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ABSTRACT 
 

The Effect of Alcohol Consumption on Adipokine Secretion 
 

by 
 

Ashley R. DeGroat 
 
Alcoholic Fatty Liver Disease (AFLD) is caused by excessive alcohol consumption and is 

a leading cause of liver related mortalities, with currently no treatments available. The 

goal of this project was to establish the effect of alcohol consumption on adipose tissue-

derived secreted factors, adiponectin and C1q TNF Related Proteins 1-3 (CTRP1-3). We 

propose that excessive alcohol consumption will reduce circulating levels of adiponectin 

and CTRPs 1-3. Mice were fed a Lieber-Decarli control or alcohol diet for 10-days with a 

gavage (NIAAA model) or 6-weeks with no gavage (chronic model). Serum and adipose 

tissue were collected and CTRPs 1-3 and adiponectin levels were examined by 

immunoblot analysis. Our results indicate that long-term alcohol consumption effects 

adipokine secretion in a sex specific manner. Further research will be needed to explore 

the physiological relevance of these findings, to determine if these changes are beneficial 

to combat the negative effects of excessive alcohol consumption.  
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CHAPTER 1 
 

LITERATURE REVIEW 
 
 
Alcoholic Fatty Liver Disease (AFLD) is one of the leading causes of mortality in the 

United States and around the world (Bataller and Gao 2011; Parry 2011; Kema et al. 

2015). Fatty liver is defined as the accumulation of excess lipids in the liver.  According 

to the NIAAA (National Institute on Alcohol Abuse and Alcoholism), a standard drink 

contains about 14 grams of pure alcohol. The NIAAA defines binge drinking as having a 

blood alcohol concentration (BAC) level of 0.08 g/dL, which typically occurs after 4 

drinks for women and 5 drinks for men at a time. Heavy drinking is defined by the 

NIAAA as binge drinking for 5 or more days within a month.  Chronic alcohol 

consumption disrupts lipid synthesis and can lead to hepatic steatosis, hepatitis, and 

cirrhosis of the liver (Nagy et al. 2016).  Hepatic steatosis is primarily asymptomatic, but 

the accumulation of lipids can serve as the beginning of more serious forms of fatty liver 

disease such as: hepatitis (fatty liver with inflammation), cirrhosis (hepatitis with 

fibrosis), and liver failure. Not only does this disease cause damage to the liver but it also 

affects the body as a whole.  And a specific area of interest is the adipose tissue.   

Adipose tissue has been found to be more than just an organ for storing fat, as it also 

plays a role in whole-body metabolism and is responsible for synthesis and secretion of 

many hormones (Ahima and Flier 2000; Coelho et al. 2013).  The balance between 

lipogenesis (fat synthesis) and lipolysis (breakdown of fat) determines fat accumulation.  

Lipogenesis occurs in the adipose tissue as well as the liver.  It is stimulated by an 

increase in calories and inhibited by fasting.  Lipolysis occurs in adipose tissue and 

breaks down fat into fatty acids for energy production.  Once broken down fatty acids are 
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transported from the adipose tissue through the bloodstream to the liver, muscle, and 

other tissues for oxidation (Coelho et al. 2013). Alcohol consumption affects adipose 

tissue mass, adipokine secretion, adipose tissue hydrolysis, and results in the release of 

excess fatty acids that are transported to the liver and deposited as triglycerides (Kema et 

al. 2015). Changes to the adipose tissue have an opportunity to affect the levels of 

adipokines, cell-signaling proteins secreted from the adipose tissue. Adipokines have an 

effect on insulin sensitivity, glucose and fatty acid metabolism, and the inflammatory 

process (Peterson et al. 2013). There are many different adipokines secreted from adipose 

tissue but this project aims to look at a select few because of their roles in lipid 

metabolism and fatty acid oxidation.  C1q/TNF-related proteins (CTRPs) are highly 

conserved paralogs of adiponectin consisting of a signal peptide, a short variable region, 

a collagen domain, and a globular C1q (Complement Component 1q) domain (Wong et 

al. 2008). Because the adiponectin globular domain closely resembles TNFα, proteins 

with the C1q domain are classified as the C1q/TNF protein family (Wong et al. 2008). 

Table 1.1 Adipokines and Cytokines 
Molecule Function/effect Molecular 

Weight 
Observed 

CTRP1 Metabolic and cardiovascular functions, 
lowers blood glucose levels and protects 
from diet-induced obesity and insulin 
resistance. Promotes glucose uptake and 
fatty acid oxidation in skeletal muscle.   

35 kDa 

CTRP2 Promotes lipid uptake from the blood  38kDa 

CTRP3 Stimulates liver lipid metabolism and 
attenuates diet-induced fatty liver disease. 
 

25kDa 

Adiponectin 
 
 
 
 

Increases fatty acid oxidation in the liver 
and stimulates glucose uptake in skeletal 
muscle. 
 
 

34kDa 
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Adipokines 

CTRP1 

C1q/TNF-related protein 1 (CTRP1) is expressed at its highest levels in adipose 

tissue (Rodriguez et al. 2016). CTRP1 has been found to lower blood glucose and 

activate AMPK (AMP-activated protein kinase) to control fatty acid metabolism in 

skeletal muscle (Peterson et al. 2012; Rodriguez et al. 2016). And chronic over 

expression of CTRP1 has been found to enhance skeletal muscle fat oxidation and reduce 

insulin resistance caused by a high-fat diet (Rodriguez et al. 2016).  CTRP1 has also 

reduces the formation of plaque and increases aldosterone production (Shabani et al. 

2016). In a CTRP1 KO model, the loss of CTRP1 in mice fed a high fat diet resulted in 

decreased expression of multiple genes associated with lipid metabolism in the adipose 

tissue (Rodrgiuez et al. 2016).   

Table 1.1 (continued)  
Leptin Signals to the brain about body fat stores. 

Regulation of appetite and energy 
expenditure. Stimulates fatty acid 
oxidation in the liver and skeletal muscle. 
Stimulates glucose uptake in skeletal 
muscle. 
Prevents lipotoxicity 
Pro-fibrogenic 
 

 

PAI-1 Inhibitor of the fibrinolytic system by 
inhibition of activation of plasminogen 
 

 

IL-6 Pro-inflammatory, lipid and glucose 
metabolism, regulation of body weight 
Induces insulin and leptin resistance 
 

 

TNF-α Pro-inflammatory cytokine that induces 
PAI-1, increases fatty acid release from 
adipocytes, and increases lipogenesis in 
hepatocytes.  
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CTRP2 

C1q/TNF-related protein 2 (CTRP2) is a mouse paralog closely related to 

adiponectin, which promotes glycogen accumulation and activates the AMPK signaling 

pathway to increase fatty acid oxidation.  Because CTRP2 induces glycogen 

accumulation it may also lower blood glucose (Wong et al. 2008). And because of the 

role of adiponectin in enhancing insulin resistance, CTRP2 could also play a role in 

improving insulin resistance.  

CTRP3 

CTRP3 (C1q/TNF-related protein 3) increases liver lipid metabolism and inhibits 

inflammation.  Previous work has shown that overexpressing CTRP3 as well as daily 

injections of CTRP3 reduces high-fat diet induced fatty liver (Peterson et al. 2013).  Over 

expressing CTRP3 in a high fat model showed a decrease in the synthesis of triglycerides 

and a decrease in circulating levels of TNF-α (Peterson et al. 2013).  CTRP3 decreases 

blood glucose by suppressing gluconeogenic expression in the liver (Peterson et al. 

2010).  It has been found that human patients with non-alcoholic fatty liver disease 

(NAFLD) exhibited reduced levels of circulating CTRP3 (Zhang et al. 2017).  Therefore, 

restoring CTRP3 levels has been shown as a possible treatment for NAFLD (Peterson et 

al. 2013).  But it is still a question if it could be used to alleviate AFLD, because AFLD is 

caused by ethanol-induced lipogenesis and decreased lipid oxidation and NAFLD is 

primarily caused by an excessive accumulation of lipids in the liver (Breitkopf 2009; 

Coelho et al. 2013; Fujii 2014; Parker 2018).  Identifying the affect of alcohol on levels 

of CTRP3 will provide further insight to this question. 

Adiponectin 
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Adiponectin was one of the first adipokines to be discovered and is well studied. 

