistical

procedures used in analyzing missing data. The problem of missing data may

arise due to the statistical software that are used in analyzing missing data

[3]. These archaic statistical procedures and software presumes that there is

a complete response for all variables and for all cases. The default method

is to delete any case with a missing response on the variable of interest, thus

reducing the sample size. This is commonly known as listwise deletion or

complete case analysis.
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3 TRADITIONAL METHODS OF HANDLING MISSING DATA

With the understanding that missing data cannot be analyzed the same

way as complete data, there was the need to develop methodologies to help

overcome the problem of missing data. For years, researchers in the field of

statistics have proposed and employed several techniques to solve the prob-

lem of missing data. Although some of these techniques have been widely

accepted as a way of overcoming the problem of missing data, it has been

seen that most of these techniques do not solve the problem of missing data

entirely. The method of deleting missing data, which for a long time has

been widely accepted and included in many statistical packages, is one of the

worst methods for handling missing data. [10, 11]

There have been several traditional methods incorporated to handle miss-

ing data, which include but is not limited to listwise deletion, pairwise dele-

tion, arithmetic mean imputation, regression imputation, and hot deck im-

putation.

Listwise deletion (also known as complete cases analysis) is when the

entire data on a subject is removed if a value is missing for at least one vari-

able. The method of listwise deletion demands that cases with missing data

are deleted before any statistical analysis is done. Listwise deletion leads to

a complete reduction of the sample size. The reduction of the sample size

leads to the problem of loss of statistical power along with biased param-
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eter estimates if more subjects with a particular characteristic are deleted.

It should be noted that the method of listwise deletion is only applicable

when the missingness is MAR. However, some researchers believe that, list-

wise deletion is good to use if the cases removed are small. Graham (2009)

argues that listwise deletion is a desirable option if the cases removed are

less than 5% [8]. He contends that, with 5% cases removed, loss of statistical

power and biasness are insignificant. Also, Little (1992) asserts that using

listwise deletion under any missing data mechanism can produce unbiased

estimates for the regression slope if the probability of missingness is due to

an independent variable but not the response variable [12].

With the method of pairwise deletion (also known as available case anal-

ysis), a correlation is calculated for any pair of variable using available data

for these variables and for each pair, the case of a particular variable with

missing data and the same case for the other variable (missing or not) is

deleted. This implies that, there is a different sample size for each pair that

is analyzed. Pairwise deletion is not limited to correlation matrix but can also

be applied in regression and ANOVA analysis [13]. The method of pairwise

deletion is better than listwise deletion because not all data for a particular

case is deleted. Hence, pairwise deletion is desirable when the sample size is

small. Nevertheless, the inconsistency in the sample size makes it difficult in

computing the standard error. Although some statistical softwares uses the
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average sample size per variable method for computing the standard error,

the method is likely to overestimate the standard error for some variables and

underestimate the standard error for other variables [12]. Moreover, Graham

(2009) claims that because different sample sizes are used in the method of

pairwise deletion, the method can produce biased parameter estimates [8].

The method of arithmetic mean imputation is where the arithmetic mean

is computed for a particular variable and the computed value is used to

replace all the cases with missing values for that variable. The advantage

of the arithmetic mean imputation is that it produces a complete data set.

However, in a data set with outliers, the mean is biased toward the outliers.

Hence, using the arithmetic mean can affect the variability of the data and

affect the parameter estimates.

The regression imputation method uses predicted values from a regression

model to replace the missing data. With this method, the cases with complete

data is used to develop the regression equation and the predicted values from

the regression equation are used to replace the missing values. Although the

regression imputation is better than the arithmetic mean imputation, it still

yields biased parameter estimates.

Hot deck imputation is where values drawn from the observed values are

used to replace the missing values. Drawing values from the observed data

is done with replacement, hence, giving equal chance to the observed datum
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to be selected to replace the missing values. Hot deck has a major disadvan-

tage that drawing values from the observed data to replace the missing data

can underestimate the variability of the completed data, leading to narrow

intervals [14].

Other traditional techniques for calculating missing values include last

observation carried forward, stochastic regression imputation and similar re-

sponse pattern imputation. The last observation carried forward is a poor

and lazy way of dealing with missing data. The act of assuming that scores

do not change after the last observed measurement or during the intermit-

tent period where scores are missing can lead to biased parameter estimates.

A major disadvantage of the stochastic regression imputation is that it is

complex to use when there are several missing data patterns in a multivari-

ate data because each missing data pattern will require a unique regression

equation. For similar response pattern imputation, although computer sim-

ulation studies suggest that this technique can produce relatively accurate

parameter estimates with MCAR data, it is can produce substantial bias

when the data are MAR [24]
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4 EFFICIENT METHODS OF HANDLING MISSING DATA

Because of the many short falls for traditional methods of handling miss-

ing data, researchers had to develop more effective and efficient ways of han-

dling missing data. Two general methods have been recommended by Buuren

and Grothuis-Oudshoorn to handle missing data that is multivariate, which

is a data set with more than one response variable [15]. These methods

are joint modeling (JM) and multivariate imputation by chained equations

(MICE). These methods are used when the missingness of the data is MAR.

4.1 Handling Missing Data using Joint Modeling (JM)

JM is desirable if the data can be described by a multivariate distribution.

That is, a probability distribution with more than one random variable. The

JM method first specifies a multivariate distribution for the missing data

[15]. Then Markov chain Monte Carlo (MCMC) techniques are used to draw

imputations from the conditional distribution. A conditional distribution is

a probability distribution that a randomly selected element from a subset of

a sample space has the one characteristic of interest [16].

4.1.1 Overview of Markov Chain Monte Carlo (MCMC)

Markov chain Monte Carlo is the technique used to draw a pseudorandom

sample from a probability distribution using Markov chains [17, 18]. Monte

Carlo is the term that relies on the generation of random numbers [18]. Con-

32



sider the normal distribution. We can generate a series of random numbers

from a normal distribution with mean, µ, and some variance, σ2. The equa-

tion for generating a series of random numbers from a normal distributions

is

θt ∼ N(µ, σ2), (4.1)

where θt is the randomly selected value at time t. From Equation 4.1, the

normal distribution is called the proposal distribution.

A Markov chain is a sequence of random variables in which the distribu-

tion of the current individual element depends on the value of the previous

element [17]. With Equation 4.1, the equation for generating a sequence of

random variables where the distribution of the current individual element

depends on the previous element is

θt ∼ N(θt−1, σ
2). (4.2)

Equation 4.2 shows that each value is drawn from a normal distribution, with

mean equal to the previous value randomly selected and some variance, σ2.

In other words, the distribution of the next individual element is conditional

on the current element. In MCMC, Markov chains are constructed and the

goal is for the sequence to converge to a stationary probability distribution.

Through a process of simulating repeatedly, the steps of the Markov chain

draws samples from the stationary probability distribution. The two main
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methods used in MCMC are Metropolis-Hasting algorithm and the Gibbs

sampling.

The Metropolis-Hasting algorithm is used to determine which sampled

value of θ selected randomly by the Markov chain to accept or discard [18].

The Metropolis-Hasting algorithm begins by calculating the posterior proba-

bility using the newly generated value of θ. The posterior probability is also

calculated using the previous value of θ. In the Metropolis-Hasting algorithm,

one does not need to know the functional form of the posterior distribution.

To obtain the posterior distribution, we multiply the prior distribution by

the likelihood function. The likelihood distribution is the distribution of the

observed data and the prior distribution is our subjective feeling of the be-

havior of θ. Then the ratio of the posterior probability of the new value

(θnew) and the posterior distribution of the previous value generated (θt−1)

is computed and can be defined as

ρ(θnew, θt−1) =
posterior probability of θnew
posterior probability of θt−1

=
Prior (θnew)× Likelihood (θnew)

Prior (θt−1)× Likelihood (θt−1)

=
π(θnew)× f(y | θnew)

π(θt−1)× f(y | θt−1)
.

If the posterior probability of θnew is greater than the posterior probability
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of θt−1, then ρ(θnew, θt−1) > 1 and we will always accept the new value of

θ. However, if the posterior probability of θnew is less than the posterior

probability of θt−1, ρ(θnew, θt−1) < 1, we will not necessary reject the new

value of θ.

We treat the ratio of the posterior probability of θnew and the posterior

probability of θt−1 which is less than one as an acceptance probability. The

acceptance probability is

α(θnew, θt−1) = min[ρ(θnew, θt−1), 1].

Having the acceptance probability in hand, we draw a random number from

a standard uniform distribution, u ∼ uniform(0, 1), and keep θnew if the

random number from the uniform distribution is less than the acceptance

probability. Thus, if u < α(θnew, θt−1), then θt = θnew. Otherwise, θt = θt−1.

This process is repeated until the sequence converges. After obtaining an

estimate for θ, it is then used to impute values for the missing entries.

There are two main issues that arise with the Metropolis-Hasting algo-

rithm. First, is the dependency of the sequence on the starting values. How-

ever, this problem can be reduce by discarding the first part of the sample.

The first part of the sample is known as the burn-in period. The burn-in

period is the time it takes the sequence to stabilize so that it is drifting up

and down overtime [17]. The other problem is autocorrelation. The values

of θ are correlated because they are generated by a Markov chain. Excessive

35



autocorrelation may indicate problems with model specification. Neverthe-

less, if the model is correctly specified, thinning can be use to reduce the

influence of autocorrelation [18]. Thinning is the process of increasing the

MCMC sample size and drawing samples at regular intervals. For example,

instead of generating 1000 samples, we can generate 5000 samples and keep

every 5th value to get our sample of 1000.

Gibbs sampling is a special case of the Metropolis-Hasting algorithm. In

Gibbs sampling, we draw from the conditional distribution of each subvector

given all the other subvectors [17]. Suppose that there is a random vector Z =

(z1, z2, ..., zn) and we want to obtain j samples of Z from a joint distribution

P (Z) = P (z1, z2, ..., zn), which is also the target distribution to be simulated.

Denote the tth sample by Zt = (z1
t, z2

t, ..., zn
t) and let Zt be the initial

value. This value is determined randomly or by some process such as the

expectation-maximization algorithm. The next sample, which is denoted

by Z(t+1) = (z1
(t+1), z2

(t+1), ..., zn
(t+1)), is obtained by continuously drawing

from the distribution as shown below:
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Z1
(t+1) ∼ P (z1 | z2t, z3t, ..., znt)

Z2
(t+1) ∼ P (z2 | z1(t+1), z3

t, ..., zn
t)

Z3
(t+1) ∼ P (z3 | z1(t+1), z2

(t+1), z4
t, ..., zn

t)

...

Zn
(t+1) ∼ P (zn | z1(t+1), z2

(t+1), ..., z(n− 1)(t+1)).

Particularly, one draws from the conditional distribution of Z1, Z2, ..., Zn,

conditioning each time on the current drawn values [17]. This process is

repeated to obtain z(t+2), z(t+3), z(t+4) and so on until the sequence converges

to the stationary distribution which equals to P (Z) [17]. Thus, as t → ∞,

Zt → Z, where t = 1, 2, 3, ....

Schafer (1997) claims that, using Markov chains for simulation on large

data set is time consuming and requires computers with fast memory and

large storage capacity [17]. For more details on MCMC, see Robert and

Casella, (2002), Schafer, (1997) and Gilks, Richardson and Spiegelhalter,

(1998).

4.1.2 Overview of the MLE for Missing Data

The likelihood method is one of the widely used methods in the joint

model literature [19]. Through maximum likelihood estimation (MLE), pa-

rameter estimates of the joint modelling can be based on the observed-data
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likelihood [21, 20, 19].

Given a probability density function (PDF) and the observations, the

method of finding a parameter (θ) that maximizes the probability of making

the observations given the parameters is called MLE. It is a well-known

method of estimation in the statistical field.

The method of finding the parameter that maximizes the parameters

starts by finding the joint PDF [16], a probability distribution for two or

more random variable [22], of each observation present. Then, the joint PDF

of each observation is multiplied together to obtain the likelihood function,

which is a function of the parameter (θ). Given n independent observations

and k variables, the likelihood function is

L(θ) =
n∏
i=1

f i(xi1, xi2, ..., xik; θ),

where L(θ) is the likelihood function and f i(xij; θ) is the joint distribution

function.

To obtain the parameter that is maximized, we differentiate the likelihood

function, equate it to zero and then solve for the parameter θ. Since it is

difficult to differentiate the likelihood function, an easy step is to take the

natural logarithm of the likelihood function. Since the natural logarithm

is an increasing function, it implies that the values of θ that maximize the

natural logarithm is the same θ that maximizes the likelihood function [16].
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4.1.3 MLE for Missing Data

Suppose for a given case, x1 and x2 are missing data that satisfy the

assumption of MAR. The joint probability is then obtained for these cases

by summing or integrating over the variables that have missing data to obtain

the marginal probabilities of the variables having complete data [23]. The

joint PDF for a discrete missing data will be

f i
∗(xi1, xi2, ..., xik; θ) =

∑
x1

∑
x2

f i(xi1, xi2, ..., xik; θ),

and for continuous missing data, the joint PDF is

f i
∗(xi1, xi2, ..., xik; θ) =

∫
x1

∫
x2

f i(xi1, xi2, ..., xik; θ).

However, if for a given data set m cases are complete and n − m cases

are missing data that satisfy the assumption of MCAR and MAR, then the

likelihood function for the full data set is;

L(θ) =
m∏
i=1

f i(xi1, xi2, ..., xik; θ)×
n∏

i=m+1

f i
∗(xi3, xi4, ..., xik; θ).

This likelihood is then used to compute the MLE for θ, which are the un-

known parameters for the distribution of the missing data set. The value

of θ is then used to impute the missing values. Allison (2002) asserts that

the method of MLE is easy when the missing data have a monotonic pattern

[23]. That is, when data is missing for a particular variable, the same data

is missing for other variables in the data set.
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Under a multivariate normal model, the likelihood can be maximized

using the expectation-maximization (EM) algorithm, which is widely used

because of its availability in a lot of statistical softwares [23]. The EM algo-

rithm is an iterative method for finding maximum likelihood estimates [8].

In the E-step of the iteration process, the expected value and the covariance

obtained from the observed data are used to build regression equations that

are used to predict the missing values. In the M-step of the iteration process,

a standard complete data formula is used on both the filled-in data and the

observed values to obtain new estimates of the mean and covariance. The

updated estimates of the mean and the covariance are used in another E-step

to build the new regression equation to predict new missing values. Subse-

quently, the newly generated missing values and the observed values are used

in another M-step to estimate another mean and covariance. These two steps

are repeated until convergence (the parameter estimates remain the same for

each iteration) is reached.

To illustrate how the EM algorithm works mathematically, a bivariate

analysis example, as used in Enders (2010) is used. Here X represent a

complete data set and Y represent an incomplete data set. Using the observed

data, the formulas that generates the maximum likelihood estimates for the

mean and covaraince is
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µ̂Y =

∑
Y

N
,

σ̂2
Y =

1

N
(
∑

Y 2 − (
∑
Y )2

N
), and

σ̂XY =
1

N
(
∑

XY − (
∑
X

∑
Y )

N
)

where N is the number of observed cases.

After obtaining the estimates for the mean and covariance, those esti-

mates are then used to build a regression model using the following formulas:

β̂1 =
σ̂XY
σ̂2
X

,

β̂0 = µ̂Y − β̂1µ̂X ,

σ̂Y |X = σ̂2
Y − β̂2

1 σ̂
2
X , and

Ŷi = β̂0 + β̂1Xi.

The E-step of the iteration process uses the regression equation to fill

the missing values. After obtaining the missing values, the M-step uses the

formulas for the mean and covariance to calculate a new maximum likeli-

hood estimates for the mean and covaraince. The new mean and covariance

are use to build a new regression equation. This process is repeated until

convergence.
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Under the multivariate-normal model, the mean, variance and the covari-

ances are the parameters that are estimated by the EM algorithm. According

to Graham (2009) and Allison (2009), the EM algorithm estimates the ap-

propriate parameters, but one weakness is that it does not provide standard

error estimates [8, 3].

4.2 Handling Missing Data using Multiple Imputation by Chain Equation
(MICE)

Sometimes it is difficult and time consuming to determine a particular

multivariate model whose assumptions are satisfied by your data set. The

multiple equation by chain equation method is desirable when it is inappro-

priate to assume a multivariate distribution using the JM method [15]. The

MICE, which is also known as fully condition specification (FCS), uses a set

of conditional densities for each variable with missing data to assume a mul-

tivariate imputation model on a variable by variable basis [15]. An example

of the MICE method is the multiple imputation (MI).

4.2.1 Summary of the Multiple Imputation Method

One of the most recognized techniques for handing missing data is mul-

tiple imputation (MI). The first step in MI is to compute the missing values

using an appropriate model that includes random variation [25, 26]. An ap-

propriate model for computing missing data that include random variation is

the linear regression [35]. Using all observed cases for all variables, the vari-
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able with missing data is regressed on the other variables with no missing

data to get the predicted values. The random variation which is the product

of the root mean squared error from the regression model and a random draw

from a standard normal distribution is added to predicted values to get data

for the missing entries.

This is done m times to obtain m different complete data sets. After

this, an appropriate method is used to analyze each of the m complete data

set. Thus, the dependent variable is regressed on the independent variables

to obtain m different parameter estimates. An average of the m different

parameters is calculated to procure a single parameter estimate(s). To obtain

the standard error, the within variance is calculated, The within variance is

the variations caused by differences within individual data set, by taking

the average of the square standard errors of the m parameters. Then the

between variance is calculated, the variation due to the interaction between

the different m data sets, of each of the parameter estimates. The standard

error is the square root of the sum of the within variance and the between

variance.

By introducing a random error term in the model for computing the

missing values, it allows the MI parameter to be unbiased [23]. Moreover,

adding the random variation preserves the distribution in the filled-in data

set thereby making the regression model less dependent on normality [28].
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The advantage of the multiple imputation over the single imputation is that,

repeating the imputation to obtain m different data sets helps to obtain pa-

rameter estimates that are efficient and close to the real parameter estimates

[23].

4.2.2 Multiple Imputation by Chain Equation in R

The MICE package in R, a statistical software that can be accessed at

https://www.r-project.org/, makes it easy to impute missing values using

MI. The MICE package in R assumes a number of univariate imputation

techniques of each incomplete variable. The univariate imputation methods

take a set of complete independent variables and returns a single imputed

value for each missing entry in the incomplete targeted variable [15]. Another

property of the MICE package in R is that, it can detect three scales of

measurements for each variable [15, 20]. These scales are numerical, binary

(factors with 2 levels) and categorical (factors with more than 2 levels).

With these properties, the MICE package checks the choice of a univariate

imputation method assumed and the scale of measurement of a variable to

avoid a mismatch. Table 4.1 presents some of the univariate imputation

models, their name in R and the supported scale of measurement for the

MICE package in R.
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Table 4.1: A list of imputation methods in the MICE R package.