Adiponectin is an adipokine involved in regulating glucose levels as well as the 

breakdown of fatty acids (Karbowska and Kochan 2006). Adiponectin is exclusively 

secreted by adipose tissue and abundantly present in the blood stream. Adiponectin 

stimulates insulin secretion, fatty acid oxidation in the liver, glucose uptake in skeletal 

muscle, and suppresses TNF-α and IL-6 expression, all factors that are disrupted with 

ETOH feeding.  Chronic ETOH consumption causes a significant decrease in circulating 

levels of adiponectin, and correlated with the development of liver injury (Xu et al. 2003; 

Song et al. 2008; Tan et al. 2012).  Adiponectin is believed to also play a protective role 

against alcoholic liver disease in mice as levels increase significantly with consumption 

of a high fat diet with ethanol (You et al. 2005).   Adiponectin is an anti-inflammatory 

adipokine known to promote appropriate lipid storage, preventing ectopic fat storage in 

places such as the liver (Lang and Steiner 2017).  Circulating levels of adiponectin are 

shown to be affected by alcohol consumption, although, there is some variability as 

adiponectin levels have been shown to be unaffected (Tan et al. 2012), suppressed (Chen 

et al. 2007; Yu et al. 2010), or increased (Sierksma et al. 2004; Pravdova et al. 2009; 

Mandrekar and Fulham 2016) with the consumption of alcohol. It is suspected that 

oxidative stress induced by acute alcohol exposure reduces the secretion of adiponectin 

(Tang et al. 2003), indicating that time since last dose of ethanol can affect results. 

Leptin 

Leptin is one of the most studied adipokine (Hiney et al. 1999; Roth et al. 2003; 

Strbák et al. 2003; Lang and Steiner 2017).  It plays a role in food intake, energy 

expenditure, lipolysis, fatty acid oxidation, and lipogenesis (Lang and Steiner 2017).  
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Leptin also prevents lipotoxicity, which causes cell damage due to the accumulation of 

lipids in areas other than adipose tissue, such as the liver (Bertolani and Morra 2008). 

Leptin has been shown to be pro-fibrogenic, as an absence of leptin resulted in reduced 

liver fibrosis (Leclercq et al. 2002).  The effects of alcohol on leptin levels vary among 

studies; it has been shown to increase (Kiefer et al. 2002; Obradovic 2002; He et al. 

2015), decrease (Hiney et al. 1999), and be unchanged (Strbák et al. 2003) using a range 

of chronic alcoholic models (Lang and Steiner 2017).  Circulating levels of leptin have 

been shown to be affected by alcohol consumption, although, similarly to adiponectin, 

there is variability.  Some models have shown leptin levels to increase (He et al. 2003; 

Roth et al. 2003; Sierksma at al. 2004; Pravdova et al. 2009) with alcohol consumption 

while others have shown leptin levels to decrease (Hiney et al. 1999; Tan et al. 2012) 

with alcohol consumption.  

Cytokines 

PAI-1 

Plasminogen Activator Inhibitor-1 (PAI-1) inhibits plasminogen activation that 

breaks down fibrin and is regulated by levels of TNF-α (Hou et al. 2004). As alcoholic 

fatty liver disease progresses, there is an accumulation of extracellular matrices that leads 

to fibrosis. Plasma activator inhibitor-1 (PAI-1) regulates fibrinolysis. (Arteel 2008). 

 IL-6 

Interleukin 6 (IL-6) acts as a pro inflammatory cytokine. Studies have shown IL-6 

to play an important part in protection of the liver through liver repair and preventing 

apoptosis (Hong et al. 2002). 

TNF-α 
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TNF-α is a pro-inflammatory cytokine and increased levels have been 

documented in animal models of AFLD (McClain et al. 1998). TNF-α contributes to 

hepatic steatosis by inducing the expression PAI-1. It increases fatty acid release from 

adipocytes increasing lipogenesis in hepatocytes, and inhibits the β-oxidation of fatty 

acids (Arteel 2008).   

Because of adipokines’ positive affects on lipid oxidation, alcohol consumption 

will result in decreased circulating levels of adiponectin, CTRP1, CTRP2, and CTRP3.   
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ABSTRACT:	
The	goal	of	this	project	was	to	establish	the	effect	of	alcohol	consumption	on	a	group	
of	 novel	 adipose	 tissue-derived	 secreted	 factors:	 C1q	 TNF	 Related	 Proteins	 1-3	
(CTRP1,	 CTRP2,	 and	 CTRP3).	 Adipose	 tissue	 secretes	 several	 circulating	 proteins,	
called	adipokines,	which	exert	a	multitude	of	biological	effects	important	for	human	
health.	 However,	 adipose	 tissue	 is	 extremely	 sensitive	 to	 alcohol	 consumption,	
leading	 not	 only	 to	 disrupted	 fat	 storage,	 but	 also	 to	 disruptions	 in	 adipokine	
production.	 	 Changes	 to	 adipokines	 could	 have	 widespread	 biological	 effects	 and	
potentially	 contribute	 to	 alcohol-induced	 ailments.	 To	 test	 the	 effects	 of	 alcohol	
consumption	 on	 adipokines,	male	 and	 female	mice	were	 randomized	 to	 a	 Lieber-
DeCarli	control	diet	or	Lieber-DeCarli	5%	(v/v)	ethanol	diet	 for	either:	1)	10-days	
followed	by	a	single	gavage	of	5	g/kg	ethanol	on	the	11th	day	(the	NIAAA	model);	or	
2)	6-weeks	with	no	binge	added	(chronic	model).		In	response	to	the	NIAAA	model,	
female	mice	fed	ethanol	had	an	~200%	increase	in	circulating	levels	of	adiponectin,	
an	~25%	increase	in	CTRP1,	a	25%	decrease	in	CTRP2	and	75%	reduction	in	CTRP3.	
Whereas,	in	the	male	mice	ethanol	decreased	circulating	CTRP2	by	~25%,	with	no	
changes	observed	in	adiponectin,	CTRP1,	or	CTRP3.		The	effects	of	ethanol	on	CTRP2	
levels	disappeared	after	6-weeks	of	ethanol	feeding	(chronic	model),	as	CTRP2	levels	
were	not	different	between	control	and	ethanol	fed	mice	of	either	sex.	Whereas,	in	
the	chronic	model,	ethanol	more	than	doubled	circulating	adiponectin	levels	in	both	
male	and	female	mice.	Surprisingly,	chronic	ethanol	feeding	resulted	in	a	dimorphic	
effect	 on	 circulating	 CTRP1.	 Briefly,	 CTRP1	 levels	 were	 increased	 by	 ~125%	 in	
ethanol	 fed	 female	 mice	 but	 were	 50%	 lower	 in	 ethanol	 fed	 male	 mice.	 Lastly,	
circulating	CTRP3	levels	were	decreased	in	female	mice,	with	no	change	in	male	mice.	
Combined,	this	is	the	first	study	to	document	the	effects	of	alcohol	on	the	circulating	
levels	of	CTRP1,	CTRP2,	and	CTRP3.	Understanding	the	impact	of	excessive	alcohol	
consumption	 on	 adipokine	 production	 and	 secretion	 could	 identify	 novel	 alcohol-
induced	mechanisms	of	human	disease	and	identify	novel	potential	pharmaceutical	
targets	for	treatment	development.		Lastly,	these	results	confirm	earlier	findings	that	
alcohol	consumption	has	sex-specific	effects.		
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INTRODUCTION	
	
The	detrimental	 effects	of	 chronic	alcohol	 abuse	have	been	well-documented	with	
established	 long-term	 health	 conditions	 such	 as	 cardiovascular	 disease	 [1],	
respiratory	 distress	 [2],	 gastrointestinal	 dysfunction,	 alcoholic	 liver	 disease	 [3-6],	
cancer	[7],	and	metabolic	dysfunction	[8]	 .	Excessive	alcohol	consumption	not	only	
causes	 initial	 injury	 via	 direct	 toxic	 effects	 (i.e.	 oxidative	 stress)	 to	 the	 individual	
tissues,	 but	 also	 results	 in	 secondary	 indirect	 injury	 through	 elevations	 in	
inflammatory	cytokines	and	ectopic	fat	deposition	[9,	10].	Although	little	can	be	done	
to	prevent	the	acute	toxic	effects	of	alcohol	consumption,	understanding	and	reducing	
secondary	alcohol-induced	injury	is	a	key	component	of	treating	the	long-term	health	
conditions	associated	with	chronic	alcohol	consumption.	
Adipose	tissue	is	not	only	the	primary	location	for	the	storage	of	excess	lipids,	but	

is	also	a	major	contributor	to	the	production	of	circulating	inflammatory	cytokines	
[11].	 Furthermore,	 chronic	 alcohol	 consumption	 results	 in	 high	 levels	 of	 adipose-
tissue	oxidative	stress,	leading	to	elevations	in	inflammation	and	hyperlipolysis	[11].	
Therefore,	alcohol-induced	disruptions	to	adipose	tissue	function	contribute	to	the	
wide-spread	development	of	secondary	alcohol-related	health	conditions.	 	Females	
have	 a	 higher	 amount	 of	 adipose	 tissue	 (higher	 percent	 body	 fat),	 and	 this	 may	
account	for	the	increased	susceptibility	of	females	to	the	chronic	effects	of	alcohol	[5,	
7,	12-14].			
In	addition	to	the	direct	effects	of	alcohol	on	adipose	tissue,	alcohol	consumption	can	
also	 lead	 to	 disruptions	 in	 adipokine	 secretion.	 Adipokines	 are	 bioactive	 proteins	
secreted	by	adipose	tissue	which	can	have	significant	endocrine	effects	on	regulating	
human	 health	 and	 disease.	 Circulating	 levels	 of	 the	 two	 most	 widely	 studied	
adipokines,	leptin	and	adiponectin,	are	significantly	affected	by	alcohol	consumption	
[10,	15-29].	Leptin	is	primarily	a	satiety	signal;	therefore,	its	role	in	ethanol-related	
health	effects	 is	unclear.	However,	 adiponectin	 stimulates	 fatty	acid	oxidation	and	
inhibits	both	the	activity	and	production	of	inflammatory	cytokines	[10,	30,	31],	thus	
supporting	our	hypothesis	that	alcohol-induced	disruptions	to	adipokine	production	
can	contribute	to	the	development	alcoholic	related	disease.			
In	 2004	 Wong	 et	 al	 identified	 a	 novel	 family	 of	 adipokines,	 referred	 to	 as	