Name of Model Name in R
Supported Scale

Type

Predictive mean
matching

pmm Numeric

Bayesian linear
regression

norm Numeric

Linear regression,
non Bayesian

norm.nob Numeric

Unconditional mean
imputation

mean Numeric

Two-level linear
model

2L.norm Factor, 2 levels

Logistic regression logreg Factor > 2 levels
Multinomial logit

model
polyreg Ordered > 2 levels

Ordered logit model polr factor
Linear discriminant

analysis
ida factor

Random sample
from observed data

sample Any

Classification and
regression trees

cart Any

Random forest
imputation

rf Any

The predictive mean matching (PMM) method of imputation is a general

purpose semi-parametric imputation method that uses observed values to

impute missing values. One advantage of the PMM is that it preserves non-

linear relations even when the structural part of the imputation is wrong [15].
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To impute missing values using PMM, first, the variables with missing data

is regressed on the variables with no missing data to obtain some predicted

values. Using a bivariate model, we illustrate this by letting Y denote the

variable containing the missing variables and X denote the variables having

complete data. The regression model for predicting the missing values is

Ŷi = β̂0 + β̂1Xi. (4.3)

From equation 4.3, Ŷi is the predicted Y values for a given X values, β̂0 is

the estimated intercept, and β̂1 is the estimated slope.

In regressing the variables with missing data on the observed variables, a

random variation is added to the predicted values. This is done to preserve

the distribution of the filled in data [28]. The equation that adds a random

variation to predicted values is given as

Ŷi = β̂0 + β̂1Xi + δµ, (4.4)

where δ is the root mean squared error and µ is a random draw from a

standard normal distribution.

Equation 4.4 is used to generate values for all cases of the variables with

missing data. Then from the values generated, a set of k cases with ob-

served values whose predicted values are close to the predicted value for a

case with missing data are identified. The choice of k is based on a trade-

off between large enough to simulate the predicted distribution effectively
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and small enough to maintain quality of the matches [28]. With the MICE

package in R, the default is k = 5 [29]. From the close cases identified,

one is selected at random and assigned its observed value to fill the missing

entry for that case [30, 29]. This is repeated until a complete data set is

obtained. The steps described above is done m times to produce m complete

data sets [28]. In each of the m complete data sets, the dependent variable

is regressed on the independent variables to obtain m different parameter

estimates. An average of the m different parameters are calculated to yield

a single parameter estimate(s) [28]. One advantage of the PMM is that it

imputes only eligible values. Because observed values are used to substitute

missing values, it avoids imputing values outside the range of the data set.

Furthermore, since the predicted mean is only used for matching, PMM is

less sensitive to misspecification [28].

There are two main steps in the Bayesian linear regression (norm) ap-

proach: EM algorithm and data augmentation. In the EM algorithm step,

the mean, variance and covariance of the data are obtained. These estimates

are used to estimate the missing values. The estimated values are added to

the data set to get a complete data set. Then, we repeat the EM algorithm

to obtain a new mean, variance and covariance. The new mean, variance

and covariance are used to estimate new values for the missing data. This

process is repeated until convergence is reached.
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In the data augmentation step, the process uses the population mean,

variance and covariance from the EM algorithm (or recreates the population

mean, variance and covariance) to estimates missing values. In estimating

the missing values, the data augmentation procedure uses the Bayesian ap-

proach to create a likely distribution of the parameter values. In Bayesian

analysis, the parameter are seen as random variables that have a distribution.

The goal of the Bayesian analysis is to describe the behavior of the distribu-

tion. Thus, to determine the posterior probability of the parameter values

obtained. In the Bayesian paradigm, the prior distribution of the parameter

of interest P (θ) and the likelihood function f(Y | θ) are combined to obtain

the posterior distribution P (θ | Y ):

P (θ | Y ) = P (θ)× f(Y | θ). (4.5)

Then from the posterior distribution of θ, one draws an estimate at random

for the mean and covariance. These new estimates for the mean and co-

variance are used to generate new fill-in values for the missing entries. This

process is repeated until convergence. A good number of interactions before

convergence in data augmentation process is greater than or equal to the

number of iterations it took the EM algorithm to converge [31]. After ac-

quiring a complete data set, the data augmentation process is repeated over

and over to generate multiple complete data set. Getting three to five data

sets is enough to end the data augmentation process [26].
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The linear regression, non Bayesian (norm.nob), imputes missing values

using the spread around the fitted linear regression line. First, the variable

with missing data is regressed on the variables with no missing data using all

the observed data. In a situation whereby all the variables contains missing

data, the linear regression, non Bayesian method uses the observed data

to regress target incomplete variables on covariate complete variables [15,

20]. In regressing the variable with missing data on the variable with no

missing data, the linear regression, non Bayesian, approach uses a parametric

linear regression analysis to impute the missing values [15]. Then, the spread

around the fitted line is used to predict a value for each missing value.

The disadvantage of the linear regression, non Bayesian, is that, it does

not incorporate sample uncertainty. Sample uncertainty is the potential vari-

ation in point estimates as a result of the fact that the estimates depends on

a sample from the population. The linear regression, non Bayesian, approach

is not proper because it does not include variability of the estimates of the

regression coefficients, hence underestimating the variability of the imputed

values for small samples [32]. However, the linear regression, non Bayesian,

is suitable for data that follow a normal distribution with a large sample size

where variability is not much of a concern [32].
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5 METHODOLOGY

As indicated in chapter 1, the purpose of this study is to examine the

different multiple imputation by chain equation (MICE) procedures in the R

package, MICE, for imputing data for different percentage of missing data.

This chapter provides a description of how the data used in this study is

analyze.

5.1 Data Source and Description

The data employed for this study is the Combined Cycle Power Plant data

Set from the UCI Machine Learning Repository. This data can be accessed

from the link:

http://archive.ics.uci.edu/ml/datasets/Combined+Cycle+Power+Plant#.

A combined cycle power plant (CCPP), is an electrical power plant, which

uses both a gas turbine and a steam turbine to produce more electrical energy

from the same fuel than would be possible from a single traditional cycle

power plant [33]. It is assumed that the CCPP produces 50 percent more

electric energy than a traditional cycle power plant [33]. The CCPP works

by using the gas turbine to compress air and mix it with fuel that is heated

to a very high temperature. The mixture of hot air and fuel moves through

the gas turbine blades, making them spin. The fast-spinning turbine drives

a generator that converts a portion of the spinning energy into electricity.
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Then, the exhaust heat from the gas turbine is captured by a Heat Recovery

Steam Generator (HRSG). The HRSG creates steam from the exhaust heat

from the gas turbine and delivers it to a steam turbine. Lastly, the steam

turbine sends its energy to the generator drive shaft, where it is converted

into additional electricity [36].

Predicting the electric power generated hourly based on the ambient vari-

ables enables one to evaluate whether the generated power will be sufficient

to meet the growing consumer demands. The entire data set contains 9568

observations collected from a Combined Cycle Power Plant over 6 years,

from 2006 to 2011, when the power plant was set to work with full load. The

hourly average Ambient Temperature (T), Ambient Pressure (AP), Relative

Humidity (RH) and Exhaust Vacuum (V) are used as the predictor variables

to predict the net hourly electrical energy output (EP) of the combined cycle

power plant.

A simple random sample was employed on the entire CCPP data set

yielding a smaller complete data set with 500 observations. The simple ran-

dom sample method is used because it is easy to employ and it gives all the

observations an equal chance of been selected.

After obtaining the complete data made up of 500 observations, T, AP,

RH and V are used as the predictor variables to fit a multiple linear regression

model with EP as the response variable. The estimated regression model was
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found to be

ÊP = β̂0 + β̂1T + β̂2V + β̂3AP + β̂4RH. (5.1)

Table 5.1 displays the estimated coefficients for each predictor variable. All

predictor variables are needed in the model (in the presence of all the vari-

ables) except AP, using a 5% level of significance.

Table 5.1: The estimated regression coefficients where (***) indicates the
variable is needed in the model at the 5% level of significance.

Parameter β̂0 β̂1 β̂2 β̂3
β̂4

Value 444.4881∗∗∗ −1.9035∗∗∗ −0.2337∗∗∗ 0.0681 −0.1246∗∗∗

Since AP is not significant, it is excluded from the model. Therefore, only

T, V and RH are employed as the predictor variables in the CCPP model

with EP as the response variable in this study.

5.2 Software Implementation

R is the software used in the analysis of this study. It is the software

used to evaluate the various imputation models. Specifically, the prodNA

function in R was used to randomly delete specified percentage of values in

a data set and the MICE package in R was used to implement the multiple

imputation by chain equation approach.
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5.3 Analysis of Interest and Imputations

From Section 5.1, we observed that AP was not significant in predicting

EP. The final regression model used for this analysis is

ÊP = β̂0 + β̂1T + β̂2V + β̂3RH. (5.2)

Table 5.2 displays the estimated coefficients for each predictor variable. All

predictor variables are needed in the model (in the presence of all the vari-

ables), using a 5% level of significance. Table 5.2 shows that after the removal

of AP from the CCPP model, all the remaining variables are significant in

predicting EP. As temperature increases by 1 degree celcius, the estimated

EP decreases by 1.96 millwatt (MW), holding all other variables constant. A

1 centimetres of mercury (cmHg) increase in exhaust vaccum (V) will result

to a 0.22 MW decrease in EP, holding all other variables constant. Finally, a

percent increase in relative humidity (RH), will lead to a 0.134 MW decrease

in EP, holding all other variables constant. The adjusted R2 value is 0.9126,

implying that 91.26%, of the variation in EP, is explain by the linear rela-

tionship with temperature, exhaust vaccum, and relative humidity, adjusted

for the number of variables in the model. With 500 observations, We are

assured normality is met due to the central limit theorem.
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Table 5.2: The estimated regression coefficients where (***) indicates the
variable is needed in the model at the 5% level of significance.