Complement	 C1q	 Tumor	 Necrosis	 Factor-Related	 Proteins	 (CTRPs)	 [32,	 33].	
Reflecting	profound	biological	potency,	the	initial	characterization	of	these	adipose	
tissue-derived	 CTRP	 factors	 demonstrate	 wide-ranging	 effects	 upon	 metabolism,	
inflammation,	and	survival-signaling	[32-52].	As	alcohol	alters	the	expression	of	both	
leptin	and	adiponectin,	we	hypothesized	that	chronic	alcohol	abuse	would	also	affect	
other	adipokines.	To	test	this	hypothesis,	we	chose	to	examine	three	novel	adipokines	
that	have	not	been	examined	in	relation	to	alcohol	consumption:	CTRP1,	CTRP2,	and	
CTRP3.		All	three	of	these	proteins	have	been	demonstrated	to	improve	lipid	handling	
in	unique	ways	in	response	to	high	fat	diet.	Briefly,	elevated	circulating	CTRP1	levels	
attenuate	body	weight	gain	in	response	to	a	high	fat	feeding	through	increased	lipid	
oxidation	 in	 skeletal	muscle	 [36],	CTRP2	 improves	 serum	 lipid	 clearance	 in	obese	
mice	[37,	46],	and	CTRP3	attenuates	high	fat	diet-induced	hepatic	steatosis	[38,	53].	
In	 summary,	 all	 three	 of	 these	 adipokines	 have	 documented,	 unique	 methods	 to	
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improving	lipid	handling	in	ways	that	could	diminish	the	secondary	damage	caused	
by	chronic	alcohol	abuse.		Therefore,	the	purpose	of	this	project	was	to	establish	the	
effects	of	alcohol	on	the	circulating	levels	of	these	proteins.		The	results	of	this	study	
could	 produce	 new	 understanding	 to	 the	 mechanism	 by	 which	 chronic	 alcohol	
consumption	leads	to	ectopic	fat	deposition	and	other	health	issues	and	identify	novel	
potential	pharmaceutical	targets	for	treatment	of	alcohol-induced	disease.		

METHODS	

Animal	model	

Forty	female	mice	(C57BL/6)	and	thirty-seven	male	mice	(C57BL/6)	were	used	for	
this	study.		Mice	were	housed	in	polycarbonate	cages	on	a	12-h	light-dark	photocycle	
with	 ad	 libitum	 access	 to	 water	 and	 food,	 except	 as	 specified.	 At	 the	 time	 points	
indicated,	 animals	 were	 anesthetized	 with	 isoflurane	 and	 euthanized	 via	 cardiac	
puncture.	 Serum	 samples	were	 prepared	 according	 to	 manufacture’s	 instructions	
(Sarstedt,	Cat#41.1500.005).	The	gonadal	fat	pads	were	excised,	snap	frozen	in	liquid	
nitrogen,	 and	 stored	at	−80	 °C	until	 further	analysis.	 	All	 animal	procedures	were	
conducted	 in	 accordance	 with	 institutional	 guidelines,	 and	 ethical	 approval	 was	
obtained	from	the	University	Committee	on	Animal	Care	(protocol	#P151201;	East	
Tennessee	 State	 University,	 Animal	 Welfare	 Assurance	 number	 is	 A3203-01).	
Animals	 were	 checked/weighed	 daily	 and	 euthanized	 (counted	 as	 dead),	 via	 CO2	
inhalation,	 based	 on	 the	 presence	 of	 any	 of	 the	 following	 criteria	 for	 humane	
endpoints:	unconsciousness,	 intractable	 seizures,	 labored	breathing	or	 respiratory	
distress,	inability	to	ambulate	or	maintain	upright	position,	diarrhea	or	constipation,	
or	the	inability	to	eat	or	drink.	
	

Ethanol	Feeding		

Two	independent	ethanol	feeding	models	were	employed:	The	first	model	was	the	
11-day	chronic	plus	binge	model,	also	known	as	the	NIAAA	model	[54].	This	model	
reportedly	mimics	hepatic	steatosis	and	liver	injury,	which	occurs	in	many	alcoholic	
hepatitis	patients	(26).	Briefly,	12-week	old	mice	were	acclimatized	to	a	control	liquid	
diet	(Bio-serv;	cat#	F1259SP)	for	4	days	followed	by	10	days	on	the	Lieber-DeCarli	
ethanol	diet	(5%	v/v	ethanol;	Bio-serv;	cat#	F1258SP)	ad	libitum.		On	the	morning	of	
the	11th	day	(1	hour	into	light	cycle)	food	was	removed	and	replaced	with	water	and	
the	mice	were	given	a	single	gavage	of	ethanol	(5	g	kg-1).	After	gavage,	cages	were	
placed	on	heating	pads	to	prevent	hypothermia,	as	described	[54].	Nine	hours	post	
gavage,	 mice	 were	 anesthetized	 with	 isoflurane,	 until	 the	 absence	 of	 reflex	 was	
observed,	 and	 the	 euthanized	 by	 exsanguination,	 and	 tissue/serum	 samples	were	
collected	and	processed	for	analysis.	
In	the	second	model	(chronic	model),	8-week	old	male	and	12-week	old	female	mice	
were	acclimatized	to	a	liquid	diet	ad	 libitum,	without	 the	addition	of	alcohol	 for	1-
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week	and	 then	gradually	 transitioned	 from	1-5%	Lieber-DeCarli	 ethanol	diet	 (v/v	
ethanol)	over	the	course	of	the	next	2	weeks,	then	maintained	on	5%	ethanol	(v/v	
ethanol)	 for	 the	 remaining	 4	 weeks.	 This	 feeding	 protocol	 is	 believed	 to	 reflect	
chronic	ethanol	abuse,	beginning	with	low	volumes	and	increasing	over	time	[55].	On	
the	 morning	 of	 the	 final	 day,	 food	 was	 removed,	 and	 mice	 were	 fasted	 9	 hours,	
anesthetized	 with	 isoflurane	 until	 the	 absence	 of	 reflex	 was	 observed,	 and	 the	
euthanized	 by	 exsanguination,	 and	 tissue/serum	 samples	 were	 collected	 and	
processed	for	analysis.	The	9-hour	time	point	was	selected	to	be	consistent	with	the	
NIAAA	model	protocol	[54].		
Control	Fed	mice	were	placed	on	an	ethanol	free	isocaloric	control	diet	(Bio-serv;	cat#	
F1259SP)	supplemented	with	maltose	dextrin	(to	match	the	calories	of	ethanol),	for	
use	as	experimental	controls.	Food	intake	in	ethanol	fed	mice	was	measured	daily	and	
mice	on	the	control	diet	had	their	food	intake	limited	to	match	the	daily	intake	for	the	
previous	 day	 of	 the	 corresponding	 ETOH-fed	mice.	 	 Overview	 of	 animals	 in	 each	
experimental	group	are	listed	in	table	1.	
	