Parameter β0 β̂1 β̂2
β̂3

Actual
Values

514.71418∗∗∗ −1.95560∗∗∗ −0.22471∗∗∗ −0.13393∗∗∗

Table 5.3 contains the variance inflation factors (VIF) values for the

CCPP model with T, V and RH variables. From Table 5.3, all the three

VIF values are less than 10, which indicates that there is no serious multi-

collinearity problem in the regression model 5.2. A predicted residual sum

of squares (PRESS) value reasonably close to the sum of squares error (SSE)

supports the validity of a fitted regression model and indicates the predic-

tive capability of a regression model [37]. The PRESS values of 12682.75 is

relatively similar to the SSE value of 12467.55. Hence, the regression model

5.2 does have a good predictive capability.

Table 5.3: Variance inflation factor of the CCPP model 5.2.

Variable T V RH

VIF 5.424620 4.200737 1.640421

The ProdNA function in R was used to introduced certain amount of

missingness in the complete data. Using the ProdNA function in R, 5 incom-

plete data sets with different percentage of missingness (fraction of missing
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information) were produced with each one having 10%, 20%, 30%, 40% and

50% missingness respectively. It should be noted that a higher percentage

of missingness contains the same missingness of the pervious percentage of

missingness. Thus, a higher percentage of missingness is build-up on a lower

percentage of missingness.

The MICE package in R was adopted to impute the missing values

in the 5 incomplete data sets. Table 4.1 displayed various models in the

MICE package in R employed to impute missing values, however, due to

time constraint, only three of these methods are used to impute the missing

values. These three methods are the pmm, norm and norm.nob, which are

the methods used for quantitative data. Using the three imputation methods

separately, fifty complete data sets were produced for each fraction of missing

information.

Applying the CCPP model in Equation 5.2, multiple linear regression

analysis is performed on each of the fifty complete data sets imputed for

each percentage of missingness using the separate imputation methods. By

performing the regression analysis on each of the fifty imputed data sets for

each percentage of missingness using the three different imputation models,

a sampling distribution of fifty estimated regression coefficients are gener-

ated at each percentage of missingness. Now, the estimated parameters are

considered as variables and each of the estimated regression coefficient are
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treated as data points for each of the variables (estimated parameters). We

obtain the mean, the variance, the range and the percentage deviation in-

dex (PDI) of the estimated regression coefficients and the best model for

imputing missing data for a specific percentage of missingness is the model

in which the imputed missing values has the smallest variances, range, and

percent deviation index (PDI).

PDI is a way of expressing the difference between the original regression

coefficient and the mean of the estimated regression coefficients by designat-

ing the original regression coefficient as the base. Mathematically, the PDI

is expressed as:

PDI =
Originalβ̂i − µβ̂i
Originalβ̂i

× 100 (5.3)

where Original β̂i is the original regression coefficient, µβ̂i is the mean of

the estimated regression coefficients for i = 0, 1, 2, 3. Each PDI reflects the

percentage difference of the mean of a given estimated regression coefficients

and its corresponding original regression coefficients.

Since the size of the sampling distribution is quite large, the variables

(estimated parameters) are considered to be normally distributed. There-

fore, to determine how significant the difference between the original coeffi-

cients of the estimated parameters and the mean of the estimated regression

coefficients are, the Student’s t test statistic is computed and then used.
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Mathematically, the Student’s t test statistic is given as:

tstati =
µβ̂i −Originalβ̂i

σβ̂i
∼ tn−1, (5.4)

where Original β̂i is the original regression coefficient, µβ̂i is the mean of

the estimated regression coefficients, σβ̂i is the estimated standard deviation

of the regression coefficients for i = 0, 1, 2, 3. Here tstati follows a student’s

t-distribution with n− 1 degrees of freedom.

5.4 Relative Efficiency (RE)

Relative efficiency describes the efficiency in the point estimates in esti-

mating the original regression coefficients given the number of imputations

and the fraction of missing information (percentage of missingness). The

equation for the relative efficiency as given by Rubin (1987) is

R.E =
1

1 + λ
m

(5.5)

where λ is the fraction of missing information and m is the number of impu-

tation [26].

Using Equation 5.5, Rubin concluded that, with λ less than 20%, m = 2

is sufficient to produce point estimates that estimate the original regression

coefficients accurately. Also, with λ equal to 50%, m = 3 is enough to produce

point estimates that estimate the original regression coefficients accurately.

“Unless rates of missing information are unusually high, there tends to be

little or no practical benefit to using more than five to ten imputations” [34].
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However, it should be noted that, the number of imputations that is good

to produce efficiency in estimating the original regression coefficients may not

be necessarily good for estimating the standard error, variance, confidence

and P-values [35]. Estimating the variance, standard error and P-values

using just 5 observations (m = 5) or less may give unstable results. Thus,

repeating the whole process of imputation may yield different estimates of

the variance, standard error and p-value.

In this study, fifty repeated imputations was used for each of the fraction

of missing information (FMI). Fifty repeated imputations were used for each

of the five fractions of missing information to aid comparison across the

five fractions of missing information and comparison across the three models

of imputation. Moreover, fifty repeated imputations are used to give large

enough observations that follows a normal distribution by the central limit

theorem. Table 5.4 shows that as the number of imputation increases, the

relative efficiency increases across the five fractions of missing information.
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Table 5.4: Relative Efficiency of the percentage of missingness.

m\FMI 10% 20% 30% 40% 50%

1 0.9091 0.8333 0.7692 0.7143 0.6667
2 0.9524 0.9091 0.8696 0.8333 0.8
3 0.9677 0.9375 0.9091 0.8824 0.8571
4 0.9756 0.9524 0.9302 0.9091 0.8889
5 0.9804 0.9615 0.9434 0.9259 0.9091
10 0.9901 0.9804 0.9709 0.9615 0.9524
15 0.9934 0.9868 0.9804 0.9740 0.9677
20 0.9950 0.9901 0.9852 0.9804 0.9756
30 0.9967 0.9934 0.9901 0.9868 0.9836
40 0.9975 0.9950 0.9926 0.9901 0.9877
50 0.9980 0.9960 0.9940 0.9921 0.9901
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6 RESULTS

Here we compare how the three methods of imputation (predictive mean

matching, Bayesian linear regression and linear regression, non Bayesian)

accurately impute missing values for a certain fraction of missing informa-

tion/percentage of missingness.

6.1 Estimated Mean and Variance

The results from Tables 6.2, 6.4 and 6.6 shows the estimated mean of

the regression coefficient of β̂0, using the imputed data, increases as the per-

centage of missingness increases from 10% to 30%, then it reduces from 30%

to 50%. This observation is true for all the three methods of imputations.

For the predictive mean matching method, the estimated mean of the re-

gression coefficient, β̂1, using the imputed data, decreases as the percentage

of missingness increases. However, using the Bayesian linear regression and

linear regression, non Bayesian methods, the estimated mean of the regres-

sion coefficient, β̂1, using the imputed data, decreases as the percentage of

missingness increases from 10% to 40%, then it increases as the percentage

of missingness increases to 50%.

For the predictive mean matching method, the estimated mean of the re-

gression coefficient, β̂2, using the imputed data, increases as the percentage

of missingness increases. However, when applying the Bayesian linear regres-
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sion and linear regression, non Bayesian methods, the estimated mean of the

regression coefficient, β̂2, using the imputed data, increases as the percentage

of missingness increases from 10% to 40%, then it decreases as the percent-

age of missingness increases to 50%. Using the Predictive mean matching,

Bayesian linear regression and linear regression, non Bayesian methods, the

estimated mean of the regression coefficient, β̂3, using the imputed data, de-

creases as the percentage of missingness increases from 10% to 30%, then it

increases for 40%. Then it decreases at 50% for the predictive mean matching

method, but increases for the Bayesian linear regression and linear regres-

sion, non Bayesian at 50%. From Tables 6.3, 6.5 and 6.7, the variance of

all the regression coefficients for the predictive mean matching, Bayesian lin-

ear regression and linear regression, non Bayesian methods increases as the

percentage of missingness increases.

Table 6.1: Estimated mean of the regression coefficients with the predictive
mean matching method.

FMI\ Estimated
Parameter

β̂0 β̂1 β̂2
β̂3

10% 514.0866 -1.9925 -0.2049 -0.1293
20% 514.5529 -2.0539 -0.1726 -0.1420
30% 515.7961 -2.1176 -0.1498 -0.1567
40% 514.3423 -2.1422 -0.1360 -0.1421
50% 513.5434 -2.1549 -0.1095 -0.1454

Actual Parameter 514.7142 -1.9556 -0.2247 -0.1339
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Table 6.2: Estimated Variance of the regression coefficients with the predic-
tive mean matching method.

FMI\Estimated
Parameter

β̂0 β̂1 β̂2
β̂3

10% 0.7297 0.0008 0.0003 0.0001
20% 1.6963 0.0028 0.0007 0.0002
30% 2.5464 0.0037 0.0010 0.0003
40% 4.2519 0.0070 0.0022 0.0005
50% 7.1126 0.0106 0.0029 0.0009

Table 6.3: Estimated mean of the regression coefficients with the Bayesian
linear regression method.

FMI\Estimated
Parameter

β̂0 β̂1 β̂2
β̂3

10% 513.7087 -1.9743 -0.2088 -0.1264
20% 513.8615 -2.0484 -0.1670 -0.1373
30% 514.5835 -2.1151 -0.1396 -0.1478
40% 513.3098 -2.1580 -0.1186 -0.1354
50% 512.5321 -2.1193 -0.1227 -0.1320

Actual Parameter 514.7142 -1.9556 -0.2247 -0.1339
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Table 6.4: Estimated Variance of the regression coefficients with the Bayesian
linear regression method.

FMI\Estimated
Parameter

β̂0 β̂1 β̂2
β̂3

10% 0.6958 0.0014 0.0004 0.00009
20% 1.4403 0.0024 0.0006 0.0002
30% 2.8297 0.0030 0.0008 0.0003
40% 5.0919 0.0076 0.0028 0.0006
50% 8.8064 0.0139 0.0042 0.0014

Table 6.5: Estimated mean of the regression coefficients with the linear re-
gression, non Bayesian method.

FMI\Estimated
Parameter

β̂0 β̂1 β̂2
β̂3

10% 513.9165 -1.9715 -0.2118 -0.1280
20% 514.0613 -2.0335 -0.1767 -0.1366
30% 514.1945 -2.1133 -0.1352 -0.1474
40% 513.5283 -2.1730 -0.1094 -0.1419
50% 512.2221 -2.1185 -0.1192 -0.1301

Actual Parameter 514.7142 -1.9556 -0.2247 -0.1339
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Table 6.6: Estimated Variance of the regression coefficients with the linear
regression, non Bayesian method.

FMI\Estimated
Parameter

β̂0 β̂1 β̂2
β̂3

10% 0.6676 0.0013 0.0004 0.0001
20% 1.3870 0.0024 0.0007 0.0002
30% 2.1496 0.0034 0.0012 0.0003
40% 2.8960 0.0048 0.0015 0.0004
50% 5.9650 0.0109 0.0029 0.0011

In summary, using the predictive mean matching, the Bayesian linear

regression and the linear regression, non Bayesian to impute missing data, the

mean of the estimated regression coefficients tends to increase for data with

large amount of imputed values. Moreover, the variances of these regression

coefficients increases as the amount of imputed data increases.

6.2 Range and Percentage Deviation Index

Tables 6.8 and 6.10 show that when using the predictive mean match-

ing and Bayesian linear regression methods to impute missing values, the

range increases for all the parameters as the fraction of missing information

increases. Using the linear regression, non Bayesian method, the range in-

creases as the percentage of missingness increases for estimated parameters

β̂1 and β̂2, but the range increases as the fraction of missing information

increases from 10% to 30%, then reduces fairly at 40% missingness and in-
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creases again at 50% missingness for estimated parameter β̂0 and β̂3 as shown

in Table 6.12. Comparing Tables 6.8, 6.10 and 6.12, the linear regression, non

Bayesian method produces the smallest range for all estimated parameters.

Comparing Tables 6.9, 6.11 and 6.13, the predictive mean matching method

of imputing missing values produces the smallest overall PDI of 4.3553%. The

PDI for the linear regression, non Bayesian and Bayesian linear regression

methods are 6.1670% and 6.7523% respectively. This suggests that juxta-

posing the three imputation methods, the predictive mean matching method

imputed data with relatively small variation from the original data. As shown

in the tables, β̂1 produces the smallest overall PDI, β̂2 produces the largest

overall PDI for the three methods of imputing missing data. Moreover, the

PDI varies by the fraction of missing information under each of the three im-

putation models. Table 6.9 shows that, using the predictive mean matching

methods, the smallest PDI of 1.9671% is for 30% imputed values, and the

largest PDI of 8.1767% is for 50% imputed values. Applying the Bayesian

linear regression method, Table 6.11 shows that the smallest PDI of 2.9874%

is for 10% imputed values, and the largest PDI of 11.5672% is for 40% im-

puted values. Applying the linear regression, non Bayesian method, Table

6.13 shows that the smallest PDI of 2.3775% is for 10% imputed values, and

the largest PDI of 10.4949% is for 50% imputed values. It follows that the

variation between the original data and the imputed data tends to be smallest
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with small amount of imputed data and tends to be large for large amount

of imputed data. This is evident across the three imputation methods.

Table 6.7: Range of the regression coefficients with the predictive mean
matching method.

FMI\Estimated
Parameter

β̂0 β̂1 β̂2
β̂3

10% 3.7656 0.1492 0.0885 0.0491
20% 5.63 0.2591 0.1099 0.0621
30% 6.6080 0.3234 0.1567 0.0898
40% 9.8568 0.3389 0.1921 0.0973
50% 12.5502 0.5313 0.2247 0.1343

Table 6.8: PDI of the regression coefficients with the predictive mean match-
ing method.

FMI\Estimated
Parameter

β̂0 β̂1 β̂2 β̂3
Mean

10% 0.12% -1.89% 8.79% 3.42% 2.61%
20% 0.03% -5.03% 23.21% -6.03% 3.05%
30% -0.21% -8.29% 33.33% -16.97% 1.97%
40% 0.07% -9.54% 39.49% -6.13% 5.97%
50% 0.23% -10.19% 51.26% -8.59% 8.18%
Mean 0.05% -6.99% 31.22% -6.86% 4.36%
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Table 6.9: Range of the regression coefficients with the Bayesian linear re-
gression method.

FMI\Estimated
Parameter

β̂0 β̂1 β̂2
β̂3

10% 3.7278 0.1744 0.0800 0.0427
20% 5.4089 0.2542 0.1107 0.0619
30% 7.5408 0.2527 0.1198 0.0753
40% 10.6018 0.3635 0.2293 0.1325
50% 14.3545 0.5174 0.2526 0.2064

Table 6.10: PDI of the regression coefficients with the Bayesian linear regres-
sion method.

FMI\Estimated
Parameter

β̂0 β̂1 β̂2 β̂3
Mean

10% 0.20% -0.95% 7.08% 5.63% 2.99%
20% 0.17% -4.75% 25.68% -2.52% 4.64%
30% 0.03% -8.16% 37.87% -10.35% 4.85%
40% 0.27% -0.08% 47.21% -1.13% 11.57%
50% 0.42% -8.37% 45.40% -1.40% 9.72%
Mean 0.22% -4.46% 32.65% -1.39% 6.75%
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Table 6.11: Range of the regression coefficients with the linear regression,
non Bayesian method.

FMI\Estimated
Parameter

β̂0 β̂1 β̂2
β̂3

10% 3.7213 0.1607 0.0999 0.0425
20% 4.6781 0.2296 0.1097 0.0576
30% 7.8379 0.2612 0.1691 0.0915
40% 7.4003 0.3588 0.1796 0.0852
50% 9.6888 0.4438 0.2228 0.1630

Table 6.12: PDI of the regression coefficients with the linear regression re-
gression, non Bayesian method.

FMI\Estimated
Parameter

β̂0 β̂1 β̂2 β̂3
Mean

10% 0.16% -0.81% 5.74% 4.42% 2.38%
20% 0.13% -3.98% 21.39% -1.99% 3.89%
30% -0.10% -8.07% 39.82% -10.02% 5.46%
40% 0.23% -11.12% 51.30% -5.93% 8.62%
50% 0.48% -8.33% 46.93% 2.89% 10.49%
Mean 0.22% -6.46% 33.04% -2.13% 6.17%

6.3 Test for Normality of the Parameter Estimates

Since the number of observations for each of the parameter estimates is

equal to fifty, by the central limit theorem (CLT), each sampling distribu-

tion of the parameter estimates follow an approximate normal distribution.

Furthermore, Q-Q plots are produced to provide visual support of normality.

Figures 6.1-6.15 show in most cases the points fall on a straight line indicat-
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ing the assumption of normality is satisfied. While there are a few plots that

show some curvature, we are assured normality is met due to the CLT since

we have a large sample size, 50.

Figure 6.1: Normality plots of the sampling distributions of the regression
coefficients estimated using the predictive mean matching method at 10%
missingness.
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Figure 6.2: Normality plots of the sampling distributions of the regression
coefficients estimated using the predictive mean matching method at 20%
missingness.
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Figure 6.3: Normality plots of the sampling distributions of the regression
coefficients estimated using the predictive mean matching method at 30%
missingness.
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Figure 6.4: Normality plots of the sampling distributions of the regression
coefficients estimated using the predictive mean matching method at 40%
missingness.
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Figure 6.5: Normality plots of the sampling distributions of the regression
coefficients estimated using the predictive mean matching method at 50%
missingness.
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Figure 6.6: Normality plots of the sampling distributions of the regression
coefficients estimated using the Bayesian linear regression method at 10%
missingness.
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Figure 6.7: Normality plots of the sampling distributions of the regression
coefficients estimated using the Bayesian linear regression method at 20%
missingness.
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Figure 6.8: Normality plots of the sampling distributions of the regression
coefficients estimated using the Bayesian linear regression method at 30%
missingness.
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Figure 6.9: Normality plots of the sampling distributions of the regression
coefficients estimated using the Bayesian linear regression method at 40%
missingness.
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Figure 6.10: Normality plots of the sampling distributions of the regression
coefficients estimated using the Bayesian linear regression method at 50%
missingness.
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Figure 6.11: Normality plots of the sampling distributions of the regression
coefficients estimated using the linear regression, non Bayesian method at
10% missingness.

79



Figure 6.12: Normality plots of the sampling distributions of the regression
coefficients estimated using the linear regression, non Bayesian method at
20% missingness.