Table 2.1 Number of animals in each experimental group 
 Male Female 
Model Control ETOH Control ETOH 
NIAAA model 10 8 6 6 
Chronic Model 6 13 8 20 
ETOH, ethanol fed; Control, fed matched control diet without ethanol 

	

Immunoblot	Analysis	

Serum	 samples	 were	 diluted,	 and	 adipose	 tissues	 (gonadal	 fat	 pad)	 were	
homogenized	in	assay	buffer	(50	mM	Tris	HCl,	pH	8.0,	150	mM	NaCl,	0.1%	Triton	x-
100,	 0.5%	 sodium	 deoxycholate,	 0.1%	 SDS),	 plus	 the	 addition	 of	 protease	 and	
phosphatase	 inhibitors	 (Bimake	 Cat#B14001	 &	 B15001).	 Protein	 concentrations	
were	 measured	 by	 commercial	 assay	 (Pierce™;	 Cat#PI23236).	 	 Afterward,	 equal	
proportions	 of	 each	 sample	 were	 denatured	 at	 95°C	 in	 SDS	 loading	 buffer	 (final	
concentration:	1%	SDS,	5%	2-mercaptoethanol,	10%	glycerol,	0.004%	bromophenal	
blue,	 0.125	 M	 Tris	 HCl,	 pH	 6.8).	 30	 µg	 per	 sample	 (adipose)	 or	 1	 µl	 serum	 was	
separated	 by	 gel	 electrophoresis	 (BioRad;	 cat#456-1046)	 and	 transferred	 to	 a	
nitrocellulose	 membrane	 (BioRad;	 Cat#162-0115),	 according	 the	 manufacturer’s	
instructions.	 To	 confirm	 appropriate	 protein	 migration	 a	 protein	 standard	 was	
loaded	 with	 each	 blot	 (BioRad	 cat#1610374	 or	 Thermo	 Scientific	 cat#26616).	
Membranes	were	blocked	in	2%	non-fat	milk	and	probed	with	primary	antibodies:	
CTRP1	 (GW	 Wong	 Lab;	 Johns	 Hopkins	 University,	 Cat#	 anti-gCTRP1,	
RRID:AB_2716247),	 CTRP2	 (Abnova	 Corporation	 Cat#	 H00114898-M01,	
RRID:AB_426121),	CTRP3	(R	and	D	Systems	Cat#	AF2436,	RRID:AB_2067713),	and	
Adiponectin	(R	and	D	Systems	Cat#	MAB1119,	RRID:AB_2305045).	After	incubation	
with	 primary	 antibodies	 membranes	 were	 washed	 and	 probed	 with	 appropriate	
HRP-labeled	secondary	antibodies:	Goat	anti-rabbit	(Thermo	Fisher	Scientific	Cat#	
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31460	 RRID:AB_228341),	 rabbit	 anti-goat	 (Thermo	 Fisher	 Scientific	 Cat#	 31402,	
RRID:AB_228395),	 rabbit	 anti-rat	 (Thermo	 Fisher	 Scientific	 Cat#	 PA1-28786,	
RRID:AB_10983740),	 or	 goat	 anti-mouse	 (Cell	 Signaling	 Technology	 Cat#	 7076,	
RRID:AB_330924).	Chemiluminescence	signals	were	visualized	with	Millipore	(Cat#	
17010A2).	 Quantification	 of	 signal	 intensity	 was	 performed	 using	 Alphaview	
Software	(Alpha	Innotech).	

RNA	Isolation	

RNA	 was	 isolated	 according	 to	 commercial	 assay	 following	 manufacturer’s	
instructions	(Direct-zol	Cat#	R2070).	 	Isolated	RNA	was	eluted	in	50	µl	RNase-free	
water;	purity	(RIN	≥	7.0)	and	concentrations	were	confirmed	by	microfluidic	capillary	
electrophoresis	(Agilent	RNA	6000	Nano	kit,	#5067-1511,	Agilent	Technologies).	1	
μg	RNA	was	reverse	transcribed	according	to	manufacturer’s	instructions	(Promega,	
Cat#A5001).	

Quantitative	real-time	PCR	

A	10-fold	dilution	series	of	DNA	amplicons	generated	from	a	prepared	sample	was	
employed	as	a	standard	curve	for	each	gene	of	interest,	and	the	qPCR	efficiency	was	
determined	for	each	gene	(Bio-Rad	Cfx	thermocycler).	All	qRT-PCR	primers	displayed	
a	coefficient	of	correlation	greater	than	0.95	and	efficiencies	between	90%	and	110%.	
Primer	sequences	are	listed	in	table	2.	Briefly,	25	ng	of	cDNA	was	incubated	in	SYBR	
Green	qPCR	Master	mix	(Bimake.com,	Cat#	B21203)	for	an	initial	denaturation	at	95	
°C	for	10	min,	followed	by	40	PCR	cycles	each	consisting	of	95	°C	for	15	s,	and	60	°C	
for	1	min.	After	the	last	cycle	specificity	of	amplification	products	were	confirmed	by	
analyzing	melting	curve	profiles	for	primers	and	products.	Data	is	reported	as	copy	
number	normalized	to	the	geometric	mean	of	the	reference	genes	Beta-actin	(Actb)	
and	Hypoxanthine-guanine	phosphoribosyltransferase	(Hprt1).		

Table 2.2 PCR primer sequences 
Gene Name Forward Reverse 
Actb CCTCCCTGGAGAAGAGCTATG TTACGGATGTCAACGTCACAC 
Hprt1 CAAACTTTGCTTTCCCTGGT TCTGGCCTGTATCCAACACTTC 
Adipoq CCTGGCCACTTTCTCCTCATT ATCCTGAGCCCTTTTGGTGT 
CTRP1 TCCGAGCTCTGTTGACATGC AAAGATTGACCAGCCCCTGG 
CTRP2 TCCTGGGTACTCTTGGCCTG AAGCATTGGGTCAGCAGCA 
CTRP3 CATCTGGTGGCACCTGCTG TGACACAGGCAAAATGGGAG 
Abbreviations: Actb, Beta-actin; Hprt1, Hypoxanthine-guanine phosphoribosyltransferase; Adipoq, 
Adiponectin; CTRP, C1q and tumor necrosis factor related protein 
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Multiplex	Serum	Analysis	

Circulating	concentrations	of	Interleukin-6	(IL-6),	Tumor	necrosis	factor	alpha	(TNF),	
Plasminogen	 activator	 inhibitor-1	 (PAI-1)	 and	 leptin	 were	 determined	 using	
commercially	available	assays	(Bio-Plex®	Multiplex	 Immunoassay	System,	Bio-rad	
Cat#	171F7001M,	171G5023M,	171I50001,	171G5007M).		

Statistical	Analysis	

Descriptive	 statistics	 (mean	 and	 standard	 deviations)	 were	 calculated	 for	 all	
measured	variables.	As	the	feeding	models	were	not	performed	concurrently,	each	
model	was	analyzed	independently.	Body	weight	and	food	intake	data	were	analyzed	
by	two-way	repeated	measures	ANOVA	followed	by	Tukey's	multiple	comparisons	
test.	Survival	curve	was	determined	by	log-rank	(Mantel-Cox)	test.	An	unpaired	t	test	
was	 used	 to	 compare	 immunoblot	 and	 gene	 expression	 data	 between	 control	 and	
ethanol	fed	groups.	All	statistical	analysis	was	performed	by	Graphpad	Prism	6.	

RESULTS	

Animal	Characteristics		

	As	expected,	with	pair	feeding	no	differences	in	total	food	intake	occurred	between	
control	and	ethanol	fed	groups.	Although	during	weeks	2	and	3	the	body	weights	of	
the	ethanol	fed	female	mice	were	significantly	higher	than	control	fed,	this	difference	
normalized	by	week	4	and	there	was	no	further	difference	in	body	weights	between	
the	control	and	ethanol	fed	groups	of	either	sex	(Fig	1A-B).	Further,	no	differences	
were	 observed	 in	 ethanol	 consumption	 between	 male	 and	 female	 mice	 when	
normalized	 to	 body	 mass	 (Fig	 1C-D).	 All	 animals	 on	 the	 NIAAA	 feeding	 protocol	
survived	through	the	end	of	the	experiment.	Unexpectedly,	with	6-weeks	of	ethanol	
feeding	 the	 female	mice	had	an	approximate	50%	mortality	 rate	 compared	with	a	
non-significant	difference	in	mortality	rate	in	identically	treated	male	mice	(Fig	1E-
F).	
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Figure 2.1	

Figure 2.1 Animal Characteristics.  
Separate cohorts of male and female mice were exposed to two separate ethanol 
feeding protocols: The NIAAA model (10 days, plus a binge on day 11) or the 
chronic model (6 weeks).  No differences in body weights (A & C) or food intake 
normalized to body weight (B & D) were observed.  There was no difference in the 
survival curve in ethanol compared with control fed male mice (E), however there 
was a significant difference in the female survival curve (F). Data reported as mean 
± SD (A-D), data reported as absolute numbers (E & F), *=p < 0.05 ETOH vs Con.  
Abbreviations: Con-F, pair-fed female; ETOH-F, ethanol fed female; Con-M, pair-
fed male; ETOH-M, ethanol fed male; NIAAA, National Institute on Alcohol 
Abuse and Alcoholism. 
	