80



Figure 6.13: Normality plots of the sampling distributions of the regression
coefficients estimated using the linear regression, non Bayesian method at
30% missingness.
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Figure 6.14: Normality plots of the sampling distributions of the regression
coefficients estimated using the linear regression, non Bayesian method at
40% missingness.

82



Figure 6.15: Normality plots of the sampling distributions of the regression
coefficients estimated using the linear regression, non Bayesian method at
50% missingness.

6.4 Hypothesis Test Using Student’s t Test Statistic

After obtaining the mean of the estimated regression coefficients, it is im-

portant to check whether there is enough evidence to show that the mean of

the estimated regression coefficients are the same as the actual unbiased pa-

rameter estimated. The results from Table 6.17-6.19 indicate that almost all

the estimated parameters from the imputed values are different from the ac-

tual unbiased parameter estimates. The P-values from Table 6.17 show that,

using the predictive mean matching method, only the estimated parameters

for β̂0 at 20% and 40% missingness are statistically insignificant. That is,
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statistically, the estimated parameters of β̂0 at 20% and 40% missingness are

the same as the true parameter estimate of β̂0. From Table 6.18, using the

Bayesian linear regression method for imputing missing values, the estimated

parameter for β̂0 is statistically insignificant at 30% missingness. Also, the

estimated parameters β̂3 at 20%, 40% and 50% missingness are statistically

the same as the the actual parameter estimate for β̂3. Similarly, the results

from Table 6.19 show that, using the linear regression, non Bayesian method,

only the parameter estimates for β̂3 at 20% and 50% missingness are statis-

tically insignificant. That is, there is enough evidence that the estimated

parameters for β̂0 at 20% and 50% missingness are the same as the true val-

ues of the estimated parameters. The P-values in bold indicate the results

were not significant. The family level of significance for the hypothesis test

is 0.05.

Table 6.13: P-Values of the t statistic of the sampling distributions of regres-
sion coefficients estimated using the predictive mean matching method.

FMI\Estimated
Parameter

β̂0 β̂1 β̂2
β̂3

10% < 0.0001 < 0.0001 < 0.0001 0.0018
20% 0.3856 < 0.0001 < 0.0001 < 0.0001
30% < 0.0001 < 0.0001 < 0.0001 < 0.0001
40% 0.2082 < 0.0001 < 0.0001 0.0133
50% 0.0032 < 0.0001 < 0.0001 0.0105
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Table 6.14: P-Values of the t statistic of the sampling distributions of regres-
sion coefficients estimated using the Bayesian linear regression method.

FMI\Estimated
Parameter

β̂0 β̂1 β̂2
β̂3

10% < 0.0001 0.0008 < 0.0001 < 0.0001
20% < 0.0001 < 0.0001 < 0.0001 0.0877
30% 0.5853 < 0.0001 < 0.0001 < 0.0001
40% < 0.0001 < 0.0001 < 0.0001 0.6679
50% < 0.0001 < 0.0001 < 0.0001 0.7282

Table 6.15: P-Values of the t statistic of the sampling distributions of regres-
sion coefficients estimated using the linear regression, non Bayesian method.

FMI\Estimated
Parameter

β̂0 β̂1 β̂2
β̂3

10% < 0.0001 0.0027 < 0.0001 0.0002
20% 0.0003 < 0.0001 < 0.0001 0.193
30% 0.0156 < 0.0001 < 0.0001 < 0.0001
40% < 0.0001 < 0.0001 < 0.0001 0.0089
50% < 0.0001 < 0.0001 < 0.0001 0.407
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7 SIMULATION STUDY

Creating a pseudo data via simulation, in modern research, is often a

powerful tool to test the effectiveness of a model under various situations.

Here we simulate data similar to the data previously used and then apply

the imputation models on the simulated data with the aim of getting an idea

of how the imputation models perform under varying conditions.

By assuming that the underlying probability distribution for each of the

variables follows a normal distribution, we generate a multivariate data set

that follows a normal distribution.

7.1 Multivariate Normal Distribution

The multivariate normal distribution is one of the most useful multivariate

distributions. The parameters for the multivariate normal distribution are a

mean vector and a covariance matrix. Using µ and Σ as the true or parametric

matrix for the center point and dispersion of the multivariate distribution

respectively, we write X ∼ MVN(µ,Σ) to refer to a column vector that is

drawn from the multivariate normal distribution. Using the mean, µ, and

the covariance, Σ, for the variables in the CCPP data, we can write

X =


T
V
RH
EP

 ∼MVN



20.069
54.744
72.286
453.484

 ,


55.928 80.91 −59.271 −119.615
80.91 161.18 −56.616 −186.864
−59.271 −56.616 210.157 100.487
−119.615 −186.864 100.487 287.438


 ,

86



where

µ =


20.069
54.744
72.286
453.484


and

Σ =


55.928 80.91 −59.271 −119.615
80.91 161.18 −56.616 −186.864
−59.271 −56.616 210.157 100.487
−119.615 −186.864 100.487 287.438


In simulating the multivariate normal data with R, themvrnorm function

in the MASS package is used [38]. The required parameters needed to use

the mvnorm function are (1) the number of draws required, n, (2) the mean

vector µ that contains p elements, and (3) the variance matrix Σ which is a

p × p matrix. The desired result is an n × p matrix in which each row is a

draw from MVN(µ,Σ). Here n is the number of observations and p is the

number of variables.

7.2 Analysis of the Simulated Data

Here we are apply the same methodology as discussed in chapter 5 on the

simulated data to verify our findings in using the CCPP data. We are drawing

comparison of the results in the CCPP data set and the simulated data set to

ascertain how best the methods (predictive mean matching, Bayesian linear

regression and the linear regression, non Bayesian) perform on different data

sets. The parameters of the fitted regression model 5.2 are indicated below

in Table 7.1.
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Table 7.1: Results of the CCPP model 5.2. using the simulated data

Parameter β0 β1 β2
β3

Actual
Values

517.08875∗∗∗ −1.94623∗∗∗ −0.23456∗∗∗ −0.15715∗∗∗

Using the simulated data, Table 7.1 shows that all the variables are sig-

nificant in predicting EP. Table 7.1 demonstrates that, holding all other

variables constant and varying only one variable at a time, EP is predicted

to decrease by 1.94623 MW when temperature (T) goes up by one degrees

Celsius, decrease by 0.23456 MW when exhaust vacuum (V) goes up by one

cmHg, decrease by 0.15715 MW when relative humidity (RH) increases by

one percent, and is predicted to be 517.08875 when T, V and RH are zero

simultaneously. The adjusted R2 value is 0.913, implying that 91.3%, of the

variation in EP, is explain by the linear relationship with temperature, ex-

haust vaccum, and relative humidity, adjusted for the number of variables in

the model. With 500 observations, we are assured normality is met due to

the central limit theorem. Table 5.2 contains the VIF values for the CCPP

model using the simulated data. Table 7.2, shows that all the three VIF val-

ues are less than 10, which indicates that there is no serious multicollinearity

problem in the regression model 5.2 to fit the simulated data. The PRESS

value of 12744.43 is relatively close to the SSE value of 12541.28. This implies
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that, using the simulated data, the regression model 5.2 does have a good

predictive capability.

Table 7.2: Variance inflation factor of the CCPP model 5.2 using the simu-
lated data.

Variable T V RH

VIF 5.803135 4.561447 1.630341

After introducing different amounts of missingness in the complete simu-

lated data as described in Section 5.3, and imputing the missing values using

the same imputation methods (predictive mean matching, Bayesian linear

regression, and linear regression, non Bayesian), we see very similar patterns

in the variation and values of the estimated parametrs.

Table 7.3 shows that, applying the predictive mean matching method, the

estimated mean of the regression coefficient, β̂0 using imputed data for the

simulated data, tends to increase from 10% to 30%. The mean decreases at

40%, then it increases at 50%. There is an overall decrease in the estimated

mean of the regression coefficients, β̂1 from 10% to 50%. Also, there is an

increase in the estimated mean of the regression coefficients, β̂2 from 10% to

50%. The estimated mean of the regression coefficient, β̂3, using the imputed

data, decreases from 10% to 30%, increases at 40% and then decreases at 50%.

Using the Bayesian linear regression, Table 7.5 shows that the estimated

mean of the regression coefficient, β̂0, increases and decreases alternatively as
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the percentage of missingness increases from 10% to 50%. Furthermore, the

estimated mean of the regression coefficient, β̂1, increases as the percentage of

missingness increases from 10% to 20%, it decreases from 20% to 40%, then

it increases from at 50%. However, the estimated mean of the regression

coefficient, β̂2, decreases as the percentage of missingness increases from 10%

to 20%, it increases from from 20% to 40%, and then it decreases at 50%. The

regression coefficient, β̂3, increases as the percentage of missingness increases

from 10% to 40%, then it decreases at 50%.

Table 7.7 specifies that, using linear regression, non Bayesian methods,

the estimated mean of the regression coefficient, β̂0, alternates from increas-

ing to decreasing as the percentage of missingness increases from 10% to

50%. The estimated mean of the regression coefficient, β̂1, increases from

10% to 20%, it decreases from 20% to 40%, and increases at 50%. Also,

the estimated mean of the regression coefficient, β̂2 using the imputed data,

decreases as the percentage of missingness increases from 10% to 20%, then

it increases as the percentage of missingness increases from 20% to 50%. For

the estimated mean of the regression coefficient, β̂3, it alternates from de-

creasing to increasing as the percentage of missingness increases from 10%

to 50%.

From Table 7.4, variance of all the regression coefficients for the predictive

mean matching method increases as the percentage of missingness increases.
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Table 7.6 shows that, using the Bayesian linear regression method, the vari-

ance of the regression coefficient, β̂0 increases as the percentage of missingness

moves from 10% to 50%. Also, the variance of the regression coefficient, β̂1

increases from 10% to 30% missingness, decreases at 40% and then increases

for 50%. The variance of the regression coefficient, β̂2 increases from 10% to

20%, it decreases at 30%, and then it increases from 40% to 50%. For the

variance of the regression coefficient, β̂3, it increases from 10% to 40% miss-

ingness, and then it decreases for 50%. Table 7.8, indicates that, the variance

of the regression coefficients β̂0 and β̂3 for the linear regression, non Bayesian

method increases as the percentage of missingness increases. The variance

of the regression coefficients β̂1 decreases from 10% to 20%, and then it in-

creases from 20% to 50%. Lastly, the variance of the regression coefficients

β̂2 increases from 10% to 40%, and then it decreases at 50% missingness.

Table 7.3: Estimated mean of the regression coefficients with the predictive
mean matching method for the simulated data.

FMI\ Estimated
Parameter

β̂0 β̂1 β̂2
β̂3

10% 514.0866 -1.9925 -0.2049 -0.1293
20% 514.5529 -2.0539 -0.1726 -0.1420
30% 515.7961 -2.1176 -0.1498 -0.1567
40% 514.3423 -2.1549 -0.1095 -0.1454
50% 513.5434 -2.1549 -0.1095 -0.1454

Actual Parameter 517.0888 -1.9462 -0.2346 -0.1572
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Table 7.4: Estimated Variance of the regression coefficients with the predic-
tive mean matching method for the simulated data.

FMI\Estimated
Parameter

β̂0 β̂1 β̂2
β̂3

10% 0.7297 0.0008 0.0003 0.0001
20% 1.6963 0.0028 0.0007 0.0002
30% 2.5464 0.0037 0.0010 0.0003
40% 4.2519 0.0070 0.0022 0.0005
50% 7.1126 0.0106 0.0029 0.0009

Table 7.5: Estimated mean of the regression coefficients with the Bayesian
linear regression method for the simulated data.

FMI\Estimated
Parameter

β̂0 β̂1 β̂2
β̂3

10% 517.6831 -1.9424 -0.2360 -0.1656
20% 517.5025 -1.9174 -0.2447 -0.1619
30% 514.5835 -2.0284 -0.1394 -0.1478
40% 513.3195 -2.1581 -0.1190 -0.1287
50% 512.4919 -2.1118 -0.1269 -0.1303

Actual Parameter 517.0888 -1.9462 -0.2346 -0.1571
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Table 7.6: Estimated Variance of the regression coefficients with the Bayesian
linear regression method for the simulated data.

FMI\Estimated
Parameter

β̂0 β̂1 β̂2
β̂3

10% 0.7104 0.0015 0.0005 0.0001
20% 1.7777 0.0032 0.0010 0.0003
30% 2.8297 0.3636 0.0008 0.0003
40% 5.1404 0.0076 0.0028 0.0023
50% 8.8153 0.0140 0.0040 0.0014

Table 7.7: Estimated mean of the regression coefficients with the linear re-
gression, non Bayesian method for the simulated data.

FMI\Estimated
Parameter

β̂0 β̂1 β̂2
β̂3

10% 517.5752 -1.9295 -0.2415 -0.1640
20% 518.0179 -1.8360 -0.2539 -0.1641
30% 516.4696 -1.8995 -0.2351 -0.1626
40% 516.9906 -2.0344 -0.1923 -0.1933
50% 516.7151 -1.9751 -0.1697 -0.1904

Actual Parameter 517.0888 -1.9462 -0.2346 -0.1572
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Table 7.8: Estimated Variance of the regression coefficients with the linear
regression, non Bayesian method for the simulated data.

FMI\Estimated
Parameter

β̂0 β̂1 β̂2
β̂3

10% 0.7273 0.0016 0.0005 0.0001
20% 1.3908 0.3012 0.0010 0.0002
30% 3.4215 0.0040 0.0013 0.0004
40% 4.4574 0.0076 0.0838 0.0008
50% 6.7807 0.0134 0.0041 0.0010

We conclude that using the predictive mean matching, the mean and

variance of the estimated regression coefficients tend to increase as the per-

centage of missingness increases. Using the Bayesian linear regression and the

linear regression, non Bayesian to impute missing data, although the overall

variance of the regression coefficients tends to increase as the percentage of

missingness increases, there is no clear direction of the estimated mean of

the regression coefficients.

7.3 Range and Percentage Deviation Index for the Simulated Data.

Tables 7.9 shows that the range increases for all the parameters as the

fraction of missing information increases when using the predictive mean

matching method. Using the Bayesian linear regression method to impute

missing values, Table 7.11 indicates that the range increases as the percent-

age of missingness increases for estimated parameter β̂0. For the estimated
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parameter β̂1, the range increases as the percentage of missingness increases

from 10% to 30%, it reduces at 40%, and then it increases at 50%. The range

for the estimated parameter, β̂2, increases as the percentage of missingness

increases from 10% to 20%, it reduces at 30%, and then it increases from

40% to 50%. The range for the estimated parameter, β̂3, increases as the

percentage of missingness increases from 10% to 20%, it reduces at 30%, it

increases for 40%, and then it reduces for 50%. From Table 7.13, the range

increases as the percentage of missingness increases from 10% to 40% for es-

timated parameters β̂0 and β̂3 and then it reduces at 50%. The range for the

estimated parameter, β̂1, increases sharply as the percentage of missingness

increases from 10% to 20%, it reduces at 30% and then it increases from 30%

to 50%. The range for the estimated parameter, β̂2, increases as the fraction

of missing information increases from 10% to 20%, it reduces fairly at 30%

missingness and increases again from 30% to 50%.

Comparing Tables 7.10, 7.12 and 7.14, the predictive mean matching

method of imputing missing values for the simulated data produces the

largest overall PDI of 9.011%. The PDI produces 7.173% and -0.968% for

the Bayesian linear regression and linear regression, non Bayesian methods

respectively. This implies that when using the simulated data, the predictive

mean matching method imputed data with relatively large variation from the

original data hence making it less effective to impute missing data. On the
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contrary, the linear regression, non Bayesian method underestimates the im-

puted data produced. Table 7.14 specifies that, using the linear regression,

non Bayesian method, most of the missing values introduced in the simu-

lated data are underestimated. Additionally, Table 7.14 shows the linear

regression, non Bayesian method imputes data with smaller deviation. How-

ever, while the predictive mean matching imputes data with large deviation

index for 10% and 20% missingness, the Bayesian linear regression method

produces imputed data with large deviation for 40% and 50% missingness.

Table 7.9: Range of the regression coefficients with the predictive mean
matching method for the simulated data.

FMI\Estimated
Parameter

β̂0 β̂1 β̂2
β̂3

10% 3.7656 0.1492 0.0885 0.0491
20% 5.63 0.2591 0.1099 0.0621
30% 6.6080 0.3234 0.1567 0.0898
40% 9.8568 0.3389 0.1921 0.093
50% 12.5502 0.5313 0.2247 0.1343
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Table 7.10: PDI of the regression coefficients with the predictive mean match-
ing method for the simulated data.

FMI\Estimated
Parameter

β̂0 β̂1 β̂2 β̂3
Mean

10% 0.58% -2.38% 12.62% 17.69% 7.13%
20% 0.49% -5.53% 26.44% 9.64% 7.76%
30% 0.24% -8.81% 36.13% 0.31% 6.97%
40% 0.53% -10.07% 42.03% 9.55% 10.51%
50% 0.69% -10.72% 53.31% 7.46% 12.68%
Mean 0.51% -7.50% 34.11% 8.93% 9.01%

Table 7.11: Range of the regression coefficients with the Bayesian linear
regression method for the simulated data.

FMI\Estimated
Parameter

β̂0 β̂1 β̂2
β̂3

10% 4.0071 0.1492 0.0846 0.0443
20% 6.3430 0.2933 0.1513 0.0831
30% 7.5408 4.3750 0.1198 0.0753
40% 10.6018 0.3635 0.2293 0.3510
50% 14.3545 0.5174 0.2526 0.2064

97



Table 7.12: PDI of the regression coefficients with the Bayesian linear regres-
sion method for the simulated data.

FMI\Estimated
Parameter

β̂0 β̂1 β̂2 β̂3
Mean

10% -0.11% 0.20% -0.61% -5.40% -1.48%
20% -0.08% 1.48% -4.34% -3.03% -1.49%
30% 0.48% -4.22% 40.56% 5.95% 10.69%
40% 0.73% -10.89% 49.26% 18.08% 14.30%
50% 0.89% -8.51% 45.91% 17.10% 13.85%
Mean 0.38% -4.39% 26.16% 6.54% 7.17%

Table 7.13: Range of the regression coefficients with the linear regression,
non Bayesian method for the simulated data.

FMI\Estimated
Parameter

β̂0 β̂1 β̂2
β̂3

10% 4.0953 0.1916 0.1237 0.0529
20% 5.6811 4.0190 0.1594 0.0706
30% 9.9696 0.2701 0.1512 0.0927
40% 10.3836 0.3983 2.1136 0.1550
50% 10.1803 0.5220 0.2890 0.1464
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Table 7.14: PDI of the regression coefficients with the linear regression re-
gression, non Bayesian method for the simulated data.