	 23	

Multiplex	serum	analysis	

Data	from	multiplex	analysis	is	reported	in	Table	2.	Briefly,	in	both	models	ethanol	
increased	 circulating	 IL-6	 levels	 in	 female	 mice,	 and	 6	 weeks	 of	 ethanol	 feeding	
increased	TNF	levels	in	female	mice.	On	the	other	hand,	PAI-1	levels	were	increased	
with	ethanol	 feeding	 regardless	of	sex	or	 feeding	model.	 Lastly,	 leptin	 levels	were	
significantly	elevated	with	ethanol	feeding	in	both	sexes	with	the	NIAAA	model,	with	
no	differences	noted	after	6	weeks	of	feeding	(Chronic	model).	
	

Table 2.3 Serum Multiplex analysis 
	 The	NIAAA	Model	
	 Con-M	 ETOH-M	 Con-F	 ETOH-F	
IL-6	(pg/mL)	 186	±	61	 292	±	315	 82	±	112	 3627	±	1875*	
TNF	(pg/mL)	 215	±	57	 443	±	274	 529	±	410	 602	±	318	
PAI-1	(ng/mL)	 4.0	±	1.2	 10.9	±	4.5*	 3.8	±	1.3	 12.4	±	7.2*	
Leptin	(ng/mL)	 6.0	±	3.4	 16.3	±	9.5*	 2.4	±	1.8	 41.6	±	26.7*	
	 Chronic	model	
	 Con-M	 ETOH-M	 Con-F	 ETOH-F	
IL-6	(pg/ml)	 57	±	54	 45	±	23	 36	±	10	 81	±	55*	
TNF	(pg/ml)	 427	±	117	 514	±	532	 338	±	79	 590	±	263*	
PAI-1	(ng/ml)	 2.87	±	0.32	 3.9	±	0.90*	 3.66	±	0.47	 6.96	±	3.2*	
Leptin	(ng/mL)	 12.8	±	11.6	 3.4	±	2.2	 10.4	±	4.7	 7.7	±	5.0	
All	data	is	reported	as	mean	±	standard	deviations.	*=p<	0.05	Con	compared	
with	ETOH.	Abbreviations:	ETOH,	ethanol	fed;	Con,	control	fed,	M,	Male;	F,	
Female;	IL-6,	Interleukin-6;	TNF,	Tumor	necrosis	factor	alpha;	PAI-1,	
Plasminogen	activator	inhibitor-1.	

	

Circulating	Adipokines		

In	 response	 to	 the	 NIAAA	 model,	 female	 mice	 fed	 ethanol	 had	 an	 increase	 in	
circulating	levels	of	both	adiponectin	and	CTRP1	and	a	decrease	in	both	CTRP2	and	
CTRP3.	 Whereas,	 in	 the	 male	 mice	 ethanol	 decreased	 circulating	 CTRP2	 with	 no	
changes	observed	in	adiponectin,	CTRP1,	or	CTRP3	(Fig	2).			
In	the	chronic	model,	circulating	CTRP2	levels	were	not	different	between	control	and	
ethanol	fed	mice	regardless	of	sex.	Whereas,	6	weeks	of	ethanol	feeding	more	than	
doubled	circulating	adiponectin	levels	in	both	male	and	female	mice.	Unexpectedly,	
chronic	ethanol	feeding	had	a	dimorphic	effect	on	CTRP1	levels:	CTRP1	levels	were	
increased	 in	 female	 mice	 but	 lowered	 by	 ~50%	 in	 male	 mice.	 Lastly,	 circulating	
CTRP3	levels	were	decreased	in	female	mice,	with	no	change	in	male	mice.	
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Figure 2.2 

Figure 2.2 Circulating Adipokines in the NIAAA model of ethanol feeding.  
Circulating adiponectin, CTRP1, CTRP2, and CTRP3 levels were determined by 
immunoblot in serum collected from mice on the 10-day plus binge model of 
ethanol feeding (the NIAAA model). Data reported as mean ± SD. Male and female 
blots were performed and analyzed independently, and values were normalized to 
control fed within each sex. n=6, and *=p < 0.05 ETOH vs Con.  Abbreviations: 
Con-F, pair-fed female; ETOH-F, ethanol fed female; Con-M, pair-fed male; 
ETOH-M, ethanol fed male; NIAAA, National Institute on Alcohol Abuse and 
Alcoholism. Raw data files for data presented in Figure 2 are attached as 
supplemental data (S1). 
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Figure 2.3 

Figure 2.3 Circulating Adipokines in the Chronic model of ethanol feeding.  

Serum was collected from the mice after 6 weeks of ethanol feeding and circulating 
levels of adiponectin, CTRP1, CTRP2, and CTRP3 were determined by 
immunoblot analysis. Data reported as mean ± SD. Male and female blots were 
performed and analyzed independently, and values were normalized to control fed 
within each sex, n=6, and *=p < 0.05 ETOH vs Con. Abbreviations: Con-F, pair-
fed female; ETOH-F, ethanol fed female; Con-M, pair-fed male; ETOH-M, ethanol 
fed male. Raw data files for data presented in Figure 3 are attached as supplemental 
data (S2). 
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Adipokine	Gene	Expression	and	Tissue	Content	

Gonadal	adipose	adipokine	gene	expression	and	protein	content	levels	were	analyzed	
to	 determine	 if	 differences	 in	 serum	 could	 be	 contributed	 to	 changes	 in	 tissue	
expression.	 	However,	no	differences	were	observed	 in	adipokine	gene	expression	
(Fig	4),	indicating	that	changes	to	gene	expression,	at	least	in	the	gonadal	fat	pads,	
were	 not	 responsible	 for	 the	 changes	 in	 circulating	 adipokine	 levels.	 The	 adipose	
tissue	protein	content	(Fig	5)	was	also	analyzed	and	overall	there	was	no	difference	
in	protein	 levels	 in	 the	adipose	tissue	 in	response	to	either	alcohol-feeding	model.	
These	data	indicate	that	the	alcohol	feeding	models	used	in	this	study	did	not	alter	
tissue	level	expression	of	these	adipokines,	at	least	in	the	gonadal	fat	pads.		
	
Figure	2.4	

Figure	2.4	Tissue	Adipokine	Gene	Expression.		
After 6 weeks gonadal adipose tissue samples were collected from the mice. There 
were no significant differences found in the gene expression of adiponectin, 
CTRP1, CTRP2, or CTRP3 (A-D). Data reported as mean ± SD and normalized to 
geometric mean Abbreviations: Con-F, pair-fed female; ETOH-F, ethanol fed 
female; Con-M, pair-fed male; ETOH-M, ethanol fed male. 
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Figure 2.5 
	

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 2.5 Tissue 
Adipokine Protein Content.  

Gonadal adipose tissue samples were collected from the mice after ethanol feeding 
for 6 weeks or 10 days (NIAAA) and adiponectin, CTRP1, CTRP2, and CTRP3 
and levels were examined by immunoblot analysis. Data reported as mean ± SD 
Male and female blots were performed and analyzed independently, and values 
were normalized to control fed within each sex, n=6, and *=p < 0.05 ETOH vs Con. 
Abbreviations: Con-F, pair-fed female; ETOH-F, ethanol fed female; Con-M, pair-
fed male; ETOH-M, ethanol fed male. 
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DISCUSSION	
	
The	 major	 finding	 of	 this	 study	 is	 that	 excessive	 ethanol	 consumption	 effects	
adipokine	levels	in	a	sex	specific	manner.	The	expanding	family	of	adipokines,	with	
their	multiple	biologically	relevant	functions,	provide	abundant	research	targets	for	
the	development	of	novel	therapies	for	the	treatment/prevention	of	human	disease.	
The	purpose	of	this	project	was	to	specifically	examine	the	effects	of	ethanol	abuse	on	
three	 novel	 adipokines	 (CTRP1,	 CTRP2,	 and	 CTRP3).	 	 These	 adipokines	 have	
documented	 lipid	regulating	 functions	and	their	disruption	could	contribute	to	 the	
development	of	ectopic	fat	deposition.	Ectopic	fat	deposition	is	a	major	contributor	
to	the	secondary	injury	caused	to	tissues	due	to	excessive	alcohol	consumption	[9,	
10].		
	
The	secondary	finding	of	this	study	is	that	female	mice	are	more	sensitive	to	ethanol	
feeding	than	male	mice.	This	observation	has	been	repeatedly	noted	in	the	literature	
on	a	variety	of	experimental	outcomes	[5,	13,	56].	Specifically,	in	this	study	male	and	
female	 mice	 consumed	 similar	 amounts	 of	 ethanol,	 normalized	 to	 body	 weight.	
However,	female	mice	had	significant	inflammation	(elevations	in	TNF	and	IL-6)	and	
a	 significant	 mortality	 rate	 in	 ethanol-fed	 compared	 with	 control-fed	 mice.	
Conversely,	there	was	no	difference	in	TNF,	IL-6,	or	mortality	between	control	and	
ethanol	 fed	 male	 mice.	 It	 is	 important	 to	 note	 that	 ethanol	 consumption	 led	 to	
increased	 levels	 of	 PAI-1,	 indicating	 in	 both	 sexes	 alcohol	 consumption	 leads	 to	
damage	tissues	and	disruptions	to	overall	tissue	homeostasis	[57].	