FMI\Estimated
Parameter

β̂0 β̂1 β̂2 β̂3
Mean

10% -0.09% 0.86% -2.95% -4.38% -1.64%
20% -0.18% 5.66% -8.25% -4.42% -1.80%
30% 0.12% 2.40% -0.24% -3.50% -0.30%
40% 0.02% -4.53% 18.02% -22.98% -2.37%
50% 0.07% -1.48% 27.63% -21.15% 1.27%
Mean -0.01% 0.58% 6.84% -11.28% -0.97%

7.4 Test for Normality of the Parameter Estimates using the Simulated
Data.

With fifty observations for each of the parameter estimates, by the central

limit theorem (CLT), each sampling distribution of the parameter estimates

follows an approximate normal distribution. To verify the assumption of

normality, Q-Q plots are constructed to provide visual support of normality.

Figures 7.1-7.15 show in most cases the points are close to a straight line,

demonstrating the assumption of normality is satisfied. Some of the plots

appears to be curved, but with fifty observations, we are assured of normality

because of CLT.
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Figure 7.1: Normality plots of the sampling distributions of the regression co-
efficients estimated for the simulated data using the predictive mean match-
ing method at 10% missingness.
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Figure 7.2: Normality plots of the sampling distributions of the regression
coefficients estimated using the predictive mean matching method at 20%
missingness.
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Figure 7.3: Normality plots of the sampling distributions of the regression co-
efficients estimated for the simulated data using the predictive mean match-
ing method at 30% missingness.
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Figure 7.4: Normality plots of the sampling distributions of the regression co-
efficients estimated for the simulated data using the predictive mean match-
ing method at 40% missingness.
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Figure 7.5: Normality plots of the sampling distributions of the regression co-
efficients estimated for the simulated data using the predictive mean match-
ing method at 50% missingness.
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Figure 7.6: Normality plots of the sampling distributions of the regression
coefficients estimated for the simulated data using the Bayesian linear regres-
sion method at 10% missingness.
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Figure 7.7: Normality plots of the sampling distributions of the regression
coefficients estimated for the simulated data using the Bayesian linear regres-
sion method at 20% missingness.
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Figure 7.8: Normality plots of the sampling distributions of the regression
coefficients estimated for the simulated data using the Bayesian linear regres-
sion method at 30% missingness.
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Figure 7.9: Normality plots of the sampling distributions of the regression
coefficients estimated for the simulated data using the Bayesian linear regres-
sion method at 40% missingness.
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Figure 7.10: Normality plots of the sampling distributions of the regression
coefficients estimated for the simulated data using the Bayesian linear regres-
sion method at 50% missingness.

109



Figure 7.11: Normality plots of the sampling distributions of the regression
coefficients estimated for the simulated data using the linear regression, non
Bayesian method at 10% missingness.
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Figure 7.12: Normality plots of the sampling distributions of the regression
coefficients estimated for the simulated data using the linear regression, non
Bayesian method at 20% missingness.
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Figure 7.13: Normality plots of the sampling distributions of the regression
coefficients estimated for the simulated data using the linear regression, non
Bayesian method at 30% missingness.
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Figure 7.14: Normality plots of the sampling distributions of the regression
coefficients estimated for the simulated data using the linear regression, non
Bayesian method at 40% missingness.
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Figure 7.15: Normality plots of the sampling distributions of the regression
coefficients estimated for the simulated data using the linear regression, non
Bayesian method at 50% missingness.

7.5 Hypothesis Test Using Student’s t Test Statistic

Now, we establish if there is evidence that the estimated regression coef-

ficient for the simulated data is the same as the actual regression unbiased

parameter estimates of the simulated data. Tables 7.15-7.17 show that only

a few of the estimated parameters from the imputed values for the simulated

data are significantly equal to the actual unbiased parameter estimates. Us-

ing the predictive mean matching method, Table 7.15 indicates that only

the estimated parameter for β̂3 at 30% is statistically equal to the actual

parameter. From Table 7.16, using the Bayesian linear regression method
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for imputing missing values, the estimated parameter, β̂1 is statistically in-

significant at 10% and 30% missingness. Also, the estimated parameter, β̂2

is statistically equal to the true parameter at 10% missingness. Statistically,

the estimated parameter β̂3 is the same as the the actual parameter estimate

at 20% missingness. Table 7.17 shows that, using the linear regression, non

Bayesian method, the parameter estimate for β̂0 is statistically insignificant

at 40% and 50% missingness. The parameter estimate β̂1 is statistically the

same as the true parameter at 20% and 50% missingness. There is enough

evidence that the estimated parameter for β̂2 at 30% and 40% missingness

are the same as the true values of the estimated parameters. The estimated

parameters for β̂3 at 30% is statistically equal to the actual parameter. The

P-values in bold indicate the results were not significant. The family level of

significance for the hypothesis test is 0.05.

Table 7.15: P-Values of the t statistic of the sampling distributions of regres-
sion coefficients estimated for the simulated data using the predictive mean
matching method.

FMI\Estimated
Parameter

β̂0 β̂1 β̂2
β̂3

10% < 0.0001 < 0.0001 < 0.0001 < 0.0001
20% < 0.0001 < 0.0001 < 0.0001 < 0.0001
30% < 0.0001 < 0.0001 < 0.0001 0.8524
40% < 0.0001 < 0.0001 < 0.0001 < 0.0001
50% < 0.0001 < 0.0001 < 0.0001 0.0092
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Table 7.16: P-Values of the t statistic of the sampling distributions of regres-
sion coefficients estimated for the simulated data using the Bayesian linear
regression method.

FMI\Estimated
Parameter

β̂0 β̂1 β̂2
β̂3

10% < 0.0001 0.4862 0.6357 < 0.0001
20% 0.0330 0.0007 0.0246 0.0528
30% < 0.0001 0.3398 < 0.0001 0.0004
40% < 0.0001 < 0.0001 < 0.0001 0.0001
50% < 0.0001 < 0.0001 < 0.0001 < 0.0001

Table 7.17: P-Values of the t statistic of the sampling distributions of regres-
sion coefficients estimated for the simulated data using the linear regression,
non Bayesian method.

FMI\Estimated
Parameter

β̂0 β̂1 β̂2
β̂3

10% 0.0002 0.0051 0.0388 < 0.0001
20% < 0.0001 0.162 < 0.0001 0.0017
30% 0.0219 < 0.0001 0.9137 0.07216
40% 0.7437 < 0.0001 0.307 < 0.0001
50% 0.3152 0.0839 < 0.0001 < 0.0001
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8 DISCUSSION

The results from the CCPP and the simulated data show that, in almost

all the cases, the absolute value of the estimated mean and the variance in-

creases as the percentage of missingness increases for all the three imputation

models. Oketch, 2017, argues that data with small amount of missingness

contains more of the actual information than data with large missingness

[20]. Thus, the variation in data with a small fraction of missing information

is less than the variation in data with a large amount of missing information.

According to Oketch, 2017, for a large amount of missingness, the same im-

puted values are revisited and used to fill-in the missing values at different

positions, hence widening the variation between the imputed data and the

actual data. [20].

One question that needs to be answered is, for all the imputation methods,

how close are the estimated means to the actual means, given the percent-

age of missingness? We observe that, for the CCPP data, the predictive

mean matching produces parameter estimates that are close to the actual

parameter than the Bayesian linear regression and the linear regression, non

Bayesian methods. This could be due to the fact that the imputed values are

chosen from the observed values, therefore keeping the variation between the

imputed data low. This is confirmed by the small overall PDI and the range

of the estimated regression coefficients. However, for the simulated data, the
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linear regression, non Bayesian method imputed missing values that produce

estimated regression coefficients that are closest to the actual parameters

for the simulated data. This is evidenced by the lower overall PDI of the

estimated regression coefficients. This can be attributed to the fact that

the simulated data comes from a multivariate normal distribution, hence re-

enforcing the claim made by Buuren and Groothuis-Oudshoorn (2000) that

the linear regression, non Bayesian performs better for data that follow a

normal distribution with a large sample size, where variability is not much of

an issue [32]. In summary, we can say that, since we did not know the actual

distribution of the CCPP data, the predictive mean matching works better

for a nonparametric data and the linear regression, non Bayesian produces

better results for a multivariate normal data. One interesting observation

is that, with the predictive mean matching method, the estimated regres-

sion coefficient, the variance and the range for both the CCPP data and the

simulated data are the same.

From the one sample t-test, most estimated regression coefficients for the

CCPP and the simulated data are significantly different from the correspond-

ing actual parameters. Yet, comparing the three imputation methods, the

linear regression, non Bayesian method produces relatively more estimated

regression coefficients (using the simulated data) that are significantly equal

to the actual parameter. This affirms the point that, for a multivariate nor-
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mal distribution, the linear regression, non Bayesian method generates better

imputations values.
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9 CONCLUSION

This paper discusses three imputation methods, namely predictive mean

matching, Bayesian linear regression method and the linear regression method,

non Bayesian, and evaluates how these methods perform at certain percent-

ages of missingness.

We conclude that the predictive mean matching produces better imputed

data for nonparametric data than the Bayesian linear regression and the

linear regression non Bayesian method. With a non parametric data, the

predictive mean matching produces better results for all the percentages of

missingness. Considering the three imputation methods, with a data that

is approximatly multivariate normal, the linear regression, non Bayesian

method imputes accurate data that yields better results. This is true for

all the percentages of missing information.

9.1 Future Work

In our quest to solve the problem of missing data, it is important to

identify the actual distribution of each of the variables in the actual data set,

simulate data from the actual distribution of each of the variable and extend

this analysis on the simulated data.

In addition, as indicated in Table 4.1, there are other functions in the

MICE of R that can be used to impute missing data. Extending the analysis
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to incorporate other scales of measurements is vital to ensure an overall

understanding of the imputation methods and to determine which methods

work best for different situations.
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