Leptin	and	Adiponectin	

Leptin	and	adiponectin	were	the	 first	adipokines	discovered	and	are	currently	 the	
most	 well	 studied.	 Circulating	 levels	 of	 both	 leptin	 and	 adiponectin	 have	 been	
documented	to	be	affected	by	alcohol	consumption,	although	to	what	extent	alcohol	
alters	these	proteins	is	unclear.	Briefly,	leptin	levels	have	been	shown	to	increase	with	
alcohol	feeding	in	some	models	[10,	15-24],	with	no	change	in	other	feeding	models	
[25],	while	decreasing	in	other	alcohol	feeding	models	[16,	23,	26].	Specifically,	acute	
alcohol	consumption	decreases	leptin	levels	in	both	human	and	animal	models	[21-
23],	however,	acute	reductions	in	leptin	levels	are	gone	approximately	9-hours	post	
exposure	 [23].	 	 On	 the	 other	 hand,	 leptin	 levels	were	 significantly	 increased	with	
withdrawl	in	alcohol	patients	[58,	59].	Combined,	these	data	indicate	that	the	time	
from	last	alcohol	exposure	could	influence	serum	leptin	results.	Further	variability	in	
serum	 leptin	 levels	 with	 alcohol	 consumption	 could	 be	 associated	 to	 the	 feeding	
model.	 For	 example,	 ethanol	 increased	 leptin	 compared	 with	 pair-fed	 rats,	 but	
showed	 no	 difference	 compared	 with	 control	 ad	 libitum	 rats	 [25].	 Our	 findings	
demonstrate	that	leptin	levels	can	vary	depending	on	the	exposure	model	as	leptin	
levels	were	increased	in	the	NIAAA	model	(which	includes	a	final	ethanol	bolus),	but	
showed	no	difference	in	leptin	levels	after	6	weeks	of	chronic	ethanol	feeding.	
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Similarly,	adiponectin	levels	have	been	shown	to	be	suppressed	[18,	24],	not	different	
[26],	 or	 elevated	 [12,	 18,	 19,	 26-28]	 in	 response	 to	 alcohol	 consumption.	 It	 is	
suspected	 that	 oxidative	 stress	 induce	 by	 acute	 alcohol	 exposure	 reduces	 the	
secretion	of	adiponectin	[29],	indicating	that	time	since	last	dose	of	ethanol	can	affect	
results.	 The	 cause	 of	 elevated	 levels	 of	 serum	 adiponectin	 seen	 in	 many	 alcohol	
feeding	 protocols	 has	 not	 been	 established.	 	 However,	 chronic	 alcohol	 abuse	 has	
demonstrated	associations	between	circulating	adiponectin	levels	and	the	severity	of	
liver	damage	and	elevated	adiponectin	 levels	 in	cases	of	cirrhosis	[10,	60-62].	Our	
data	 supports	 the	 finding	 that	 circulating	 adiponectin	 levels	 increase	 with	 both	
NIAAA	and	chronic	alcohol	consumption.	As	circulating	adiponectin	levels	increase	
with	 ethanol	 exposure,	 activating	 adiponectin	and	 adiponectin	mediated	 signaling	
pathways	may	not	be	a	successful	strategy	for	the	prevention/treatment	of	ALD,	as	
its	levels	are	already	increased	with	chronic	ethanol	exposure.	
	

CTRP1	

We	hypothesized	that	the	alcohol-induced	loss	of	CTRP1	may	exacerbate	the	effects	
of	alcohol	abuse	due	to	decreased	skeletal	muscle	 lipid	oxidation	[36],	resulting	 in	
excessive	circulating	lipid	levels,	thus	promoting	ectopic	lipid	accumulation.	Both	the	
NIAAA	and	chronic	models	showed	CTRP1	levels	were	elevated	in	the	female	ethanol	
fed	mice,	compared	with	control	fed	mice,	indicating	that	alcohol	consumption	does	
not	 inhibit	CTRP1	 levels	 in	 females.	 	On	 the	other	hand,	 in	 the	male	mice,	 chronic	
ethanol	feeding	resulted	in	a	significant	reduction	in	CTRP1	levels.		At	this	time,	the	
mechanism	responsible	for	the	dimorphic	effect	of	alcohol	is	unknown.	 	This	effect	
may	be	secondary	to	the	observed	increase	in	pro-inflammatory	cytokines	(TNF	and	
IL-6).	 	 Regardless,	 alcohol-induced	 reduction	 in	 circulating	 CTRP1	 levels	 requires	
further	analysis	 to	determine	 if	similar	results	are	shown	in	human	alcoholics	and	
whether	restoration	of	CTRP1	would	generate	any	protective	effect	in	male	mice.			

CTRP2	

As	predicted	CTRP2	 levels	decreased	with	ETOH	 feeding	 in	both	male	 and	 female	
mice	 during	 the	 10-day	 plus	 binge	 (the	 NIAAA	 model)	 ethanol	 feeding	 protocol.	
However,	there	was	no	long-term	alcohol-induced	difference	in	CTRP2	in	either	sex.	
Therefore,	 the	 data	 does	 not	 support	 that	 alcohol-induced	 changes	 to	 circulating	
CTRP2	levels	contribute	to	the	adverse	effects	of	chronic	alcohol	abuse.		

CTRP3	

Ethanol	 feeding	 reduced	circulating	CTRP3	 levels	 in	 female,	 but	not	male,	mice	 in	
response	 to	both	 the	NIAAA	model	 and	chronic	 feeding	model.	Alcoholic	 cirrhosis	
occurs	at	a	higher	rate	 in	 female	alcoholic	patients,	at	an	earlier	age,	with	a	 lower	
proportional	 amount	 of	 alcohol	 consumption	 [5,	 12,	 13].	 As	 CTRP3	 levels	 are	
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selectively	reduced	in	ethanol	fed	female	mice,	this	provides	a	novel	mechanism	to	
explore	the	increase	susceptibility	of	females	to	alcoholic	cirrhosis.	In	support	of	this	
hypothesis,	our	previous	work	has	shown	that	CTRP3	acts	directly	on	liver	tissue	to	
stimulate	lipid	oxidation	and	attenuate	diet-induced	fatty	liver	disease	[38].	In	fact,	in	
human	subjects	CTRP3	levels	are	reduced	with	diet-induced	hepatic	steatosis,	or	non-
alcoholic	fatty	liver	disease	[63].		Further,	we	have	also	previously	shown	that	CTRP3	
suppresses	 lipid-induced	 elevations	 in	 pro-inflammatory	 cytokines,	 such	 as	 TNF.		
However,	the	effects	of	CTRP3	on	reducing	alcoholic	fatty	liver	disease	are	yet	to	be	
explored.	 	 Chronic	 alcohol	 consumption	 disrupts	 lipid	 synthesis	 which	 leads	 the	
buildup	 of	 hepatic	 lipids,	 resulting	 alcoholic	 fatty	 liver	 and	 eventually	 alcoholic	
cirrhosis	[5,	9,	13],	the	leading	causes	of	liver	failure	and	a	leading	cause	of	death	in	
the	Unites	States	[5,	13,	14,	56].	Thus,	there	has	been	renewed	interest	in	developing	
effective	therapeutic	strategies	to	prevent	alcoholic	fatty	liver	disease	[4,	6,	9,	13,	64,	
65].	Our	data,	combined	with	the	literature,	identifies	CTRP3	as	an	ideal	candidate	to	
develop	novel	treatments	for	alcoholic	fatty	liver	disease.	

Conclusion	

Since	the	discovery	of	leptin	and	adiponectin,	research	into	understanding	the	role	of	
adipokines	 in	 human	health	has	 become	 a	 popular	 topic.	The	 expanding	 family	 of	
adipokines,	with	their	multiple	functions,	provides	abundant	research	targets	for	the	
development	 of	 novel	 therapies.	 This	 study	 demonstrates	 that	 sex	 and	 mode	 of	
ethanol	 exposure	 can	 significantly	 influence	 the	 results	 indicating	 that	 the	 role	 of	
alcohol	 on	 adipokines	 should	 be	 studied	 via	 multiple	 models.	 Lastly,	 we	 have	
identified	 the	 sex	 specific	 alcohol-induced	 reduction	 in	 CTRP3	 as	 a	 potential	
mechanism	for	 the	 increased	susceptibility	of	 females	to	alcoholic	cirrhosis.	These	
findings	warrant	further	study.	
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Figure	Legends	

Figure	1:	Animal	characteristics.		
Separate cohorts of male and female mice were exposed to two separate ethanol 
feeding protocols: The NIAAA model (10 days, plus a binge on day 11) or the 
chronic model (6 weeks).  No differences in body weights (A & C) or food intake 
normalized to body weight (B & D) were observed.  There was no difference in the 
survival curve in ethanol compared with control fed male mice (E), however there 
was a significant difference in the female survival curve (F). Data reported as mean 
± SD (A-D), data reported as absolute numbers (E & F), *=p < 0.05 ETOH vs Con.  
Abbreviations: Con-F, pair-fed female; ETOH-F, ethanol fed female; Con-M, pair-
fed male; ETOH-M, ethanol fed male; NIAAA, National Institute on Alcohol 
Abuse and Alcoholism. 
 

Figure 2: Circulating Adipokines in the NIAAA model of ethanol feeding.  
Circulating adiponectin, CTRP1, CTRP2, and CTRP3 levels were determined by 
immunoblot in serum collected from mice on the 10-day plus binge model of 
ethanol feeding (the NIAAA model). Data reported as mean ± SD. Male and female 
blots were performed and analyzed independently, and values were normalized to 
control fed within each sex. n=6, and *=p < 0.05 ETOH vs Con.  Abbreviations: 
Con-F, pair-fed female; ETOH-F, ethanol fed female; Con-M, pair-fed male; 
ETOH-M, ethanol fed male; NIAAA, National Institute on Alcohol Abuse and 
Alcoholism. Raw data files for data presented in Figure 2 are attached as 
supplemental data (S1). 
	

Figure 3: Circulating Adipokines in the Chronic model of ethanol feeding.  
Serum was collected from the mice after 6 weeks of ethanol feeding and circulating 
levels of adiponectin, CTRP1, CTRP2, and CTRP3 were determined by 
immunoblot analysis. Data reported as mean ± SD. Male and female blots were 
performed and analyzed independently, and values were normalized to control fed 
within each sex, n=6, and *=p < 0.05 ETOH vs Con. Abbreviations: Con-F, pair-
fed female; ETOH-F, ethanol fed female; Con-M, pair-fed male; ETOH-M, ethanol 
fed male. Raw data files for data presented in Figure 3 are attached as supplemental 
data (S2). 
	

Figure 4: Tissue adipokine gene expression.  
After 6 weeks gonadal adipose tissue samples were collected from the mice. There 
were no significant differences found in the gene expression of adiponectin, 
CTRP1, CTRP2, or CTRP3 (A-D). Data reported as mean ± SD and normalized to 
geometric mean Abbreviations: Con-F, pair-fed female; ETOH-F, ethanol fed 
female; Con-M, pair-fed male; ETOH-M, ethanol fed male. 
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Figure 5: Gonadal adipose tissue adipokine protein content.  
Gonadal adipose tissue samples were collected from the mice after ethanol feeding 
for 6 weeks or 10 days (NIAAA) and adiponectin, CTRP1, CTRP2, and CTRP3 
and levels were examined by immunoblot analysis. Data reported as mean ± SD 
Male and female blots were performed and analyzed independently, and values 
were normalized to control fed within each sex, n=6, and *=p < 0.05 ETOH vs Con. 
Abbreviations: Con-F, pair-fed female; ETOH-F, ethanol fed female; Con-M, pair-
fed male; ETOH-M, ethanol fed male. Raw data files for data presented in Figure 
5 are attached as supplemental data (S3). 
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CHAPTER 3 

METHODS 

Adipose Tissue Lipid Analysis 
 

Lipids were extracted as described by Bligh and Dyer and as previously 

performed (16, 18). Briefly, adipose tissue samples were weighed then homogenized in 

phosphate-buffered saline, 3.75 ml/ml of sample homogenate 1:2 (vol/vol) chloroform-

methanol was added, followed by the addition of 1.25 ml/ml chloroform, followed by 

1.25 ml distilled water. Samples were vortexed for 30 s between each addition. Samples 

were then centrifuged at 1,100x g for 10 min at room temperature to give a two-phase 

solution (aqueous phase on top and organic phase below). The lower phase was collected 

with a glass pipette with gentle positive pressure. Samples were then divided into 2 

aliquots and dried under nitrogen gas at 60°C.  To measure total triglyceride levels one 

aliquot from each sample was dissolved in tert-butyl alcohol-Triton X-100 (3:2 vol/vol) 

solution. Triglycerides were quantified via colorimetric assay according to manufactures 

directions (Infinity Triglycerides, Fisher Diagnostics, Cat# TR22421). The remaining 

aliquot was prepared for Fatty Acid Methyl Ester analysis. 

Fatty Acid Methyl Ester Preparation and Analysis 
 

Fatty acids (FA) of snap-frozen adipose tissue samples were extracted using the 

fatty acid methyl ester (FAME) method and measured with GC-MS.  Briefly, boron 

trifluoride-methanol reagent (B1252; Sigma-Aldrich, St Louis, MO, USA) was added to a 

prepared aliquot of isolated adipose tissue lipids. The tube was then closed and heated in 

a block heater at 100°C for 1 hour before returning to room temperature. 1.5 mL distilled 

water was added and samples were centrifuged for 1 minute at 4000x g.  FAMEs were 
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extracted in the hexane phase, dried under nitrogen gas, suspended in 275 µL hexane, 5  

µL C17 internal standard (1:9 hexane dilution) was added, and samples were stored at -

80° C until further analysis. Gas chromatography (GC) using a flame-ionization detector, 

(Shimadzu GC- 2010; Shimadzu Corporation, Kyoto Japan) was performed on the 

samples using a capillary column (Zebron ZB-WAX, 30 m length, 0.25 mm i.d., 0.25 µm 

film thickness; Phenomenex, Torrance, CA, USA). The peaks were identified by 

comparison with Supelco 37 component FAME mix fatty acid standard (Sigma-aldrich 

Cat# 47885-U).  

Serum Evaluations 
 

Serum glucose and triglyceride concentrations were determined using 

commercially available assays according to manufactures directions (Glucose: 

Calbiochem. Cat# CBA086; Triglycerides: Infinity Triglycerides, Fisher Diagnostics. 

Cat# TR22421).  Serum ALT levels were measured using an enzymatic assay kit (Cat# 

TR71121) according to manufacturer’s instructions. Serum AST levels were measured 

using an enzymatic assay kit (Cat# A7561) according to manufacturer’s instructions.  
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CHAPTER 4 
 

RESULTS 
 

Effects of Ethanol on Circulating Glucose 
 
 The chronic ethanol feeding model showed no differences in levels of glucose in 

serum when comparing ETOH fed male and female mice to their respective controls (Fig 

1).   

Figure 1. 
Figure 4.1 Chronic Serum Glucose 
Circulating levels of glucose were determined using a commercially available assay.  Serum was collected 
from the mice after 10-day plus binge model of ethanol feeding (NIAAA) and after 6 weeks of ethanol 
feeding (Chronic). Data is reported as mean ± SD. * p < 0.05 ETOH vs. Control.  Abbreviations: Con-F, 
pair-fed female; ETOH-F, ethanol fed female; Con-M, pair-fed male; ETOH-M, ethanol fed male. 
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Effects of Ethanol on Circulating Triglycerides 
 

The chronic ethanol feeding model showed no differences in circulating 

triglycerides when comparing ETOH fed male and female mice to their respective controls 

(Fig 2).   

Figure 2.  

 
 
Figure 4.2  NIAAA and Chronic Serum Triglycerides 
Circulating levels of triglycerides were determined using a commercially available assay.  Serum was 
collected from the mice after the NIAAA model of ethanol feeding (A) and after the chronic model of 
ethanol feeding (B). Data is reported as mean ± SD. * p < 0.05 ETOH vs. Control.  Abbreviations: Con-F, 
pair-fed female; ETOH-F, ethanol fed female; Con-M, pair-fed male; ETOH-M, ethanol fed male. 
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Effects of Ethanol on Serum Transaminases 

 
The NIAAA model showed no differences in ALT levels when comparing ETOH 

fed male and female mice to their respective controls (Fig 3 A).  However, the chronic 

model showed a significant increase (p < 0.05) in ALT and AST levels in female ETOH 

fed mice compared to the female control group (Fig 3 B-C) while there was no difference 

found in ALT and AST levels for chronic male ETOH fed mice compared to the male 

control group (Fig 3 B-C).   

Figure 3.  
 

 
Figure 4.3  NIAAA and Chronic Serum Transaminases 
ALT (A-B) and AST (C) levels were measured in the serum using a commercially available assay.  Serum 
was collected from the mice after the NIAAA model of ethanol feeding and after the chronic model of 
ethanol feeding. Data is reported as mean ± SD. * p < 0.05 ETOH vs. Control.  Abbreviations: Con-F, pair-
fed female; ETOH-F, ethanol fed female; Con-M, pair-fed male; ETOH-M, ethanol fed male. 
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Chronic Adipose Tissue Lipid Analysis 

 
The chronic model male mice showed no significant differences between the 

ETOH fed male mice and the control fed male mice. However, the ETOH fed female 

mice showed a significant increase in levels of oleic acid with ETOH consumption 

compared to the control fed female mice.  

Figure 4. 

 
Figure 4.4  Chronic Adipose Tissue Lipid Analysis  
Adipose tissue lipids were isolated, extracted using the FAME method, and measured with gas-
chromatography mass spectrometry.  Data was analyzed using a 1-way ANOVA and is represented by 
mean + S.D. * p < 0.05 ETOH vs. Control.  Abbreviations: Con-F, pair-fed female; ETOH-F, ethanol fed 
female; Con-M, pair-fed male; ETOH-M, ethanol fed male. 
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CHAPTER 5 
 

DISCUSSION 
 

The aim of this study was to determine the effect alcohol consumption has in mice 

on levels of adipokines:  CTRP1, CTRP2, and CTRP3.  Because adipokines have lipid-

regulating functions, their disruption could contribute to ectopic fat deposition, which is a 

major contributor to the secondary injury caused to tissues due to excessive alcohol 

consumption (Lang and Steiner 2017; Parker 2018).  The major finding of this study is 

that excessive alcohol consumption affects adipokine levels in a sex specific manner, as 

female mice appear to be more sensitive to ethanol consumption.  Alcoholic cirrhosis 

occurs at a higher rate in female alcoholic patients, at an earlier age, with a lower 

proportional amount of alcohol consumption (Rehm et al. 2010; Mandrekar and Fulham 

2016; Nagy et al. 2016). In this study, male and female mice consumed similar amounts 

of ethanol, however, ethanol fed female mice showed significant inflammation 

(elevations in TNF and IL-6) and a significantly higher mortality rate when compared to 

control-fed mice.  Where as, there was no difference in TNF, IL-6, or mortality between 

control and ethanol fed male mice. One potential reason for this is because women have 

less body water than men, so they exhibit a higher concentration of alcohol in the blood 

when similar amounts of alcohol are consumed (Rehm et al. 2010; Ghosh and Vaughan 

2012). It is important to note that ethanol consumption led to increased levels of PAI-1, 

indicating in both sexes alcohol consumption leads to damage tissues and disruptions to 

overall tissue homeostasis (Ghosh and Vaughan 2012) .  The levels of alanine 

transaminase (ALT) and aspartate transaminase (AST) were analyzed in both the NIAAA 

and chronic models.  Transaminases are liver enzymes that can be measured in the serum 
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to determine the degree of injury to the liver (Barone et al. 2016; Kim et al. 2016).  In the 

chronic model, female ETOH fed mice showed a significant increase in both ALT and 

AST levels, twice as much as the male ETOH fed mice.  This contributes to our finding 

that female mice were more sensitive to the ETOH than the male mice.    

Leptin	and	Adiponectin	

	 It	has	been	documented	that	circulating	levels	of	leptin	and	adiponectin	are	

affected	by	alcohol	consumption.	Our	findings	demonstrate	that	leptin	levels	can	vary	

depending	on	the	feeding	model,	as	leptin	levels	were	increased	in	the	NIAAA	model	

(which	includes	a	final	ethanol	bolus)	but	showed	no	difference	after	6	weeks	of	

chronic	ethanol	feeding.		Considering	the	chronic	model	showed	no	difference	in	

leptin	levels	between	control	and	ETOH	groups,	the	increase	in	leptin	levels	found	in	

ETOH	fed	mice	in	the	NIAAA	model	could	be	a	result	of	the	final	ethanol	gavage	given	

to	the	mice	before	serum	and	tissue	samples	were	collected.		The	chronic	model	

showed	that	alcohol	consumption	did	not	affect	the	circulating	levels	of	leptin,	

suggesting	that	over	a	longer	period	of	time,	leptin	levels	will	be	unchanged	by	

alcohol	consumption.		This	variability	could	be	due	to	the	time	of	the	last	alcohol	

exposure,	or	possibly	dependent	upon	the	feeding	model	used	in	the	study.		

Adiponectin levels have also been shown to be unaffected (Tan et al. 2012), 

suppressed (Chen et al. 2007; Yu et al. 2010), or increased (Sierksma et al. 2004; 

Pravdova et al. 2009; Mandrekar and Fulham 2016) with the consumption of alcohol. The 

cause of elevated levels of serum adiponectin seen in many alcohol feeding protocols has 

not been established.  However, chronic alcohol abuse has demonstrated associations 
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between circulating adiponectin levels and the severity of liver damage and elevated 

adiponectin levels in cases of cirrhosis (Xu et al. 2003; Tietge et al. 2004; You et al. 

2005; Lang and Steiner 2017).  Contrary to our hypothesis, our data supports the finding 

that circulating adiponectin levels increase with both NIAAA and chronic alcohol 

consumption. As circulating adiponectin levels increase with ethanol exposure, activating 

adiponectin and adiponectin mediated signaling pathways may not be a successful 

strategy for the prevention/treatment of ALD, as its levels are already increased with 

chronic ethanol exposure.  

CTRP1 
 

We hypothesized that the alcohol-induced loss of CTRP1 may enhance the effects 

of alcohol abuse due to decreased skeletal muscle lipid oxidation (Scherer and Shapiro 

1998), resulting in excessive circulating lipid levels, thus promoting ectopic lipid 

accumulation. In our study, the NIAAA model showed increased circulating levels of 

CTRP1 in female ETOH fed mice and no difference in the circulating levels of CTRP1 in 

the male ETOH fed mice.  This could be due to the increase levels of CTRP1 found in the 

NIAAA adipose tissue for ETOH fed female mice. After 6 weeks of ethanol feeding 

CTRP1 levels were elevated in the female ethanol fed mice, compared with control fed 

mice; indicating that chronic alcohol consumption does not inhibit CTRP1 levels in 

females.  On the other hand, after 6 weeks of ethanol feeding there was a significant 

decrease in CTRP1 levels in ETOH fed male mice.  The mechanism responsible for the 

dimorphic effect of alcohol is unknown.  This effect may be secondary to the observed 

increase in pro-inflammatory cytokines (TNF and IL-6).  Alcohol-induced reduction in 

circulating CTRP1 levels requires further analysis to determine if similar results are 
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shown in human alcoholics and whether restoration of CTRP1 would generate any 

protective effect in male mice.   

CTRP2 
 

As predicted, CTRP2 levels decreased with ETOH feeding in both male and 

female mice during the 10-day plus binge (the NIAAA model) ethanol feeding protocol. 

However, there was no long-term alcohol-induced difference in CTRP2 in either sex. 

Therefore, the data does not support that alcohol-induced changes to circulating CTRP2 

levels contribute to the adverse effects of chronic alcohol abuse.  

CTRP3 
 

Ethanol feeding reduced circulating CTRP3 levels in female, but not male mice, 

in both the NIAAA model and chronic feeding model. In fact, in human subjects CTRP3 

levels are reduced with diet-induced hepatic steatosis, or non-alcoholic fatty liver disease 

(Zhang et al. 2017).  We have previously shown that CTRP3 suppresses lipid-induced 

elevations in pro-inflammatory cytokines, such as TNF.  However, the effects of CTRP3 

on reducing alcoholic fatty liver disease are yet to be explored.  Our data, combined with 

the literature, identifies CTRP3 as an ideal candidate to develop novel treatments for 

alcoholic fatty liver disease.	 	
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CHAPTER 6 

CONCLUSION 

 In conclusion, alcohol consumption does have an effect on novel adipokines: 

CTRP1, CTRP2, and CTRP3.  Chronic alcohol consumption disrupts lipid synthesis, 

which leads to the buildup of hepatic lipids, resulting alcoholic fatty liver and eventually 

alcoholic cirrhosis (Nagy et al. 2016; Parker 2018; Rehm et al. 2010), the leading causes 

of liver failure and a leading cause of death in the United States (Nagy et al. 2016; Rehm 

et al. 2010).  Based on our research, there are some differences in the effects of excessive 

alcohol consumption between males and females.  Females are more sensitive to 

excessive alcohol consumption, but CTRP3 could provide an ideal candidate to develop 

novel treatment.  Because CTRP3 levels are selectively reduced in ETOH fed female 

mice, this provides a novel mechanism to explore the increase susceptibility of females to 

alcoholic cirrhosis.  Overexpressing CTRP3 in female mice fed an ETOH diet would 

prove to be a beneficial trial for the effects of CTRP3 on ameliorating AFLD in females.   

Based on our findings for the male ETOH fed mice, with more research, CTRP1 could 

prove to be a target for treating AFLD in males. 	 	
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